
A Description of BF-CNN denoiser

Examples in this paper were computed using the publicly-available implementation of the BF-CNN
denoiser [42], which is trained to minimize MSE for images corrupted with Gaussian white noise of
unknown variance.

Architecture. The network contains 20 bias-free convolutional layers, each consisting of 3 ⇥ 3
filters and 64 channels, batch normalization, and a ReLU. To construct a bias-free network, we
remove all sources of additive bias, including the mean parameter of the batch-normalization.

Training Scheme. We follow the training procedure described in [42]. The network is trained to
denoise images corrupted by i.i.d. Gaussian noise with standard deviations drawn from the range
[0, 0.4] (relative to image intensity range [0, 1]). The training set consists of overlapping patches of
size 40 ⇥ 40 cropped from the Berkeley Segmentation Dataset [51]. Each original natural image is of
size 180 ⇥ 180. Training is carried out on batches of size 128, for 70 epochs. Additionally, we train
two other BF-CNN denoisers on MNIST [52] and color Berkeley segmentation dataset [51] .

B Block diagram of Universal Linear Inverse Solver
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Figure 6: Block diagrams for denoiser training, and Universal Inverse Sampler. Top: A parametric
blind denoiser, D✓(·), is trained to approximate x̂(y) by minimizing mean squared error when
removing additive Gaussian white noise (z) of varying amplitude (�) from images drawn from
a training distribution. The trained denoiser parameters, ✓̂, constitute an implicit model of this
distribution. Bottom: The trained denoiser is embedded within an iterative computation to draw
samples from this distribution, starting from initial image y0, and conditioned on a low-dimensional
linear measurement of a test image: x̂ ⇠ p(x|xc), where xc = MT x. If measurement matrix M
is empty, the algorithm draws a sample from the unconstrained distribution. Parameter h0 2 [0, 1]
controls the step size, and � 2 [0, 1] controls the stochasticity (or lack thereof) of the process.
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C Visualization of Universal Inverse Sampler on a 2D manifold prior

Figure 7: Two-dimensional simulation/visualization of the Universal Inverse Sampler. Forty example
signals x are sampled from a uniform prior on a manifold (green curve). First three panels show,
for three different levels of noise, the noise-corrupted measurements of the signals (red points), the
associated noisy signal distribution p(y) (indicated with underlying grayscale intensities), and the
least-squares optimal denoising solution x̂(y) for each (end of red line segments), as defined by
Eq. (2), or equivalently, Eq. (3). Right panel shows trajectory of our iterative coarse-to-fine inverse
algorithm (Algorithm 2, depicted in Figure 6), starting from the same initial values y (red points) of
the first panel. Algorithm parameters were h0 = 0.05 and � = 1 (i.e., no injected noise). Note that,
unlike the single-step least-squares solutions, the iterative trajectories are curved, and always arrive at
solutions on the signal manifold.

D Sampling - more examples

Figure 8: Sampling from the implicit prior embedded in a BF-CNN denoiser trained on MNIST
dataset (first two rows) and Berkeley segmentation dataset (second two rows).

Figure 9: Left. Samples drawn with different initializations y0, using a moderate level of injected
noise (� = 0.5). Images contain natural-looking features, with sharp contours, junctions, shading,
and in some cases, detailed texture regions. Right. Samples drawn with more substantial injected
noise (� = 0.1). The additional noise helps to avoid local maxima, and arrives at images that are
smoother and higher probability, but still containing sharp boundaries.
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Figure 10: Training BF-CNN on the MNIST dataset of handwritten digits [58] results in a different
implicit prior (compare to Figure 9). Each panel shows 16 samples drawn from the implicit prior,
with different levels of injected noise (increasing from left to right, � 2 {1.0, 0.3, 0.01}).

E Linear inverse problem - more examples

Algorithm 2: Coarse-to-fine stochastic ascent method for sampling from p(x|MTx = xc), based on the
residual of a denoiser, f(y) = x̂(y)� y. Note: e is an image of ones.
parameters: �0, �L, h0, �, M , xc

initialization: t=1; draw y0 ⇠ N (0.5(I �MMT )e+Mxc, �2
0I)

while �t�1 � �L do
ht =

h0t
1+h0(t�1) ;

dt = (I �MMT )f(yt�1) +M(xc �MT yt�1);
�2
t = ||dt||2

N ;
�2
t =

�
(1� �ht)

2 � (1� ht)
2
�
�2
t ;

Draw zt ⇠ N (0, I);
yt  yt�1 + htdt + �tzt;
t t+ 1

end

Figure 11: Two-dimensional simulation/visualization of constrained sampling. Only points lying at
the intersection of manifold and constraint hyperplane (represented by low-ranked matrix M ) are
valid samples.

Inpainting. A simple example of a linear inverse problem involves restoring a block of missing
pixels, conditioned on the surrounding content. Here, the columns of the measurement matrix M are
a subset of the identity matrix, corresponding to the measured (outer) pixel locations. We choose a
missing block of size 30 ⇥ 30 pixels, which is less than the size of the receptive field of the BF-CNN
network (40 ⇥ 40), the largest extent over which this denoiser can be expected to directly capture
joint statistical relationships. Figure 12 shows examples.
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Figure 12: Inpainting examples. Top row: original images (x). Middle: Images corrupted with
blanked region (MMT x). Bottom: Images restored using our algorithm.

Figure 13: Recovery of randomly selected missing pixels. 10% of dimensions retained.

Random missing pixels. Consider a measurement process that discards a random subset of pixels.
M is a low rank matrix whose columns consist of a subset of the identity matrix corresponding to
the randomly chosen set of preserved pixels. Figure 13 shows examples with 10% of pixels retained.
Despite the significant number of missing pixels, the recovered images are remarkably similar to the
originals.
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Table 4: Run time, in seconds, and (number of iterations until convergence) for different applications,
averaged over images in Set12, on an NVIDIA RTX 8000 GPU.

Inpainting 30 ⇥ 30 Missing pixels 10% SISR 4:1 Deblurring 10% CS 10%

15.7 (647) 7.8 (313) 7.6 (301) 8.4 (332) 32.5 (317)

The cost of running the algorithm can be divided into two parts: number of iterations, and cost per
iteration. Number of iterations for all applications except for inpainting is in the same order. Solving
inpainting with this algorithm requires information to spread in from the borders of the missing
block, which in turn requires more iterations. Cost of each iteration, aside from the cost of denoiser’s
forward pass, comes from MMT x operation. For all applications, except for CS, dot products can
be reduced to more efficient operations such as Hadamard products or filtering. In CS, M contains
random vectors, so measurements require full matrix multiplication. Consequently, CS takes longer
per iteration.
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