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Experiments

Computational resources: All experiments were conducted on a single 12GB NVIDIA RTX2080Ti
GPU. Saliency Methods: Captum [7] implementation was used for different saleincy methods.

Saliency Guided Training for Images

Datasets and Classifiers

• MNIST [10]: a database of handwritten digits. The classifier consists of two CNN layers
with kernel size 3 and stride of 1 followed by two fully connected layers, two dropout layers
with p = 0.25 and p = 0.5, and the 10 output neurons.

• CIFAR10 [8]: a low-resolution classification dataset with 10 different classes representing
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. ResNet18 [3] was
used as a classifier, ResNet18 is a deep CNN with “identity shortcut connection,” i.e., skip
connections, that skip one or more layers to solve the vanishing gradient problem faced by
deep networks.

• BIRD [2]: A kaggle datasets of 260 bird species. Images were gathered from internet
searches by species name. VGG16 [12] was used as a classifier, the last few dense layers
and the output layer were modified to accommodate the number of classes in this dataset.

Dataset # Training # Testing # Classes Features Test Accuracy λ k
Tradtional Sal. Guided (as a % of feature)

MNIST 60000 10000 10 1× 28× 28 99.4 99.3 1 50%
CIFAR10 50000 10000 10 3× 32× 32 92.0 91.5 1 50%
BIRD 38518 1350 260 3× 224× 224 96.6 96.9 1 50%

Table 1: Datasets used for Image experiments. k is the percentage of overall features masked during
saliency guided training. For example, in MNIST number of features masked

⌈
0.5×28×28

⌉
= 392.

Masking For images, low salient features are replaced by a random variable within the color
channel input range. For example, in an RGB image, if pixel 2× 3 is to be masked 1× 2× 3 would
be replaced with a random variable within R channel range, similarly 2× 2× 3 and 3× 2× 3 would
be replaced with a random variable within G and B channel range respectively.

Saliency Map Quality for Images

The examples shown in Figure 1, Figure 2, and Figure 3 were correctly classified by both models.
Gradients are scaled per sample to have values between -1 and 1. Overall, saliency maps produced
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by saliency guided training are less noisy than those produced by traditional training and tend to
highlight the object itself rather than the background. The distributions of gradient values per sample
show that most features have small values (near zero) with a higher separation of high saliency
features away from zero for saliency guided training.

Model Accuracy Drop

We compare interpretable and traditional training for different saliency methods with modification-
based evaluation. Each experiment is repeated five times. Figure 4 shows the mean and standard error
for model degradation on different gradient-based methods.

Figure 4: The mean and standard error for model accuracy drop when removing features with high
saliency using traditional and saliency guided training for different gradient-based methods against a
random baseline. A steeper drop indicates better performance. We find that regardless of the saliency
method used, the performance improves by saliency guided training.

Fine-tuning with Saliency guided Training

We investigate the effect of training traditionally and fine-tuning with saliency guided training.
This would be particularly useful for large datasets like imagenet. Table 2 shows the area under
accuracy drop curve (AUC) on MNIST Figure 4 for gradient when training traditionally, training
using saliency guided procedure and fine-tuning (smaller AUC indicates better performance). We
find that fine-tuning improves the performance over traditionally trained networks.

Training Procedures AUC

Traditional 3360.4
Saliency Guided 1817.6
Fine-tuned 2258.8

Table 2: Area under accuracy drop curve on MNIST for different training procedures

Note that, there is not much gain in training performance when training from scratch versus fine-
tuning for small datasets like MNIST. However, for larger datasets like CIFAR10, we observed a clear
decrease in the number of epochs when fine-tuning the network. The number of epochs for traditional
training CIFAR10 is on average 118, saliency training is 124 while fine-tuning takes only 70 epochs.
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Figure 1: Saliency maps and saliency distribution for Traditional and Saliency Guided Training on
MNIST
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Figure 2: Saliency maps and saliency distribution for Traditional and Saliency Guided Training on
CIFAR10
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Figure 3: Saliency maps and saliency distribution for Traditional and Saliency Guided Training on
BIRD
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Saliency Guided Training for Language

We compare the interpretability of different models trained on language tasks using the ERASER [1]
benchmark.

Datasets For all datasets, words embbedding were generated from Glove [11] and a bidirectional
LSTM [4] was used for classifications. Details about each dataset is available in Table 3

Dataset # Training # Testing # Classes Tokens Sentences Test Accuracy λ k
Tradtional Sal. Guided (as a % of tokens)

Movie Review 1600 200 2 774 36.8 0.8890 0.8980 1 60%
FEVER 97957 6111 2 327 12.1 0.7234 0.7255 1 80%
e-SNLI 911928 16429 3 16 1.7 0.9026 0.9068 1 70%

Table 3: Overview of datasets in the ERASER benchmark. Number of labels, dataset size, and
average numbers of sentences and tokens in each document. k is the percentage of overall tokens
within a particular document.

Masking For language tasks, masking is a bit more tricky. We tried multiple masking function,
including:

• Removing the masking function creates new input such that X̃ contains only high salient
word from the original input X .

• Replace with token “[UNK]” the masking function replaces the low salient word with the
token “[UNK]” i.e., unknown.

• Replace with token “[SEP]” the masking function replaces the low salient word with the
token “[SEP]” i.e., white space.

• Replace with random word the masking function replaces the low salient with a random
word from vocabulary.

• Replace with last high salient word the masking function replaces the low salient word
with the previous high salient word.

Over the three datasets, we found that the last masking function (replace with last high salient word)
gave the best results. We believe that the masking function can also be dataset-dependent. This partic-
ular experiment aims to prove that saliency guided training improves interpretability on language tasks.
We will consider finding the optimal masking function for different language tasks in our future work.

Metrics ERASER provides two metrics to measure interpretability. Comprehensiveness evaluates if
all features needed to make a prediction are selected. To calculate an explanation comprehensiveness,
a new input Xi is created such that Xi = Xi −Ri where Ri is predicted rationales. Let fθ (Xi)j be
the prediction of model for class j. The model comprehensiveness is calculated as:

Comprehensiveness = fθ (Xi)j − fθ
(
Xi

)
j

A high score here implies that the explanation removed was influential in the predictions. The second
metric is Sufficiency that evaluates if the extracted explanations contain enough signal to make a
prediction. The following equation gives the explanation sufficiency:

Sufficiency = fθ (Xi)j − fθ (Ri)j
A lower score implies that the explanations are adequate for a model prediction.

To evaluate the faithfulness of continuous importance scores assigned to tokens by models, the soft
score over features provided by the model is converted into discrete rationales Ri by taking the top-kd
values, where kd is a threshold for dataset d. Denoting the tokens up to and including bin k, for
instance, i by Rik, an aggregate comprehensiveness measure is defined as:

1

|B|+ 1

 |B|∑
k=0

fθ (Xi)j − fθ
(
Xik

)
j


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Sufficiency is defined similarly. Here tokens are grouped into k = 5 bins by grouping them into the
top 1%, 5%, 10%, 20% and 50% of tokens, with respect to the corresponding importance score. This
metrics is referred to as Area Over the Perturbation Curve (AOPC). For reference, we report these
when random scores are assigned to tokens. Results are shown in the main paper Table 1.

Saliency Guided Training for Time Series

We evaluated saliency guided training on a multivariate time series, both quality on multivariate time
series MNIST and quantitatively through synthetic data.

Saliency Maps Quality for Multivariate Time Series

We compare the saliency maps produced on MNIST treated as a multivariate time series with 28 time
steps each having 28 features. Figure 5, Figure 6, and Figure 7 shows the saliency maps produced
by different saliency methods for Temporal Convolutional Network (TCN), LSTM with Input-Cell
Attention and, Transformers respectively. There is a visible improvement in saliency quality across
different networks when saliency guided training is used. The most significant improvement was
found in TCNs.

Figure 5: Saliency maps produced for (TCN, saliency method) pairs.

Quantitative Analysis on Synthetic Data

We evaluated saliency guided training on a multivariate time series benchmark proposed by Ismail
et al. [6]. The benchmark consists of 10 synthetic datasets, each examining different design aspects
in typical time series datasets. Properties of each dataset is shown in Figure 8. Informative features
are highlighted by the addition of a constant µ to the positive class and subtraction of µ from the
negative class. For the following experiments µ = 1. Details of each dataset is available in table 4.
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Figure 6: Saliency maps produced for (LSTM with Input-Cell Attention, saliency method) pairs.

Figure 7: Saliency maps produced for (Transformers, saliency method) pairs.
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Figure 8: Figure from Ismail et al. [6]: Different evaluation datasets used for benchmarking saliency
methods. Some datasets have multiple variations shown as sub-levels. N/S: normal and small shapes,
T/F: temporal and feature positions, M: moving shape. All datasets are trained for binary classification.
Examples are shown above each dataset, where dark red/blue shapes represent informative features.

Dataset # Training # Testing # Time Steps # Feature # Informative # Informative
Time steps Features

Middle 1000 100 50 50 30 30
Small Middle 1000 100 50 50 15 15
Moving Middle 1000 100 50 50 30 30
Moving Small Middle 1000 100 50 50 15 15
Rare Time 1000 100 50 50 6 40
Moving Rare Time 1000 100 50 50 6 40
Rare Features 1000 100 50 50 40 6
Moving Rare Features 1000 100 50 50 40 6
Postional Time 1000 100 50 50 20 20
Postional Feature 1000 100 50 50 20 20

Table 4: Synthetic dataset details: Number of training samples, number of testing samples, number
of time steps per sample, number of features per time step, number of time steps with informative
features, and number of informative features in an informative time step.

Following Ismail et al. [6], we compare 4 neural architectures: LSTM [4], LSTM with Input-Cell
Attention [5], Temporal Convolutional Network (TCN) [9] and, Transformers [13]. Each (neural
architecture, dataset) pair was trained both traditionally and using saliency guided training. Test
accuracy is reported in Table 5

Datasets LSTM LSTM+ Input-Cell TCN Transformer
Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Middle 99 100 100 100 100 100 100 100
Small Middle 100 100 99 100 100 100 100 100
Moving Middle 100 100 100 100 100 100 99 100
Moving Small Middle 100 100 99 100 100 100 99 100
Rare Time 100 100 99 100 100 100 100 100
Moving Rare Time 100 100 100 100 100 100 99 100
Rare Features 100 100 100 100 100 100 100 100
Moving Rare Features 99 100 99 99 100 100 99 100
Positional Time 100 100 100 100 100 100 100 100
Positional Feature 100 100 99 100 99 100 100 100

Table 5: Test accuracy of different (neural architecture, dataset) pairs.
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Quantitatively measuring the interpretability of a (neural architecture, saliency method) pair involves
applying the saliency method, ranking features according to the saliency values, replacing high salient
features with uninformative features from the original distribution at different percentages. Finally,
we measure the model accuracy drop, weighted precision, and recall.

The area under precision curve (AUP) and the area under the recall curve (AUR) are calculated by the
precision/recall values at different levels of degradation. Similar to Ismail et al. [6], we compare the
AUP and AUR with a random baseline; since the baseline might be different for different models, we
reported the difference between metrics values generated using the saliency method and the baseline.
All experiments were ran 5 times the mean Diff (AUP), and Diff (AUR) is shown in Tables [6-9].

The results in Tables [6-9] show the follows: LSTM: Saliency guided training along with Integrated
Gradient has the best precision and recall. LSTM with Input Cell Attention: Saliency guided
training improves the performance of different saliency methods and datasets. DeepSHAP gives
the best precision, while DeepSHAP gives the best recall. TCN: overall, saliency guided training
improves the performance of different saliency methods and datasets. Integrated Gradient, Gradient
SHAP, and DeepSHAP are best performing saliency methods. Transformers: have the worst
interpretability. Using saliency guided training improved recall but not precision.

Metric Datasets λ k
Gradient Integrated Gradient DeepLIFT Gradient SHAP DeepSHAP SmoothGrad

Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Diff (AUP)

Middle 1 30% -0.280 -0.280 -0.261 -0.036 -0.267 -0.270 -0.263 -0.124 -0.267 -0.271 -0.283 -0.269
Small Middle 1 60% -0.071 -0.066 -0.053 0.052 -0.070 -0.055 -0.056 -0.033 -0.070 -0.055 -0.072 -0.044
Moving Middle 1 60% -0.265 -0.277 -0.218 -0.169 -0.237 -0.264 -0.222 -0.237 -0.239 -0.264 -0.259 -0.263
Moving Small Middle 1 5% -0.059 -0.060 -0.035 0.051 -0.043 -0.045 -0.042 -0.013 -0.044 -0.046 -0.056 -0.037
Rare Time 1 30% -0.076 -0.076 -0.075 -0.065 -0.076 -0.076 -0.075 -0.071 -0.076 -0.076 -0.076 -0.068
Moving Rare Time 1 50% -0.067 -0.058 -0.042 0.016 -0.053 -0.042 -0.045 -0.010 -0.054 -0.043 -0.061 -0.032
Rare Feature 1 30% -0.063 -0.075 -0.039 0.006 -0.047 -0.073 -0.038 -0.027 -0.048 -0.073 -0.069 -0.059
Moving Rare Feature 1 10% -0.062 -0.069 -0.021 0.012 -0.040 -0.056 -0.032 -0.029 -0.041 -0.056 -0.059 -0.044
Postional Time 1 30% -0.116 -0.119 -0.040 -0.006 -0.107 -0.112 -0.058 -0.046 -0.108 -0.113 -0.111 -0.102
Postional Feature 1 2% -0.064 -0.104 -0.042 -0.104 -0.028 -0.089 -0.043 -0.105 -0.031 -0.091 -0.055 -0.053

Diff (AUR)

Middle 1 30% 0.072 0.076 0.128 0.153 0.125 0.135 0.122 0.132 0.114 0.126 0.070 0.031
Small Middle 1 60% -0.043 0.037 0.048 0.157 0.029 0.116 0.038 0.129 0.007 0.102 -0.032 0.009
Moving Middle 1 60% 0.060 0.073 0.119 0.124 0.110 0.124 0.119 0.117 0.099 0.115 0.061 0.042
Moving Small Middle 1 5% -0.032 -0.004 0.046 0.135 0.043 0.073 0.042 0.093 0.025 0.060 -0.023 -0.025
Rare Time 1 30% -0.244 -0.137 -0.132 0.043 -0.169 -0.021 -0.116 0.005 -0.189 -0.043 -0.145 -0.108
Moving Rare Time 1 50% -0.222 -0.070 -0.092 0.075 -0.103 0.018 -0.065 0.060 -0.131 0.002 -0.144 -0.035
RareFeature 1 30% 0.182 0.197 0.219 0.218 0.217 0.223 0.216 0.216 0.211 0.219 0.191 0.166
Moving Rare Feature 1 10% 0.143 0.162 0.191 0.196 0.191 0.202 0.194 0.196 0.183 0.197 0.162 0.107
Postional Time 1 30% -0.032 -0.073 0.072 0.119 0.029 0.021 0.046 0.082 0.012 0.001 -0.019 -0.064
Postional Feature 1 2% -0.053 -0.070 0.016 -0.005 -0.002 -0.005 0.004 -0.009 -0.018 -0.025 -0.056 -0.083

Table 6: Difference in weighted AUP and AUR for (LSTM, saliency method) pairs. Overall, the best
preference was achieved when using Integrated Gradients as a saliency method and saliency guided
training as a training procedure.

Metric Datasets λ k
Gradient Integrated Gradient DeepLIFT Gradient SHAP DeepSHAP SmoothGrad

Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Diff (AUP)

Middle 1 40% 0.014 0.046 0.233 0.252 0.218 0.237 0.244 0.261 0.232 0.247 -0.006 0.026
Small Middle 1 60% 0.049 0.150 0.161 0.273 0.169 0.305 0.170 0.273 0.180 0.312 0.038 0.091
Moving Middle 1 80% 0.044 0.082 0.262 0.251 0.260 0.256 0.276 0.256 0.277 0.261 0.010 0.044
Moving Small Middle 1 5% 0.044 0.055 0.181 0.201 0.179 0.196 0.187 0.200 0.190 0.204 0.022 0.029
Rare Time 1 40% 0.186 0.278 0.271 0.378 0.323 0.412 0.279 0.373 0.338 0.424 0.133 0.209
Moving Rare Time 1 80% 0.144 0.276 0.233 0.388 0.269 0.417 0.238 0.381 0.282 0.429 0.103 0.167
Rare Feature 1 30% 0.032 0.101 0.163 0.270 0.166 0.266 0.174 0.278 0.180 0.274 0.039 0.105
Moving Rare Feature 1 5% -0.002 -0.004 0.120 0.124 0.116 0.116 0.124 0.127 0.126 0.126 -0.003 -0.004
Postional Time 1 40% 0.117 0.186 0.184 0.225 0.236 0.314 0.197 0.252 0.248 0.316 0.093 0.187
Postional Feature 1 5% -0.021 0.007 0.072 0.083 0.080 0.113 0.089 0.101 0.088 0.122 -0.031 -0.012

Diff (AUR)

Middle 1 40% 0.028 0.084 0.163 0.176 0.160 0.180 0.162 0.173 0.157 0.177 -0.001 0.044
Small Middle 1 60% 0.064 0.176 0.186 0.217 0.189 0.217 0.182 0.212 0.183 0.213 0.031 0.159
Moving Middle 1 80% 0.060 0.117 0.174 0.180 0.175 0.187 0.173 0.177 0.175 0.183 0.021 0.072
Moving Small Middle 1 5% 0.079 0.101 0.202 0.201 0.199 0.194 0.198 0.196 0.194 0.186 0.029 0.052
Rare Time 1 40% 0.139 0.203 0.214 0.225 0.214 0.233 0.211 0.223 0.211 0.233 0.103 0.191
Moving Rare Time 1 80% 0.118 0.213 0.198 0.226 0.200 0.233 0.193 0.224 0.194 0.232 0.070 0.197
RareFeature 1 30% 0.077 0.181 0.196 0.223 0.197 0.224 0.193 0.222 0.193 0.223 0.074 0.172
Moving Rare Feature 1 5% 0.059 0.039 0.188 0.189 0.191 0.186 0.182 0.183 0.186 0.180 0.038 0.028
Postional Time 1 40% 0.140 0.201 0.188 0.200 0.203 0.225 0.185 0.202 0.201 0.224 0.109 0.188
Postional Feature 1 5% -0.017 0.043 0.141 0.146 0.145 0.166 0.141 0.150 0.132 0.157 -0.041 0.005

Table 7: The difference in weighted AUP and AUR for different (LSTM with Input-Cell Attention,
saliency method) pairs. The use of saliency guided training improved the performance of most saliency
methods. Overall, DeepSHAP and DeepLIFT produced the best precision and recall, respectively,
when combined with saliency guided training.
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Metric Datasets λ k
Gradient Integrated Gradient DeepLIFT Gradient SHAP DeepSHAP SmoothGrad

Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Diff (AUP)

Middle 1 50% 0.127 0.217 0.283 0.393 0.350 0.398 0.290 0.384 0.365 0.416 0.090 0.194
Small Middle 1 40% 0.164 0.260 0.299 0.433 0.312 0.419 0.302 0.418 0.328 0.442 0.156 0.253
Moving Middle 1 70% 0.122 0.197 0.287 0.342 0.332 0.367 0.286 0.329 0.345 0.387 0.047 0.182
Moving Small Middle 1 80% 0.065 0.043 0.194 0.151 0.169 0.191 0.190 0.152 0.183 0.200 0.037 0.023
Rare Time 1 50% 0.184 0.290 0.314 0.363 0.324 0.309 0.314 0.360 0.352 0.319 0.177 0.226
Moving Rare Time 1 50% 0.142 0.182 0.260 0.333 0.257 0.243 0.258 0.330 0.275 0.251 0.122 0.179
Rare Feature 1 30% 0.058 0.244 0.246 0.451 0.252 0.422 0.249 0.453 0.286 0.450 0.085 0.259
Moving Rare Feature 1 5% -0.003 0.004 0.116 0.134 0.112 0.114 0.122 0.129 0.122 0.123 0.007 0.005
Postional Time 1 70% 0.115 0.072 0.180 0.114 0.233 0.069 0.187 0.117 0.237 0.035 0.106 0.066
Postional Feature 1 10% 0.082 0.176 0.151 0.199 0.136 0.162 0.155 0.203 0.137 0.175 0.058 0.159

Diff (AUR)

Middle 1 50% 0.133 0.161 0.190 0.207 0.202 0.209 0.188 0.205 0.201 0.205 0.054 0.128
Small Middle 1 40% 0.086 0.230 0.194 0.240 0.202 0.240 0.189 0.239 0.196 0.241 0.039 0.230
Moving Middle 1 70% 0.134 0.144 0.191 0.195 0.201 0.208 0.186 0.194 0.201 0.203 0.036 0.121
Moving Small Middle 1 80% 0.118 0.117 0.204 0.199 0.193 0.195 0.196 0.196 0.186 0.190 -0.001 0.065
Rare Time 1 50% 0.173 0.215 0.199 0.233 0.225 0.221 0.193 0.230 0.226 0.204 0.125 0.151
Moving Rare Time 1 50% 0.106 0.198 0.177 0.220 0.195 0.189 0.167 0.224 0.191 0.179 -0.057 0.149
RareFeature 1 30% 0.152 0.222 0.222 0.239 0.223 0.239 0.219 0.239 0.224 0.239 0.130 0.217
Moving Rare Feature 1 5% 0.101 0.122 0.198 0.204 0.206 0.205 0.195 0.201 0.196 0.198 0.048 0.055
Postional Time 1 70% 0.126 0.128 0.156 0.172 0.194 0.160 0.147 0.165 0.181 0.110 0.039 0.102
Postional Feature 1 10% 0.126 0.174 0.177 0.196 0.180 0.175 0.172 0.194 0.164 0.154 0.049 0.160

Table 8: The difference in weighted AUP and AUR for different (TCN, saliency method) pairs. The
use of saliency guided training improved the performance of most saliency methods. Overall, when
combined with saliency guided training, Integrated Gradients and DeepSHAP produced the best
precision. For recall, Integrated Gradients, DeepLift, Gradient SHAP, and DeepSHAP seem to
perform similarly, again, the best performance was achieved when saliency guided training is used.

Metric Datasets λ k
Gradient Integrated Gradient DeepLIFT Gradient SHAP DeepSHAP SmoothGrad

Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Diff (AUP)

Middle 1 30% -0.179 -0.213 0.051 -0.004 -0.116 -0.176 0.067 -0.064 -0.062 -0.222 -0.069 -0.150
Small Middle 1 60% -0.034 -0.057 0.054 0.042 -0.018 -0.034 0.066 0.024 0.009 -0.060 0.006 -0.022
Moving Middle 1 90% -0.188 -0.146 0.062 0.018 -0.142 -0.067 0.065 -0.011 -0.130 -0.143 -0.091 -0.157
Moving Small Middle 1 70% -0.002 -0.008 0.031 0.039 0.017 0.029 0.026 0.037 0.036 0.016 -0.021 -0.035
Rare Time 1 50% 0.038 -0.006 0.118 0.057 -0.019 0.017 0.132 0.049 0.014 -0.010 -0.029 -0.031
Moving Rare Time 1 50% 0.066 0.062 0.110 0.049 -0.021 0.046 0.117 0.055 -0.009 0.033 -0.026 -0.027
Rare Feature 1 30% -0.049 -0.045 0.029 0.139 -0.002 -0.004 0.033 0.088 0.008 -0.015 0.005 0.028
Moving Rare Feature 1 10% -0.034 -0.031 0.041 0.055 0.008 0.014 0.038 0.049 0.008 0.022 -0.003 -0.013
Postional Time 1 60% -0.060 -0.078 0.084 0.029 -0.048 -0.047 0.102 -0.001 0.013 -0.072 0.026 -0.057
Postional Feature 1 10% -0.094 -0.099 0.032 0.012 -0.061 -0.097 0.046 0.008 -0.029 -0.098 0.019 0.006

Diff (AUR)

Middle 1 30% 0.087 0.053 0.167 0.146 0.155 0.112 0.157 0.111 0.119 -0.051 0.040 -0.025
Small Middle 1 60% 0.085 0.030 0.186 0.189 0.128 0.113 0.173 0.171 0.077 -0.025 0.060 0.036
Moving Middle 1 90% 0.071 0.134 0.164 0.185 0.136 0.181 0.150 0.183 0.057 0.130 0.019 0.040
Moving Small Middle 1 70% 0.118 0.137 0.171 0.177 0.157 0.171 0.160 0.171 0.098 0.117 -0.004 -0.019
Rare Time 1 50% 0.152 0.139 0.206 0.172 0.116 0.135 0.199 0.157 0.077 0.088 -0.027 -0.073
Moving Rare Time 1 50% 0.184 0.185 0.198 0.170 0.124 0.175 0.186 0.168 0.059 0.127 -0.033 -0.013
RareFeature 1 30% 0.115 0.152 0.184 0.217 0.187 0.188 0.173 0.203 0.144 0.129 0.087 0.135
Moving Rare Feature 1 10% 0.101 0.122 0.179 0.183 0.174 0.180 0.165 0.176 0.125 0.149 0.060 0.034
Postional Time 1 60% 0.091 0.071 0.193 0.172 0.154 0.150 0.184 0.151 0.145 0.059 0.103 -0.004
Postional Feature 1 10% 0.017 0.013 0.170 0.149 0.123 0.057 0.160 0.131 0.105 -0.072 0.094 0.073

Table 9: The difference in weighted AUP and AUR for different (Transformers, saliency method)
pairs. In this benchmark, Transformers seem to have the worst interpretability. Using saliency guided
training improved recall but not precision. Overall best precision was achieved when combining
traditional training with Gradient SHAP. While best recall was achieved when using saliency guided
training and Integrated Gradients.
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