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Abstract

We study finite-sum distributed optimization problems involving a master node and
n− 1 local nodes under the popular δ-similarity and µ-strong convexity conditions.
We propose two new algorithms, SVRS and AccSVRS, motivated by previous
works. The non-accelerated SVRS method combines the techniques of gradient
sliding and variance reduction and achieves a better communication complexity
of Õ(n+

√
nδ/µ) compared to existing non-accelerated algorithms. Applying the

framework proposed in Katyusha X [6], we also develop a directly accelerated
version named AccSVRS with the Õ(n+n3/4

√
δ/µ) communication complexity.

In contrast to existing results, our complexity bounds are entirely smoothness-free
and exhibit superiority in ill-conditioned cases. Furthermore, we establish a nearly
matched lower bound to verify the tightness of our AccSVRS method.

1 Introduction

We have witnessed the development of distributed optimization in recent years. Distributed opti-
mization aims to cooperatively solve a learning task over a predefined social network by exchanging
information exclusively with immediate neighbors. This class of problems has found extensive
applications in various fields, including machine learning, healthcare, network information process-
ing, telecommunications, manufacturing, natural language processing tasks, and multi-agent control
[54, 30, 48, 45, 60, 8]. In this paper, we focus on the following classical finite-sum optimization
problem in a centralized setting:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where each fi is differentiable and corresponds to a client or node, and the target objective is their
average function f . Without loss of generality, we assume f1 is the master node and the others
are local nodes. In each round, every local node can communicate with the master node certain
information, such as the local parameter x, local gradient ∇fi(x), and some global information
gathered at the master node. Such a scheme can also be viewed as decentralized optimization over a
star network [55].

Following the wisdom of statistical similarity residing in the data at different nodes, many previous
works study scenarios where the individual functions exhibit relationships or, more specifically, certain
homogeneity shared among the local fi’s and f . The most common one is under the δ-second-order
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similarity assumption [33, 35], that is,∥∥∇2fi(x)−∇2f(x)
∥∥ ≤ δ, ∀x ∈ Rd, i ∈ {1, . . . , n}.

Such an assumption also has different names in the literature, such as δ-related assumption, bounded
Hessian dissimilarity, or function similarity [7, 32, 51, 54, 62]. The rigorous definitions are deferred
to Section 2. Moreover, the second-order similarity assumption can hold with a relatively small δ
compared to the smoothness coefficient of fi’s in many practical settings, such as statistical learning.
More insights on this can be found in the discussion presented in [54, Section 2]. The similarity
assumption indicates that the data across different clients share common information on the second-
order derivative, potentially leading to a reduction in communication among clients. Meanwhile, the
cost of communication is often much higher than that of local computation in distributed optimization
settings [9, 44, 30]. Hence, researchers are motivated to develop efficient algorithms characterized by
low communication complexity, which is the primary objective of this paper as well.

Furthermore, we need to emphasize that prior research [25, 56, 63, 19, 43, 5] has shown tightly
matched lower and upper bounds on computation complexity for the finite-sum objective in Eq. (1).
These works focus on gradient complexity under (average) smoothness [63] instead of communication
complexity under similarity. Indeed, we will also discuss and compare the gradient complexity as
shown in [35], to explore the trade-off between communication and gradient complexity.

Although the development of distributed optimization with similarity has lasted for years, the optimal
complexity under full participation was only recently achieved by Kovalev et al. [35]. They employed
gradient-sliding [37] and obtained the optimal communication complexity Õ(n

√
δ/µ) for µ-strongly

convex f and δ-related fi’s in Eq. (1). However, the full participation model requires the calculation
of the whole gradient ∇f(·), which incurs a communication cost of n−1 in each round. In contrast,
partial participation could reduce the communication burden and yield improved complexity. Hence,
Khaled and Jin [33] introduced client sampling, a technique that selects one client for updating in
each round. They developed a non-accelerated algorithm SVRP, which achieves the communication
complexity of Õ(n+δ2/µ2). Additionally, they proposed a Catalyzed version of SVRP with the
complexity Õ(n+n3/4

√
δ/µ), which is better than the rates obtained in the full participation setting.

We believe there are several potential avenues for improvement inspired by [33]. 1) Khaled and Jin
[33] introduced the requirement that each individual function is strongly convex (see [33, Assumption
2]). However, this constraint is absent in prior works. Notably, in the context of full participation, even
non-convexity is deemed acceptable6. A prominent example is the shift-and-invert approach to solving
PCA [52, 23], where each component is smooth and non-convex, but the average function remains
convex. Thus we doubt the necessity of requiring strong convexity for individual components. 2) In
hindsight, it seems that the directly accelerated SVRP could only achieve a bound of Õ(n+

√
n ·δ/µ)

based on the current analysis, which is far from being satisfactory compared to its Catalyzed version.
Consequently, there might be room for the development of a more effective algorithm for direct
acceleration. 3) It is essential to note that the Catalyst framework introduces an additional log term
in the overall complexity, along with the challenge of parameter tuning. This aspect is discussed in
detail in [6, Section 1.2]. Therefore, we intend to address the aforementioned concerns, particularly
on designing directly accelerated methods under the second-order similarity assumption.

1.1 Main Contributions

In this paper, we address the above concerns under the average similarity condition. Our contributions
are presented in detail below and we provide a comparison with previous works in Table 1:

• First, we combine gradient sliding and client sampling techniques to develop an improved
non-accelerated algorithm named SVRS (Algorithms 1). SVRS achieves a communication
complexity of Õ(n+

√
n · δ/µ), surpassing SVRP in ill-conditioned cases. Notably, this

rate does not need component strong convexity and applies to the function value gap instead
of the parameter distance.

• Second, building on SVRS, we employ a classical interpolation framework motivated
by Katyusha X [6] to introduce the directly accelerated SVRS (AccSVRS, Algorithm 2).

6Readers can check that the proof of [35] only requires f1(·) + 1
2θ

∥·∥2 is strongly convex, which can be
guaranteed by δ-second-order similarity since f is µ-strongly convex and θ = 1/(2δ) therein.
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Table 1: Comparison of communication under similarity for the strongly convex objective.
Method/Reference Communication complexity Assumptions

No
Sampling

AccExtragradient [35] O
(
n
√

δ
µ
log 1

ε

)
SS only for f1

Lower bound [7] Ω
(
n
√

δ
µ
log 1

ε

)
SS for fi’s

Client
Sampling

SVRP [33] O
((

n+ δ2

µ2

)
log 1

ε

)
(1) SC for fi’s, AveSS

Catalyzed SVRP [33] O
((

n+ n3/4
√

δ
µ

)
log 1

ε
log L

µ

)
(2) SC for fi’s, AveSS

SVRS (Thm 3.3) O
((

n+
√
n · δ

µ

)
log 1

ε

)
AveSS

AccSVRS (Thm 3.6) O
((

n+ n3/4
√

δ
µ

)
log 1

ε

)
AveSS

Lower bound (Thm 4.4) Ω
(
n+ n3/4

√
δ
µ
log 1

ε

)
(3) AveSS

(1) The rate only applies to E ∥xk − x∗∥2, otherwise it would introduce L in the log term; (2) The term log(L/µ) comes
from the Catalyst framework. See Appendix C for the detail. (2, 3) Here we only list the rates of the common ill-conditioned
case: µ = O(δ/

√
n). See Appendices for the remaining case. Notation: δ=similarity parameter (both for SS and AveSS),

L=smoothness constant of f , µ=strong convexity constant of f (or fi’s), ε=error of the solution for Ef(xk)−f(x∗). Here
L ≥ δ ≥ µ ≫ ϵ > 0. Abbreviation: SC=strong convexity, SS=second-order similarity, AveSS=average SS.

AccSVRS achieves the same communication bound of Õ(n + n3/4
√

δ/µ) as Catalyzed
SVRP. Specifically, our bound is entirely smoothness-free and slightly outperforms Cat-
alyzed SVRP, featuring a log improvement and not requiring component strong convexity.

• Third, by considering the proximal incremental first-order oracle in the centralized dis-
tributed framework, we establish a lower bound, which nearly matches the upper bound of
AccSVRS in ill-conditioned cases.

1.2 Related Work

Gradient sliding/Oracle Complexity Separation. For optimization problems with a separated
structure or multiple building blocks, such as Eq. (1), there are scenarios where computing the
gradients/values of some parts (or the whole) is more expensive than the others (or a partial one).
In response to this challenge, techniques such as the gradient-sliding method [37] and the concept
of oracle complexity separation [28] have emerged. These methods advocate for the infrequent use
of more expensive oracles compared to their less resource-intensive counterparts. This strategy has
found applications in zero-order [12, 21, 28, 53], first-order [37–39, 31] and high-order methods
[31, 24, 3], as well as in addressing saddle point problems [4, 13]. Our algorithms can be viewed as a
variance-reduced version of gradient sliding tailored to leverage the similarity assumption.

Distributed optimization under similarity. Distributed optimization has a long history with a
plethora of existing works and surveys. To streamline our discussion, we only list the most relevant
references, particularly under the similarity and strong convexity assumptions. In the full participation
setting, which involves deterministic methods, the first algorithm credits to DANE [51], though its
analysis is limited to quadratic objectives. Subsequently, AIDE [50], DANE-LS and DANE-HB
[58] improved the rates for quadratic objective; Disco [62] SPAG [27], ACN [1] and DiRegINA [18]
improved the rates for self-concordant objectives. As for general strongly convex objectives, Sun
et al. [54] introduced the SONATA algorithm, and Tian et al. [55] proposed accelerated SONATA.
However, their complexity bounds include additional log factors. These factors have recently been
removed by Accelerated Extragradient [35], whose complexity bound perfectly matches the lower
bound in [7]. We highly recommend the comparison of rates in [35, Table 1] for a comprehensive
overview. Once the discussion of deterministic methods is concluded, Khaled and Jin [33] shifted
their focus to stochastic methods using client sampling. They proposed SVRP and its Catalyzed
version, both of which exhibited superior rates compared to deterministic methods.
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2 Preliminaries

Notation. We denote vectors by lowercase bold letters (e.g., w,x), and matrices by capital bold
letters (e.g., A,B). We let ∥ · ∥ be the ℓ2-norm for vectors, or induced ℓ2-norm for a given matrix:
∥A∥ = supu̸=0 ∥Au∥ / ∥u∥. We abbreviate [n] = {1, . . . , n} and Id ∈ Rd×d is the identity matrix.
We use 0 for the all-zero vector/matrix, whose size will be specified by a subscript, if necessary,
and otherwise is clear from the context. We denote Unif(S) as the uniform distribution over set
S. We say T ∼ Geom(p) for p ∈ (0, 1] if P(T = k) = (1 − p)k−1p,∀k ∈ {1, 2, . . . }, i.e.,
T obeys a geometric distribution. We adopt Ek as the expectation for all randomness appeared
in step k, and 1A as the indicator function on event A, i.e., 1A = 1 if event A holds, and 0
otherwise. We use O(·),Ω(·),Θ(·) and Õ(·) notation to hide universal constants and log-factors.
We define the Bregman divergence induced by a differentiable (convex) function h : Rd → R as
Dh(x,y) := h(x)− h(y)− ⟨∇h(y),x− y⟩.

Definitions. We present the following common definitions used in this paper.

Definition 2.1 A differentiable function g : Rd → R is µ-strongly convex (SC) if

g(y) ≥ g(x) + ⟨∇g(x),y − x⟩+ µ

2
∥y − x∥2 ,∀x,y ∈ Rd. (2)

Particularly, if µ = 0, we say that g is convex.

Definition 2.2 A differentiable function g : Rd → R is L-smooth if

g(y) ≤ g(x) + ⟨∇g(x),y − x⟩+ L

2
∥y − x∥2 ,∀x,y ∈ Rd. (3)

There are many basic inequalities involving strong convexity and smoothness, see [22, Appendix
A.1] for an introduction. Next, we present the definition of second-order similarity in distributed
optimization.

Definition 2.3 The differentiable functions fi’s satisfy δ-average second-order similarity (AveSS) if
the following inequality holds for fi’s and f = 1

n

∑n
i=1 fi:

(AveSS)
1

n

n∑
i=1

∥[∇[fi − f ](x)−∇[fi − f ](y)]∥2 ≤ δ2 ∥x− y∥2 ,∀x,y ∈ Rd. (4)

Definition 2.4 The differentiable functions fi’s satisfy δ-component second-order similarity (SS) if
the following inequality holds for fi’s and f = 1

n

∑n
i=1 fi:

(SS) ∥[∇[fi − f ](x)−∇[fi − f ](y)]∥2 ≤ δ2 ∥x− y∥2 ,∀x,y ∈ Rd, i ∈ [n]. (5)

Definitions 2.3 and 2.4 first appear in [33], which is an analogy to (average) smoothness in prior
literature [63]. Particularly, fi’s satisfy δ-AveSS implies that (f−fi)’s satisfy δ-average smoothness,
while fi’s satisfy δ-SS implies that (f−fi)’s satisfy δ-smoothness. Additionally, many researchers
[32, 7, 51, 62, 54, 35] use the equivalent one defined by Hessian similarity (HS) if assuming that fi’s
are twice differentiable. Thus we also list them below and leave the derivation in Appendix B.

(AveHS)

∥∥∥∥∥ 1n
n∑

i=1

[
∇2fi(x)−∇2f(x)

]2∥∥∥∥∥ ≤ δ2; (HS)
∥∥∇2fi(x)−∇2f(x)

∥∥ ≤ δ, ∀i ∈ [n]. (6)

Since our algorithm is a first-order method, we adopt the gradient description of similarity (Definitions
2.3 and 2.4) without assuming twice differentiability for brevity.

As mentioned in [7, 54], if fi’s satisfy δ-AveSS (or SS), and f is µ-strongly convex and L-smooth,
then generally L≫ δ ≫ µ > 0 for large datasets in practice. Therefore, researchers aim to develop
algorithms that achieve communication complexity solely related to δ, µ (or log terms of L). This
is also our objective. To finish this section, we will clarify several straightforward yet essential
propositions, and the proofs are deferred to Appendix A.

Proposition 2.5 We have the following properties among SS, AveSS, and SC: 1) δ-SS implies δ-AveSS,
but δ-AveSS only implies

√
nδ-SS. 2) If fi’s satisfy δ-SS and f is µ-strongly convex, then for all

i ∈ [n], fi(·) + δ−µ
2 ∥·∥

2 is convex, i.e., fi is (δ − µ)-almost convex [14].
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3 Algorithm and Theory

In this section, we introduce our main algorithms, which are developed to solve the distributed
optimization problem in Eq. (1) under Assumption 1 below:

Assumption 1 We assume that fi’s satisfy δ-AveSS, and f is µ-strongly convex with δ ≥ µ > 0.

Assumption 1 does not need each fi to be µ-strongly convex. In fact, it is acceptable that fi’s
are non-convex, since by Proposition 2.5, fi’s are (

√
nδ−µ)-almost convex [14]. In the following,

we first propose our new algorithm SVRS, which combines the techniques of gradient sliding and
variance reduction, resulting in improved rates. Then we establish the directly accelerated method
motivated by [6].

3.1 No Acceleration Version: SVRS

We first show the one-epoch Stochastic Variance-Reduced Sliding (SVRS1ep) method in Algorithm 1.
Before delving into the theoretical analysis, we present some key insights into our method. These
insights aim to enhance comprehension and facilitate connections with other algorithms.

Variance Reduction. Our algorithm can be viewed as adding variance reduction from [35]. Besides
the acceleration step, the main difference lies in the proximal step, where Kovalev et al. [35] solved:

xt+1 ≈ argmin
x∈Rd

Bt
θ(x) := ⟨∇f(xt)−∇f1(xt),x− xt⟩+

1

2θ
∥x− xt∥2 + f1(x).

To save the heavy communication burden of calculating ∇f(xt), we apply client sampling by
selecting a random∇fit(xt) in the t-th step. However, this substitution introduces significant noise.
To mitigate this, we incorporate a correction term gt = ∇fit(w0)−∇f(w0) from previous wisdom
[29] to reduce the variance.

Gradient sliding. Our algorithm can be viewed as adding gradient sliding from SVRP [33]. The
main difference also lies in the proximal point problem, where Khaled and Jin [33] solved:

xt+1 ≈ argmin
x∈Rd

Ct
θ(x) := ⟨−gt,x− xt⟩+

1

2θ
∥x− xt∥2 + fit(x).

Here we adopt a fixed proximal function f1 instead of fit , which can be viewed as approximating
fit(x)≈f1(x)+[fit−f1](xt)+ ⟨∇[fit−f1](xt),x−xt⟩+ 1

2θ′ ∥x−xt∥2 with a properly chosen θ′ >
0. Such a modification is motivated by [35], where they reformulated the objective as f(x) =
[f(x) − f1(x)] + f1(x). Thus they could employ gradient sliding to skip heavy computations of
∇[f−f1](x) by utilizing the easy computations of∇f1(x) more times. Fixing the proximal function
f1 leads to the same metric space owned by f1 in each step, which could benefit the analysis and
alleviate the requirements on fi’s compared to SVRP. Indeed, in our setting f1 can be replaced by
any other fixed client fb, b ∈ [n]. In this case, the master node would be fb instead of f1.

Bregman-SVRG. Our algorithm can be viewed as the classical Bregman-SVRG [20] with the
reference function f1(·) + 1

2θ ∥·∥
2 after introducing the Bregman divergence:

xt+1 ≈ argmin
x∈Rd

At
θ(x)

(7)
= argmin

x∈Rd

⟨∇fit(xt)−∇[fit − f ](w0),x− xt⟩+Df1(·)+ 1
2θ ∥·∥

2(x,xt).

We need to emphasize that the proof of Bregman-SVRG requires additional structural assumptions
[20, Assumpotion 3], which is not directly applicable in our setting. Hence, the rigorous proof of
Bregman-SVRG under our similarity assumption is still meaningful as far as we are concerned.

3.1.1 Communication Complexity under Distributed Settings

When applied to the distributed system, the communication complexity of SVRS1epcan be described
as follows: At the beginning of each epoch, the master (corresponding to f1) sends w0 to all clients.
Each client computes∇fi(w0) from its local data and sends it back to the master. The master then
builds ∇f(w0) after collecting all ∇fi(w0)’s. The communication complexity is 2(n− 1) in this

5



Algorithm 1 SVRS1ep(f,w0, θ, p)

1: Input: w0 ∈ Rd, p ∈ (0, 1), θ > 0
2: Initialize x0 = w0, compute∇f(w0), and set T ∼ Geom (p)
3: for t = 0, 1, 2, . . . , T − 1 do
4: Sample it ∼ Unif([n]) and compute gt = ∇fit(w0)−∇f(w0)
5: Approximately solve the local proximal point problem:

xt+1 ≈ argmin
x∈Rd

At
θ(x) := ⟨∇fit(xt)−∇f1(xt)− gt,x− xt⟩+

1

2θ
∥x− xt∥2 + f1(x)

(7)

6: end for
7: Output: xT

case. Next, the algorithm enters into the loop iterations. In each iteration, the master only sends
current xt to the chosen client it. The it-th client computes ∇fit(xt) and sends it to the master
(the first client). Then the master solves (inexactly) the local problem (Line 5 in Algorithm 1) to
get an inexact solution xt+1. The communication complexity is 2 in this case. Thus, the total
communication complexity of SVRS1ep is 2(n − 1) + 2T . Note that ET = 1/p and generally
p = 1/n. We obtain that one epoch communication complexity is 4n− 2 in expectation.

We would like to emphasize that our setup differs from that in [41, 46], where the authors assume the
nodes can perform calculations and transmit vectors in parallel. We recognize the significance of
both setups. However, there are situations where communication is more expensive than computation.
For instance, in a business network or communication network the communication between any two
nodes can result in charges and the risk of information leakage. To mitigate these costs, we should
reduce the frequency of communication. Thus, we focus on the nonparallel setting.

3.1.2 Convergence Analysis of SVRS

Based on the one-epoch method SVRS1ep, we could introduce our non-accelerated algorithm SVRS,
which starts from w0 ∈ Rd and repeatedly performs the update7

wk+1 = SVRS1ep(f,wk, θ, p), ∀k ≥ 0.

Now we derive the convergence rate of SVRS8. The main technique we apply is replacing the
Euclidean distance with the Bergman divergence. Denote the reference function

h(x) := f1(x) +
1

2θ
∥x∥2 − f(x). (8)

By Assumption 1 and 1) in Proposition 2.5, we see that fi’s are
√
nδ-SS. i.e., [f1 − f ](·) is (

√
nδ)-

smooth. Thus, h(·) is ( 1θ−
√
nδ)-strongly convex and ( 1θ+

√
nδ)-smooth if θ < 1√

nδ
, that is,

0 ≤ 1−
√
nθδ

2θ
∥x− y∥2

(2)
≤ Dh(x,y)

(3)
≤ 1 +

√
nθδ

2θ
∥x− y∥2 . (9)

Hence, if
√
nθδ = Θ(1), h(·) is nearly a rescaled Euclidean norm since its condition number related

to ∥·∥ is 1+
√
nθδ

1−
√
nθδ

= Θ(1). Next, we employ the properties of the Bregman divergence Dh(·, ·) to

build the one-epoch progress of SVRS1epas shown below:

Lemma 3.1 Suppose Assumption 1 holds. Let w+ = SVRS1ep(f,w0, θ, p) with θ = 1/(4
√
nδ),

and the approximated solution xt+1 satisfies

∥∥∇At
θ(xt+1)

∥∥2 ≤ µ

20θ

∥∥∥∥xt − argmin
x∈Rd

At
θ(x)

∥∥∥∥2 ,∀t ≥ 0. (10)

7See Algorithm 3 in Appendix D for the details.
8Similar results for the popular loopless version [34] can also be derived, see Appendix D.5 for the detail.
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Algorithm 2 Accelerated SVRS (AccSVRS)

1: Input: z0 = y0 ∈ Rd, p, τ ∈ (0, 1), α, θ > 0,K ∈ {1, 2, . . . }
2: for k = 0, 1, 2, . . . ,K − 1 do
3: xk+1 = τzk + (1− τ)yk

4: yk+1 = SVRS1ep(f,xk+1, θ, p)
5: Gk+1 = p

(
∇[f1 − fjk ](xk+1)−∇[f1 − fjk ](yk+1) +

1
θ (xk+1 − yk+1)

)
, jk ∼ Unif([n])

6: zk+1 = argminz∈Rd
1
2α ∥z − zk∥2+⟨Gk+1, z⟩+ 3µ

20 ∥z − yk+1∥2 =
zk+0.3µαyk+1−αGk+1

1+0.3µα

7: end for
8: Output: yK

Then for all x ∈ Rd that is independent of the indices i1, i2, . . . , iT in SVRS1ep(f,w0, θ, p), we
have

Ef(w+)−f(x) ≤ E p⟨x−w0,∇h(w+)−∇h(w0)⟩−
(
p− 2

9n

)
Dh(w0,w

+)− 2µθ

5
Dh(x,w

+).

(11)

Remark 3.2 We note that some papers [10, 11] assume the smoothness and convexity of compo-
nent functions, and adopt local updates for solving the proximal step. However, we replace these
assumptions with a proximal approximately solvable assumption (10), which could even cover some
nonsmooth and non-convex but proximal trackable component functions. We regard our assumption
as more essential since the local updates can be viewed as partially solving this proximal step.

The proof of Lemma 3.1 is left in Appendix D.1. From Lemma 3.1, we find a well-behaved proximal
operator is sufficient to ensure favorable progress. Finally, we establish the convergence rate and
communication complexity of the SVRS method, and the proof is deferred to Appendix D.2.

Theorem 3.3 Suppose Assumption 1 holds. If in SVRS1ep(Algorithm 1), the hyperparameters are
set as θ = 1/(4

√
nδ), p = 1/n, and the approximate solution xt+1 in each proximal step satisfies

Eq. (10). Then for any error ε > 0, when

k ≥ K1 := max

{
2,

5δ

µ
√
n

}
log

3
(
1 + δ

µ
√
n

)
[f(w0)− f(x∗)]

ε
,

i.e., after Õ(n+
√
nδ/µ) communications in expectation, we obtain that Ef(wk)− f(x∗) ≤ ε.

Remark 3.4 Our results enjoy the following advantages over SVRP [33]: The convergence of SVRP
([33, Theorem 2]) only applied to E ∥wk − x∗∥2, which can also be derived by our results from
strong convexity: f(wk) − f(x∗) ≥ µ

2 ∥wk − x∗∥2. However, the reverse is not applicable since
we do not assume the smoothness of f , or indeed the smoothness coefficient is very large. Moreover,
for ill-conditioned problems (e.g., δ/µ≫

√
n), our step size 1/(4

√
nδ) is much larger than µ/(2δ2)

used in SVRP, and the convergence rate is also faster than SVRP: Õ (n+
√
nδ/µ) vs. Õ

(
n+ δ2/µ2

)
.

Finally, we do not need the strong convexity assumption of component functions.

3.2 Acceleration Version: AccSVRS

Now we apply the classical interpolation technique motivated by Katyusha X [6] to establish acceler-
ated SVRS (AccSVRS, Algorithm 2). The main difference between AccSVRS and Katyusha X is due
to the different choices of distance spaces. Specifically, we adopt Dh(·, ·) instead of the Euclidean
distance used in Katyusha X. Thus, the gradient mapping step (corresponding to Step 2 in [6, (4.1)])
should be built on the reference function h(·) defined in Eq. (8), i.e.,∇h(xk+1)−∇h(yk+1) instead
of (xk+1 − yk+1)/θ. Moreover, noting that ∇h(·) could involve the heavy gradient computing
part ∇f(·), we further employ its stochastic version (Step 5 in Algorithm 2) to reduce the overall
communication complexity.

Next, we delve into the convergence analysis. We first give the core lemma for AccSVRS, which is
also motivated by the framework of Katyusha X [6]. The proof is deferred to Appendix D.3.

7



Lemma 3.5 Suppose Assumption 1 holds, and θ = 1/(4
√
nδ), p = 1/n, α ≤ nθ/(2τ) in Algo-

rithm 2, where SVRS1ep(f,xk+1, θ, p) satisfies Eq. (10) in each iteration. Then for all x ∈ Rd that
is independent of the random indices i(k)1 , i

(k)
2 , . . . , i

(k)
T in SVRS1ep(f,xk+1, θ, p), we have that

Ek
α

τ
[f(yk+1)− f(x)] ≤ Ek(1−τ) · α

τ
[f(yk)− f(x)]+

∥x− zk∥2

2
− 1 + 0.3µα

2
∥x− zk+1∥2 .

(12)

Finally, we present the convergence rate and communication complexity of AccSVRS based on
Lemma 3.5, and the proof is left in Appendix D.4.

Theorem 3.6 Suppose Assumption 1 holds. Consider AccSVRS with the following hyperparameters

θ =
1

4
√
nδ

, p =
1

n
, τ =

1

4
min

{
1,

n1/4

2

√
µ

δ

}
, α =

√
n

8δτ
,

and Eq. (10) is satisfied in each iteration of SVRS1ep(f,xk+1, θ, p). Then for any ε > 0, when

k ≥ K2 := max
{
4, 8n−1/4

√
δ/µ

}
log

2[f(y0)− f(x∗)]

ε
,

i.e., after Õ
(
n+ n3/4

√
δ/µ

)
communications in expectation, we obtain that Ef(yk)− f(x∗) ≤ ε.

Remark 3.7 Although roughly the same as the communication complexity obtained by Catalyzed
SVRP in [33, Theorem 3], our results have the following advantages.

Fewer assumptions. Except for the strong convexity of f and AveSS of fi’s, we do not need to assume
component strong convexity appearing in [33, Assumption 2].

Inexact proximal step. Khaled and Jin [33, Theorem 3] require exact evaluations of the proximal
operator, though they mention that this is only for the convenience of analysis. Our framework
allows approximated solutions in each proximal step, and the approximation criterion (10) is error-
independent, i.e., irrelevant to the final error ε. Since the local proximal function is strongly convex,
we could solve the problem in a few steps if additionally assuming the smoothness of f1.

Smoothness-free bound. As shown in [33, Appendix G.1] or Appendix C, even if an exact proximal
step is allowed, a dependence on the smoothness coefficient would be introduced in the total commu-
nication iterations of Catalyzed SVRP, though only in a log scale. Our directly accelerated method
has no dependence on the smoothness coefficient.

3.3 Gradient Complexity under Smooth Assumption

Due to the importance of total computation in the machine learning and optimization community, we
consider a more common setup by additionally assuming that f1 is L-smooth with L ≥ δ ≥ µ > 0,
which together with Assumption 1 facilitates the quantification of Eq. (10). Then we can compute the
total gradient complexity for AccSVRS as shown below. By Proposition 2.5 and our assumptions,
At

θ(x) is ( 1θ−
√
nδ)-strongly convex and ( 1θ+L)-smooth. Using accelerated methods starting from

xt, we can guarantee that Eq. (10) holds after Tapp = Õ
(√

1+θL
1−

√
nθδ

)
= Õ

(
1 + n−1/4

√
L/δ

)
iterations with the choice of θ in Theorem 3.6. Hence, the total gradient calls in expectation are

O(nTapp ·K2) = Õ
(
n+ n3/4

(√
δ/µ+

√
L/δ

)
+
√

nL/µ
)
.

Since δ ∈ [µ,L], we recover the optimal gradient complexity Õ(n + n3/4
√
L/µ) for the average

smooth setting [63, Table 1] if neglecting log factors. Particularly, when δ = Θ(
√
µL), we even

obtain the nearly optimal gradient complexity Õ(n+
√
nL/µ) for the component smooth setting

[25, 26, 56]. We leave the details in Appendix E. Although the gradient complexity is not the primary
focus of our work, we have demonstrated that the gradient complexity bound of AccSVRS is nearly
optimal for certain values of δ in specific cases.

4 Lower Bound

In this section, we establish the lower bound of the communication complexity, which nearly matches
the upper bound of AccSVRS.
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4.1 Definition of Algorithms

In this subsection, we specify the class of algorithms to which our lower bound can apply. We
first introduce the Proximal Incremental First-order Oracle (PIFO) [56, 25], which is defined as
hP
fi
(x, γ) = [fi(x),∇fi(x),proxγfi(x)] with γ > 0. Here the proximal operator is defined as

proxγfi(x) := argminu{fi(u) + 1
2γ ∥x− u∥2}. In addition to the local zero-order and first-order

information of fi at x, the PIFO hP
fi
(x, γ) also provides some global information through the

proximal operator9. Then we assume the algorithm has access to the PIFO and the definition of
algorithms is presented as follows.

Definition 4.1 Consider a randomized algorithm A to solve problem (1). Suppose the number of
communication rounds is T . At the initialization stage, the master node 1 communicates with all
the others. In round t (0 ≤ t ≤ T − 1), the algorithm samples a node it ∼ Unif([n]), and node 1
communicates with node it. Then the algorithm samples a Bernoulli random variable at with constant
expectation c0/n. If at = 1, node 1 communicates with all the others. Define the information set
It+1 as the set of all the possible points A can obtain after round t. The algorithm updates It+1

based on the linear-span operation and PIFO, and finally outputs a certain point in IT .

At the initialization stage, the communication cost is 2(n− 1). In each communication round, the
Bernoulli random variable at determines whether the master node communicates with all the others,
i.e., whether to calculate the full gradient. Since Eat = c0/n, the expected communication cost of
each round is of the order Θ(1). Thus the total communication cost is of the order Θ(n+ T ) and we
can use T to measure the communication complexity. Moreover, one can check Algorithm 2 satisfies
Definition 4.1. The formal definition and detailed analysis are deferred to Appendix F.1.

4.2 The Construction and Results

In this section, we construct a hard instance of problem (1) and then use it to establish the lower
bound. Due to space limitations, we only present several key properties. The complete framework of
construction is deferred to Appendix F.2.

Inspired by [25], we consider the class of matrices B(m, ζ) =

 1 −1
. . . . . .

1 −1
ζ

 ∈ Rm×m. This class

of matrices is widely used to establish lower bounds for minimax optimization problems [61, 49, 59],
and A(m, ζ) := B(m, ζ)⊤B(m, ζ) is the well-known tridiagonal matrix in the analysis of lower
bounds for convex optimization [47, 40, 15]. Denote the l-th row of B(m, ζ) as bl(m, ζ)⊤. We
partition the row vectors of B(m, ζ) according to the index sets Li = {l : 1 ≤ l ≤ m, l ≡
i − 1 (mod (n − 1))} for 2 ≤ i ≤ n and L1 = ∅10. These sets are mutually exclusive and their
union is [m]. Then we consider the following problem

min
x∈Rm

r(x;m, ζ, c)=
1

n

n∑
i=1

ri(x;m, ζ, c):=


c
2 ∥x∥

2−n ⟨e1,x⟩ for i = 1,
c
2 ∥x∥

2
+n

2

∑
l∈Li

∥∥bl(m, ζ)⊤x
∥∥2 for i ̸= 1.

 (13)

Here ei ∈ Rm denotes the unit vector with the i-th element equal to 1 and others equal to 0. Then
one can check r(x;m, ζ, c) = 1

2 x
⊤A(m, ζ)x+ c

2 ∥x∥
2 − ⟨e1,x⟩. Clearly, r is c-strongly convex.

We can also determine the AveSS parameter as follows. The proof is deferred to Appendix F.3.

Proposition 4.2 Suppose that 0 < ζ ≤
√
2, n ≥ 3 and m ≥ 3. Then ri’s satisfy

√
8n+ 4-AveSS.

Define the subspaces {Fk}mk=0 as F0 = {0} and Fk = span{e1, e2, . . . , ek} for 1 ≤ k ≤ m. The
next lemma is fundamental to our analysis. The proof is deferred to Appendix F.5.

Lemma 4.3 Suppose the algorithm A satisfies Definition 4.1 and apply it to solve problem (13) with
n ≥ 3 and m ≥ 4. We have (i) I0 = F1. (ii) Suppose It ⊆ Fk (1 ≤ k ≤ m − 3). If it satisfies
k ∈ Lit or at = 1, then It+1 ⊆ Fk+3; otherwise, It+1 ⊆ Fk.

9If we let γ → ∞, proxγ
fi
(x) converges to the exact minimizer of fi, irrelevant to the choice of x.

10Such a way of partitioning is also inspired by [25] and similar to that in [36]. However, our setting is
different from theirs.
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Figure 1: Numerical experiments on synthetic data. The corresponding coefficients are shown in the
title of each graph. We plot the function gap on a log scale versus the number of communication
steps, where one exchange of vectors counts as a communication step.

Lemma 4.3 guarantees that in each round, only when a specific component is sampled or the
full gradient is calculated, can we expand the information set by at most three dimensions. For
problem (13), we could never obtain an approximate solution unless we expand the information set
to the whole space (see Proposition F.6 in Appendix F.2), while Lemma 4.3 implies that the process
of expanding is very slow. Then we can establish the following lower bound.

Theorem 4.4 For any n ≥ 3, δ, µ > 0, algorithm A satisfying Definition 4.1 and sufficiently small
ϵ > 0, there exists a rescaled version of problem (13) such that (i) Assumption 1 holds; (ii) In order
to find an ϵ-suboptimal solution x̂ such that Er(x̂) − minx r(x) < ϵ by A, the communication
complexity in expectation is Ω̃(n+ n3/4

√
δ/µ).

This lower bound nearly matches the upper bound in Theorem 3.6 up to log factors, implying
Algorithm 2 is nearly optimal in terms of communication complexity. The detailed statement and
proof are deferred to Appendices F.2 and F.9.

5 Experiments

To demonstrate the advantages of our algorithms, we conduct the same numerical experiments as
those in [35, 33]. We focus on the linear ridge regression problem with ℓ2 regularization, where the
average loss f has the formulation: f(x) = 1

n

∑n
i=1

[
fi(x) :=

1
m

∑m
j=1

(
z⊤
i,jx− yi,j

)2
+ µ

2 ∥x∥
2 ].

Here zi,j ∈ Rd and yi,j ∈ R,∀i ∈ [n], j ∈ [m] serve as the feature and label respectively, and m
can be viewed as data size in each local client. We consider a synthetic dataset generated by adding
a small random noise matrix to the center matrix, ensuring a small δ. To capture the differences
in convergence rates between our methods and SVRP caused by different magnitudes of µ, we
vary µ = 10−i, i ∈ {0, 1, 2}. We compare our methods (SVRS and AccSVRS) against SVRG,
KatyushaX, SVRP (Catalyzed SVRP is somehow hard to tune so we omit it), and Accelerated
Extragradient (AccEG) using their theoretical step sizes, except that we scale the interpolation
parameter τ in KatyushaX and AccSVRS for producing practical performance (see Appendix G for
detail). From Figure 1, we can observe that for a large µ, SVRP outperforms existing algorithms due
to its high-order dependence on µ. However, when the problem becomes ill-conditioned with a small
µ, AccSVRS exhibits significant improvements compared to other algorithms.

6 Conclusion

In this paper, we have introduced two new algorithms, SVRS and its directly accelerated version
AccSVRS, and established improved communication complexity bounds for distributed optimization
under the similarity assumption. Our rates are entirely smoothness-free and only require strong
convexity of the objective, average similarity, and proximal friendliness of components. Moreover,
our methods also have nearly optimal gradient complexity (leaving out the log term) when applied
to smooth components in specific cases. It would be interesting to remove additional log terms to
achieve both optimal communication and local gradient calls as [35], as well as investigating the
complexity under other similarity assumptions (such as SS instead of AveSS) in future research.
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A Auxiliary Results

Proposition A.1 (Three-point identity [17, Lemma3.1]) Given a differentiable function h : Rd →
R, we have the following equality:

⟨x− y,∇h(y)−∇h(z)⟩ = Dh(x, z)−Dh(x,y)−Dh(y, z),∀x,y, z ∈ Rd. (14)

Proposition A.2 Denote ∀i ∈ N, Xi =

{
1 with probability p

0 with probability 1− p
, and X1, X2, . . . are inde-

pendent and identically distributed random variables. Then Y := infi{i : Xi = 1} ∼ Geom(p).

Proof: We direct verify the probability distribution:

P(Y = k) =

k−1∏
i=1

P(Xi = 0)P(Xk = 1) = (1− p)k−1p, k ∈ {1, 2, . . . }.

Hence, we see that Y ∼ Geom(p). □

Proposition A.3 (Proposition 2.5 in the main text) We have the following properties among SS,
AveSS, and SC: 1) The δ-SS can deduce δ-AveSS, but δ-AveSS can only deduce

√
nδ-SS. 2) If fi’s

satisfy δ-SS and f is µ-strongly convex, then for all i ∈ [n], fi(·) + δ−µ
2 ∥·∥

2 is convex, i.e., fi is
(δ − µ)-almost convex [14].

Proof: 1) The first part “δ-SS⇒ δ-AveSS” is trivial. The second part is because for all i ∈ [n],

∥[∇[fi − f ](x)−∇[fi − f ](y)]∥2 ≤
n∑

j=1

∥[∇[fj − f ](x)−∇[fj − f ](y)]∥2
(4)
≤ nδ2 ∥x− y∥2 .

Thus Eq. (5) holds with parameter
√
nδ.

2) Since fi’s satisfy δ-SS, we get ∀i ∈ [n], f − fi is δ-smooth, thus δ
2 ∥x∥

2 − [f(x) − fi(x)] is
convex (e.g., [22, Theorem A.1]). Moreover, we also have f(x)− µ

2 ∥x∥
2 is a convex function since

f is µ-strongly convex (e.g., [22, Theorem A.2]). Therefore, we obtain that

fi(x) +
δ − µ

2
∥x∥2 =

(
δ

2
∥x∥2 − [f(x)− fi(x)]

)
+
(
f(x)− µ

2
∥x∥2

)
is also convex. The proof is finished. □

Lemma A.4 (Allen-Zhu [6, Fact 2.3]) Given sequence D0, D1, . . . of reals, if N ∼ Geom(p), then

EN [DN−1 −DN ] = pE[D0 −DN ],EN [DN−1] = (1− p)E[DN ] + pD0 (15)

Lemma A.5 (Allen-Zhu [6, Lemma 2.4]) If g(·) is proper convex and σ-strongly convex and
zk+1 = argminz∈Rd

1
2α ∥z − zk∥2 + ⟨ξ, z⟩+ g(z), then for every x ∈ Rd, we have

⟨ξ, zk − x⟩+ g(zk+1)− g(x) ≤ α

2
∥ξ∥2 + ∥x− zk∥2

2α
− (1 + σα) ∥x− zk+1∥2

2α
. (16)

Lemma A.6 (Han et al. [25, Lemma 2.10]) Let {Yi}mi=1 be independent random variables such
that Yi ∼ Geom(pi) with pi > 0. Then for m ≥ 2, we have

P

(
m∑
i=1

Yi >
m2

4(
∑m

i=1 pi)

)
≥ 1

9
.

B Hessian Similarity

In this section, we show that AveHS (HS) defined in Eq. (6) is equivalent to AveSS (SS).

Proposition B.1 For twice differentiability fi’s and f , AveSS⇔ AveHS, SS⇔ HS.
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Proof: Indeed, we only need to prove the following results for twice differentiability g:

1

n

n∑
i=1

∥∇gi(x)−∇gi(y)∥2 ≤ δ2 ∥y − x∥2 ⇔

∥∥∥∥∥ 1n
n∑

i=1

(
∇2gi(x)

)2∥∥∥∥∥ ≤ δ2,∀x,y ∈ Rd. (17)

“⇒”: Taking y = x+ tv, t ∈ R\{0},v ∈ Rd, ∥v∥ = 1 and letting t→ 0, we get

δ2 = lim
t→0

δ2 ∥x− y∥2

t2
≥ lim

t→0

1

n

n∑
i=1

∥∥∥∥ [∇gi(x)−∇gi(x+ tv)]

t

∥∥∥∥2
=

1

n

n∑
i=1

∥∥∇2gi(x)v
∥∥2 = v⊤

[
1

n

n∑
i=1

(
∇2gi(x)

)2]
v.

The final equality uses the fact that∇2gi(x) is a symmetric matrix. Now by the arbitrary of v ∈ Rd

with ∥v∥ = 1, we get
∥∥∥ 1
n

∑n
i=1

(
∇2gi(x)

)2∥∥∥ ≤ δ2.

“⇐”: We use the integral formulation:

1

n

n∑
i=1

∥∇gi(x)−∇gi(y)∥2 =
1

n

n∑
i=1

∥∥∥∥∫ 1

0

∇2gi(x+ t(y − x)) (y − x) dt

∥∥∥∥2

= (y − x)

[
1

n

n∑
i=1

∫ 1

0

∇2gi(x+ s(y − x))∇2gi(x+ t(y − x))dsdt

]
(y − x)

(i)

≤ (y − x)

[
1

n

n∑
i=1

∫ 1

0

(
∇2gi(x+ t(y − x))

)2
dt

]
(y − x)

≤
∫ 1

0

∥∥∥∥∥ 1n
n∑

i=1

(
∇2gi(x+ t(y − x))

)2∥∥∥∥∥ · ∥y − x∥2 dt ≤ δ2 ∥y − x∥2 ,

where (i) uses the inequality A2
t +A2

s ⪰ AsAt +AtAs for symmetric matrices As,∀s ∈ [0, 1]
since (At −As)

2 ⪰ 0, and the final inequality uses the assumption.

Hence, Eq. (17) is proved. Now choosing gi = fi − f, ∀i ∈ [n], we obtain “AveSS ⇔ AveHS”.
Additionally, letting n = 1 and noting that

∥∥∥(∇2gi(x)
)2∥∥∥ =

∥∥∇2gi(x)
∥∥2, we obtain “SS⇔ HS”.

The proof is finished. □

C Concrete Complexity of Catalyst SVRP

Inherited from the computation of [33, Appendix G.1], we see that the total iterations of Catalyst
SVRP is

ET total
iter = 8

√
µ+ γ

µ
max

{
δ2

(γ + µ)2
, n

}
log

(
f(x0)− f(x∗)

ε
· 32(µ+ γ)

µ

)
log ι,

ι := A

(
2

1− ρ
+

2592γ

µ(1− ρ)2(
√
q − ρ)2

)
,

where ρ =
√
q/2 =

√
µ/(µ+γ)

2 ∈ (0, 1
2 ), A = L+γ

µ+γ

(
1 + (γ+µ)2n

δ2

)
. Letting γ = max

{
δ√
n
− µ, 0

}
,

we recover the complexity:

ET total
iter = 8max

{
n, n3/4

√
δ

µ

}
log

(
max

{
32,

32δ

µ
√
n

}
· f(x0)− f(x∗)

ε

)
log ι,

ι = A

(
2

1− ρ
+

2592γ

µ(1− ρ)2(
√
q − ρ)2

)
= Θ

(
A

(
1 +

γ(µ+ γ)

µ2

))
= Θ

(
A(µ+ γ)2

µ2

)
.

When δ/µ ≤
√
n, leading to γ = 0, then we get

A(µ+ γ)2

µ2
=

L

µ

(
1 +

µ2n

δ2

)
= Θ

(
Lµn

δ2

)
.
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Algorithm 3 Stochastic Variance-Reduced Sliding (SVRS)

1: Input: w0 ∈ Rd, p ∈ (0, 1), θ > 0,K ∈ {1, 2, . . . }
2: for k = 0, 1, 2, . . . ,K − 1 do
3: wk+1 = SVRS1ep(f,wk, θ, p)
4: end for
5: Output: wK

Thus, ET total
iter = O

((
n+ n3/4

√
δ
µ

)
log f(x0)−f(x∗)

ε log Lµn
δ2

)
.

When δ/µ ≥
√
n, i.e., max

{
n, n3/4

√
δ
µ

}
= n3/4

√
δ
µ , we get γ = δ√

n
− µ ≤ L − µ (note that

L ≥ δ ≥ µ, n ≥ 1 by assumption), leading to

2L

µ
≤ A(µ+ γ)2

µ2
=

2(L+ γ)(µ+ γ)

µ2
≤ 4L2

µ2
.

Thus, ET total
iter = O

((
n+ n3/4

√
δ
µ

)
log f(x0)−f(x∗)

ε log L
µ

)
(for small enough error ε).

D Proofs for Section 3

The complete procedure of SVRS is presented in Algorithm 3. Before giving the omit proofs, we
need the following one-step lemma.

Lemma D.1 Suppose Assumption 1 holds. If the step size θ ≤ 1/(2
√
nδ) in SVRS1ep(Algorithm 1),

then the following inequality holds for all x ∈ Rd that is independent to the index ik:

Et[f(xt+1)−f(x)] ≤ EtDh(x,xt)−
(
1+

µθ/2

1 +
√
nθδ

)
Dh(x,xt+1)+

2θ2δ2

(1−
√
nθδ)2

Dh(w0,xt)

+
2 + µθ

2µ

[∥∥∇At
θ(xt+1)

∥∥2 − µ

20θ

∥∥∥∥xt − argmin
x∈Rd

At
θ(x)

∥∥∥∥2
]
. (18)

Proof: First, note that

∇At
θ(x) =

x− xt

θ
+∇f1(x)−∇f1(xt) +∇fit(xt)− [∇fit(w0)−∇f(w0)]

= ∇f(x) +∇h(x)−∇h(xt) +∇(fit − f)(xt)−∇(fit − f)(w0).
(19)

Now we begin from the strong convexity of function f in Assumption 1,

Et[f(xt+1)− f(x)]
(2)
≤ Et ⟨x− xt+1,−∇f(xt+1)⟩ −

µ

2
∥xt+1 − x∥2

(19)
= Et ⟨x− xt+1,∇h(xt+1)−∇h(xt)⟩+ ⟨x− xt+1,∇(fit − f)(xt)−∇(fit − f)(w0)⟩

−
〈
x− xt+1,∇At

θ(xt+1)
〉
− µ

2
∥x− xt+1∥2

(i)
= EtDh(x,xt)−Dh(x,xt+1)−Dh(xt+1,xt) + ⟨xt−xt+1,∇(fit−f)(xt)−∇(fit−f)(w0)⟩

−
〈
x− xt+1,∇At

θ(xt+1)
〉
− µ

2
∥xt+1 − x∥2

≤ EtDh(x,xt)−Dh(x,xt+1)−Dh(xt+1,xt)

+
1−
√
nθδ

4θ
∥xt+1 − xt∥2 +

θ

1−
√
nθδ
∥∇(fit − f)(xt)−∇(fit − f)(w0)∥2

+

[
µ

4
∥xt+1 − x∥2 + 1

µ

∥∥∇At
θ(xt+1)

∥∥2]− µ

2
∥xt+1 − x∥2 (20)

where (i) uses Eq. (14) and Eit ⟨xt − x,∇(fit − f)(xt)−∇(fit − f)(w0)⟩ = 0 since xt − x is
independent to it and the final inequality uses ⟨a, b⟩ ≤ t2 ∥a∥2 + ∥b∥2

4t2 twice. Next, we continue
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using Eq. (9) to convert ∥·∥ with Dh(·, ·) by assumption θ ≤ 1/(2
√
nδ):

Et[f(xt+1)− f(x)]

(20)(9)
≤ EtDh(x,xt)−

(
1 +

µθ/2

1 +
√
nθδ

)
Dh(x,xt+1)−

1−
√
nθδ

4θ
∥xt+1 − xt∥2

+
θ

1−
√
nθδ
∥∇(fit − f)(xt)−∇(fit − f)(w0)∥2 +

1

µ

∥∥∇At
θ(xt+1)

∥∥2
(4)
≤ EtDh(x,xt)−

(
1 +

µθ/2

1 +
√
nθδ

)
Dh(x,xt+1) +

θδ2

1−
√
nθδ
∥xt −w0∥2

−1−
√
nθδ

4θ
∥xt+1 − xt∥2 +

1

µ

∥∥∇At
θ(xt+1)

∥∥2
(9)
≤ EtDh(x,xt)−

(
1 +

µθ/2

1 +
√
nθδ

)
Dh(x,xt+1) +

2θ2δ2

(1−
√
nθδ)2

Dh(w0,xt)

−1−
√
nθδ

4θ
∥xt+1 − xt∥2 +

1

µ

∥∥∇At
θ(xt+1)

∥∥2 .
Finally, we show the error analysis if an approximate solution, i.e., ∥∇At

θ(xt+1)∥ ̸= 0 is allowed.
Using Proposition 2.5, we see that f1(x) +

√
nδ−µ
2 ∥x∥2 is a convex function, leading to At

θ(x) is(
1
θ −
√
nδ + µ

)
-strongly convex function. Let x̂k+1 ∈ argminx∈Rd At

θ(x), i.e.,∇At
θ(x̂k+1) = 0.

Since θ ≤ 1/(2
√
nδ), we can further bound the last two terms:

−1−
√
nθδ

4θ
∥xt+1 − xt∥2 +

1

µ

∥∥∇At
θ(xt+1)

∥∥2 ≤ 1

µ

∥∥∇At
θ(xt+1)

∥∥2 − 1

8θ
∥xt+1 − xt∥2

≤ 1

µ

∥∥∇At
θ(xt+1)

∥∥2 + 1

8θ
∥xt+1 − x̂t+1∥2 −

1

16θ
∥x̂t+1 − xt∥2

≤ 1

µ

∥∥∇At
θ(xt+1)

∥∥2 + θ

8(1− (
√
nδ − µ)θ)2

∥∥∇At
θ(xt+1)−∇At

θ(x̂t+1)
∥∥2 − 1

16θ
∥x̂t+1 − xt∥2

≤ 1

µ

∥∥∇At
θ(xt+1)

∥∥2 + θ

2

∥∥∇At
θ(xt+1)

∥∥2 − 1

16θ
∥xt − x̂t+1∥2

=
2 + µθ

2µ

[∥∥∇At
θ(xt+1)

∥∥2 − µ

8θ(2 + µθ)

∥∥∥∥xt − argmin
x∈Rd

At
θ(x)

∥∥∥∥2
]

≤ 2 + µθ

2µ

[∥∥∇At
θ(xt+1)

∥∥2 − µ

20θ

∥∥∥∥xt − argmin
x∈Rd

At
θ(x)

∥∥∥∥2
]
.

Therefore, Eq. (18) is proved. □

D.1 Proof of Lemma 3.1

Proof: Since θ = 1/(4
√
nδ) satisfies the condition required in Lemma D.1, we get

Et[f(xt+1)− f(x)]
(18)
≤ EtDh(x,xt)−

(
1 +

2µθ

5

)
Dh(x,xt+1) +

2

9n
Dh(w0,xt).

Taking t = T − 1 with T ∼ Geom(p) and noting that w+ = xT ,w0 = x0, by Lemma A.4, we get
E[f(w+)− f(x)] = E[f(xT )− f(x)]

≤ EDh(x,xT−1)−Dh(x,xT )−
2µθ

5
Dh(x,xT ) +

2

9n
Dh(w0,xT−1)

(15)
= E pDh(x,x0)− pDh(x,xT )−

2µθ

5
Dh(x,xT )

+
2

9n
[(1− p)Dh(w0,xT ) + pDh(w0,x0)]

≤ E pDh(x,w0)− pDh(x,w
+)− 2µθ

5
Dh(x,w

+) +
2

9n
Dh(w0,w

+) (21)

(14)
= E p

〈
x−w0,∇h(w+)−∇h(w0)

〉
− 9pn− 2

9n
Dh(w0,w

+)− 2µθ

5
Dh(x,w

+).
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Thus, Eq. (11) is proved. □

D.2 Proof of Theorem 3.3

Proof: Choosing x = x∗ and x = wk in Eq. (21), which are all independent to indices i1, i2 . . . , iT
in SVRS1ep(f,wk, θ, p), then we get

Ek[f(wk+1)−f(x∗)] ≤ EkpDh(x∗,wk)−pDh(x∗,wk+1)−
2µθ

5
Dh(x∗,wk+1)+

2

9n
Dh(wk,wk+1).

Ek[f(wk+1)−f(wk)] ≤ EkpDh(wk,wk)−pDh(wk,wk+1)−
2µθ

5
Dh(wk,wk+1)+

2

9n
Dh(wk,wk+1).

Adding both inequalities together, we could obtain

E [2f(wk+1)− f(wk)− f(x∗)] ≤EpDh(x∗,wk)−
(
p+

2µθ

5

)
Dh(x∗,wk+1)

−
(
p+

2µθ

5
− 4

9n

)
Dh(wk,wk+1).

Noting that p = 1/n, thus p+ 2µθ
5 −

4
9n > 0. Based on Eq. (9), after rearranging the terms, we get

E[f(wk+1)− f(x∗)] +
1

2

(
p+

2µθ

5

)
Dh(x∗,wk+1) ≤ E

1

2
[f(wk)− f(x∗)] +

p

2
Dh(x∗,wk).

Now we denote the potential function as

Φk = E[f(wk)− f(x∗)] +
1

2

(
p+

2µθ

5

)
Dh(x∗,wk). (22)

By θ = 1/(4
√
nδ), we obtain

EΦk+1 ≤ max

{
1− 1

2
,

(
1 +

2µθ

5p

)−1
}
EΦk = max

{
1− 1

2
,

(
1 +

2µ
√
n

5δ

)−1
}
EΦk.

When 2µ
√
n

5δ ≥ 1, we get EΦk+1 ≤ 1
2EΦk. Otherwise, 2µ

√
n

5δ < 1, by inequality 1
1+x ≤ 1− x

2 ,∀0 ≤

x ≤ 1, we get
(
1 + 2µ

√
n

5δ

)−1

≤ 1 − µ
√
n

5δ . Hence, EΦk+1 ≤
(
1− µ

√
n

5δ

)
EΦk. Therefore, we

obtain EΦk+1 ≤ max
{
1− 1

2 , 1−
µ
√
n

5δ

}
EΦk. Moreover, the initial term

Φ0
(22)
= f(w0)− f(x∗) +

1

2

(
p+

2µθ

5

)
Dh(x∗,w0)

(9)
≤ f(w0)− f(x∗) +

1

2

(
p+

2µθ

5

)
1 +
√
nθδ

2θ
∥x∗ −w0∥2

(i)

≤ f(w0)− f(x∗) +
1

2

(
5δ

2
√
n
+

µ

4

)
∥w0 − x∗∥2

(ii)

≤
[
1 +

1

2

(
5δ

µ
√
n
+

1

2

)]
[f(w0)− f(x∗)]

≤ 3

(
1 +

δ

µ
√
n

)
[f(w0)− f(x∗)],

where (i) uses θ =
√
p/(4δ) and (ii) uses µ

2 ∥w0 − x∗∥2
(2)
≤ f(w0)− f(x∗). Then we finally get

Ef(wk)− f(x∗)
(22)
= EΦk ≤

(
max

{
1− 1

2
, 1− µ

√
n

5δ

})k

· 3
(
1 +

δ

µ
√
n

)
[f(w0)− f(x∗)].

In order to make EΦk ≤ ε, we need

exp

− k

max
{
2, 5δ

µ
√
n

}
 · 3

(
1 +

δ

µ
√
n

)
[f(w0)− f(x∗)] ≤ ε,

which leads to k ≥ K1 := max
{
2, 5δ

µ
√
n

}
log

3
(
1+ δ

µ
√

n

)
[f(w0)−f(x∗)]

ε .

Noting that one-epoch communication complexity in SVRS1ep is Θ(n) in expectation when p = 1/n

(shown in Section 3.1.1), we get total communication complexity is Õ(n+
√
nδ/µ). □
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D.3 Proof of Lemma 3.5

Proof: Based on Lemma 3.1 and noting that yk+1 = SVRS1ep(f,xk+1, θ, p), we get

Ek[f(yk+1)− f(x)]
(11)
≤Ekp ⟨x− xk+1,∇h(yk+1)−∇h(xk+1)⟩

− 7p

9
Dh(xk+1,yk+1)−

2µθ

5
Dh(x,yk+1).

(23)

Here x ∈ Rd should be independent to random indices i(k)1 , i
(k)
2 , . . . , i

(k)
T in SVRS1ep(f,xk+1, θ, p).

Then we can apply interpolation zk to derive

Ek[f(yk+1)− f(x)]
(23)
≤ Ek p ⟨zk − xk+1,∇h(yk+1)−∇h(xk+1)⟩ −

7p

9
Dh(xk+1,yk+1)

+p ⟨x− zk,∇h(yk+1)−∇h(xk+1)⟩ −
2µθ

5
Dh(x,yk+1)

= Ek
1− τ

τ
· p ⟨xk+1 − yk,∇h(yk+1)−∇h(xk+1)⟩ −

7p

9
Dh(xk+1,yk+1)

+p ⟨x− zk,∇h(yk+1)−∇h(xk+1)⟩ −
2µθ

5
Dh(x,yk+1)

(i)

≤ Ek
1− τ

τ

[
f(yk)− f(yk+1)−

7p

9
Dh(xk+1,yk+1)

]
− 7p

9
Dh(xk+1,yk+1)

+p ⟨zk − x,∇h(xk+1)−∇h(yk+1)⟩ −
2µθ

5
Dh(x,yk+1) (24)

where (i) uses Eq. (23) with x = yk, which is independent to indices in SVRS1ep(f,xk+1, θ, p).
We continue obtaining

Ek[f(yk+1)− f(x)]
(24)(9)
≤ Ek

1− τ

τ
[f(yk)− f(yk+1)]−

7p

9τ
Dh(xk+1,yk+1)

+p ⟨zk − x,∇h(xk+1)−∇h(yk+1)⟩ −
µ(1−

√
nθδ)

5
∥x− yk+1∥2

(i)

≤ Ek
1− τ

τ
[f(yk)− f(yk+1)]−

7p

9τ
Dh(xk+1,yk+1)

+Ek

[
Ejk ⟨zk − x,Gk+1⟩ −

3µ

20
∥x− yk+1∥2

]
(16)
≤ Ek

1− τ

τ
[f(yk)− f(yk+1)]−

7p

9τ
Dh(xk+1,yk+1)

+Ek

[
Ejk

α

2
∥Gk+1∥2 +

∥x− zk∥2

2α
− 1 + 0.3µα

2α
∥x− zk+1∥2

]
,

where (i) uses EjkGk+1 = p [∇h(xk+1)−∇h(yk+1)] and
√
nθδ = 1/4.

Furthermore, we can estimate

Ejk ∥Gk+1∥2 = p2Ejk ∥∇h(xk+1)−∇h(yk+1) +∇[f − fjk ](xk+1)−∇[f − fjk ](yk+1)∥2

(i)
= p2Ejk ∥∇h(xk+1)−∇h(yk+1)∥2 + ∥∇[f − fjk ](xk+1)−∇[f − fjk ](yk+1)∥2

(4)
≤ p2Ejk ∥∇h(xk+1)−∇h(yk+1)∥2 + p2δ2 ∥xk+1 − yk+1∥2

(ii)

≤ 2(1 +
√
nθδ)p2

θ
Dh(xk+1,yk+1) +

2θp2δ2

1−
√
nθδ

Dh(xk+1,yk+1)

=
5p2

2θ
Dh(xk+1,yk+1) +

p2

6nθ
Dh(xk+1,yk+1) ≤

8p2

3θ
Dh(xk+1,yk+1)

20



where (i) uses Ejk∇[f−fjk ](xk+1)−∇[f−fjk ](yk+1) = 0, (ii) uses the convexity and smoothness
of h (e.g., [22, Theorem A.1 (iii)]) and Eq. (9). After rearrangement, we get

Ek
α

τ
[f(yk+1)− f(x)] ≤Ek (1− τ) · α

τ
[f(yk)− f(x)] +

∥x− zk∥2

2
− 1 + 0.3µα

2
∥x− zk+1∥2

+ α

(
4αp2

3θ
− 7p

9τ

)
Dh(xk+1,yk+1).

Hence, we see that once 2ταp ≤ θ, Eq. (12) holds. □

D.4 Proof of Theorem 3.6

Proof: Taking x = x∗ in Eq. (12), which is independent of any index during the process, we get

E
α

τ
[f(yk+1)−f(x∗)]+

(1 + 0.3µα) ∥x∗ − zk+1∥2

2
≤ E (1−τ)·α

τ
[f(yk)−f(x∗)]+

∥x∗ − zk∥2

2
.

Denote the potential function as

Φk = [f(yk)− f(x∗)] +
τ(1 + 0.3µα)

2α
∥x∗ − zk∥2 .

We obtain

EΦk+1 ≤ max

{
1− τ,

(
1 +

µ
√
n

δ
· 3

80τ

)−1
}
EΦk.

When τ = 1
4 ≤

1
8n

1/4
√

µ
δ , then we have that

(1− τ)

(
1 +

µ
√
n

δ
· 3

80τ

)
≥ (1− τ)

(
1 +

3

20τ

)
≥ 1⇒ EΦk+1 ≤

(
1− 1

4

)
EΦk.

When τ = n1/4

8

√
µ
δ ≤

1
4 , we get

t :=
µ
√
n

δ
· 3

80τ
=

3n1/4

10

√
µ

δ
≤ 3

5
⇒ 1

1 + t
≤ 1− 5t

8
⇒ EΦk+1 ≤

(
1− n1/4

8

√
µ

δ

)
EΦk.

Therefore, we finally obtain

EΦk+1 ≤ max

{
1− 1

4
, 1− n1/4

8

√
µ

δ

}
EΦk.

By the strong convexity of f in Assumption 1 and the choice of τ and α, the initial term

Φ0 = [f(y0)− f(x∗)] +
τ(1 + 0.3µα)

2α
∥x∗ − y0∥2

= [f(y0)− f(x∗)] +

(
8δτ2√
nµ

+ 0.3τ

)
µ

2
∥x∗ − y0∥2

≤
(
1 +

1

8
+

0.3

4

)
[f(y0)− f(x∗)] ≤ 2[f(y0)− f(x∗)].

To obtain ε-error solution, we need

k ≥ K2 = max

{
4, 8n−1/4

√
δ

µ

}
log

2[f(y0)− f(x∗)]

ε
.

Note that every call of Algorithm SVRS1ep requires 4n communication in expectation (shown in
Section 3.1.1). The remaining communication in one iteration of AccSVRS need 4 communication
(the master sends xk+1 and yk+1 to the client jk, and then receives∇fjk(xk+1) and∇fjk(yk+1)).
Thus one iteration of AccSVRS is Θ(n) in expectation, leading to the total communication complexity

for ε-error solution is Õ
(
n+ n3/4

√
δ
µ

)
. □
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Algorithm 4 Loopless Stochastic Variance-Reduced Sliding (SVRS)

1: Input: w0 ∈ Rd, p ∈ (0, 1), θ > 0,K ∈ {1, 2, . . . }
2: Initialize x0 = w0 and compute∇f(w0)
3: for k = 0, 1, 2, . . . ,K − 1 do
4: Sample ik ∼ Unif([n]) and compute gk = ∇fik(wk)−∇f(wk)
5: Approximately solve the local proximal point problem:

xk+1 ≈ argmin
x∈Rd

Ak
θ(x) := ⟨∇fik(xk)− gk −∇f1(xk),x− xk⟩+

1

2θ
∥x− xk∥2+f1(x)

6: wk+1 =

{
xk+1 with probability p

wk with probability 1− p
7: end for
8: Output: wK

D.5 Loopless SVRS

In this section, we describe the loopless SVRS (Algorithm 4). By simple facts shown in Proposi-
tion A.2, SVRS1ep(f,wk, θ, p) can be viewed as the inter iteration until wk in loopless SVRS is
updated. Thus, the one-step variation in Lemma D.1 still holds. Hence, we can derive a similar
convergence rate and communication complexity for loopless SVRS.

Theorem D.2 Suppose Assumption 1 holds. If in loopless SVRS (Algorithm 4), the hyperparameters
are set as θ = 1/(4

√
nδ), p = 1/n, and the approximate solution in each proximal step satisfies

Eq. (10), then for any error ε > 0, when

k ≥ K1 := max

{
2n,

11
√
nδ

µ

}
log

3
(
1 + δ

µ
√
n

)
[f(x0)− f(x∗)]

ε
,

i.e., after Õ(n+
√
nδ/µ) communications, we can guarantee that Ef(wk)− f(x∗) ≤ ε.

Proof: Noting that in each step of loopless SVRS, the anchor point is wk instead of w0, thus Eq. (18)
holds after replacing w0 to wk. Now choosing x = x∗ and x = wk in Eq. (18), which are all
independent to index ik, we get

Ek[f(xk+1)−f(x∗)] ≤ EkDh(x∗,xk)−
(
1 +

µθ/2

1 +
√
nθδ

)
Dh(x∗,xk+1)+

2θ2δ2

(1−
√
nθδ)2

Dh(wk,xk).

Ek[f(xk+1)−f(wk)] ≤ EkDh(wk,xk)−
(
1 +

µθ/2

1 +
√
nθδ

)
Dh(wk,xk+1)+

2θ2δ2

(1−
√
nθδ)2

Dh(wk,xk).

Adding both inequalities together and noting that
EkDh(wk+1,xk+1) = Ek(1−p)Dh(wk,xk+1)+pDh(xk+1,xk+1) = (1−p)EkDh(wk,xk+1),

as well as
Ekf(wk+1) = Ek(1− p)f(wk) + pf(xk+1),

we could obtain

E
2

p
[f(wk+1)− (1− p)f(wk)]− f(wk)− f(x∗)

≤EDh(x∗,xk)−
(
1 +

µθ/2

1 +
√
nθδ

)
Dh(x∗,xk+1) +

(
1 +

4θ2δ2

(1−
√
nθδ)2

)
Dh(wk,xk)−Dh(wk,xk+1)

=EDh(x∗,xk)−
(
1 +

µθ/2

1 +
√
nθδ

)
Dh(x∗,xk+1) +

(
1 +

4θ2δ2

(1−
√
nθδ)2

)
Dh(wk,xk)−

Dh(wk+1,xk+1)

1− p
.

Rearranging the terms, we get

E[f(wk+1)− f(x∗)] +
p

2

(
1 +

µθ/2

1 +
√
nθδ

)
Dh(x∗,xk+1) +

p

2(1− p)
Dh(wk+1,xk+1)

≤ E(1− p

2
)[f(wk)− f(x∗)] +

p

2
Dh(x∗,xk) +

p

2

(
1 +

4θ2δ2

(1−
√
nθδ)2

)
Dh(wk,xk).
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Now we denote the potential function as

Φk = E[f(wk)− f(x∗)] +
p

2

(
1 +

µθ/2

1 +
√
nθδ

)
Dh(x∗,xk) +

p

2(1− p)
Dh(wk,xk).

Then we obtain

EΦk+1 ≤ max

{
1− p

2
,

(
1 +

µθ/2

1 +
√
nθδ

)−1

,

(
1 +

4θ2δ2

(1−
√
nθδ)2

)
(1− p)

}
EΦk.

Since we choose θ = 1/(4
√
nδ), we get θµ ≤

√
nθδ ≤ 1/4 by Assumption 1, which shows that(

1 +
µθ/2

1 +
√
nθδ

)−1

= 1− µθ/2

1 +
√
nθδ + µθ/2

= 1− 4µθ

11
= 1− µ

11δ
√
n
.

Additionally, by p = 1/n and θ = 1/(4δ
√
n), we also have that

(
1 +

4θ2δ2

(1−
√
nθδ)2

)
(1− p) =

1 +

(
1

2
√
n

1− 1
4

)2
 (1− p) =

(
1 +

4p

9

)
(1− p) ≤ 1− 5p

9
.

Therefore, we obtain the ratio between EΦk+1 and EΦk:

EΦk+1 ≤ max

{
1− p

2
, 1− µ

11δ
√
n
, 1− 5p

9

}
EΦk ≤ max

{
1− p

2
, 1− µ

11δ
√
n

}
EΦk.

Moreover, the initial term

Φ0 = f(w0)− f(x∗) +
p

2

(
1 +

µθ/2

1 +
√
nθδ

)
Dh(x∗,x0)

(9)
≤ f(x0)− f(x∗) +

p

2

(
1 +

µθ/2

1 +
√
nθδ

)
1 +
√
nθδ

2θ
∥x∗ − x0∥2

(i)

≤ f(x0)− f(x∗) +
p

2

(
2.5δ
√
p

+
µ

4

)
∥x0 − x∗∥2

(ii)

≤
[
1 +

p

2

(
5δ

µ
√
p
+

1

2

)]
[f(x0)− f(x∗)]

≤ 3

(
1 +

δ

µ
√
n

)
[f(x0)− f(x∗)],

where (i) uses θ =
√
p/(4δ) and (ii) uses f(x0)− f(x∗)

(2)
≥ µ

2 ∥x0 − x∗∥2. Then we finally get

Ef(wk)− f(x∗) ≤ EΦk ≤
(
max

{
1− 1

2n
, 1− µ

11δ
√
n

})k

· 3
(
1 +

δ

µ
√
n

)
[f(x0)− f(x∗)].

In order to make EΦk ≤ ε, we need

exp

− k

max
{
2n, 11

√
nδ

µ

}
 · 3

(
1 +

δ

µ
√
n

)
[f(x0)− f(x∗)] ≤ ε,

which leads to

k ≥ K1 := max

{
2n,

11
√
nδ

µ

}
log

3
(
1 + δ

µ
√
n

)
[f(x0)− f(x∗)]

ε
,

Noting that communication complexity in each iteration is 2p(n− 1) + 2 in expectation (by similar
analysis in Section 3.1.1), we get communication complexity is 4 in each iteration in expectation.
Therefore, the total communication complexity is Õ(n+

√
nδ
µ ) in expectation. □
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E Computation of Gradient Complexity

We show the detail omitted in Section 3.3. Let xt,∗ = argminx∈Rd At
θ(x). Noting that by [47,

Theorem 2.2.2], we could obtain∥∥∇At
θ(xt,s)

∥∥2 ≤ 2L′ (At
θ(xt,s)−At

θ(xt,∗)
)
≤ 20µ′L′ ∥xt − xt,∗∥2

3

[
e(s+1)/

√
κ′ − 1

]−1

if we start from xt in the proximal step for optimizing At
θ(x), where κ′ = L′/µ′, L′ = L+1/θ, µ′ =

−
√
nδ + 1/θ based on assumptions. Then Eq. (10) could be satisfied after Tapp iterations when

20µ′L′ ∥xt − xt,∗∥2

3

[
e(Tapp+1)/

√
κ′ − 1

]−1

≤ µ

20θ
∥xt − xt,∗∥2 .

Note that θ = 1/(4
√
nδ), which leads to

Tapp = O

(√
1 + θL

1−
√
nθδ
· log

(
(1 + θL)(1−

√
nθδ)

µθ

))
= O

((
1 + n−1/4

√
δ/µ

)
log

√
nδ + L

µ

)
.

Hence, the total number of gradient calls in expectation is

O(nTapp·K2) = Õ

[(
n+n3/4

√
δ

µ

)(
1+

1

n1/4

√
L

δ

)]
= Õ

(
n+n3/4

(√
δ

µ
+

√
L

δ

)
+

√
nL

µ

)
.

Since δ ∈ [µ,L], we obtain
√

δ
µ +

√
L
δ ≤

√
L
µ + 1, leading to

n+ n3/4

(√
δ

µ
+

√
L

δ

)
+

√
nL

µ
≤ 2

(
n+ n3/4

√
L

µ

)
.

Thus, the gradient complexity is Õ
(
n+ n3/4

√
L/µ

)
. Moreover, when δ = Θ(

√
µL), we obtain

n+ n3/4

(√
δ

µ
+

√
L

δ

)
= n+Θ

(
n3/4

(
L

µ

)1/4
)

+

√
nL

µ
= Θ

(
n+

√
nL

µ

)
.

Thus, the gradient complexity is Õ
(
n+

√
nL/µ

)
in this time.

Note that Assumption 1 and smoothness of f1 could only guarantee
1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2
(4)
≤ δ2 + ∥∇f(x)−∇f(y)∥2

≤δ2+2 ∥∇[f−f1](x)−∇[f−f1](y)∥2 +2 ∥∇f1(x)−∇f1(y)∥2≤
[
(2n+1)δ2+2L2

]
∥x−y∥2 ,

that is, fi’s are (2L+ 2
√
nδ)-average smooth. Hence, the tightness of our gradient complexity holds

for the average smooth setting only when
√
nδ = O(L). Moreover, we can also compute

∥∇fi(x)−∇fi(y)∥2 ≤ 2 ∥∇[f − fi](x)−∇[f − fi](y)∥2 + 2 ∥∇f(x)−∇f(y)∥2

(4)
≤2nδ2+4 ∥∇[f−f1](x)−∇[f−f1](y)∥2 +4 ∥∇f1(x)−∇f1(y)∥2 ≤

[
6nδ2+4L2

]
∥x−y∥2 ,

that is, fi’s are (2L+ 3
√
nδ)-smooth. Hence, the tightness of our gradient complexity holds for the

component smooth setting only when δ = Θ(
√
µL) and nµ = O(L).

F Omitted Details of Section 4

In this section, we give the omitted details of Section 4 as well as their proofs.

F.1 Formal Statement of Definition 4.1 and Discussion

In this subsection, we give the formal statement of Definition 4.1 and show that Algorithm 2 satisfies
our definition.

We first introduce the two oracles: the incremental first-order oracle (IFO) [2, 63] and the Proximal
Incremental First-order Oracle (PIFO)11 [56, 25], which are defined as hI

fi
(x) = [fi(x),∇fi(x)]

11Although we have defined PIFO in Section 4.1, we restate it here for completement.
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and hP
fi
(x, γ) = [fi(x),∇fi(x),proxγfi(x)] with γ > 0 respectively. Here the proximal operator is

proxγfi(x) := argmin
u

{
fi(u) +

1

2γ
∥x− u∥2

}
= argmin

u

{
γfi(u) +

1

2
∥x− u∥2

}
.

The IFO hI
fi
(x) takes a point x and a component fi as input and returns the zero-order and first-order

information of the component at x. The PIFO hP
fi
(x, γ) has an additional input γ > 0, which can

be viewed as the step size of the proximal operator. Besides the local zero-order and first-order
information returned by hI

fi
(x), hP

fi
(x, γ) also provides some global information of fi by means of

the proximal operator. To see this, if we let γ → +∞, proxγfi(x) converges to the exact minimizer
of fi, irrelevant to the choice of x. In practice, it could be hard to compute proxγfi(x) precisely.
Nevertheless, since we only focus on communication complexity, it makes no difference to distinguish
between the IFO and the PIFO12. Thus we assume the algorithm has access to the PIFO and the
definition is as follows.

Definition F.1 (Formal version of Definition 4.1) Consider a randomized algorithm A to solve
problem (1). Suppose the number of communication rounds is T . Define information sets It+1, I0t+1

and I1t+1. Here It+1 denotes all the informationA obtains after round t, while I0t+1 and I1t+1 denote
the information before and after (possible) anchor point updating during round t, respectively. The
algorithm updates the information set by the following procedure.

1. Choose a distribution D over [n] with qi = PZ∼D(Z = i) > 0, a positive number p ≤
c0/n

13 and the initial points x0. Specify a master note 1 and assume max2≤i≤n qi ≤ q0/n.
Node 1 sends x0 to all the other nodes and other nodes send hP

fi
(x0, γ0) back to node 1.

Initialize the information set as I0 := span
{
x0,∇fi(x0),prox

γ0

fi
(x0)

∣∣ 1 ≤ i ≤ n
}

and
set t = 0 and x̃0 = x0.

2. Sample it ∼ D. Node 1 sends x̃t to node it and node it sends hP
fit

(x̃t, γt) back to node 1.
Update the information set

I0t+1 := span
{
y,∇fit(x̃t),prox

γt

fit
(x̃t)

∣∣ y ∈ It} (25)

3. Update the information set I1t+1 and choose xt+1 ∈ I1t+1 following the linear-span protocol

xt+1 ∈ I1t+1 := span
{
y,∇f1(z),prox

γ′
t

f1
(w)

∣∣ y, z,w ∈ I0t+1

}
. (26)

4. Sample a Bernoulli random variable at with expectation equal to p. If at = 1, go to step 5
(update the anchor point); otherwise, set x̃t+1 = xt+1, It+1 = I1t+1 and go to step 6 (do
not update the anchor point).

5. Sample jt ∼ D. Node 1 sends some yt+1 ∈ I1t+1 to node jt and node jt sends
hP
fjt

(yt+1, γ
′′
t+1) back to node 1. Obtain the anchor point ỹt+1 by

ỹt+1 ∈ span
{
y,∇f1(z),prox

γ′
t

f1
(w),∇fjt(yt+1),prox

γ′′
t+1

fjt
(yt+1)

∣∣ y, z,w ∈ I1t+1

}
.

(27)

Then node 1 sends the anchor point ỹt+1 to all the other nodes and other nodes send
hP
fi
(ỹt+1, γt+1) back to node 1. Update the information set and obtain x̃t+1 by

x̃t+1 ∈ It+1 := span
{
y, ỹt+1,∇fi(ỹt+1),prox

γt+1

fi
(ỹt+1)

∣∣ y ∈ I1t+1, 1 ≤ i ≤ n
}
.

(28)

6. If t = T − 1, output some point in IT ; otherwise, set t← t+ 1 and go back to step 2.

Here all the random variables it, jt and at with 0 ≤ t ≤ T − 1 are mutually independent, and the
step sizes of the proximal operator γt, γ′

t and γ′′
t are positive numbers.

12See Lemma F.2
13To include catalyst accelerated algorithms, we also need p ≥ c1/n for some c1 > 0 (see footnote 17). To

analyze Algorithm 2, p ≤ c0/n is enough.
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Now we explain this definition and show that Algorithm 2 (with Algorithm 1 as a part) satisfies our
definition.

Initialization. In our definition, step 1 is the initialization step. Without loss of generality, we
can assume x0 = 0 and node 1 is the master node. Otherwise, it suffices to consider {f̃i(x) =
fi(x + x0)}ni=1 and exchange the indices between node 1 and the master node. In Algorithm 2,
the distribution D is Unif([n])14, and p = 1/n. In the initialization stage, the algorithm needs to
calculate the full gradient of the initial point x0, whose communication cost is 2(n− 1).

We note that Definition F.1 enjoys a loopless structure while Algorithm 2 has two loops. In fact,
when p is fixed, a loopless algorithm is equivalent to a two-loop one with the inner loop size obeying
Geom(p)15.

Analysis of one communication round. In each communication round, whether to calculate the full
gradient depends on a coin toss with success probability p, as shown in step 4.

The case at = 0. We first focus on the case where the full gradient need not be calculated. Such a
scenario corresponds to an iteration of Algorithm 1. Each communication round start with step 2. In
this step, the algorithm samples a local node, with which the master node communicates. And the
communication cost is 2. x̃t in this step corresponds to xt in Algorithm 1. In step 3, the master node
calculates the next point based on the current information set I0t+1 as well as the PIFO hP

f1
. This

corresponds to line 7 in Algorithm 1. Indeed, the subproblem (7) can be rewritten as finding

argmin
x∈Rd

At
θ(x) = argmin

x∈Rd

{
1

2θ
∥x− xt + θ[∇fit(xt)− gt −∇f1(xt)]∥2 + f1(x)

}
= proxθf1 (xt − θ[∇fit(xt)− gt −∇f1(xt)]) .

If the algorithm has access to the PIFO hP
f1

, then the subproblem (7) can be exactly solved by one
step of (26). Otherwise, one can apply (26) recursively without the proximal information (i.e., only
using the IFO hI

f1
), e.g., (accelerated) gradient methods, to find an approximate solution of (7)16

The case at = 1. When at = 1 in step 4, the algorithm needs to perform step 5, which corresponds
to an outer iteration of Algorithm 2. Before calculating the full gradient, the algorithm first samples a
local node jt again and the master node communicates the information about yt+1 with this node.
Here yt+1 corresponds to yk+1 in Algorithm 2, and the communication cost is 2. Then the master
node calculates ỹt+1 by (27), which corresponds to xk+1 (of the next iteration) in Algorithm 2.
That is to say, lines 7, 8 and 4 (of the next iteration) in Algorithm 2 can be summarized as (27).
Then the master node communicates with all the other nodes the information about x̃t+1, and the
communication cost is 2(n− 1). In (28), the algorithm picks up x̃t+1 as the starting point of the next
round. In Algorithm 2, x̃t+1 is the same to ỹt+1.

Communication cost. From the above analysis, the communication cost in step 5 is 2(n− 1). Since
we assume q ≤ c0/n, step 5 is performed infrequently and the expected communication cost is (at
most) 2(n − 1) · p ≈ 2c0 for a sufficiently large n. As a result, the total communication cost of a
round is roughly 2 + 2c0 in expectation. After T rounds, the expected communication cost is roughly
2(n− 1) + 2(1 + c0)T . As a result, we can use the number of rounds to measure communication
complexity.

The linear-span protocol and information set. In Definition F.1, we focus on loopless algorithms
based on the linear-span protocol. One can check that many methods, e.g., KatyushaX [6], L-SVRG
and L-Katyusha [34], Loopless SARAH [42] and SVRP17 [33], satisfy our definition. And this class
of algorithms is sufficiently large in that the upper and lower bounds have matched for most cases

14When analyzing computational complexity, this distribution can also depend on the smoothness of each
component function [57, 6]

15See Proposition A.2.
16Such a modification makes no difference to subsequent analysis. See Remark F.3.
17For Catalyzed SVRP in their paper, we can slightly modify it without affecting the gradient or communication

complexity. Specifically, we remove the full gradient step at the beginning of the inner loop and do not update
the current point until the full gradient is calculated. The number of additional communication rounds is
1/p = Θ(n) in expectation, as long as p = Θ(1/n). Since in each inner loop, the algorithm must calculate the
full gradient, whose gradient or communication complexity is also Θ(n), such a modification would not affect
the total complexity.

26



[25]. Built on the linear-span protocol, the information set It+1, a linear subspace of the whole
space, gathers all the gradient and proximal information obtained by t rounds of communication
and includes all the possible points generated by the algorithm after round t. Clearly, the sequence
{It}Tt=0 is nondecreasing in the sense that It ⊆ It′ for any t′ > t.

F.2 Details of Section 4.2

Recall that in Section 4.2, we consider the following class of matrices

B(m, ζ) =


1 −1

1 −1
. . . . . .

1 −1
ζ

 ∈ Rm×m.

And one can check the matrix A(m, ζ) is a tridiagonal matrix, i.e.,

A(m, ζ) := B(m, ζ)⊤B(m, ζ) :=


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 ζ2 + 1

 ∈ Rm×m.

With the hard instance constructed in (13), we have the following lemma, which is a modification of
Lemma 6.1 in Han et al. [25] in that the partitions of the index sets are slightly different.

Lemma F.2 Suppose that n ≥ 3, m ≥ 3, γ is an arbitrarily positive number and x ∈ Fk for some
0 ≤ k < m. If k = 0, we have

∇ri(x), proxγri(x) ∈
{
F1, if i = 1,

F0, otherwise.

If k > 0, we have

∇ri(x), proxγri(x) ∈
{
Fk+1, if k ∈ Li,

Fk, otherwise.

Here {Fk}mk=0 are defined as F0 = {0} and Fk = span{e1, e2, . . . , ek} for 1 ≤ k ≤ m, and we
omit the parameters of ri to simplify the notation.

Lemma F.2 tells us that if the current point x lies in some subspace of Rm, only one component
can provide the information of the next dimension by gradient or proximal information. In this
sense, PIFO cannot provide more information than IFO. Thus, when we focus on the communication
complexity of an algorithm, it makes no difference to distinguish between IFO and PIFO. And we
can assume the algorithm has access to PIFO without loss of generality. Moreover, when k > 0, the
oracle of r1 can never provide any information on the next dimension. The proof of Lemma F.2 is
deferred to Appendix F.4.

With Lemma F.2, Lemma 4.3 is a natural corollary and the proof is deferred to Appendix F.5.

Remark F.3 Recall that in steps 2 and 3, the difference between I1t+1 and I0t+1 only resides in
hP
f1
(x, γ) (or hP

r1(x, γ) when we consider problem (13)) for x ∈ I0t , while Lemma F.2 implies that
hP
r1(x, γ) would not expand the information set as long as x ̸= 018. This demonstrates that applying

(26) recursively would not affect the analysis of communication complexity.

The next result is a corollary of Lemma 4.3 and the proof is deferred to Appendix F.6.

18In the proof of Lemma 4.3 in Appendix F.5, we show that I1
t+1 = I0

t+1
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Corollary F.4 Define the random variables T0 = −1,

Tk := min
t
{t : t > Tk−1, 3k−2 ∈ Lit or at = 1} for 1 ≤ k ≤ (m− 1)/3, (29)

and Yk := Tk − Tk−1. Then we have (i) It+1 ⊆ F3k−2 for any t < Tk; (ii) the Yk are mutually
independent; (iii) Yk ∼ Geom(qk′ + p− pqk′) with k′ ≡ 3k−1 (mod (n−1)), 2 ≤ k′ ≤ n.

Corollary F.4 claims that Tk is the smallest index of the communication round after which the
information set can be expanded to F3k+2. Moreover, Tk can be decomposed into the sum of
independent geometric random variables. With Lemma A.6, which gives a concentration result for
the sum of geometric random variables, we have the following proposition, whose proof is deferred
to Appendix F.7.

Proposition F.5 Let 0 ≤ M ≤ (m − 2)/3 and N = n(M+1)
4(q0+c0)

+ 1 with q0 and c0 defined in
Definition 4.1. Suppose we use an algorithm A satisfying Definition F.1 to solve problem (13).
After N round of communication, the algorithm obtains the information set IN . Then we have
IN ⊆ F3M+1 ⊂ Fm−1. Moreoever, if

min
x∈F3M+1

r(x)− min
x∈Rm

r(x) ≥ 9ϵ, (30)

we have

E min
x∈IN

r(x)− min
x∈Rm

r(x) ≥ ϵ.

Proposition F.5 specifies the number of communication rounds needed to find an ϵ-suboptimal solution
under the condition (30). Roughly speaking, the condition requires that the exact solution of problem
(13) does not lie in some subspace of Fm−1

Now we come back to the hard instance (13). Recall that r is c-strongly convex and ri’s satisfy√
8n+ 4-aveSS. We need to properly scale the function class {ri}ni=1 such that it satisfies Assump-

tion 1. Note that rescaling does not influence Lemma F.2. Thus Proposition F.5 still holds for any
rescaled version of problem (13). Specially, we consider the following problem

min
x∈Rm

fh(x) :=
1

n

n∑
i=1

fh
i (x) where fh

i (x) := λ r(x/β;m, ζ, c),

λ =
4∆

ρ−1
, β =

4

ρ−1

√
∆

µ(ρ+1)
, ζ =

√
2

1+ρ
and c =

4

ρ2−1
with ρ =

√
2δ/µ√
2n+1

+1.

(31)

Here n, δ, µ and ∆ are given parameters. As shown in the next Proposition, δ is the AveSS parameter,
µ is the strong convexity parameter and ∆ is the function value gap between the initial point and the
solution.

Proposition F.6 The problem defined in (31) with n ≥ 3 and m ≥ 3 has the following properties.

1. fh is µ-strongly convex and fh
i ’s satisfy δ-AveSS.

2. Let q=ρ−1
ρ+1 . The minimizer of fh is x∗=

β(ρ+1)
2 (q, q2, . . . , qm)⊤ and fh(0)−fh(x∗)=∆.

3. For 0 ≤ k ≤ m− 1, we have

min
x∈Fk

fh(x)− fh(x∗) ≥ ∆q2k and min
x∈Fk

∥x− x∗∥2 ≥
4∆

µ(ρ+ 1)
q2k. (32)

Property 2 shows that the minimizer of problem (31) has all elements nonzero. Thus, it does not
lie in any subspace Fk for k < m. As a result, we cannot obtain an approximate solution up to
an arbitrarily small accuracy, unless we get an iterate with the last element nonzero, as claimed by
Property 3. This implies problem (31) satisfies the condition 30.

Combining Propositions F.5 and F.6, we can establish the lower bound of the communication
complexity.
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Theorem F.7 (Formal version of Theorem 4.4) Suppose we use any algorithm A satisfying Defini-
tion F.1 to solve the minimization problem (31) and the following conditions hold

n ≥ 3 and ϵ ≤ ∆

9
· q3, with q =

ρ− 1

ρ+ 1
, ρ =

√
2δ/µ√
2n+ 1

+ 1.

Set m =
⌊
log(∆/(9ϵ))
2 log(1/q) + 2

⌋
. In order to find x̂ such that Efh(x̂) − minx∈Rm fh(x) < ϵ, the

communication complexity in expectation isΩ
(
n+ n3/4

√
δ/µ log(1/ϵ)

)
, for δ

µ = Ω(
√
n),

Ω
(
n+ n log(1/ϵ)

1+(log(µ
√
n/δ))+

)
, for δ

µ = O(
√
n).

Recall that in (32), minx∈Fk
fh(x) − fh(x∗) and minx∈Fk

∥x− x∗∥2 are both lower bounded
by q2k multiplied with some constants. If we want to find x̂ such that E ∥x̂− x∗∥2 < ϵ, the
communication complexity is the same. The proof of Theorem F.7 is deferred to Appendix F.9.

F.3 Proof of Proposition 4.2

Proof: For convenience of notation, we omit the dependence of ri, r, B and bl on the parameters m,
ζ and c. With the definition of {ri}ni=1 and r, we have

∇(ri − r)(x) =

{
−
∑m

l=1 blb
⊤
l x− (n− 1)e1, i = 1,

n
∑

l∈Li
blb

⊤
l x−

∑m
l=1 blb

⊤
l x+ e1, i ̸= 1.

(33)

From the definition of bl, we have

b⊤l bl =

{
2, 1 ≤ l ≤ m− 1,

ζ2, l = m,
b⊤l bl+1 =

{
−1, 1 ≤ l ≤ m− 2,

−ζ, l = m− 1,
(34)

and b⊤l bl′ = 0 for any |l − l′| ≥ 2. Since n ≥ 3, this implies b⊤l bl′ = 0 for any l, l′ ∈ Li and l ̸= l′.
Define b0 = bm+1 = 0 for ease of notation. Let Ai =

∑
l∈Li

blb
⊤
l ,A =

∑n
i=2 Ai =

∑m
l=1 blb

⊤
l .

Then for any x,y ∈ Rm and u = x− y, we have
n∑

i=1

∥∇(ri − r)(x)−∇(ri − r)(y)∥2 (33)
= ∥Au∥2 +

n∑
i=2

∥nAiu−Au∥2

= ∥Au∥2 +
n∑

i=2

n2 ∥Aiu∥2 − 2n

n∑
i=2

(Aiu)
⊤Au+ (n− 1) ∥Au∥2 = n2

n∑
i=2

∥Aiu∥2 − n ∥Au∥2 .

Note that by Eq. (34), ∥Aiu∥2 =
∥∥∑

l∈Li
blb

⊤
l u
∥∥2 =

∑
l∈Li

(b⊤l u)
2b⊤l bl and

∥Au∥2 =

∥∥∥∥∥
m∑
l=1

blb
⊤
l u

∥∥∥∥∥
2

=

m∑
l=1

(b⊤l u)
2b⊤l bl + (b⊤l u)(b

⊤
l+1u)b

⊤
l+1bl + (b⊤l u)(b

⊤
l−1u)b

⊤
l−1bl

=

m∑
l=1

(b⊤l u)
2b⊤l bl + 2(b⊤l u)(b

⊤
l+1u)b

⊤
l+1bl,

where the final equality uses b0 = bm+1 = 0. Hence, we get

1

n

n∑
i=1

∥∇(ri − r)(x)−∇(ri − r)(y)∥2

= n

m∑
l=1

(b⊤l u)
2b⊤l bl −

[
m∑
l=1

(b⊤l u)
2b⊤l bl + 2(b⊤l u)(b

⊤
l+1u)b

⊤
l+1bl

]

= (n− 1)

m∑
l=1

(b⊤l u)
2b⊤l bl − 2

m∑
l=1

(b⊤l u)(b
⊤
l+1u)b

⊤
l+1bl. (35)
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Recall that 0 < ζ ≤
√
2. Then (34) implies b⊤l bl ≤ 2 and |b⊤l bl+1| ≤

√
2 for any l. Substituting

these into (35) and using Cauchy’s inequality, we have

1

n

n∑
i=1

∥∇(ri−r)(x)−∇(ri−r)(y)∥2 ≤ 2(n− 1)

m∑
l=1

(b⊤l u)
2 +
√
2

m∑
l=1

[
(b⊤l u)

2 + (b⊤l+1u)
2
]

≤
(
2n+ 2

√
2− 2

) m∑
l=1

(b⊤l u)
2 ≤ (2n+ 1)

m∑
l=1

(b⊤l u)
2.

Notice that (b⊤l u)
2 = (ul − ul+1)

2 ≤ 2(u2
l + u2

l+1) for 1 ≤ l ≤ m− 1 and (b⊤mu)2 = (ζum)2 ≤
2u2

m. This implies

1

n

n∑
i=1

∥∇(ri − r)(x)−∇(ri − r)(y)∥2 ≤ 4(2n+ 1) ∥u∥2 = (8n+ 4) ∥x− y∥2 .

As a result, ri’s satisfy
√
8n+ 4-AveSS. □

F.4 Proof of Lemma F.2

Proof: For convenience of notation, we omit the dependence of ri, r, B and bl on the parameters m,
ζ and c.

1) First, we focus on the gradient of the ri. Recall that

ri(x)=


c
2 ∥x∥

2 − n ⟨e1,x⟩ , for i = 1,
n
2

∑
l∈Li

x⊤blb
⊤
l x+ c

2 ∥x∥
2
, for i ̸= 1. ⇒ ∇ri(x)=

cx− ne1, for i = 1,

n
∑
l∈Li

blb
⊤
l x+ cx, for i ̸= 1.

(i): If x ∈ F0, i.e., x = 0, we have ∇r1(0) = −ne1 ∈ F1 and ∇ri(0) = 0 for i ̸= 1. (ii): If
x = (x1, . . . , xm) ∈ Fk for 1 ≤ k < m, we have∇r1(x) = cx−ne1 ∈ Fk. As for i ̸= 1, we need
to examine blb

⊤
l x. One can check

blb
⊤
l x =

{
(xl − xl+1)(el − el+1), 1 ≤ l ≤ m− 1,

ζ2xmem, l = m.

For x ∈ Fk, we have

blb
⊤
l x ∈

{
Fk, l ̸= k,

Fk+1, l = k.
(36)

As a result, if k ∈ Li, then ∇ri(x) ∈ Fk+1; otherwise,∇ri(x) ∈ Fk.

2) Now we turn to the proximal operator. (i) For i = 1, it is easy to verify proxγr1(x) = (1/γ +

c)−1(x/γ + ne1). Thus, if x ∈ F0, proxγr1(x) ∈ F1; if x ∈ Fk for k ≥ 1, proxγr1(x) ∈ Fk. (ii)
For i ̸= 1, we define ui := proxγri(x) for simplicity. Then ui satisfies the following equation[

nγB⊤
i Bi + (cγ + 1) I

]
ui = x, Bi :=

∑
l∈Li

elb
⊤
l .

Note that B⊤
i Bi =

∑
l∈Li

blb
⊤
l . By the Sherman-Morrison-Woodbury formula, we get(

I + c̃B⊤
i Bi

)−1
= I −B⊤

i

(
1

c̃
I +BiB

⊤
i

)−1

Bi,∀c̃ ̸= 0.

In the proof of Proposition 4.2, we have shown that b⊤l bl′ = 0 for any |l − l′| ≥ 2 and consequently
b⊤l bl′ = 0 for any l, l′ ∈ Li and l ̸= l′. Thus, BiB

⊤
i =

∑
l∈Li

b⊤l blele
⊤
l is a diagonal matrix. Then

we can denote Di =
(

cγ+1
nγ I +BiB

⊤
i

)−1

=
∑m

l=1 di,lele
⊤
l and obtain

ui =
[
nγB⊤

i Bi + (cγ + 1) I
]−1

x =
1

cγ + 1

(
I +

nγ

cγ + 1
B⊤

i Bi

)−1

x =
x−B⊤

i DiBix

cγ + 1
.

Then we have B⊤
i DiBix =

∑
l∈Li

di,lblb
⊤
l x. For x ∈ Fk, by (36), if k ∈ Li, then ui ∈ Fk+1;

otherwise, ui ∈ Fk. This completes the proof. □
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F.5 Proof of Lemma 4.3

Proof: Since we can assume x0 = 0, Lemma F.2 implies ∇r1 ∈ F1. Then from step 1, we have
I0 = F1

19.

Then we focus on the second claim and examine how many dimensions of the information set we can
increase after a round of communication.

Since we choose node 1 as the master node, we have access to∇r1 and proxγr1 in each communication
round. Recall that we set L1 as the empty set. Lemma F.2 guarantees that the information provided
by r1 can never expand the information set unless the information set only contains 0. Thus, (26)
does not affect the information set, i.e., I1t+1 = I0t+1 for any t ≥ 0.

When at = 0, only (25) can expand the information set. By Lemma F.2, if it satisfies k ∈ Lit ,
we have I1t+1 = I0t+1 ⊆ Fk+1. Otherwise, we still have I1t+1 = I0t+1 ⊆ Fk. Then step 4 in
Definition F.1 implies It+1 = I1t+1.

When at = 1, from the above analysis, we always have It+1 ⊆ Fk+1. By Lemma F.2, (27) could
expand the information set by at most one dimension. It follows that ỹt+1 ∈ Fk+2. Using Lemma F.2
again yields It+1 ⊆ Fk+3. □

F.6 Proofs of Corollary F.4

Proof: We prove the first claim by induction on t. That is to say, we prove that for any integer
t ≥ −1, It+1 ⊆ F3k−2 for any k satisfying t < Tk. Define k(t) as the positive integer such that
Tk(t)−1 ≤ t < Tk(t). From the monotonicity of F·, it suffices to prove It+1 ⊆ F3k(t)−2.

By Lemma F.2, we have I0 = F1 and k(−1) = 1. The claim holds for t = −1. Suppose that
It+1 ⊆ F3k(t)−2. If 3k(t) − 2 ∈ Lit+1

or at+1 = 1, Lemma 4.3 together with (29) implies
k(t+ 1) = k(t) + 1 and It+2 ⊆ F3k(t)+1 = F3k(t+1)−1. Otherwise, we still have k(t+ 1) = k(t)
and It+2 ⊆ F3k(t)−1 = F3k(t+1)−1.

For the second claim, the independence of {Yk}k≥1 is natural consequence of the independence of
{(it, at)}t≥1.

For the last one, note that 3k − 2 ∈ Lit is equivalent to it ≡ 3k−1(mod (n−1)) for 2 ≤ it ≤ n.
Then we have for k′ ≡ 3k−1(mod (n−1)), 2 ≤ k′ ≤ n,
P(Tk − Tk−1 = s) = P(iTk−1+1 ̸= k′, . . . , iTk−1+s−1 ̸= k′, aTk−1+1 = · · · = aTk−1+s−1 = 0,

iTk−1+s = k′ or aTk−1+s = 1)

(i)
= [(1− qk′)(1− p)]s−1 [1− (1− qk′)(1− p)] ,

where (i) is due to the independence of {(it, at)}t≥1. So Yk = Tk − Tk−1 is a geometric random
variable with success probability 1− (1− qk′)(1− p) = qk′ + p− qk′p. □

F.7 Proof of Proposition F.5

Proof: By Corollary F.4, if N − 1 < TM+1, then IN ⊆ F3M+1 ⊆ Fm−1. Thus we have

E min
x∈IN

r(x)− min
x∈Rm

r(x) ≥ E
[
min
x∈IN

r(x)− min
x∈Rm

r(x)

∣∣∣∣N − 1 < TM+1

]
P(N − 1 < TM+1)

≥E
[

min
x∈F3M+1

r(x)− min
x∈Rm

r(x)

∣∣∣∣N − 1 < TM+1

]
P(N − 1 < TM+1) ≥ 9ϵP(N − 1 < TM+1).

By Corollary F.4 again, TM+1 can be written as TM+1 =
∑M+1

l=1 Yl, where {Yl}1≤l≤M+1 are
independent random variables, and Yl ∼ Geom(q̃l) with q̃l = ql′ +p−pql′ , l′ ≡ 3l−1(mod (n−1))
and 2 ≤ l′ ≤ n. Moreover, Definition F.1 guarantees max2≤l′≤n q

′
l ≤ q0/n and p ≤ c0/n. Then we

have
∑M+1

l=1 q̃l ≤ (q0 + c0)(M + 1)/n. Therefore, by Lemma A.6, we have

P(TM+1 > N − 1) = P

(
M+1∑
l=1

Yl >
n(M + 1)

4(q0 + c0)

)
≥ P

(
M+1∑
l=1

Yl >
(M + 1)2

4
∑M+1

l=1 q̃l

)
≥ 1

9
,

19In the definition of the information set, each fi is replaced by ri here.

31



which implies our desired result. □

F.8 Proof of Proposition F.6

Proof: Property 1. By Proposition 4.2, we have fh is λc/β2-strongly convex and fh
i ’s satisfy

λ
√
8n+ 4/β2-AveSS. One can check λc/β2 = µ and λ

√
8n+ 4/β2 = δ.

Property 2. Let ξ := λ/β2 = µ(ρ2 − 1)/4. We have

fh(x) =
ξ

2
x⊤A(m, ζ)x+

µ

2
∥x∥2 − ξβ ⟨e1,x⟩ .

Letting∇fh(x) = 0 yields (ξA (m, ζ) + µI)x = ξβe1, or equivalently.
1 + µ

ξ −1
−1 2 + µ

ξ −1
. . . . . . . . .

−1 2 + µ
ξ −1

−1 ζ2 + 1 + µ
ξ

x =


β
0
...
0
0

 . (37)

Since q = ρ−1
ρ+1 , we get 2 + µ

ξ = 2ρ2+2
ρ2−1 = q + 1

q and ζ2 + 1 + µ
ξ = ρ+1

ρ−1 = 1
q . We solve (37) by

xm−1 −
xm

q
= 0, xk −

(
q +

1

q

)
xk+1 + xk+2 = 0, k ∈ [m− 2],

(
q +

1

q
− 1

)
x1 − x2 = β.

Thus, x∗ = β
1−q (q, q

2, . . . , qm)⊤ and fh(x∗) = − ξβ⟨e1,x∗⟩
2 = − ξβ2q

2(1−q) = −
λ(ρ−1)

4

(31)
= −∆.

Property 3. If x ∈ Fk, 1 ≤ k < m, then xk+1 = xk+2 = · · · = xm = 0. Let y denote the first k
coordinates of x and Ak denote the first k rows and columns of A(m, ζ). Then for any x ∈ Fk, we
can rewrite fh(x) as

f̂h(y) := fh(x) =
ξ

2
y⊤Aky +

µ

2
∥x∥2 − ξβ ⟨ê1,y⟩ ,

where ê1 is the first k coordinates of e1. Let∇fk(y) = 0, that is
1 + µ

ξ −1
−1 2 + µ

ξ −1
. . . . . . . . .

−1 2 + µ
ξ −1

−1 2 + µ
ξ

y =


β
0
...
0
0

 .

Similarly, we need to solve

xm−1 =

(
q +

1

q

)
xm, xk−

(
q +

1

q

)
xk+1+xk+2 = 0, k ∈ [m−2],

(
q +

1

q
− 1

)
x1−x2 = β.

By some computation, one can check the solution is

y∗ =
βqk+1

2(q − 1)(1 + q2k+1)

(
q−k − qk, q−(k−1) − qk−1, . . . , q−1 − q1

)⊤
.

Thus, we have

fh(y∗) = −
ξβ ⟨ê1,y∗⟩

2
=

ξβ2q

2(1− q)
· 1− q2k

1 + q2k+1
=

λ(ρ− 1)

4
· 1− q2k

1 + q2k+1
=

(1− q2k)∆

1 + q2k+1
,

and by q < 1, we further have that

min
x∈Fk

fh(x)− min
x∈Rm

fh(x) = fh(y∗)−fh(x∗) = ∆

(
1− 1− q2k

1 + q2k+1

)
=

(1 + q)q2k∆

1 + q2k+1
≥ ∆q2k.

Moreover, recall that x∗ = β(ρ+1)
2 (q, q2, . . . , qm)⊤. Then we have

min
x∈Fk

∥x− x⋆∥2 =
β2(ρ+ 1)2

4

m∑
i=k+1

q2i ≥ β2(ρ+ 1)2q2

4
q2k =

4∆

µ(ρ+ 1)
q2k.

This completes the proof. □

32



F.9 Proof of Theorem F.7

Proof: Let q = ρ−1
ρ+1 and M =

⌊
log(∆/9ϵ)
6 log 1/q −

1
3

⌋
. From the condition on ϵ and the definition of m,

one can check 0 ≤ M ≤ (m − 2)/3 and m ≥ 3. Moreover, we have 3M + 1 ≤ log(9ϵ/∆)
2 log q . Then

by Proposition F.5, after N = n(M+1)
4(q0+c0)

+ 1 rounds of communication, the information set satisfies
IN ⊆ F3M+1 ⊆ Fm−1. The third property of Propostion F.6 implies

min
x∈F3M+1

fh(x)− min
x∈Rm

f(x) ≥ ∆q6M+2 ≥ 9ϵ.

Then by Proposition F.5 again, in order to find x̂ such that Efh(x̂) − minx∈Rm fh(x) < ϵ, the
algorithm A needs at least N communication rounds.

Now we give a lower bound N . According to whether 2δ/µ is larger than
√
2n+ 1, we divide the

analysis into two cases.

Case 1: 2δ/µ ≥
√
2n+ 1. Then ρ ≥

√
2. By inequality 0 < log(1 + x) ≤ x,∀x > 0, we get

1

log 1
q

=
1

log
(
1 + 2

ρ−1

) ≥ 1
2

ρ−1

=
ρ− 1

2
=

1

2

(√
2δ/µ√
2n+ 1

+ 1− 1

)
≥

√
2δ/µ

6 4
√
2n+ 1

,

where the final inequality uses
√
t+ 1− 1 ≥

√
t/3,∀t ≥ 1. Moreover, the condition on ϵ implies

log ∆
9ϵ ≥ 3 log 1

q . Then we have

M + 1 ≥
log ∆

9ϵ

6 log 1
q

− 1

3
≥

log ∆
9ϵ

18 log 1
q

≥
√
2δ/µ

108 4
√
2n+ 1

log
∆

9ϵ
= Ω

(√
δ/µ

n1/4
log

1

ϵ

)
.

It follows that N = n(M+1)
4(q0+c0)

+ 1 = Ω
(
n3/4

√
δ/µ log(1/ϵ)

)
. The total communication cost in

expectation is of the order Θ(n+N) = Ω
(
n+ n3/4

√
δ/µ log(1/ϵ)

)
.

Case 2: 2δ/µ <
√
2n+ 1. In this case, we have 1 ≤ ρ <

√
2 and consequently

log
1

q
= log

(
1 +

2

ρ− 1

)
(i)

≤ log

(
1 +

3
√
2n+ 1

δ/µ

)
≤ log

(
7µ
√
2n+ 1

2δ

)
≤ 2+log

(
µ
√
2n+ 1

2δ

)
,

where (i) uses
√
t+ 1− 1 ≥ t/3,∀0 < t ≤ 1 and ρ =

√
2δ/µ√
2n+1

+ 1, Moreover, the condition on ϵ

implies log ∆
9ϵ ≥ 3 log 1

q . Then we have

M + 1 ≥
log ∆

9ϵ

6 log 1
q

− 1

3
≥

log ∆
9ϵ

18 log 1
q

= Ω

(
log(1/ϵ)

1 + (log(µ
√
n/δ))+

)
.

where (a)+ denote max{a, 0}. It follows that N = n(M+1)
4(q0+c0)

+1 = Ω
(

n log(1/ϵ)
1+(log(µ

√
n/δ))+

)
. The total

communication cost in expectation is of the order Θ(n+N) = Ω
(
n+ n log(1/ϵ)

1+(log(µ
√
n/δ))+

)
. □

G Experiment Details

We show some detail of our numerical experiments in this section. The computation of problem-
dependent parameters is defined as follows. Since the objective is

f(x) =
1

n

n∑
i=1

fi(x) := 1

m

m∑
j=1

(
z⊤
i,jx− yi,j

)2
+

µ

2
∥x∥2

 ,

Let Zi = (zi,1, · · · , zi,m) /
√
m/2,yi = (yi,1, . . . , yi,m)⊤/

√
m/2. We reformulate fi, i ∈ [n] into

fi(x) =
1

2

∥∥Z⊤
i x− yi

∥∥2 + µ

2
∥x∥2 ,∇2fi(x) = ZiZ

⊤
i + µId.
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Table 2: The choices of interpolation τ = sτ0 in experiments.
Katyusha X AccSVRS

Synthetic data µ 1 0.1 0.01 1 0.1 0.01
s 1 2 5 2 5 10

Real data µ 0.1 0.01 0.001 0.1 0.01 0.001
s 1 1 2 2 0.5 0.5
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Figure 2: Numerical experiments on real data. The corresponding coefficients are shown in the title
of each graph. We plot the function gap on a log scale versus the number of communication steps,
where one exchange of vectors counts as a communication step.

Thus, we obtain the smoothness of each fi is Li = ∥Zi∥2 + µ, and L := maxi∈[n] Li. Obviously, f
is µ-strongly convex.

For the synthetic data, we first generate a random symmetric matrix Z0 ∈ Rd×d with d = 100 and
∥Z0∥ = 3000, then we add a perturbed symmetric matrix Ni,∀i ∈ [n] with n = 400, ∥Ni∥ ≈ 30 to
obtain Zi = Z0 +Ni. We also add a correction λmin(Zi)Id to Zi to further make Zi ⪰ 0. Finally,
we recompute the center matrix Z =

∑n
i=1 Zi/n and δ-average similarity coefficient following

AveHS in Eq. (6) as

δ =

√√√√ 1

n

n∑
i=1

∥Zi −Z∥2.

We use the analytic solution obtained by the proximal step since

proxθf1(x0) := argmin
x∈Rd

f1(x) +
1

2θ
∥x− x0∥2 =

[
Z1Z

⊤
1 +

(
µ+

1

θ

)
Id

]−1 (
Z1y +

x0

θ

)
.

For Katyusha X [6, Fact 4.2], and AccSVRS (Thm 3.6), we scale the interpolation coefficient τ = sτ0
with s ∈ {0.5, 1, 2, 5, 10} and τ0 is the theoretical value. The finally used scaling s is shown in
Table 2. The initial points of all methods are the same, which are sampled from Unif(Sd−1).

We also run the real data ‘a9a’ from LIBSVM library [16], where we split it into n = 50 datasets
with the data size m = 600. The results are shown in Figure 2, and we can observe similar behavior
of our methods.
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