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Abstract

Weight decay is a standard technique to improve generalization performance in
modern deep neural network optimization, and is also widely adopted in federated
learning (FL) to prevent overfitting in local clients. In this paper, we first explore
the choices of weight decay and identify that weight decay value appreciably in-
fluences the convergence of existing FL algorithms. While preventing overfitting
is crucial, weight decay can introduce a different optimization goal towards the
global objective, which is further amplified in FL due to multiple local updates and
heterogeneous data distribution. To address this challenge, we develop Federated
optimization with Normalized Annealing Regularization (FedNAR), a simple yet
effective and versatile algorithmic plug-in that can be seamlessly integrated into
any existing FL algorithms. Essentially, we regulate the magnitude of each update
by performing co-clipping of the gradient and weight decay. We provide a compre-
hensive theoretical analysis of FedNAR’s convergence rate and conduct extensive
experiments on both vision and language datasets with different backbone federated
optimization algorithms. Our experimental results consistently demonstrate that in-
corporating FedNAR into existing FL algorithms leads to accelerated convergence
and heightened model accuracy. Moreover, FedNAR exhibits resilience in the face
of various hyperparameter configurations. Specifically, FedNAR has the ability
to self-adjust the weight decay when the initial specification is not optimal, while
the accuracy of traditional FL algorithms would markedly decline. Our codes are
released at https://github.com/ljb121002/fednar.

1 Introduction
FL has emerged as a privacy-preserving learning paradigm that eliminates the need for clients’ private
data to be transmitted beyond their local devices [1, 2, 3]. FL presents challenges in addition to
traditional distributed learning, including communication bottlenecks, heterogeneity in hardware
resources and data distributions, privacy concerns, etc [4]. Numerous machine learning applications
necessitate training in FL. For instance, hospitals may wish to cooperatively train a predictive
healthcare model, but privacy regulations may mandate that each hospital’s data remains local [5].

In traditional distributed optimization, local gradients are calculated for each client per iteration and
subsequently sent to a global server for amalgamation. However, the communication constraints
within Federated Learning (FL) entail multiple model updates prior to the aggregation phase at
the global server, as exemplified by the widely-employed FedAvg framework [1]. Considering the
skewed data distribution and multiple local updates for communication efficiency, it’s pivotal to
guard against overfitting models to local data. Algorithms like FedProx [4] and SCAFFOLD [6] were
designed to address this issue. They build upon the FedAvg approach by integrating regularization
terms during local training and employing weight decay in their local optimizers to combat overfitting
on local clients. However, a frequently overlooked trade-off exists: local weight decay introduces an
optimization objective that differs from the global one, an issue magnified in FL due to the numerous
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local updates from clients with varied data distributions. As demonstrated in Figure 1, a weight decay
just slightly larger than optimal can result in an approximate 10% drop in accuracy. This poses a
compelling research question:

Figure 1: Accuracy of three FL al-
gorithms (i.e., FedAvg, FedProx,
and SCAFFOLD) after 1000
rounds using different weight de-
cay coefficients. See details in
Section 3.

How can we strike a balance between averting overfitting on clients
using weight decay, and minimizing update divergence in FL?

In this study, we acknowledge the significant role weight decay
coefficients play in FL algorithms and undertake an exhaustive ex-
amination of their effects. Our results demonstrate that current FL
algorithms are highly susceptible to variations in weight decay val-
ues. To reconcile the need to prevent overfitting with the aim to
minimize update divergence, we present an adaptive weight decay
strategy named Federated Optimization with Normalized Annealing
Regularization (FedNAR). FedNAR is a cost-efficient approach that
can be effortlessly incorporated into any prevailing FL algorithm
as an algorithmic plug-in. At its core, we govern the magnitude of
each weight update by limiting the norm of the sum of the gradient
and weight decay. We conduct a meticulous theoretical analysis for
universally adaptive weight decay functions, proving that our FedNAR is a logically sound choice for
achieving convergence from a theoretical perspective. Through an array of experiments spanning
computer vision and language tasks, we establish that FedNAR fosters improved convergence and
facilitates superior final accuracy.

Our contributions. More specifically, we made the following contributions in this work to the
entire federated learning and optimization community

• We empirically observed that FL settings make weight decay more crucial in training.
• Based on the observation described above, we designed FedNAR, an algorithmic plug-in to

control the magnitude of weight decay that is compatible with all existing FL algorithms.
• We propose the first theoretical framework of FL that takes weight decay into account and

show that FedNAR is guaranteed to converge under FL scenarios.
• We conduct extensive experiments on vision and language tasks by plugging FedNAR into

state-of-the-art baselines, which demonstrate that adopting FedNAR generally leads to faster
training and higher accuracy.

1.1 Related work
FL is a paradigm for collaborative learning with decentralized private data [7, 1, 4, 2, 3]. Standard
approach to FL tackles it as a distributed optimization problem where the global objective is defined by
a weighted combination of clients’ local objectives [8, 4, 9, 10]. Theoretical analysis has demonstrated
that federated optimization exhibits convergence guarantees but only under certain conditions, such
as a bounded number of local epochs [11]. Other work has tried to improve the averaging-based
aggregations [12, 13]. Techniques such as secure aggregation [14, 15, 16] and differential privacy [17,
18] have been widely adopted to further improve privacy in FL [19]. Our FedNAR is based on the
standard FedAvg [1] framework and can be adapted to different settings.

In order to enhance convergence in a communication-efficient framework, addressing the challenges
posed by highly imbalanced data, we highlight the significance of weight decay, which is crucial in
modern deep neural network (DNN) training. Extensive research in centralized training has explored
various methods to incorporate weight decay into optimization algorithms, such as AdamW [20] and
WIN [21]. However, the integration of weight decay into FL remains relatively unexplored, both in
terms of theoretical understanding and practical implementation. A recent study by [22] delved into
the examination of weight decay during server updates in the context of FL. Nevertheless, their focus
was primarily on tuning the global weight decay parameter, neglecting the exploration of weight
decay in local updates. Additionally, their choice of the global weight decay parameter relied on a
proxy dataset, which is unrealistic and lacks theoretical guarantees.

2 Preliminaries: federated optimization formulation
Our objective is to minimize the loss function F (x) of a model x, which is trained on data dispersed
across M clients, as denoted by:
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x
⇤ = argmin

x
F (x) = argmin

x

MX

i=1

Fi(x),

where Fi(x) corresponds to the loss function calculated using the data located on the i-th client.
Federated optimization introduces two key constraints: privacy and communication efficiency. The
privacy constraint ensures that clients retain their data without sharing, whereas the communication
constraint emerges due to the substantial cost and restricted capacity of network bandwidth. As a
result, only a fraction of clients can engage in each communication round with the server in practice.
To circumvent these constraints, FedAvg has been proposed as a prevalent communication-efficient
FL framework [1]. For a round 1  t  T , we show an illustration of FedAvg in Algorithm 1.

Algorithm 1 Round t of FedAvg

Require: Global model xt�1, learning rate �l,�g , number of local updates ⌧ .
1: for Client i = 1, · · · ,M do
2: Let xt,i

0 = xt�1. Update xt,i
k = xt,i

k�1 � �lrFi(x
t,i
k�1) for k = 1, · · · , ⌧ .

3: Send local update �t,i = xt,i
0 � xt,i

⌧ back to the server.
4: end for
5: Aggregate local updates: �t = 1

M

PM
i=1 �

t,i, and update global model: xt = xt�1 � �g�
t.

In the original FedAvg formulation, local updates on each client are realized through (stochastic)
gradient descent (SGD/GD) with the loss function Fi(x), identical to the global objective. On
the FedAvg foundation, we can further adjust the local loss function to be Fi(x) + ⇣i(x), where
⇣i(x) serves as a regularization term, enabling faster convergence in the federated learning context.
For instance, “client drift”, a common problem in federated learning due to multiple local updates
preceding aggregation, can be mitigated by adding a proximal term. FedProx [4] employs a local
loss Fi(x) +

µ
2 kx � x0k

2 that incorporates an additional proximal term ⇣i(x) = µ
2 kx � x0k

2 to
counteract overfitting in local clients. Similarly, SCAFFOLD [6] introduces local control variables ci
and a global control variable c and modifies the local gradient to be rFi(x)� ci + c. Thus, ⇣i(x)
equates to (c� ci)Tx.

3 An empirical study of weight decay
Weight decay is a well-established approach in standard centralized deep neural network training,
primarily used to prevent overfitting [23, 20]. In the realm of FL, weight decay values generally
mirror those employed in centralized training. In this section, we meticulously explore the impact of
weight decay on federated optimization. In addition to the original FedAvg, we investigate various
methodologies including {FedProx, SCAFFOLD}, which adjust local updates, and {FedAvgm,
FedAdam} [9], which utilize SGD with momentum and Adam, respectively, in the global update
while treating aggregated local updates as pseudo-gradient. We also assess FedExP [24], which
adaptively modulates the global learning rate.

We evaluate all the aforementioned algorithms on the CIFAR-10 dataset, partitioned among 100
clients under three different settings. Following [25], in each setting, we initially sample a class
distribution pi ⇠ Dirichlet(↵, . . . ,↵) for each client i, and subsequently sample training data in
accordance with the distributions pi. When the value of ↵ is low, the sampled individual probabilities
pi exhibit higher concentration, whereas for greater values of ↵, the concentration diminishes.
Consequently, a larger value of ↵ corresponds to a more balanced data distribution across clients.

We train a ResNet-18 for each algorithm on CIFAR-10 for our empirical study. Figure 2 presents the
test accuracy plotted against weight decay values from {10�4

, 10�3
, 10�2

, 5⇥ 10�2
, 10�1} for each

setting. The y-axis range is maintained consistently between (50, 95) across all settings to facilitate a
clear comparative analysis of the influence of weight decay under varied settings.

In the baseline setting (a), the influence of weight decay on the performance of each algorithm is
pronounced in two primary ways. Firstly, a noteworthy enhancement in accuracy exceeding 6% is
observed when leveraging optimal weight decay as compared to sub-optimal weight decay. This
improvement outstrips the differences discerned across various algorithms. Secondly, increasing
weight decay to be slightly larger than the optimal value, such as from 0.05 to 0.1 or from 0.01 to
0.05, can cause a considerable plunge in accuracy exceeding 10% and even verging on 30%. This
underscores the phenomenon of amplified update deviation in FL. However, both of these elements
are tempered when either the number of local updates is curtailed in (b) or a balanced data distribution
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Figure 2: Influence of weight decay for different settings. We train each algorithm (i.e., FedAvg, FedProx,
SCAFFOLD, FedExp, FedAdam, FedAvgm) over 1000 rounds with ⌧ local steps per round, a local learning rate
of 0.01, and a global learning rate of 1.0. We apply a decay for the local learning rate of 0.998 per round and a
gradient clipping of max norm 10 as per [24]. Given that multiple local steps and imbalanced data distribution
are two distinguishing features of FL, we utilize various pairs of (↵, ⌧) to observe their influence on the results.
The baseline setting is chosen to be (↵, ⌧) = (0.3, 20), resulting in a highly imbalanced data distribution. The
second configuration reduces the number of local updates to (↵, ⌧) = (0.3, 5). The third configuration employs
a balanced data distribution with (↵, ⌧) = (10, 20).

is deployed in (c). In these scenarios, the accuracy curve corresponding to weight decay is more
leveled for each algorithm, and the dip in accuracy is significantly reduced when weight decay is
slightly elevated from the optimal value.

This finding underscores how the training paradigm in FL can modulate the impact of weight
decay. However, prior work has largely overlooked the role of weight decay, both theoretically and
experimentally. Convergence analyses in prior studies did not take into account the influence of
weight decay and assigned its value as 0. Moreover, previous experiments either adopted values akin
to those utilized in centralized training, or fine-tuned it within a restricted range, or simply set it to 0.

4 FedNAR and its convergence analysis
Driven by the recognized shortcomings of previous studies, we introduce the first analytical framework
for convergence that incorporates local weight decay, examining its resulting deviation and how it
impacts global updates. Following this theoretical exploration, we propose our FedNAR algorithm.
Designed with the dual aims of ensuring a theoretical guarantee and achieving an optimal rate of
convergence, FedNAR marks a significant advancement in this field.

4.1 A general federated optimization framework
Our theoretical analysis can cover adaptive learning rate and weight decay. Say the model is of
dimension d. We first define two functions �, µ : N ⇥ Rd

⇥ Rd
! R+, and for t � 0, we denote

�t = �(t, ·, ·), µt = µ(t, ·, ·) as mappings with the domain of definition on the gradient space and
weight space. These two functions stand for learning rate and weight decay respectively. This
framework can be adapted to any FL algorithms by making the learning rate and weight decay to be
adaptive. We present the framework in Algorithm 2. This framework holds for arbitrary functions
� and µ. We will clarify the choices of � and µ in FedNAR later in equation 3 and 4 after some
theoretical analysis, and make clear where the “Normalized Annealing Regularization" in FedNAR
comes from. In the following, we denote f

t,i
k (x) to be the loss function computed on a stochastic

batch instead of Fi(x).
Algorithm 2 is a generalized version of FedAvg that incorporates adaptive local learning rate and
adaptive weight decay. We can recover the original FedAvg by setting �t(g, x) and µt(g, x) to
be constant functions. It is worth emphasizing that although most previous works like FedAvg
and FedProx employed local weight decay, they did not integrate it into their theoretical analysis.
However, our empirical investigations in Section 3 demonstrate that weight decay could significantly
affect the convergence of federated optimization. Therefore, we argue that thorough empirical and
theoretical analysis is needed to better understand this term.

4.2 Convergence analysis and FedNAR
To initiate the theoretical analysis, we present three standard assumptions that are widely used in
federated optimization literature [24, 10]. The initial two are conventional assumptions utilized in the
general analysis of SGD optimizer, while the third one is common in FL theory.
Assumption 1 (Smooth loss functions). Every local loss function is L-smooth, i.e., there exists L > 0
such that for any client 1  i  M , the gradient satisfies krFi(x)�rFi(y)k  Lkx� yk.
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Algorithm 2 FedNAR
Require: Functions �t, µt, Fi, constant �g, T, ⌧ > 0, sets Ct.
1: for Communication rounds t = 1, · · · , T do
2: Global server sends model xt�1 to participated clients in round t.
3: for Client i 2 Ct do
4: Let xt,i

0 = xt�1.
5: for Iteration k = 1, · · · , ⌧ do
6: Compute (stochastic) gradient: gt,ik�1 = rf t,i

k�1(x
t,i
k�1).

7: Compute adaptive learning rate and weight decay:

�t,i
k�1 = �t(g

t,i
k�1, x

t,i
k�1), µt,i

k�1 = µt(g
t,i
k�1, x

t,i
k�1).

8: Update xt,i
k = (1� µt,i

k�1)x
t,i
k�1 � �t,i

k�1g
t,i
k�1.

9: end for
10: Send local update �t,i = xt,i

0 � xt,i
⌧ back to the server.

11: end for
12: Aggregate local updates: �t = 1

|Ct|
P|Ct|

i=1 �t,i, and update global model: xt = xt�1 � �g�
t.

13: end for

Assumption 2 (Unbiased gradient and bounded variance). For any client 1  i  M , the stochastic
gradient is an unbiased estimator of the full-batch gradient, i.e., E[rf

t,i
k (x)] = rFi(x), and there

exists �2
> 0, such that for any 1  i  M , E[krf

t,i
k (x)�rFi(x)k2]  �

2.

Assumption 3 (Bounded heterogeneity). There exists �
2
g > 0, such that 1

M

PM
i=1 krFi(x) �

rF (x)k2  �
2
g holds for any x 2 Rd.

Our findings suggest that certain limitations on �t and µt are necessary to ensure the convergence of
FedNAR. We begin by presenting a lemma that demonstrates the impact of local adaptive weight
decay and gradients on the global update process.1

Lemma 1. For round t � 1, the global update is equivalent to be

x
t = (1� µ

t�1
g )xt�1

� �gh
t
,

where

µt�1
g := �g � �g

M

MX

i=1

⌧�1Y

j=0

(1� µt,i
j ), ht :=

1
M

MX

i=1

⌧�1X

j=0

�t,i
j

⌧�1Y

r=j

(1� µt,i
r )gt,ij . (1)

We show the full proof in Appendix B. Lemma 1 highlights that the additional weight decay in
local updates introduces a deviation µ

t�1
g x

t�1 in the global update. Previous works on federated
optimization [4, 24, 6] did not include weight decay in their theoretical analysis, leading to µ

t,i
j

always being zero, and µ
t�1
g = �g �

�g

M · M = 0. Moreover, we can see that larger ⌧ further
intensifies the deviation, since µ

t�1
g = �g(1 �

1
M

PM
i=1

Q⌧�1
j=0 (1 � µ

t,i
j )), and larger ⌧ implies

that µt�1
g increases and approaches �g. This highlights that the communication-efficient training

framework of FL amplifies the impact of weight decay.

So to achieve convergence with local weight decay, it is necessary to regulate this deviation µ
t
gx

t.
Therefore, we present the following result to control the norm of the global model, i.e., kxt

k, as the
first step.
Theorem 1. If the functions �t and µt satisfy that there exists A > 0, such that for any t � 0, and
(g, x) 2 Rd

⇥ Rd, k�t(g, x)g + µt(g, x)xk  A, then the norm of global model in Algorithm 2 is at
most polynomial increasing with respect to t, i.e., kxtk  O(poly(t)).

We want to emphasize that the condition required for � and µ to achieve polynomial increasing speed
in Theorem 1 is practical and commonly used in real-world training. Many previous works, such as

1Here we assume full-client participation, following previous works [10, 24]. However, our analysis can be
easily extended to partial-client participation, as demonstrated in [10].
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[26, 24], adopt gradient scaling based on norm, which bounds the term k�t(g, x)gk by a constant
related to the clipping value. Similarly, we can bound kµt(g, x)xk using norm clipping, for example,
by setting µt(g, x) = µmin{1, c/kxk} for some constant c and µ. Therefore, the condition is easily
satisfied from a practical standpoint.

Finally, we give the convergence result for FedNAR in the following Theorem.
Theorem 2. Under Assumptions 1, 2 and 3, if �t and µt satisfy the condition in Theorem 1,
and also if there exists {ut} with an exponential decay speed, such that for any t � 0, and any
g, x 2 Rd

, µt(g, x)  ut, then the global model {xt
} satisfies:

min
1tT

EkrF (xt)k2  O

✓
1

T

◆
+O

0

B@ L�
2
g⌧

2
C

2

| {z }
weight decay error

+L�
2
g⌧ l

2
⇤(⌧�

2 + L
2
⌧
2
A

3 + �
2
g)| {z }

client drift and data heterogeneity error

1

CA ,

where l⇤ = maxt{lt}, with lt = maxg,x{�t(g, x)}, and C satisfies utkx
t
k, utkx

t
k
2
 C for any t.

Discussions. For the first time, we demonstrate that federated optimization, with non-convex objec-
tive functions and stochastic local gradient, achieves convergence when employing adaptive learning
rate and weight decay. Our findings resemble previous studies [26, 10], featuring a diminishing term
O(1/T ) as well as a non-vanishing term arising from weight decay, client drift, and data heterogeneity
in FL. Notably, our bound recovers previous results when weight decay is disregarded, i.e., C = 0.
The detailed proof can be found in the Appendix B. Here we briefly explain the condition of
exponential decreasing. To tackle the case with deviation caused by local weight decay, one of the
key steps is to bound kµ

t
gx

t
k by a constant as shown in the complete proof. So for this term, we have

kµt
gx

tk = �g

 
1� 1

M

MX

i=1

⌧�1Y

j=0

⇣
1� µt+1,i

j

⌘!
kxtk  �g

 
1� 1

M

MX

i=1

(1� ut+1)
⌧

!
kxtk

 �g

 
1� 1

M

MX

i=1

(1� ⌧ut+1)

!
kxtk = �g⌧ut+1kxtk  �g⌧C, (2)

which is a constant unrelated to t. Here the second inequality is from (1 � ↵)n � 1 � n↵ for
0  ↵  1 and n � 1. We can see that the exponential decrease condition can be released as long as
the decay of {ut} can control {kxt

k}. Since we have already shown a polynomial increasing rate for
{kx

t
k}, a convenient choice for both theory and practice is to set {ut} an exponential decrease. We

summarize the conditions of � and µ needed to provide convergence below:
Condition 1. There exists A > 0, such that for any t � 0 and (g, x) 2 Rd

⇥ Rd, k�t(g, x)g +
µt(g, x)xk  A. There exists {ut} # 0 with exponential decay, such that for any t � 0, and any
(g, x) 2 Rd

⇥ Rd, µt(g, x)  ut.

Choice of � and µ. In order to meet the requirement of Condition 1, a straightforward and intuitive
way is to use clipping. We start by selecting two sequences lt and ut, where ut = u0�

t for some
� < 1 is the control sequence of µt. The sequence {lt} is the learning rate schedule, and is usually
set to be a constant or decrease over training. Then we define

�t(g, x) :=

⇢
lt ·A/kg + utx/ltk, if kg + utx/ltk > A

lt, otherwise
, (3)

and

µt(g, x) :=

⇢
ut ·A/kg + utx/ltk, if kg + utx/ltk > A

ut, otherwise
. (4)

We can easily verify that the choices of �t and µt given in equations 3 and 4 satisfy Condition 1. See
details in Appendix B. Hence, we choose these functions as the input of Algorithm 2.

4.3 Understanding FedNAR
Normalized annealing regularization. Now we can explain why we call our method “Normalized
Annealing Regularization". First, the regularization term is co-normalized with the gradient term.
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Second, the "annealing" comes from two aspects: (1) The sequence ut decays with an exponential
rate, and µt(g, x)  ut uniformly for all (g, x). (2) We observe from experiments that the norm of x
keeps increasing, so the term kg+utx/ltk will also keep increasing. NAR computes A/kg+utx/ltk

which by the preceding argument is a decreasing term, thus introducing another form of decay. We
will provide further illustrations of this in the experiment section.
Flexibility of FedNAR. Since FedNAR’s convergence analysis does not impose any extra conditions
on the local loss functions, it generalizes several FL algorithms with distinct local training objectives,
while conferring upon them theoretical assurances comparable to FedNAR. For example, FedProx
and SCAFFOLD only differ from FedAvg on local loss functions. Thus, we only need to change
Line 6 in Algorithm 2 to the corresponding loss functions in FedProx and SCAFFOLD to obtain
FedProx-NAR and SCAFFOLD-NAR.
Comparison with gradient clipping. Gradient clipping [27] is a widely used technique in federated
optimization to enhance training stability as demonstrated by various studies [26, 24, 28]. It is
achieved by constraining the norm of gradients in each iteration. The technique involves setting
a threshold value and rescaling the gradients if they exceed this limit. In our framework, gradient
clipping can be represented by setting

�t(g, x) :=

(
lt ·A/kgk, if kgk > A

lt, otherwise
, and µt(g, x) := ut. (5)

Our proposed FedNAR distinguishes itself from previous gradient clipping strategies in two primary
ways. First, both our weight decay and learning rate functions are adaptive, with dependencies on the
current gradient and model weights. This contrasts with traditional gradient clipping, which only
adapts the learning rate function based on the current gradient. Second, instead of solely employing
the norm of the gradient, FedNAR adopts the norm of the sum of the gradient and weight decay as
the clipping criterion. This strategy ensures that each local update is bounded, thereby preventing
potential explosions caused by large decay terms µt,i

k x
t,i
k in federated optimization. Consequently,

FedNAR not only guarantees convergence but also bolsters training stability within the context of
federated optimization.
Implementation of FedNAR. Implementing FedNAR merely requires specifying an initial weight
decay and a decay rate. Therefore, for state-of-the-art baseline methods that employ gradient
clipping [24, 26], no additional hyperparameters are needed. Fundamentally, FedNAR can be
interpreted as a modest alteration that adjusts the sequence of gradient clipping and weight decay
operations. Consequently, the implementation of FedNAR can be as uncomplicated as modifying a
single line of code, resulting in a solution that is both highly effective and efficient.

5 Experiments
We show the results of FedNAR for both vision and language datasets in this section.

5.1 Main results
Experiments on the CIFAR-10 dataset. As outlined in Section 3, we manually partition the
CIFAR-10 dataset into 100 clients, following the methodology described in [25, 24]. Specifically,
we randomly assign a distribution pi ⇠ Dirichlet(↵, . . . ,↵) to each client i, then draw data from the
training set in line with these distributions {pi}. We choose ↵ from the set {0.3, 1, 10}, with larger
↵ values indicating a more balanced data distribution across each client. With ↵ = 0.3, the local
data distribution is highly skewed, whereas with ↵ = 10, the local distribution is nearly balanced
across all classes. We adhere to the training parameters and settings, optimally tuned as per [24].
For each algorithm, we conduct 1000 rounds of training for full convergence, with 20 steps of local
training per round. In each round, we randomly sample 20 clients. For the baseline algorithms, we
apply gradient clipping as suggested in [24, 26]. We set the local learning rate to 0.01 with a decay
of 0.998, and cap the maximum norm at 10 for both gradient clipping and FedNAR to ensure a fair
comparison.

Table 1 showcases the performance of FedAvg-NAR, FedProx-NAR, and SCAFFOLD-NAR across
different ↵ values. The results reveal a consistent performance boost offered by FedNAR across a
variety of ↵ values, with particularly significant improvements observed for skewed distributions.
Test accuracy after each training round is also illustrated in Figure 3.

The backbone algorithms, FedProx and SCAFFOLD, are variants of FedAvg that modify the local
training objective. FedNAR can be tailored to these client-side FedAvg variants, which provide a
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Table 1: Experimental results on the CIFAR-10 dataset, where the FedNAR plugin is incorporated into the
FedAvg, FedProx, and SCAFFOLD algorithms, with data partitioning across varying levels of heterogeneity
controlled by ↵.

↵ = 0.3 ↵ = 1 ↵ = 10Algorithm Baseline FedNAR Baseline FedNAR Baseline FedNAR

FedAvg 85.19 87.64 88.50 89.55 89.45 90.23
FedProx 85.02 87.45 88.56 89.58 89.37 90.38
SCAFFOLD 86.89 89.17 89.52 91.13 90.64 91.85
FedExP 86.46 88.55 88.28 89.51 88.82 89.69
FedAdam 84.12 85.81 87.35 87.78 88.86 89.56
FedAvgm 90.33 90.43 91.60 91.76 92.19 91.15

Figure 3: Test accuracy curve for FedAvg, FedProx, SCAFFOLD and their FedNAR variants for ↵ = 0.3. For
each training, we take 3 random seeds.

guarantee of convergence. Moreover, FedNAR can also be incorporated into server-side FedAvg
variants, which retain the local training but alter the global update. Table 1 showcases the results of
these implementations, using the same hyperparameter configurations. These results corroborate the
same conclusion.

Table 2: Experimental results on the Shakespeare dataset, where
the FedNAR plugin is incorporated into the FedAvg, FedProx,
and SCAFFOLD algorithms. WD denotes the initial weight decay
value applied in the first round.

WD = 10�4 WD = 10�3

Algorithm Baseline FedNAR Baseline FedNAR

FedAvg 42.44 44.37 40.05 44.69
FedProx 41.92 43.57 40.91 40.26
SCAFFOLD 47.55 45.60 42.40 44.53
FedExP 38.15 39.63 39.67 39.92
FedAdam 45.80 45.42 47.19 47.48
FedAvgm 45.03 45.63 46.12 47.13

Experiments on the Shakespeare
dataset. The Shakespeare dataset
[29], derived from The Complete
Works of William Shakespeare, assigns
each speaking role in every play to a
unique client, leading to an inherent
non-i.i.d. partition. We select 100
clients and train a model for the task of
next-character prediction, incorporating
80 possible characters, following
previous studies [29, 26]. We train
a transformer model with 6 attention
layers for feature extraction alongside
a fully connected layer for predictions.
Each character is represented by a 128-dimensional vector, and the transformer’s hidden dimension is
set to 512. The training regimen spans 300 rounds, with 20 clients chosen at random in each round
and 5 local epochs executed on each client. During local training, we utilize a batch size of 100, a
learning rate of 0.1 with a decay rate of 0.998 per round, a dropout rate of 0.1, and a maximum norm
of 10 for both the baseline algorithms and FedNAR. Global updates are performed with a learning
rate of 1.0. As in the previous experiment, FedNAR is integrated into six core algorithms. We also
employ two distinct weight decay values to showcase FedNAR works for different hyperparameters.
The results are presented in Table 2.

5.2 Ablation studies
In this section, we conduct some ablation studies. For all the experiments, we run FedAvg on
CIFAR-10 with 100 clients and ↵ = 0.3 for 1000 rounds, where each round consists of updates from
20 clients and 20 steps on each client. The local learning rate is 0.01 with a decay of 0.998.
FedNAR’s robustness in relation to hyperparameters. As demonstrated in Section 3, weight
decay exhibits high sensitivity in federated optimization and requires meticulous tuning. However,
due to its co-normalization mechanism, FedNAR has demonstrated a greater robustness towards the
selection of the initial weight decay. Employing the same experimental framework as in Section 3, we
observed that initiating weight decay at 0.1 in FedAvg significantly compromised model performance,
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inciting a gradient explosion due to an overly high weight decay. This led to a performance standard
similar to a model with no weight decay. Yet, FedNAR was found to navigate this hurdle through self-
adjustment, leading to considerable performance enhancements during the latter stages of training, in
spite of the initial detrimental impact on performance. Additionally, further experiments on FedProx
and SCAFFOLD also manifested a similar occurrence. The test accuracy curve is depicted in Figure 4.

Figure 4: The self-adjusting capability of FedNAR. WD denotes the initial weight decay value applied in the
first round. It is crucial to note that in each round t, the weight decay remains consistent for both the baseline
methods and FedNAR. The distinction lies in FedNAR’s adoption of co-clipping across both weight decay and
gradient. We drew comparisons among FedAvg, FedProx, and SCAFFOLD with WD values of 0.1 and 0.01.
The utilization of 0.1 as the WD value proved to be less than ideal, resulting in a performance decrement in the
baseline methods. Conversely, FedNAR initially mimics this trend but swiftly ameliorates during the subsequent
stages, outstripping the baselines even with a more favorable initial WD value of 0.01.
Frequency and strength of clipping in FedNAR. In Section 4.3, we showcased how FedNAR
employs an “annealing" process to stave off excessive deviation precipitated by weight decay, from
two angles. The first angle pertains to the exponential decay in ut, while the second involves co-
clipping with the gradient. To delve deeper into the frequency and intensity of the clipping operation,
we scrutinized the updates that were subjected to clipping. In particular, we evaluated the count of
clipped updates and the average norm of the update kg + ut

lt
xk2, signifying the intensity of clipping,

for these steps, as depicted in Figure 5. Our analysis points out that both the count and the norm of
updates experiencing clipping escalate over time. This observation implies that the co-clipping term
gains increasing prominence during the training process, aiding in the annealing of weight decay
which is proportional to 1/kg + ut

lt
xk2.

Figure 5: Frequency and strength of clipping. In every round, there is a sum total of 20 clients, and each client
carries out 20 updates, leading to a collective tally of 400 updates per round. We monitor the count of clipping
instances within these 400 updates during each round and compute the average norm of the updates subjected
to clipping. We execute experiments for diverse ↵ values, and for every algorithm, we present the outcomes
utilizing three distinct seeds.
6 Limitation
As an inaugural exploration into federated optimization with weight decay, we concentrated on
examining the theoretical attributes of FL algorithms that utilize gradient descent updates both
server-side and client-side. Future investigations can extend this to encompass different server update
methodologies. Furthermore, due to privacy restrictions, we could not carry out experiments using
real heterogeneous data, such as hospital data. Instead, we relied on simulated data distributions
or naturally non-i.i.d splits, following the conventional methods employed in prior FL algorithm
research [1, 26, 10, 24, 3, 29].

7 Conclusion
In this study, we delve into the influence of weight decay in FL, underscoring its paramount impor-
tance in traditional FL scenarios characterized by multiple local updates and skewed data distribution.
To explore these facets, we present an innovative theoretical framework for FL that integrates weight
decay into convergence analysis. Upon discerning the conditions for convergence, we introduce
FedNAR, a solution that conforms to these prerequisites. FedNAR boasts a straightforward imple-
mentation and can be effortlessly adapted to a variety of backbone FL algorithms. In our experiments
on vision and language datasets, we consistently record significant performance improvements across
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all backbone FL algorithms when we employ FedNAR, leading to accelerated convergence rates. In
addition, our ablation studies illustrate FedNAR’s heightened robustness against hyperparameters.
Going forward, our aim is to expand this theoretical framework to include a wider array of FL
algorithms, incorporating adaptive optimization methods.
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