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A Notations12

Images and Feature maps:

Iref Input image
Itgt Generated target image
Igt Ground-truth target image
D The estimated Depth Map from DepthNet
fi The i-th output point feature of the encoder
lilocal The continuous positional encoded feature of the i-th LSA layer
giglobal The i-th global set attention of the encoder
gilocal The i-th local set attention of the encoder
hi The output feature map of the implicit renderer
he The output feature map of the explicit renderer
O The out-of-view mask

Camera parameters and Coordinates:

K Input camera intrinsic matrix for a resolution of H ×W
T Input relative camera pose matrix
R The rotation matrix of T
t The translation vector of T
u/∥u∥ The normalized axis that is not changed by R
θ The amount of rotated angle of R
Ximg A set of normalized image coordinates
Xw A set of 3D world coordinates
N (p) A set of neighbor homogeneous coordinates of p

MLP-layers and Operations:

δglobal A position encoding layer in ISAB
δabslocal A continuous position encoding layer in LSA layer
δrellocal A discretized position encoding layer in LSA layer
ψ A query projection layer in LSA layer
ϕ A value projection layer in LSA layer
δpos A positional encoding layer for camera parameters
⊕ A vector concatenation operation
Sc(·) A cosine similarity operation
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B Experimental Details13

Our code is available at https://anonymous.4open.science/r/Bridging_Implicit_14

Explicit_viewsyn-1322/README.md.15

B.1 Datasets16

To select training image pairs from video clips in RealEstaet10K [15] and ACID [3], our selection17

protocol proceeds similarly to the previous work [11]. However, we experimentally set selection18

limits that allow the network to learn both small and large view changes and exclude situations19

of entering different rooms. Specifically, we set the range of angle (◦), translation (m) and frame20

differences (frames) to [10, 60], [0, 3] and [0, 100] for both datasets, respectively.21

B.2 Baselines22

SynSin [11] SynSin [11] uses a point cloud representation for single-image view synthesis. Similar23

to our method, it does not require any ground-truth 3D information and uses a differentiable point24

cloud renderer. The point cloud representation projected by the renderer is refined to generate25

novel view images. Since the official code is publicly available, we use it for implementation 1.26

SynSin-6x, which is a variant of SynSin trained on large viewpoint changes, is introduced in [7]. For27

implementation of SynSin-6x, we adopt the official code of PixelSynth [7] 2.28

PixelSynth [7] SynSin achieves remarkable view synthesis results in small viewpoint changes, but29

it fails to fill the unseen region of novel view images realistically. PixelSynth utilizes the outpainting30

strategy for supplementing the ability to complete the unseen region of SynSin. Although a slow31

autoregressive model is used for outpainting, PixelSynth still performs poorly in filling the out-of-view32

pixels. The official code is publicly available, and we utilize it for implementation 2.33

GeoFree [8] With the powerful transformer and autoregressive model, GeoFree [8] shows that34

the model can learn the 3D transformation needed for the single-image view synthesis. Its view35

synthesis results are realistic, but it fails to maintain the seen contents. We adopt the official code for36

implementation 3.37

Tatarchenko et al. [10] Tatarchenko et al. [10] use a convolutional neural network to predict an38

RGB image and a depth map for arbitrary viewpoint. We adopt the implementation of SynSin [11] 1.39

Viewappearance [14] Viewappearance [14] predicts the flow and warps the reference image to the40

target view with this flow. For implementation, we used the implementation of SynSin [11] 1.41

InfNat [3] Infinite Nature [3] focuses on nature scenes and generates a video from an image and a42

camera trajectory. InfNat uses a pretrained MiDAS [5] to estimate depth maps, and novel views are43

generated based on explicit geometric transformations. We evaluate the performance for 1-step (i.e.,44

direct generation) and 5-step (i.e., gradual generation for target view). We adopt the official code for45

implementation 4.46

LookOutside [6] Ren et al. [6] focus on long-term view synthesis with the autoregressive model.47

Novel views are generated time-sequentially, which takes more generation time than GeoFree [8].48

LookOutside utilizes a pretrained encoder-decoder in GeoFree [8] for mapping the images to tokens.49

We adopt the official code for implementation 5.50

1https://github.com/facebookresearch/synsin
2 https://github.com/crockwell/pixelsynth
3https://github.com/CompVis/geometry-free-view-synthesis
4https://github.com/google-research/google-research/tree/master/infinite_nature
5https://github.com/xrenaa/Look-Outside-Room
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B.3 Architectural Details51

Encoder The channel dimension C of f0 is set to 256, and all positional encoding layers embed into52

32 channels. Thus, we first apply MLP-layers to embed C-dimensional input features for ISAB and53

LSA layers, where each MLP-layer takes (C + 32)-dimensional features and outputs C-dimensional54

features. For a global set attention block, we first define a MAB (Multihead Attention Block) as:55

Attention(Q,K, V ) = Softmax(
QKT

√
dhead

)V,

H = LayerNorm(X + Attention(X,Y, Y )),

MAB(X,Y ) = LayerNorm(H + rFF (H)),

(1)

where rFF denotes any row-wise feed-forward layer, and we use the same rFF in [2]. Then, using two56

MABs and m inducing points I ∈ Rm×C , we define the global set attention for n points as:57

ISABm(X) = MAB(X,G) ∈ Rn×C ,

where G = MAB(I,X) ∈ Rm×C .
(2)

Note that, we compute the global set attention for n = H
4 · W

4 points, and fix m = 32. Moreover, in58

the LSA layer, we fix local window size r = 5 considering the previous point transformer networks59

where Point Transformer [13] uses 32 neighbors, and Fast Point Transformer [4] set local window60

size as 3 or 5. Finally, we apply Mix-FFN [12] to extract the i-th output point feature of the encoder61

fi as:62

fi = Mix-FFN(Xi) = MLP(GELU(CONV3×3(MLP(Xi)))) +Xi,

where Xi = fi−1 + giglobal + gilocal.
(3)

Rendering Module We first illustrate the axis-angle notation, which is used for the implicit63

renderer. Axis-angle notation consists of normalized axis, i.e., a normalized vector along the axis is64

not changed by the rotation, and angle, i.e., the amount of rotation about that axis. We use a standard65

method that defines the eigenvector u of the rotation matrix by using the property that R−RT is a66

skew-symmetric matrix as:67

[u]X ≡ (R−RT ), i.e., u = [r32 − r23, r13 − r31, r21 − r12]
T , (4)

where rij is the element of R located at the i-th row and the j-th column. We can also calculate68

the rotation angle θ from the relationship between the norm of eigenvector ∥u∥ and the trace of the69

rotation matrix tr(R). Following the existing theorem [1, 9], the rotation angle θ is derived as:70

θ = arctan

(
∥u∥

tr(R)− 1

)
. (5)

This notation often fails when the camera rotates near 180◦; however, we do not cover such an71

extreme movement of the camera. With a translation vector t, seven pose parameters (i.e., ( u
∥u∥ , θ, t))72

are processed into δpos, and then added to all output tokens of the overlapping patch embedding layer.73

Also, for both renderers, we use the MAB(Z,Z) described in Eq. 1 as transformer blocks for input74

feature Z, with MiX-FFN [12] as the feed-forward layer.75

C Additional Results76

C.1 Quantitative Results77

PSNR measured for reprojected regions. To clarify the performance of preserving seen contents,78

we evaluate the PSNR only for reprojected pixels; the metric is denoted as PSNR-vis. Table 1 and79

Table 2 show the PSNR-vis for RealEstate10K [15] and ACID [3], respectively. Recent explicit80

methods [3, 7, 11] perform better than recent implicit methods [6, 8], which confirms that explicit81

methods better preserve the seen contents than implicit methods. Note that our method consistently82

achieves the highest PSNR-vis for all splits, outperforming previous methods by a large margin.83
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Table 1: PSNR-vis on RealEstate10K [15].
Methods PSNR-vis↑

Small Medium Large Average
Tatarchenko et al. [10] 11.16 10.75 10.70 10.87
Viewappearance [14] 12.39 12.89 12.50 12.59
SynSin [11] 15.67 15.46 14.72 15.28
SynSin-6x [11] 15.43 15.54 14.92 15.30
PixelSynth [7] 15.62 15.60 14.64 15.29
GeoFree [8] 14.89 14.37 13.60 14.29
LookOutside [6] 12.78 13.13 12.54 12.82
ours 16.94 15.97 15.36 16.09

Table 2: PSNR-vis on ACID [3].
Methods PSNR-vis↑

Small Medium Large Average
Tatarchenko et al. [10] 14.53 14.34 14.62 14.50
Viewappearance [14] 14.66 13.76 13.22 13.88
SynSin [11] 18.05 17.16 17.32 17.51
InfNat [3] (1-step) 16.97 15.74 15.24 15.98
InfNat [3] (5-step) 15.76 15.44 15.62 15.61
PixelSynth [7] 17.61 16.22 15.32 16.38
GeoFree [8] 15.26 14.86 14.67 14.93
ours 18.17 17.58 17.88 17.88

More Explorations of the Transformation Similarity Loss As we consistently mention the84

balance of the two renderers, we further explore the case where the norms of he and hi are the85

same. Consequently, we use a ℓ1-loss instead of the negative cosine similarity loss to strengthen the86

coupling between the implicit renderer and the explicit renderer. Table 3 shows that tight bridging87

between two renderers degrades the generation power. Since the two renderers learn the different88

3D scene representations for novel view synthesis, constraining hi and he exactly the same causes a89

conflict in learning representations.90

We also analyze the effect of the transformation similarity loss compared to using the out-of-view91

mask as an additional input for the decoder. If the out-of-view mask O is concatenated with hi and92

he, the decoder can learn to fuse the rendered feature hi and he without our transformation similarity93

loss. As shown in Table 4, additional mask information achieves slight improvements for PSNR-vis,94

but the improvements in FID are negligible considering that it takes up a little more memory. Note95

that two renderers without our transformation similarity loss do not sufficiently represent semantic96

information, although additional mask information is used. On the other side, our method achieves97

significant performance improvement in both metrics while using the same memory as our method98

trained without Lts.99

Table 3: Ablation Study on the Similarity Operation in Lts. PSNRs and FID are measured
on RealEstate10K [15]. Note that the strict coupling between hi and he reduces the generation
performance in both PSNR and FID.

Operation Type Small Medium Large
PSNR-vis↑ PSNR-all↑ FID↓ PSNR-vis↑ PSNR-all↑ FID↓ PSNR-vis↑ PSNR-all↑ FID↓

ℓ1-loss 16.43 15.46 42.21 15.66 14.47 44.97 15.11 13.72 55.18
-Sc(·) 16.94 15.87 32.42 15.97 14.65 33.04 15.36 13.83 35.26

Table 4: Effects of the transformation similarity loss. PSNRs and FID are measured on
RealEstate10K [15]. Our transformation similarity loss is more effective than just using the out-of-
view mask as an additional input of the decoder.

Operation Type Small Medium Large
PSNR-vis↑ PSNR-all↑ FID↓ PSNR-vis↑ PSNR-all↑ FID↓ PSNR-vis↑ PSNR-all↑ FID↓

No Lts 16.55 15.41 35.52 15.86 14.42 38.10 15.30 13.57 47.74
O(p) as feature 16.86 15.23 34.74 15.92 14.51 36.10 15.36 13.31 46.43

ours 16.94 15.87 32.42 15.97 14.65 33.04 15.36 13.83 35.26

Effects of the Adversarial Loss Since we use a different adversarial loss compared to SynSin [11],100

we further conducted an ablation study on the effect of the adversarial loss. Table 5 shows our101

adversarial loss improves the generation power of SynSin, but it is still a worse FID score than our102

method. We confirm that our method is not just boosted with a more powerful adversarial loss. Our103

architecture advances bridging explicit and implicit geometric transformations with transformation104

similarity loss contributes significantly to performance gain.105

Also, the new GAN loss does not solve the seesaw problem as it improves SynSin in FID by sacrificing106

PSNR-vis. Explicit methods still have room for improvement in completing out-of-view regions, but107

more advanced generative models cannot solve the seesaw problem. Note that our bridging scheme108

and the transformation similarity loss are necessary to mitigate the seesaw problem.109

Table 5: Effects of the adversarial loss. PSNRs and FID are measured on RealEstate10K [15].
Operation Type Small Medium Large

PSNR-vis↑ PSNR-all↑ FID↓ PSNR-vis↑ PSNR-all↑ FID↓ PSNR-vis↑ PSNR-all↑ FID↓
SynSin 15.67 15.38 41.75 15.46 14.88 43.06 14.72 13.96 61.67

SynSin + our Ladv 15.45 15.23 40.43 15.31 14.88 39.13 14.51 13.98 54.27
ours 16.94 15.87 32.42 15.97 14.65 33.04 15.36 13.83 35.26
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C.2 Qualitative Results110

We further evaluate our method on different sizes of viewpoint changes as shown in Fig. 1 and Fig. 2.111

We also visualize additional qualitative results in Fig. 3. Note that our method synthesizes novel112

views consistent with Iref and realistic out-of-view regions, regardless of the view change.113

Out-of-View(22%) PSNR-vis: 18.01 PSNR-vis: 18.89 PSNR-vis: 17.79 PSNR-vis: 12.67 PSNR-vis: 19.54

Out-of-View(31%) PSNR-vis: 17.20 PSNR-vis: 17.34 PSNR-vis: 16.79 PSNR-vis: 11.15 PSNR-vis: 18.95

Out-of-View(35%) PSNR-vis: 16.27 PSNR-vis: 16.34 PSNR-vis: 14.23 PSNR-vis: 11.83 PSNR-vis: 16.98

Out-of-View(46%) PSNR-vis: 14.61 PSNR-vis: 14.68 PSNR-vis: 11.67 PSNR-vis: 10.29 PSNR-vis: 15.92

Out-of-View(49%) PSNR-vis: 15.12 PSNR-vis: 11.22 PSNR-vis: 12.37 PSNR-vis: 10.21 PSNR-vis: 15.99

Out-of-View(54%) PSNR-vis: 13.45 PSNR-vis: 13.24 PSNR-vis: 12.41 PSNR-vis: 11.22 PSNR-vis: 14.27

Out-of-View(63%) PSNR-vis: 13.25 PSNR-vis: 12.84 PSNR-vis: 14.43 PSNR-vis: 11.46 PSNR-vis: 15.21

Out-of-View(69%) PSNR-vis: 15.37 PSNR-vis: 15.22 PSNR-vis: 13.54 PSNR-vis: 13.33 PSNR-vis: 15.47

(a) Input Image

Out-of-View(73%)

(b) Warped Image

PSNR-vis: 14.63

(c) SynSin [11]

PSNR-vis: 14.64

(d) PixelSynth [7]

PSNR-vis: 12.02

(e) GeoFree [8]

PSNR-vis: 9.08

(f) LookOutside [6]

PSNR-vis: 15.66

(g) Ours (h) Target Image

Figure 1: Qualitative Results on RealEstate10K [15].
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Out-of-View(29%) PSNR-vis: 21.13 PSNR-vis: 21.61 PSNR-vis: 14.63 PSNR-vis: 18.45 PSNR-vis: 22.23

Out-of-View(34%) PSNR-vis: 21.21 PSNR-vis: 20.30 PSNR-vis: 18.25 PSNR-vis: 19.93 PSNR-vis: 23.69

Out-of-View(38%) PSNR-vis: 19.02 PSNR-vis: 18.61 PSNR-vis: 19.31 PSNR-vis: 17.81 PSNR-vis: 23.81

Out-of-View(43%) PSNR-vis: 20.55 PSNR-vis: 13.87 PSNR-vis: 18.97 PSNR-vis: 18.94 PSNR-vis: 20.91

Out-of-View(49%) PSNR-vis: 16.98 PSNR-vis: 11.83 PSNR-vis: 15.71 PSNR-vis: 11.73 PSNR-vis: 17.13

Out-of-View(56%) PSNR-vis: 15.72 PSNR-vis: 12.18 PSNR-vis: 12.39 PSNR-vis: 12.19 PSNR-vis: 16.37

Out-of-View(64%) PSNR-vis: 18.64 PSNR-vis: 17.64 PSNR-vis: 18.46 PSNR-vis: 17.26 PSNR-vis: 18.89

Out-of-View(69%) PSNR-vis: 16.78 PSNR-vis: 13.31 PSNR-vis: 14.77 PSNR-vis: 15.73 PSNR-vis: 17.92

(a) Input Image

Out-of-View(75%)

(b) Warped Image

PSNR-vis: 16.26

(c) SynSin [11]

PSNR-vis: 15.67

(d) InfNat [3]

PSNR-vis: 15.59

(e) PixelSynth [7]

PSNR-vis: 15.11

(f) GeoFree [8]

PSNR-vis: 17.38

(g) Ours (h) Target Image

Figure 2: Qualitative Results on ACID [3]. For InfNat [3], we report examples with higher PSNR-
vis scores in either 1-step or 5-step variants.
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Input Images GT Images Generated Images Input Images GT Images Generated Images

(a) RealEstate10K [15] (b) ACID [3]

Figure 3: Additional Qualitative Results.

D Discussion114

Failure Cases Since we train the depth estimation network in a self-supervised manner, some115

reprojected regions can be mismatched with the target image due to various reasons (e.g., occlusion116

and textureless regions), reducing the accuracy of explicitly rendered features. Most mismatches are117

corrected by balancing with the implicit renderer, but occlusions in textureless regions may create118

some artifacts in the generated image.119
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Limitations and Future Works As many possible target images can be consistent with the120

reference image and the relative camera pose, a probabilistic framework may generate better novel121

views than deterministic models. We will explore how to combine our bridging scheme and recent122

probabilistic frameworks in future work.123

Potential Social Negative Impact Moving the camera from a photograph with single-image view124

synthesis can be used to affect privacy adversely. As the model trained on specific data can be biased,125

training data must be carefully selected.126
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