
A Compose algorithm

The algorithm will return a list of intervals S and for any Si ∈ S, Si[0] is the start and Si[1] is the
end of the respective interval. Intuitively, this COMPOSE function tells us which nodes in the tree
that we need to use to compute any partial sum.

Algorithm 3 COMPOSE [a, b]

Input: Starting point a, ending point b of interval [a, b].
Let k be the largest k such that a = 1 mod 2k and a+ 2k − 1 ≤ b.
Set S = {[a, a+ 2k − 1]}
Set a′ = a+ 2k.
if a′ > b then

return S.
else

Let S′ = COMPOSE(a′, b).
Let S = S ∪ S′.
return S

end if

B Reconstruction algorithm for sensitivity-reduced algorithm (Algorithm 2)

Algorithm 4 Reconstruction algorithm

Input: Noisy gradient arrays F̂G, F̂∆, F̂ r, momentum parameter α, sensitivity parameter γ,
iteration t.
q ← b tN c
r = t− qN
Ĝ[1,r] =

∑
[y,z]∈COMPOSE(1,r)(1− α)r−zF̂G[y,z]

Ĝ[r+1,r+N] =
∑

[y,z]∈COMPOSE(r+1,r+N)(1− α)r+N−zF̂G[y,z]
Ĝ[1,t] = (1− α)t−rĜ[1,r] //initial value for Ĝ[1,t] that will be updated in the following loop.
for i = 0 . . . q − 1 do
Ĝ[t−iN+1,t−(i−1)N] =

∑
[y,z]∈COMPOSE(t−iN+1,t−(i−1)N)(1− α)t−(i−1)N−zF̂G[y,z]

∆̂[t−iN+1,t−(i−1)N] =
∑

[y,z]∈COMPOSE(t−iN+1,t−(i−1)N)(1− α)t−(i−1)N−zF̂∆
[y,z]

Ĝ[1,t]+ = (
∑i−1
j=0(1−γ)j(1−α)(i−1−j)N)((1−γ)∆̂t−iN+1,t−(i−1)N+γĜt−iN+1,t−(i−1)N)+

(1− α)Ni(1− γ)q−i−1Ĝ[r+1,r+N]

end for
r̂t =

∑
[y,z]∈COMPOSE(1,t)(1− α)t−zF̂ r[y,z]

m̂t = αĜ[1,t] + αr̂t
Return: m̂t

C Renyi Differential Privacy

In this section, we will prove some general theorems on the composition of RDP using tree compo-
sitions. Note that these results are all consequences of well-known properties of Renyi differential
privacy [Mironov, 2017] and tree aggregation [Dwork et al., 2010, Chan et al., 2011] and have been
used in many other settings [Guha Thakurta and Smith, 2013, Kairouz et al., 2021, Asi et al., 2021].
However, we find many presentations lacking in some detail, so we reproduce a complete description
and analysi here for completeness.

We will consider functions operating on datasets of size N . Given two neighboring datasets D =
(Z1, . . . , ZN) and D′ = (Z ′1, . . . , Z

′
N), we use s to indicate the index that is different between the

datasets. That is, Zi = Z ′i for i 6= s. Given a subset S ⊂ {1, . . . , N}, we use D[S] to indicate the
restriction of D to the elements with index in S: D[S] = (Zi | i ∈ S).

14

Consider a set of K functions G1, . . . , GK , and an associated set of subsets of {1, . . . , N},
S1, . . . , SK (note that the Si are sets of integers, NOT sets of datapoints). Each Gi produces
outputs in a space W , and takes i inputs: first, a dataset D (or D′) of size N , and then i − 1 el-
ements of W . That is, if the space of all datasets of size N is D, then Gi : D × Wi−1 → W .
Further, each Gi must have the property that Gi depends only on D[Si]. that is, if q /∈ Si, then
Gi(D,x1, . . . , xi−1) = Gi(D

′, x1, . . . , xi−1) for all x1, . . . , xi−1. With this in mind, we recursively
define:

f1 = G1(D)

f ′1 = G1(D′)

fi = Gi(D, f1, . . . , fi−1)

f ′i = Gi(D
′, f ′1, . . . , f

′
i−1)

Thus, the ordering of the Gi indicates a kind of “causality” direction: later fi are allowed to depend
on the earlier fi, but the dependencies on the dataset are fixed by the Si. Intuitively, we should
think of being able to “break up” a set of desired computational problems into a number of smaller
computations such that (1) each sub-computation is in some way “local” in that it depends on only a
small part of the dataset, potentially given the outputs of previous sub-computations, and (2) each of
the original desired computational problems can be recovered from the answers to a small number of
the sub-computations. If so, then we will be able to accurately and privately make all the desired
computations.

Given the above background, we define:

• ∆i to be the maximum sensitivity (with respect to some problem-specific metric like L2 or
L1) over all (x1, . . . , xi−1) ∈ (W)i−1 of the function D 7→ Gi(D,x1, . . . , xi−1). That is,
whenW = Rd and the metric is the one induced by a norm ‖ · ‖:

∆i = sup
|D−D′|=1,x1,...,xi−1

‖Gi(D,x1, . . . , xi−1)−Gi(D′, x1, . . . , xi−1)‖

where we use |D − D′| = 1 to indicate that datasets are neighboring.

• IN(s) to be the set of indices i ∈ {1, . . . , N} such that s ∈ Si.

• OUT(s) to be the complement of IN(s): the set of indices i ∈ {1, . . . , N} such that s /∈ Si.

C.1 Algorithm and Analysis

Now, we will describe the aggregation algorithm that is used to compute private versions of all
ft, assuming that W = Rd for some d. We write X ∼ N (µ, σ2) to indicate that X has density
p(X = x) = 1

σ
√

2π
exp

(
−(x− µ)2/2σ2

)
. Further, for a vector µ, we write X ∼ N (µ, σ2I) to

indicate P (X = x) = 1
(σ
√

2π)d
exp

(
−‖x− µ‖2/2σ2

)
Let Dα(P‖Q) indicate the Renyi divergence between P and Q:

Dα(P‖Q) =
1

α− 1
log E

x∼Q

[(
P (x)

Q(x)

)α]
=

1

α− 1
log

(∫
x

Q(x)1−αP (x)α dx

)

Now, we need the following fact about Gaussian divergences:

Dα(N (0, σ2)‖N (µ, σ2)) = αµ2/2σ2

15

This implies the following multi-dimensional extension:

Dα(N (0, σ2I)‖N (µ, σ2I)) =
1

α− 1
log

(
1

(σ
√

2π)d

∫
Rd

exp(−‖x− µ‖2/2σ2)1−α exp(−‖x‖2/2σ2)α) dx1 . . . dxd

)
1

α− 1

[
d∑
i=1

log

(
1

σ
√

2π

∫ ∞
−∞

exp(−(x− µi)2/2σ2)1−α exp(−x2/2σ2)α)dx

)]

=

d∑
i=1

Dα(N (0, σ2)‖N (µi, σ
2))

= α‖µ‖2/2σ2

Algorithm 5 Aggregation Algorithm with Gaussian noise
Input: Dataset D, functions G1, . . . , GK with sensitivities ∆1, . . . ,∆K with respect to the L2

norm. Noise parameter ρ
Sample random ζ1 ∼ N (0,∆2

1/ρ
2I)

Set f1 = G1(D).
Set f̂1 = f1 + ζ1
for i = 2, . . . ,K do

Sample random ζt ∼ N (0,∆2
i /ρ

2I).
Set fi = Gi(D, f̂1, . . . , f̂i−1).
Set f̂i = fi + ζi.

end for
return f̂1, . . . , f̂K .

Theorem 10. Let V to be the maximum over all s ∈ {1, . . . , N} of the total number of sets Si such
that s ∈ Si (i.e. V = sups |IN(s)|). Then Algorithm 5 is (α, V αρ2/2) Renyi differentially private
for all α.

To convert the above result to ordinary differential privacy, we observe that (α, ε)-RDP implies

(ε+ log(1/δ)
α−1 , δ)-DP for all δ. Thus, supposing ρ ≤

√
log(1/δ)

V , we then set α = 1 +

√
log(1/δ)

ρ
√
V

to get

(V ρ2 + ρ
√
V log(1/δ), δ) ≤ (2ρ

√
V log(1/δ), δ) differential privacy.

Proof. Let us write f̂i for the outputs with input dataset D, and f̂ ′i for the outputs with input dataset
D′. Let s be the index such that Zq 6= Z ′q .

Then, we can express the joint density of the random variable f̂1, . . . , f̂K :

p(f̂1 = r1, . . . , f̂k = rk) =

K∏
i=1

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1)

=
∏

i∈IN(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1)
∏

i∈OUT(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1)

Similar expressions hold for f̂ ′i :

p(f̂ ′1 = r1, . . . , f̂
′
k = rk) =

∏
i∈IN(s)

p(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)

∏
i∈OUT(s)

p(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)

Further, for any i ∈ OUT(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1) = p(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)

Now, for the rest of the proof, we mimic the proof of composition for Renyi differential privacy: let
P and P ′ be the distributions of the ouputs under D and D′. Then:

16

Dα(P ′||P) =
1

α− 1
log

∫
r

∏
i∈IN(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1)1−α

∏
i∈OUT(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1)1−α

∏
i∈IN(s)

p(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)α

∏
i∈OUT(s)

p(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)α dr


=

1

α− 1
log

∫
r

∏
i∈IN(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1)1−αp(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)α

∏
i∈OUT(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1)1−αp(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)α dr


To make notation a little more precise, let us write drIN to indicate ∧i∈IN(s)dri and drOUT =

∧i∈OUT(s)dri. Similarly,
∫
rIN

indicates integration over only ri such that i ∈ IN(s). Now, recall that
for i ∈ OUT(s), we have

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1) = p(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)

so that:

Dα(P ′||P) =
1

α− 1
log

∫
r

∏
i∈IN(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1)1−αp(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)α

∏
i∈OUT(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1) drOUTdrIN


so, we can integrate over ri for i ∈ OUT(s):

=
1

α− 1
log

∫
rIN

∏
i∈IN(s)

p(f̂i = ri|f̂1 = r1, . . . , f̂i−1 = ri−1)1−αp(f̂ ′i = ri|f̂ ′1 = r1, . . . , f̂
′
i−1 = ri−1)α drIN


Now, let the indices in IN(s) be (in order): i1, . . . , in. Then we have:
Dα(P ′||P)

=
1

α− 1
log

 n∏
j=1

∫
rij

p(f̂ij = rij |f̂1 = r1, . . . , f̂ij−1 = rij−1)1−αp(f̂ ′ij = rij |f̂ ′1 = r1, . . . , f̂
′
ij−1 = rij−1)α

 drIN


Now, let’s compress the density notation a bit to save space:

=
1

α− 1
log

 n∏
j=1

∫
rij

p(f̂ij = rij |r1, . . . , rij−1)1−αp(f̂ ′ij = rij |r1, . . . , rij−1)α

 dri1 . . . drin


Now, let’s focus on just one integral:∫
rij

p(f̂ij = rij |r1, . . . , rij−1)1−αp(f̂ ′ij = rij |r1, . . . , rij−1)αdrij

=

∫
rij

p(ζij = rij −Gij (D, r1, . . . , rij−1))1−αp(ζ ′ij = rij −Gij (D′, r1, . . . , rij−1))α drij

=
1

(σ
√

2π)d

∫
Rd

exp

(
−

(1− α)‖x−Gij (D, r1, . . . , rij − 1)‖2

∆2
ij
/ρ2

)
exp

(
−
α‖x−Gij (D′, r1, . . . , rij − 1)‖2

∆2
ij
/ρ2

)
dx

17

using a change of variables z = x−Gij (D′, r1, . . . , rij − 1):

=
1

(σ
√

2π)d

∫
Rd

exp

(
−

(1− α)‖z − (Gij (D, r1, . . . , rij − 1)−Gij (D′, r1, . . . , rij − 1))‖2

∆2
ij
/ρ2

)
exp

(
− α‖z‖2

∆2
ij
/ρ2

)
dz

= exp((α− 1)Dα(N (0,∆2
ij/ρ

2),N (Gij (D, r1, . . . , rij − 1)−Gij (D′, r1, . . . , rij − 1),∆2
ij/ρ

2)))

use our expression for divergence between Gaussians with the same covariance:

= exp
(

(α− 1)αρ2‖Gij (D, r1, . . . , rij − 1)−Gij (D′, r1, . . . , rij − 1)‖2/2∆2
ij

)
≤ exp

(
(α− 1)αρ2/2

)
Now, returning to our bound on the divergence:

Dα(P ′||P) =
1

α− 1
log

 n∏
j=1

∫
rij

p(f̂ij = rij |r1, . . . , rij−1)1−αp(f̂ ′ij = rij |r1, . . . , rij−1)α

 dri1 . . . drin


rewrite a bit for clarity:

=
1

α− 1
log

n−1∏
j=1

∫
rij

p(f̂ij = rij |r1, . . . , rij−1)1−αp(f̂ ′ij = rij |r1, . . . , rij−1)α

∫
rin

p(f̂in = rin |r1, . . . , rin−1)1−αp(f̂ ′in = rin |r1, . . . , rin−1)α

)
dri1 . . . drin

]
integrate out rin :

=
1

α− 1
log

exp
(
(α− 1)αρ2/2

)n−1∏
j=1

∫
rij

p(f̂ij = rij |r1, . . . , rij−1)1−αp(f̂ ′ij = rij |r1, . . . , rij−1)α


dri1 . . . drin−1

]
now integrate out all the other variables one by one:

≤ 1

α− 1
log

 n∏
j=1

exp
(
(α− 1)αρ2/2

)
= nαρ2/2

≤ V αρ2/2

D Proof of section 3

D.1 Privacy

Theorem 4. (Privacy guarantee) Suppose that f(w, x) is G−Lipschitz for all w ∈ Rd, x ∈ X ,
Algorithm 1 is

(
z, z

2σ2

)
Renyi-differentially private for all z. Consequentially, if δ ≥ exp(−ε), then

with σ ≥ 2
√

log(1/δ)

ε , Algorithm 1 is (ε, δ)-differentially private.

To see the (ε, δ)-DP result from the RDP bound, we observe that (z, z
2σ2)-RDP implies (z

2σ2 +
log(1/δ)
z−1 , δ)-DP for all δ. Thus, optimizing over z, we set z = 1 +

√
2σ2 log(1/δ) to obtain (ε, δ)-DP

with ε = 1/2σ2 + 2
√

log(1/δ)/2σ2. Thus, by quadratic formula, we ensure (ε, δ)-DP for all σ
satisfying:

σ ≥ 1√
2 log(1/δ) + 2ε−

√
2 log(1/δ)

18

In pursuit of a simpler expression, observe that
√
x+ y ≥

√
x+ y

2
√
x+y

, so that it suffices to choose:

σ ≥
√

2 log(1/δ) + 2ε

ε

So, in particular if δ ≥ exp(−ε), then we obtain the expression in the Theorem statement.

Proof. Let t = qtN + rt. Define:

f[y,z] = α

z∑
t=y

(1− α)z−t∇f(wt, xπqtπrt
)

To compute the sensitivity of f[y,z], recall that ‖∇f(wt, xπqtπrt
)‖ ≤ G for all w and x. Further, any

given xi can contribute at most d|y − z|/Ne gradient terms in the summation defining f[y,z], and the
jth such term is scaled by α(1−α)jN . Thus, f[y,z] has sensitivity ∆[y,z] = 2αG

∑d|z−y|/Ne−1
j=0 (1−

α)jN ≤ 4αG (by proposition 13) for all [y, z] and α ≥ 1
N .

Next we compute the maximum value over all s ∈ {1, . . . , N} of |{Si| s ∈ Si}| (the maximum
number of intervals that one index s can belong to). For any s ∈ {1, . . . , N}, for any b ≤ blog2(N)c,
there are at most T

N different a ∈ {0, . . . , bT/2bc − 1} such that s ∈ S[a2b+1,(a+1)2b] for b ≤
blog2(N)c. Further, for any b > blog2(N)c, s ∈ S[a2b+1,(a+1)2b] = {1, . . . , N} for all a. Therefore,
for any s there are at most V = min(R+ 1, blog2(N) + 1c) TN +

∑R
j=blog2(N)+1cb

T
2j c sets Si such

that s ∈ Si.
Now, we show that Algorithm 1 is actually providing output distributed in the same way as the
aggregation mechanism in Algorithm 5. To do this, observe that given values for w1, . . . , wT ,
f̂[y,z] = ζ[y,z] + α

∑z
t=y(1 − α)z−t∇f(wt, xπqtπrt

) where ζ[y,z] ∼ N (0,∆2
[y,z]σ

2V I) using the
notation of Algorithm 5. Then the output of Algorithm 5 is

Ĝ[1,t](f̂[1,1], . . . , f̂[1,t]) =
∑

[y,z]∈COMPOSE(1,t)

(1− α)t−z f̂[y,z]

= α
∑

[y,z]∈COMPOSE(1,t)

(1− α)t−z
z∑

t′=y

(1− α)z−t
′
∇f(wt′ , xπqt′πr

t′
)

+
∑

[y,z]∈COMPOSE(1,t)

(1− α)t−zζ[y,z]

= α

t∑
t′=1

(1− α)t−t
′
∇f(wt′ , xπqt′πr

t′
)

+
∑

[y,z]∈COMPOSE(1,t)

(1− α)t−zζ[y,z] (4)

Now, observe that the value of mt as described in Algorithm 1 can be written as:

mt = (1− α)mt−1 + α∇f(wt, xπqtπrt
)

= α

t∑
t′=1

(1− α)t−t
′
∇f(wt′ , xπqt′πr

t′
)

Thus our momentum mt in Algorithm 1 is exactly as the first term in the output of Algorithm 5 (Eq.
4) and NOISEt is the same as the second term. Then, by Theorem 10, Algorithm 1 is

(
z, z

2σ2

)
−RDP

for all z.

D.2 Utility

To prove the main theorem of section 3 (Theorem 6) we would need some extra lemmas on the
momentum error below. Lemma 11 is the bound on the error of mt without any added noise from
the tree. This error comes from the biasedness of the momentum as well as shuffling. Then, we will
prove Lemma 12 which is the bound on the added noise.

19

Lemma 11. Define mt as:

mt = (1− α)mt−1 + α∇f(wt, xπqtrt)

where xqtπrt is the sample at iteration t = qtN + rt. Let:

εt = mt −∇F (wt)

Then:

E[‖εt‖] ≤ 2G
√
α+ 2ηNL+

ηL

α

Proof. Let i = qiN + ri for any i ∈ [t]. Then:

E[‖εt‖] = E[‖mt −∇F (wt)‖]

≤ E[‖mt − α
t∑
i=1

(1− α)t−i∇F (wqiN)‖] + E[‖α
t∑
i=1

(1− α)t−i(∇F (wqiN)−∇F (wi))‖]

+ E[‖α
t∑
i=1

(1− α)t−i∇F (wi)−∇F (wt)‖]

≤ E[‖mt − α
t∑
i=1

(1− α)t−i∇F (wqiN)‖] + ηNL+ E[‖α
t∑
i=1

(1− α)t−i∇F (wi)−∇F (wt)‖]

= E[‖α
t∑
i=1

(1− α)t−i∇f(wi, x
qi
πri

)− α
t∑
i=1

(1− α)t−i∇F (wqiN)‖] + ηNL

+ E[‖α
t∑
i=1

(1− α)t−i∇F (wi)−∇F (wt)‖]

≤ E[‖α
t∑
i=1

(1− α)t−i(∇f(wqiN , x
qi
πri

)−∇F (wqiN))‖] + E[‖α
t∑
i=1

(1− α)t−i(∇f(wi, x
qi
πri

)−∇f(wqiN , x
qi
πri

))‖]

+ ηNL+ E[‖α
t∑
i=1

(1− α)t−i∇F (wi)−∇F (wt)‖]

≤

√√√√E[‖α
t∑
i=1

(1− α)t−i(∇f(wqiN , x
qi
πri

)−∇F (wqiN))‖2] + 2ηNL

+ E[‖α
t∑
i=1

(1− α)t−i∇F (wi)−∇F (wt)‖] (5)

First let us bound the last term in Eq.5. Denote gt = (1 − α)gt−1 + α∇F (wt). Then, if we
let g1 = ∇F (w1), gt = α

∑t
i=1(1 − α)t−i∇F (wi). Let rt = E[‖α

∑t
i=1(1 − α)t−i∇F (wi) −

∇F (wt)‖] = E[‖gt −∇F (wt)‖], we have:

rt = E [‖(1− α)gt−1 + α∇F (wt)−∇F (wt)‖]
= E [‖(1− α)(gt−1 −∇F (wt))‖]
= E [‖(1− α)(gt−1 −∇F (wt−1)) + (1− α)(∇F (wt−1)−∇F (wt))‖]

Unroll the recursive expression:

= E

[
‖

t∑
i=1

(1− α)t−i((∇F (wi−1)−∇F (wi)))‖

]

≤ ηL

α

20

Now let us bound E[‖α
∑t
i=1(1− α)t−i(∇f(wqiN , x

qi
πri

)−∇F (wqiN))‖2]. For any iteration i let
Aπqiri

= ∇f(wqiN , x
qi
πri

)−∇F (wqiN) and ci = (1− α)t−i. Thus:

E[‖α
t∑
i=1

(1− α)t−i(∇f(wqiN , x
qi
πri

)−∇F (wqiN))‖2] = α2 E

[
‖

t∑
i=1

ciAπqiri
‖2
]

If we expand the equation above, we will have some cross terms as well as some squared norm terms.
First, let us examine the cross terms for iteration i < j where qi = qj = q. Then:

E
[
cicj〈Aπqri , Aπqrj 〉

]
=

N∑
ki=1

cicj E
πqrj

[
〈Aπqri , Aπqrj 〉|π

q
ri = ki

]
P [πqri = ki]

=

N∑
ki=1

cicjP [πqri = ki]

〈
Aki , E

πqrj

[
Aπqrj |π

q
ri = ki

]〉

=

N∑
ki=1

cicjP [πqri = ki]

〈
Aki ,

∑
kj 6=ki Akj

N − 1

〉

Notice that
∑
kj
Akj =

∑N
kj=1∇f(wqN , x

q
πkj

)−∇F (wqN) = 0 (since the iterate at the beginning
of the epoch is independent of the data that are samples in that particular epoch). Thus

∑
kj 6=ki Akj =

−Aki . Then:
N∑
ki=1

cicjP [πqri = ki]

〈
Aki ,

∑
kj 6=ki Akj

N − 1

〉
=

N∑
ki=1

cicjP [πqri = ki]

〈
Aki ,

−Aki
N − 1

〉

=

N∑
ki=1

P [πqri = ki]
−cicj
N − 1

‖Aki‖2

≤ 0

Now let us analyze the cross terms for i < j where qi < qj .

E
[
cicj〈Aπqiri , Aπqjrj 〉

]
=

N∑
ki=1

cicj E
πqj

[
〈Aπqiri , Aπqjrj 〉|π

qi
ri = ki

]
P [πqri = ki]

=

N∑
ki=1

cicjP [πqri = ki]

〈
Aπqiri

, E
πqj

[
A
π
qj
rj

|πqiri = ki

]〉

=

N∑
ki=1

cicjP [πqri = ki]

〈
Aπqiri

,

∑N
kj=1Akj

N

〉
= 0

Thus, the cross terms E
[
cicj〈Aπqiri , Aπqjrj 〉

]
≤ 0 for every i < j. Either way,

α2 E

[
‖

t∑
i=1

ciAπqiri
‖2
]
≤ α2 E

[
t∑
i=1

c2i ‖Aπqiri ‖
2

]

≤ 4G2α2
t∑
i=1

(1− α)2(t−i)

≤ 4αG2

Plugging this back to eq. 5

E[‖εt‖] ≤ 2G
√
α+ 2ηNL+

ηL

α

21

Lemma 12. Let V = (min(R, blog2(N)c)+1) TN +
∑R
j=blog2(N)+1cb

T
2j c as in Algorithm 1. Suppose

α ≥ 1
N . Then,

E [‖m̂t −mt‖] ≤ 4αGσ
√
dV log2 T

Proof. We have:

m̂t = mt + NOISEt

where NOISEt =
∑

[y,z]∈COMPOSE(1,t) ζ[y,z]. Since there are at most log2 T intervals in
COMPOSE(1, t), NOISEt is a Gaussian random vector with variance:

VAR ≤ 16α2G2σ2V log2 T (6)

Then:

E [‖m̂t −mt‖] ≤
√
d
√

VAR

= 4αGσ
√
dV log2 T

Theorem 6. (Utility guarantee) Assuming f(w, x) is G-Lipschitz, L-smooth for all w ∈ Rd, x ∈ X ,
and F (w1) is bounded by R. Then Algorithm 1 with η = 1√

NT
, α = εN

T log2 T
√
d log(1/δ)

, T =

εN2

log2 T
√
d log(1/δ)

, ε ≤ T log2 T
√
d log(1/δ)

N , and ŵ that is pick uniformly random from w1, . . . , wT

guarantees:

E [‖∇F (ŵ)‖] ≤
(3

2R+ 6L
√

log2 T log(1/δ) + 12G
√

log2 T log(1/δ)1/4)d1/4

√
εN

+
3L(d log(1/δ))1/4

√
log2 T

4
√
εN3/2

+
6G√
N

+
6G log2 T

√
d log(1/δ)

εN

≤ Õ
(
d1/4

√
εN

+
1√
N

)
Proof. From Lemma 5, we have:

E [‖∇F (ŵ)‖] ≤ 3E [(F (w1)− F (wT+1))]

2ηT
+

3Lη

4
+

3

T

T∑
t=1

E[‖ε̂t‖]

=
3E [(F (w1)− F (wT+1))]

2ηT
+

3Lη

4
+

3

T

T∑
t=1

E[‖m̂t −∇F (wt)‖]

=
3E [(F (w1)− F (wT+1))]

2ηT
+

3Lη

4
+

3

T

T∑
t=1

E[‖m̂t −mt +mt −∇F (wt)‖]

≤ 3E [(F (w1)− F (wT+1))]

2ηT
+

3Lη

4
+

3

T

T∑
t=1

E [‖m̂t −mt‖] + E[‖mt −∇F (wt)‖]

≤ 3E [(F (w1)− F (wT+1))]

2ηT
+

3Lη

4
+

3

T

T∑
t=1

E [‖m̂t −mt‖] + E[‖εt‖]

Applying Lemma 11 and using Theorem 12 with V = (min(R, blog2(N)c) + 1) TN +∑R
j=blog2(N)+1cb

T
2j c ≤ 4 log2 T

T
N , σ =

2
√

log(1/δ)

ε :

E [‖∇F (ŵ)‖] ≤ 3R

2ηT
+

3ηL

4
+ 6G

√
α+ 6ηNL+

3ηL

α
+

12αG log2 T
√
dT log(1/δ)

ε
√
N

≤ 3R

2ηT
+ 6G

√
α+ 6ηNL+

6ηL

α
+

12αG log2 T
√
dT log(1/δ)

ε
√
N

22

Let η = 1√
NT

:

E [‖∇F (ŵ)‖] ≤
(3

2R+ 6L)
√
N

√
T

+
6L

α
√
NT

+ 6G
√
α+

6G

αT
+

12αG log2 T
√
dT log(1/δ)

ε
√
N

Set α = εN

T log2 T
√
d log(1/δ)

:

E [‖∇F (ŵ)‖] ≤
(3

2R+ 6L+ 12G)
√
N

√
T

+
6L
√
T log2 T

√
d log(1/δ)

εN
√
N

+
6G
√
εN

(d log(1/δ))1/4
√
T log2 T

+
6G log2 T

√
d log(1/δ)

εN

Since α ≥ 1
N , then the largest T ≤ εN2

log2 T
√
d log(1/δ)

:

E [‖∇F (ŵ)‖] ≤
(3

2R+ 6L
√

log2 T log(1/δ) + 12G
√

log2 T log(1/δ)1/4)d1/4

√
εN

+
3L(d log(1/δ))1/4

√
log2 T

4
√
εN3/2

+
6G√
N

+
6G log2 T

√
d log(1/δ)

εN

≤ Õ
(
d1/4

√
εN

+
1√
N

)

E Proof of section 4

E.1 Privacy

Theorem 8. (Privacy guarantee) Suppose α ≥ 1/N and f is G-Lipschitz and L-smooth. Then

Algorithm 2 is (z, 3z/2σ2) Renyi differentially private for all z. With σ ≥ 4
√

log(1/δ)

ε , Algorithm 2 is
(ε, δ)-DP

Proof. To show the privacy guarantee, we will show that the releasing all of the F̂G[y,z], F̂
∆
[y,z], F̂

r
[y,z]

is private. To see this, observe that the intervals [y, z] correspond to nodes of a binary tree with at
least T leaves: [y, z] is the node whose descendents are the leaves y, . . . , z, so that we are essentially
analyzing a standard tree-based aggregation mechanism.

To start, let us re-define the queries:

FG[a,b](x1, . . . , xN) =

b∑
t=a

(1− α)b−t∇f(wqtN , xπqtrt)

F∆
[a,b](x1, . . . , xN) =

b∑
t=a

(1− α)b−t(∇f(wqtN , xπqtrt)−∇f(w(qt−1)N , xπqtrt))

F r[a,b](x1, . . . , xN) =

b∑
t=a

(1− α)b−t(∇f(wt, xπqtrt)−∇f(wqtN , xπqtrt))

First, we will compute the sensitivity of FG[a,b] by the exact same analysis as in Theorem 4, we have
that FG[a,b] has sensitivity

2G

d|b−a|/Ne−1∑
j=0

(1− α)jN ≤ 4G

where the last inequality uses Proposition 13 in conjunction with the assumption α ≥ 1
N .

23

Then, for the sensitivity of F∆
[a,b], observe that

‖∇f(wqtN , xπqtrt)−∇f(wqt′N , xπqtrt)‖ ≤ ηNL

Thus, by essentially the same argument used to bound the sensitivity of FG[a,b], F
∆
[a,b] has sensitivity at

most 2ηNL.

Finally, for the sensitivity of F r[a,b]:

‖∇f(wt, xπqtrt)−∇f(wqtN , xπqtrt)‖ ≤ ηNL

Thus, F r[a,b] also has sensitivity 2ηNL.

Next, observe that for any index i ∈ [1, N], xi can influence at most 1 + blog2(2N)c ≤ 3 log2(N)
intervals [a, b] corresponding to nodes in the tree such that b ≤ 2N . Thus, by adding Gaussian noise
with standard deviation

√
V≤2NσδG to FG[a,b] and

√
V≤2Nσδ∆ to F∆

[a,b] for any [a, b] ⊂ [1, 2N]

yields a set of estimates that are (z, z/2σ2) Renyi-differentially private for all z.

Now we turn to intervals that are not subsets of [1, 2N]. For these, notice that again by same analysis
used to prove Theorem 4, we have that the number of nodes any index i can influence is at most:

(blog2(N)c+ 1)
T

N
+

dlog2(T)e∑
j=blog2(N)+1c

b T
2j
c ≤ 4

T

N
log2(N)

Thus, by adding Gaussian noise with standard deviation
√
V>2NσδG or

√
V>2Nσδ∆ to FG[a,b], or

F∆
[a,b], we obtain (z, z/2σ2) Renyi-differential privacy. Finally, by adding noise with standard

deviation
√
V>2Nσδr to F r[a,b], we also obtain (z, z/2σ2)−RDP. Therefore, overall the mechanism

is (z, 3z/2σ2)−RDP.

For the (ε, δ)-DP guarantee, notice that (z, 3z/2σ2)-RDP implies (ε, δ)-DP with ε = 3/2σ2 +

2
√

3 log(1/δ)/2σ2 for all δ. Thus, any when δ ≥ exp(−ε), any σ satisfying

σ ≥
4
√

log(1/δ)

ε

will suffice to achieve the desired privacy.

E.2 Utility

First, let us prove a bound on E[‖m̂t −mt‖] by bounding the variance of all of the added noises.

Lemma 7. Suppose α ≥ 1
N and γ ≤ 1

2 , using the update of Algorithm 2, we have:

E[‖m̂t −mt‖] ≤
192Gα log2 T

√
d log(1/δ)

ε
+

128(G+ 2L)α
√
ηdT log(1/δ) log2 T

ε

+
16ηLα log2 T

√
3dTN log(1/δ)

ε

Proof. First, observe that since α ≥ 1/N , by Proposition 13, we have:

∞∑
i=0

(1− α)iN ≤ 1

1− exp(−1)
≤ 2 (7)

24

Now, we define some notation. Let For any iteration t, let t = qtN + rt. For any interval [a, b], set

FG[a,b](x1, . . . , xN) =

b∑
t=a

(1− α)b−t∇f(wqtN , xπqtrt)

F∆
[a,b](x1, . . . , xN) =

b∑
t=a

(1− α)b−t(∇f(wqtN , xπqtrt)−∇f(w(qt−1)N , xπqtrt))

F r[a,b](x1, . . . , xN) =

b∑
t=a

(1− α)b−t(∇f(wt, xπqtrt)−∇f(wqtN , xπqtrt))

We will use the notation FG[a,b] to indicate FG[a,b](x1, . . . , xN) for brevity. Then:

G[a,b] =
∑

[y,z]∈COMPOSE(a,b)

(1− α)b−zFG[y,z]

∆[a,b] =
∑

[y,z]∈COMPOSE(a,b)

(1− α)b−zF∆
[y,z]

r[a,b] =
∑

[y,z]∈COMPOSE(a,b)

(1− α)b−zF r[y,z]

Observe that with this definition, if mt is the momentum value defined recursively as mt+1 =
(1− α)mt + α∇f(wt, xπqtrt), we have:

mt = α

t∑
i=1

(1− α)t−i∇f(wi, xπqiri
)

= α

t∑
i=1

(1− α)t−i∇f(wqiN , xπqiri
) + α

t∑
i=1

(1− α)t−i(∇f(wi, xπqiri
)−∇f(wqiN , xπqiri

))

= αG[1,t] + αr[1,t]

From Lemma 17, we know that:

αG[1,t] = (1− α)t−rαG[1,r] +

q−1∑
i=0

(1− α)Ni(1− γ)q−(i+1)αG[r+1,r+N]

+

q−1∑
i=1

i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N

α
(
(1− γ)∆[t−iN+1,t−(i−1)N] + γG[t−iN+1,t−(i−1)N]

)
(8)

Now we can compute the accuracy of the estimate αĜ[1,t] using δ∆, δG, δr, V≤2N = 3 log2N ,
V>2N = 4 log2N

T
N . Let us analyze the noise added to αĜ[1,t] term by term.

First term, (1− α)T−rαG[1,r]:

(1− α)T−rαĜ[1,r] = (1− α)T−rα
∑

[y,z]∈COMPOSE(1,r)

(1− α)r−zFG[y,z] + (1− α)T−rα
∑

[y,z]∈COMPOSE(1,r)

(1− α)r−zζG[y,z]

= (1− α)T−1αG[1:r] + (1− α)T−rα
∑

[y,z]∈COMPOSE(1,r)

(1− α)r−zζG[y,z]

where ζG[y,z] ∼ N(0, δ2
Gσ

2V) with V≤2N = 3 log2N . Now, by Proposition 18, there are at most
2(1 + log2 r) ≤ 4 log2(N) intervals in COMPOSE(1, r). Thus, the variance of the noise added to
the first term is:

VAR1 ≤ 2(1− α)T−r(1 + log2(r))α2δ2
Gσ

2V

≤ 12(1− α)T−rα2δ2
Gσ

2 log2
2N

≤ 12α2δ2
Gσ

2 log2
2N

25

Second term,
∑q−1
i=0 (1− α)Ni(1− γ)q−(i+1)αG[r+1,r+N]:

q−1∑
i=0

(1− α)Ni(1− γ)q−(i+1)αG[r+1,r+N] =

q−1∑
i=0

(1− α)Ni(1− γ)q−(i+1)α
∑

[y,z]∈COMPOSE(r+1,r+N)

(
FG[y,z] + ζG[y,z]

)
Since there are at most 4 log2N terms in COMPOSE(1, N), the variance of the noise added to the
second term is:

VAR2 ≤ 4

q−1∑
i=0

(1− α)2Ni(1− γ)2q−2(i+1) log2Nα
2δ2
Gσ

2V≤2N

≤ 4 log2Nα
2δ2
Gσ

2V≤2N

(1− exp(−1))2

=
12α2δ2

Gσ
2 log2

2N

(1− exp(−1))2

where the second inequality comes from Proposition 14.

Third term, α
∑q−1
i=1

(∑i−1
j=0(1− γ)j(1− α)(i−1−j)N

)
γG[T−iN+1,T−(i−1)N]:

q−1∑
i=1

i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N

αγĜ[T−iN+1,T−(i−1)N]

=

q−1∑
i=1

i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N

αγ
∑

[y,z]∈COMPOSE(T−iN+1,T−(i−1)N)

(1− α)T−(i−1)N−z(FG[y,z] + ζG[y,z])

where ζG[y,z] ∼ N(0, δ2
Gσ

2V>2N) where V>2N = 4 TN log2N . There are at still at most 4 log2(N)

terms in COMPOSE(T − iN + 1, T − (i− 1)N), so Using Corollary 15, the variance of the noise
added to the third term is:

VAR3 ≤ 4

q−1∑
i=1

(1− γ)2(i−1)

(1− exp(−1))2
α2γ2 log2Nδ

2
Gσ

2V>2N

≤ 16γα2 log2
2Nδ

2
Gσ

2T

(1− exp(−1))2N

≤ 16γα2δ2
Gσ

2T log2
2N

(1− exp(−1))2N

Fourth Term,
∑q−1
i=1

(∑i−1
j=0(1− γ)j(1− α)(i−1−j)N

)
α(1− γ)∆[T−iN+1,T−(i−1)N]:

Similar to the third term, we have:
q−1∑
i=1

i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N

α(1− γ)∆̂[T−iN+1,T−(i−1)N]

=

q−1∑
i=1

i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N

α(1− γ)
∑

[y,z]∈COMPOSE(T−iN+1,T−(i−1)N)

(1− α)T−(i−1)N−z(∆[y,z] + ζ∆
[y,z])

Thus the variance of the noise added to the fourth term is:

VAR4 ≤ 4

q−1∑
i=1

α2 (1− γ)2i

(1− exp(−1))2
log2Nδ

2
∆σ

2V>2N

≤ 16α2 log2
2Nδ

2
∆σ

2T

γN(1− exp(−1))2

≤ 16α2δ2
∆σ

2T log2
2N

γN(1− exp(−1))2

26

Now let us analyze αr[1,t] to see how much noise we need to add to make it private. We have:

αr̂[1,t] = αr[1,t] + α
∑

[y,z]∈COMPOSE(1,t)

ζr[y,z]

where ζr[y,z] ∼ N(0, δ2
rσ

2V>2N). There are at most 3 log2 T in COMPOSE(1, t), thus the variance
of the noise added is:

VAR5 = 3 log2 Tα
2δ2
rσ

2V>2N

Plug in V>2N = 4 TN log2N , δr = 2ηNL

≤ 48Tα2η2N2L2σ2 log2
2 T

N

Now combining VAR1,VAR2,VAR3,VAR4,VAR5 we have the total variance of the Gaussian noise
added to m̂t is:

VAR ≤ 12α2δ2
Gσ

2 log2
2N +

12α2δ2
Gσ

2 log2
2N

(1− exp(−1))2
+

16γα2δ2
Gσ

2T log2
2N

(1− exp(−1))2N
+

16α2δ2
∆σ

2T log2
2N

(1− exp(−1))2γN

+
48Tα2η2N2L2σ2 log2

2 T

N

= 256G2α2σ2 log2
2N +

256G2α2σ2 log2
2N

(1− exp(−1))2
+

256G2γα2σ2T log2
2N

(1− exp(−1))2N
+

1024η2N2L2α2σ2T log2
2N

(1− exp(−1))2γN

+
48Tα2η2N2L2σ2 log2

2 T

N

Since the added noise is a Gaussian vector:

E[‖m̂t −mt‖]

≤
√
d
√

VAR

≤
√
d×

(
16Gασ log2N +

16Gασ log2N

1− exp(−1)
+

16Gα
√
γσ
√
T log2N

(1− exp(−1))
√
N

+
32ηNLασ

√
T log2N

(1− exp(−1))
√
γN

+
4ηNLασ log2 T

√
3T√

N

)

≤
√
d×

(
48Gασ log2 T +

32Gα
√
γσ
√
T log2 T√

N
+

64ηNLασ
√
T log2 T√

γN
+

4ηNLασ log2 T
√

3T√
N

)
Set γ = ηN :

E[‖m̂t −mt‖] ≤
√
d×

(
48Gασ log2 T + 32Gασ

√
ηT log2 T + 64Lασ

√
ηT log2 T +

4ηNLασ log2 T
√

3T√
N

)

Setting σ =
4
√

log(1/δ)

ε :

E[‖m̂t −mt‖] ≤
192Gα log2 T

√
d log(1/δ)

ε
+

128(G+ 2L)α
√
ηdT log(1/δ) log2 T

ε
+

16ηLα log2 T
√

3dTN log(1/δ)

ε

Theorem 9. (Utility guarantee) Assuming f(w, x) is G-Lipschitz, L-smooth for all w ∈ Rd, x ∈ X ,
and F (w1) is bounded byR. Then Algorithm 2 with γ = ηN, η = 1√

NT
, α = N3/4ε

T 3/4
√
d

, T = N7/3ε4/3

d2/3
,

ε ≤ T 3/4
√
d

N3/4 , and ŵ that is picked uniformly at random from w1, ..., wT guarantees:

E[‖∇F (ŵ)‖] ≤
(3

2R+ 24K(G+ 2L) + 12L)d1/3

(εN)2/3
+

6G√
N

+
36GK

√
d

εN
+

9KL
√
d

εN

≤ Õ
(

d1/3

(εN)2/3
+

1√
N

)
where K = 16 log2 T log(1/δ).

27

Proof. From Lemma 7, we have:

E[‖m̂t −mt‖] ≤
192Gα log2 T

√
d log(1/δ)

ε
+

128(G+ 2L)α
√
ηdT log(1/δ) log2 T

ε

+
16ηLα log2 T

√
3dTN log(1/δ)

ε

Now use Lemma 11, 5 and let K = 16 log2 T log(1/δ):

E[‖∇F (ŵ)‖] ≤ 3R

2ηT
+

3ηL

4

+
3

T

T∑
t=1

(
2G
√
α+ 2ηNL+

ηL

α
+

12KGα
√
d

ε
+

8K(G+ 2L)α
√
ηdT

ε
+
KαηL

√
3dTN

ε

)

≤ 3R

2ηT
+

3ηL

4
+ 6G

√
α+ 6ηNL+

3ηL

α
+

36GKα
√
d

ε
+

24K(G+ 2L)α
√
ηdT

ε
+

3KαηL
√

3dTN

ε

≤ 3R

2ηT
+ 6G

√
α+ 6ηNL+

6ηL

α
+

36GKα
√
d

ε
+

24K(G+ 2L)α
√
ηdT

ε
+

3KαηL
√

3dTN

ε

Set η = 1√
NT

:

E[‖∇F (ŵ)‖] ≤
(3

2R+ 6L)
√
N

√
T

+
6L

α
√
NT

+ 6G
√
α+

36GKα
√
d

ε
+

24K(G+ 2L)αT 1/4
√
d

εN1/4
+

3KαL
√

3d

ε

≤
(3

2R+ 6L)
√
N

√
T

+
6L

α
√
NT

+ 6G
√
α+

36GKα
√
d

ε
+

24K(G+ 2L)αT 1/4
√
d

εN1/4
+

9KαL
√
d

ε

Set α = N3/4ε
T 3/4

√
d

:

E[‖∇F (ŵ)‖] ≤
(3

2R+ 24K(G+ 2L) + 6L)
√
N

√
T

+
6LT 1/4

√
d

εN5/4
+

6GN3/8
√
ε

T 3/8d1/4
+

36GKN3/4

T 3/4
+

9KN3/4L

T 3/4

Because we must have α ≥ 1
N , the largest value of T = N7/3ε4/3

d2/3
:

E[‖∇F (ŵ)‖] ≤
(3

2R+ 24K(G+ 2L) + 12L)d1/3

(εN)2/3
+

6G√
N

+
36GK

√
d

εN
+

9KL
√
d

εN

≤ Õ
(

d1/3

(εN)2/3
+

1√
N

)

F Technical Lemmas

Lemma 5. [Essentially Lemma 2 [Cutkosky and Mehta [2020]] Define:

ε̂t = m̂t −∇F (wt)

Suppose w1, ..., wT is a sequence of iterates defined by wt+1 = wt − η m̂t
‖m̂t‖ for some arbitrary

sequence m̂1, ..., m̂T . Pick ŵ uniformly at random from w1, ..., wT . Then:

E [‖∇F (ŵ)‖] ≤ 3E [(F (w1)− F (wT+1))]

2ηT
+

3Lη

4
+

3

T

T∑
t=1

E[‖ε̂t‖]

Proof. From smoothness:

F (wt+1) ≤ F (wt) + 〈∇F (wt), wt+1 − wt〉+
L

2
‖wt+1 − wt‖2

= F (wt) + η

〈
∇F (wt),

m̂t

‖m̂t‖

〉
+
Lη2

2

28

Let’s analyze the inner-product term via some case-work: Suppose ‖ε̂t‖ ≤ 1
2‖∇F (wt)‖. Then

1
2‖∇F (wt)‖ ≤ ‖∇F (wt) + ε̂t‖ ≤ 3

2‖∇F (wt)‖ so that:

−
〈
∇F (wt),

m̂t

‖m̂t‖

〉
= −

〈
∇F (wt),

∇F (wt) + ε̂t
‖∇F (wt) + ε̂t‖

〉
≤ −‖∇F (wt)‖2

‖∇F (wt) + ε̂t‖
+
‖∇F (wt)‖‖ε̂t‖
‖∇F (wt) + ε̂t‖

≤ −2

3
‖∇F (wt)‖+ 2‖ε̂t‖

On the other hand, if ‖ε̂t‖ > 1
2‖∇F (wt)‖, then

−
〈
∇F (wt),

m̂t

‖m̂t‖

〉
≤ 0

≤ −2

3
‖∇F (wt)‖+

2

3
‖∇F (wt)‖

≤ −2

3
‖∇F (wt)‖+

4

3
‖ε̂t‖

So either way, we have−
〈
∇F (wt),

m̂t
‖m̂t‖

〉
≤ − 2

3‖∇F (wt)‖+2‖ε̂t‖ Now sum over t and rearrange
to get:

1

T

T∑
t=1

‖∇F (wt)‖ ≤
3(F (w1)− F (wT+1))

2ηT
+

3Lη

4
+

3

T

T∑
t=1

‖ε̂t‖

Take expectation of both sides:

1

T
E

[
T∑
t=1

‖∇F (wt)‖

]
≤ 3E [(F (w1)− F (wT+1))]

2ηT
+

3Lη

4
+

3

T

T∑
t=1

E[‖ε̂t‖]

Pick ŵ uniformly at random from w1, ..., wT . Then:

E [‖∇F (ŵ)‖] ≤ 3E [(F (w1)− F (wT+1))]

2ηT
+

3Lη

4
+

3

T

T∑
t=1

E[‖ε̂t‖]

Proposition 13. Let α ∈ (0, 1] and N be an arbitrary positive integer. Then:
∞∑
i=0

(1− α)Ni ≤ 1

1− exp(−1)
max

(
1,

1

αN

)

Proof.
∞∑
i=0

(1− α)Ni =

∞∑
i=0

(
(1− α)N

)i
using the identity 1− x ≤ exp(−x):

≤
∞∑
i=0

(exp(−αN))
i

Now, if αN ≤ 1, then we use the identity exp(−x) ≤ 1− x(1− exp(−1)) for all x ∈ [0, 1]:
∞∑
i=0

(1− α)Ni ≤
∞∑
i=0

[1− (1− exp(−1))αN]
i

=
1

αN(1− exp(−1))

29

On the other hand, if αN > 1, then we have:
∞∑
i=0

(1− α)Ni ≤
∞∑
i=0

(exp(−αN))
i

≤
∞∑
i=0

exp(−i)

≤ 1

1− exp(−1)

Putting the two cases together yields the desired result.

Proposition 14. Let γ ∈ (0, 1] 1
N ln

(
1

1−γ

)
≤ α ≤ 1 and let N be an arbitrary positive integer.

Then:

∞∑
i=0

(1− γ)−i(1− α)Ni ≤ 1

1− exp(−1)
max

1,
1

αN − ln
(

1
1−γ

)


In particular, if γ ≤ 1/2 and 1+ln(2)
N ≤ α:

∞∑
i=0

(1− γ)−i(1− α)Ni ≤ 1

1− exp(−1)

Proof.
∞∑
i=0

(1− γ)−i(1− α)Ni =

∞∑
i=0

(
(1− α)N

)i
using the identity 1− x ≤ exp(−x):

≤
∞∑
i=0

(1− γ)i (exp(−αN))
i

=

∞∑
i=0

[
exp

(
−αN + ln

(
1

1− γ

))]i
Now, as in the proof of Proposition 13, we consider two cases. First, if 0 ≤ αN − ln

(
1

1−γ

)
≤ 1,

then since exp(−x) ≤ 1− (1− exp(−1))x for all x ∈ [0, 1], we have:
∞∑
i=0

(1− γ)−i(1− α)Ni ≤
∞∑
i=0

[
1− (1− exp(−1))

(
αN − ln

(
1

1− γ

))]i
≤ 1

(1− exp(−1))
(
αN − ln

(
1

1−γ

))
Alternatively, if αN − ln

(
1

1−γ

)
≥ 1,

∞∑
i=0

(1− γ)−i(1− α)Ni ≤
∞∑
i=0

exp(−i)

≤ 1

1− exp(−1)

Putting the two cases together provides the first statement in the Proposition.

For the second statement, observe that since ln
(

1
1−γ

)
is increasing in γ, we have 1+ln(2)

N ≤ α

implies 1 + ln
(

1
1−γ

)
≤ Nα, from which the result follows.

30

Corollary 15. Suppose γ ∈ (0, 1] and 1 ≥ α ≥ 1
N ln

(
1

1−γ

)
: Then:

i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N ≤ (1− γ)i−1

1− exp(−1)
max

1,
1

αN − ln
(

1
1−γ

)


Proof.
i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N = (1− γ)i−1
i−1∑
j=0

(1− γ)j−(i−1)(1− α)(i−1−j)N

≤ (1− γ)i−1
∞∑
k=0

(1− γ)−k(1− α)kN

now apply Proposition 14:

≤ (1− γ)i−1

1− exp(−1)
max

1,
1

αN − ln
(

1
1−γ

)


Proposition 16. Let γ ∈ (0, 1) and s be any integer. Suppose bRbR−1 . . . b0 is the binary expansion
of s, so that s =

∑R
i=0 bi2

i. Then:

R∑
i=0

biγ
2(s mod 2i) ≤ 1 +

R∑
i=1

γ2i

Proof. Define F (s) =
∑R
i=0 biγ

2(s mod 2i) where bi is the ith bit of the binary expansion of s. Then
we will show first:

F

(
R∑
i=0

2i

)
≤ 1 +

R∑
i=1

γ2i

and then for all s < 2R+1,

F (s) ≤ F

(
R∑
i=0

2i

)
which together proves the Proposition.

For the first claim, we have:
R∑
i=0

2i mod 2j = 2j − 1 for all j ≤ R+ 1

so that:

F

(
R∑
i=0

2i

)
=

R∑
i=0

γ2(2i−1)

= 1 +

R∑
i=1

γ2(2i−1)

≤ 1 +

R∑
i=1

γ2i

Now, for the second claim, suppose that s 6=
∑R
i=0 2i. That is, there is some j such that bj = 0.

Equivalently, we can write s = A + B such that A < 2j and B = 0 mod 2j+1 for some j ≤ R.

31

Then define s′ = A + B/2. Let b′R . . . b
′
0 be the binary expansion of s′. Then we have b′i = bi for

i < j and b′i = bi+1 for i ≥ j. Further, for i < j, s mod 2i = A mod 2i = s′ mod 2i, and for
i ≥ j, s mod 2i+1 = A+ (B mod 2i+1) ≥ A+ (B/2 mod 2i). Thus, we have:

F (s) =

R∑
i=0

biγ
2(s mod 2i) ≤

R∑
i=0

b′iγ
2(s′ mod 2i) = F (s′)

By repeating this argument, we see that if s has n non-zero bits in the binary expansion, F (s) ≤
F (2n − 1). Finally, notice that adding higher-order bits to the binary expansion can only increase F ,
so that F (2n − 1) ≤ F (2R+1 − 1) and so we are done.

Lemma 17. Let T = qN + r where q ∈ Z is the quotient and r ∈ [0, N − 1] is the remainder when
dividing T by N . Then:

G[1,T] = (1− α)T−rG[1,r] +

q−1∑
i=0

(1− α)Ni(1− γ)q−(i+1)G[r+1,r+N]

+

q−1∑
i=1

i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N

((1− γ)∆[T−iN+1,T−(i−1)N] + γG[T−iN+1,T−(i−1)N]

)

Proof. For any iteration t, let t = qtN + rt. We re-define:

FG[a,b] =

b∑
i=a

(1− α)b−i∇f(wqiN , xπqiri
)

F∆
[a,b] =

b∑
i=a

(1− α)b−i(∇f(wqiN , x
qi
ri)−∇f((w(qi−1)N , x

qi
ri))

and:

G[a,b] =
∑

[y,z]∈COMPOSE(a,b)

(1− α)b−zFG[y,z]

∆[a,b] =
∑

[y,z]∈COMPOSE(a,b)

(1− α)b−zF∆
[y,z]

Interpreting
∑b
i=a as 0 whenever b < a, we see that statement of the Lemma is immediate for T < N ,

as q = 0, r = T and all sums are zero. Next, a little calculation reveals the following identity:

G[1,T] = (1− α)NG[1,T−N] +G[T−N+1,T] (9)

which implies the Lemma for q = 1 (since T −N = r).

Further, we have:

G[T−N+1,T] = (1− γ)∆[T−N+1,T] + γG[T−N+1,T] + (1− γ)G[T−2N+1,T−N]

Putting these together yields:

G[1,T] = (1− α)NG[1,T−N] + (1− γ)∆[T−N+1,T] + γG[T−N+1,T] + (1− γ)G[T−2N+1,T−N]

= (1− α)2NG[1,T−2N] + (1− α)NG[T−2N+1,T−N] + (1− γ)∆[T−N+1,T] + γG[t−N+1,T]

+ (1− γ)G[T−2N+1,T−N]

= (1− α)2N (G[1,T−2N] + ((1− α)N + (1− γ))G[T−2N+1,T−N] + (1− γ)∆[T−N+1,T] + γG[T−N+1,T]

which is exactly the statement of the Lemma for q = 2 (since in this case T − 2N = r).

32

Now, we proceed by induction on q: Suppose the statement holds for (q − 1)N + r. That is, suppose

G[1,T−N] = (1− α)T−N−rG[1,r] +

q−2∑
i=0

(1− α)iN (1− γ)q−(i+1)G[r+1,r+N]

+

q−2∑
i=1

i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N

((1− γ)∆[T−(i+1)N+1,T−iN] + γG[T−(i+1)N+1,T−iN]

)
Then, we observe the following identity if i < q:

G[T−iN+1,T−(i−1)N] = (1− γ)∆[T−iN+1,T−(i−1)N] + γG[T−iN+1,T−(i−1)N] + (1− γ)G[T−(i+1)N+1,T−iN]

From this we can conclude:

G[T−iN+1,T−(i−1)N] = (1− γ)q−iG[T−qN+1,T−(q−1)N]

+

q−i−1∑
j=0

(1− γ)j((1− γ)∆[T−(j+i)N+1,T−(j+i−1)N] + γG[T−(j+i)N+1,T−(j+i−1)N])

Now, put this together with (9):

G[1,T] = (1− α)NG[1,T−N] + (1− γ)q−1G[T−qN+1,T−(q−1)N]

+

q−2∑
j=0

(1− γ)j((1− γ)∆[T−(j+1)N+1,T−jN] + γG[T−(j+1)N+1,T−jN])

using the definition of q, r:

= (1− α)NG[1,T−N] + (1− γ)q−1G[r+1,r+N]

+

q−2∑
j=0

(1− γ)j((1− γ)∆[T−(j+1)N+1,T−jN] + γG[T−(j+1)N+1,T−jN])

using the induction hypothesis:

= (1− α)T−rG[1,r] +

q−2∑
i=0

(1− α)(i+1)N (1− γ)q−(i+2)G[r+1,r+N]

+

q−2∑
i=1

i−1∑
j=0

(1− γ)j(1− α)(i−j)N

((1− γ)∆[T−(i+1)N+1,T−iN] + γG[T−(i+1)N+1,T−iN]

)
+ (1− γ)q−1G[r+1,r+N]

+

q−2∑
j=0

(1− γ)j((1− γ)∆[T−(j+1)N+1,T−jN] + γG[T−(j+1)N+1,T−jN])

reindexing and combining the third line with the sum on the first line:

= (1− α)T−rG[1,r] +

q−1∑
i=0

(1− α)iN (1− γ)q−(i+1)G[r+1,r+N]

+

q−2∑
i=1

i−1∑
j=0

(1− γ)j(1− α)(i−j)N

((1− γ)∆[T−(i+1)N+1,T−iN] + γG[T−(i+1)N+1,T−iN]

)
+

q−2∑
j=0

(1− γ)j((1− γ)∆[T−(j+1)N+1,T−jN] + γG[T−(j+1)N+1,T−jN])

33

reindexing:

= (1− α)T−rG[1,r] +

q−1∑
i=0

(1− α)iN (1− γ)q−(i+1)G[r+1,r+N]

+

q−1∑
i=2

i−2∑
j=0

(1− γ)j(1− α)(i−1−j)N

((1− γ)∆[T−iN+1,T−(i−1)N] + γG[T−iN+1,T−(i−1)N]

)
+

q−2∑
j=0

(1− γ)j((1− γ)∆[T−(j+1)N+1,T−jN] + γG[T−(j+1)N+1,T−jN])

= (1− α)T−rG[1,r] +

q−1∑
i=0

(1− α)iN (1− γ)q−(i+1)G[r+1,r+N]

+

q−1∑
i=2

i−2∑
j=0

(1− γ)j(1− α)(i−1−j)N

((1− γ)∆[T−iN+1,T−(i−1)N] + γG[T−iN+1,T−(i−1)N]

)
+

q−1∑
i=1

(1− γ)i−1((1− γ)∆[T−iN+1,T−(i−1)N] + γG[T−iN+1,T−(i−1)N])

= (1− α)T−rG[1,r] +

q−1∑
i=0

(1− α)iN (1− γ)q−(i+1)G[r+1,r+N]

+

q−1∑
i=2

i−1∑
j=0

(1− γ)j(1− α)(i−1−j)N

((1− γ)∆[T−iN+1,T−(i−1)N] + γG[T−iN+1,T−(i−1)N]

)
which establishes the claim.

Proposition 18. [Essentially Daniely et al. [2015], Lemma 5] The output of S of COMPOSE(a, b)
satisfies |S| ≤ 2(1 + blog2(b−a+ 1)c). In the special case that a = 1, |S| ≤ 1 + log2(b). Moreover,
each element of COMPOSE(a, b) is an interval of the form [q2k + 1, (q + 1)2k] for some q, k ∈ N,
the intervals in S are disjoint, and [a, b] =

⋃
[x,y]∈S [x, y].

34

	Compose algorithm
	Reconstruction algorithm for sensitivity-reduced algorithm (Algorithm 2)
	Renyi Differential Privacy
	Algorithm and Analysis

	Proof of section 3
	Privacy
	Utility

	Proof of section 4
	Privacy
	Utility

	Technical Lemmas

