
A Metrics

Root mean square error The root mean square (RMSE) provides a measure of pointwise accuracy.
While such a measure may not be useful for long term rollouts, due to the chaotic divergence of the
system: even infinitesimal perturbations causes trajectories to diverge exponentially; it is a good
proxy for short-term accuracy. Given a predicted LES state vpred and the filtered DNS reference
trajectory u, we compute the root mean squared error over the domain as:

RMSE(vpred, u) =

sZ

⌦⇢R2

(vpred � u)2 dx, (20)

where ⌦ is the domain of N-S system in Eq. (1). Since both vpred and u are represented as degree P
polynomials on each quadrilateral element (see Appendix C), the integral is computed exactly using
an appropriate quadrature rule; in this case we use the Gauss-Lobatto-Legendre (GLL) quadrature
rule on each 2D quadrilateral element to compute the RMSE.

Turbulent kinetic energy (TKE) spectrum The TKE spectrum provides an aggregate view of the
energy content of the fluid at different scales. It is one of the key quantities used to determine the
spectral accuracy of simulations in the study of turbulence [13]. In particular, the TKE spectrum
captures a snapshot of the energy cascade, which is the flow of energy from the large scales to the
small scales, and vice versa. The TKE is computed by taking the Fourier transform v̂ = (v̂0, v̂1) of
the velocity field v = (v0, v1), and computing the kinetic energy in the Fourier domain

TKE =
1

2
(v̂0

2 + v̂1
2). (21)

The energy spectrum is then computed as the sum of the energy content in each 2D wavenumber
bucket. Finally, the energy spectrum is averaged over several hundred steps in a long term rollout.

B Data generation

For the reference dataset, we use an ensemble of N trajectories, defined on a fine grid G. These
DNS trajectories are obtained from a numerical solver using a high order spectral element spatial
discretization on the domain ⌦, at a temporal resolution of �t. These trajectories are then filtered
and sampled in time to obtain an ensemble of trajectories {u(i)}Ni=1 defined on the coarse grid G at a
temporal resolution of 10�t. The filtered DNS contains only explicitly the large scales. However, it
was obtained from the full order model so it contains the true evolution of the large scales resulting
from the interactions between the large and the small scales.

We use the spectral element method [23] to obtain trajectories of the N-S equation 2. The solver
uses a fine-grained domain G with E elements and polynomial order P to spatially discretize ⌦.
These DNS trajectories obtained at fine temporal resolution consistent with the CFL condition. See
Appendix C for more details on the numerical solver. We generated trajectories of Kolmogorov
flow by running N = 32 independent DNS runs over the domain [0, 1]2. We discretized the domain
uniformly into 482 elements and solved with a spectral element solver at polynomial order 8, and
used a timestep of �t = 10�4. For each independent run, we perturbed the initial velocity field with
a Gaussian field with mean uniformly in [0, 1]2 and standard deviation of 0.1. We discarded the first
50, 000 steps in order to ’forget’ the initialization. The next 128, 000 steps were taken to form the
dataset. Then, for the LES we use the same spectral element solver but on a coarse-grained domain G
of 122 elements and a polynomial order of 4. The DNS trajectories were filtered on a per-element
basis following [12] and interpolated to the coarse grid G. We sampled every 10th step to obtain
trajectories of 12,800 steps, at a temporal resolution of 10�t = 10�3. Out of the 32 independent
runs, 24 of them were used for training, 4 of them for validation and 4 for the test dataset.

For the flow past cylinder dataset, we used a rectangular domain [�10, 30]⇥ [�10, 10]. The circular
cylinder is placed with center at the origin (0, 0) and diameter 1.0. The boundary conditions are
periodic along the y-axis. The left inflow wall has an inflow of fluid at 1 units per second in the
x-direction which is implemented via constant Dirichlet boundary condition. The right outflow wall
has a homogeneous Neumann condition to allow the fluid to exit the domain. The domain was
discretized into 292 quadrilateral elements at polynomial order 13. The temporal resolution of the

11



DNS simulation was t = 10�4. A single long trajectory was generated with 350, 000 timesteps,
where the first 150, 000 timesteps were thrown out.

C Spectral element Navier-Stokes solver

Spatial Discretization Recall the Navier-Stokes equations Eq. (1).

@tu+ (u ·r)u = �rp+ ⌫r2u, (22)
r · u = 0. (23)

Following the weak formulation of the equations and spatially discretizing via the spectral element
method [23]. The velocity field is discretized using a nodal basis at Gauss-Lobatto-Legendre (GLL)
points on each quadrilateral element using polynomial order P , while the pressure field is discretized
using a nodal basis at Gauss-Legendre (GL) points using polynomial order P � 2. This staggered
discretization is stable and avoids spurious pressure modes in the solution.

The semi-discretized version of the Navier-Stokes equations become:

M
du

dt
+ Cu+ ⌫Ku�DT p = 0, (24)

�Du = 0, (25)

where M is the diagonal mass matrix, K, DT and D are the discrete Laplacian, gradient and
divergence operators, and C represents the action of the nonlinear advection term.

Time integration The time integration is third order, so the values of u and p at the previous three
timesteps are used to solve for the new values at the current timestep [23]. A third order backward
differentiation formula (BDF3) is used for both linear and nonlinear terms. However, the nonlinear
term Cu may require solving a nonlinear implicit relation – to avoid this, the advection term is
extrapolated using the third order extrapolation formula (EX3).

Linear solves The one step forward time evolution of the fractional step method involves solving
two symmetric positive definite (SPD) linear systems, one for the intermediate velocity which is not
divergence free, and next for the pressure correction term. Both the linear solves involve large linear
systems, which makes it it infeasible to materialize the dense matrices in memory. Hence, we use a
matrix-free conjugate gradients iteration to solve them. Further speedups may be gained by using
appropriate preconditioners, which is especially important to overcome the poor conditioning when
scaling up to larger systems and higher orders.

Differentiation For the reverse mode differentiation, we simply solve the transposed linear systems
during the backward pass. Since the systems are symmetric, we have to solve the same system with a
different right hand side. We use Jax’s [15] custom automatic differentiation toolbox to override the
reverse mode differentiation rule.

D Neural SDE solver

The encoder stage reduces the input sequence length E = 144 to a a smaller sequence length
E0 = 9; see Appendix G. The neural SDE stage operates on reduced sequence length E0 = 9, with
embedding dimension 192. The drift h⇥ and diffusion g⇥ parameterizing the latent Neural SDE uses
a Transformer architecture and element-wise multi-layer perceptron (MLP) respectively. The prior
drift follows the same architecture as the posterior drift.

We write ⇥ = (✓,�) where ✓ and � are the prior and posterior parameters respectively. The SDE is
solved over the unit time interval ⌧ 2 [0, 1] with the state dimension 9⇥ 192 = 1728. The prior and
posterior SDEs evolve according to the following equations:

dZ̃⌧ = h✓(Z̃⌧ , ⌧)d⌧ + g✓(Z̃⌧ , ⌧) � dW⌧ , (26)
dZ⌧ = h�(Z⌧ , ⌧)d⌧ + g✓(Z⌧ , ⌧) � dW⌧ . (27)

12



Note that the diffusion term g✓ is shared by the prior and posterior SDEs. Both the drift and diffusion
functions are also functions of the time ⌧ . Additionally, the posterior drift is a function of an additional
context term which is simply fixed at µZ0 and does not evolve with time.

Four independent trajectories of both the prior and posterior SDEs are sampled at both training and
inference time. The initial state of the prior SDE is sampled from a zero-mean Gaussian of the
same dimensionality with constant diagonal variance 0.12. The initial state Z0 of the approximate
posterior SDE is obtained from a multivariate Gaussian distribution parameterized by the output
of the encoder E . Specifically, the encoder outputs (µZ0 ,�Z0), and each trajectory of the SDE is
sampled independently from a Gaussian with mean µZ0 and diagonal variance �2

Z0
.

KL Divergence The KL divergence term of the Neural SDE is given by the sum of the KL
divergence due to the distribution of the initial value Z0 as well as the entire trajectory {Z⌧}0⌧1

KLNSDE = KLZ0 + KL{Z⌧}. (28)
The KLZ0 term is a standard KL divergence between two Gaussians with diagonal covariances, letting
�prior is a fixed hyperparameter set to 0.1, and resulting in the following:

KL(N (µZ0 ,�Z0)kN (0n,�
prior1n)) =

nX

i=1

log
�prior

�(i)
Z0

+
(�(i)

Z0
)2 + (µ(i)

Z0
)2

2(�prior)2
. (29)

The KL divergence term KL{Z⌧} is given by the following integral

KL{Z⌧} =

Z 1

0

1

2

✓
h�(Z⌧ , ⌧)� h✓(Z⌧ , ⌧)

g✓(Z⌧ , ⌧)

◆2

d⌧, (30)

which is computed along with the SDE solve by augmenting the state with a single dimension. The
additional scalar KL contribution term is then computed by the forward SDE solve by integrating the
drift given by Eq. (30) and zero diffusion.

Architectural Choices The architecture of the drift functions are based on the Transformer ar-
chitecture. Each Transformer block contains a self-attention and an MLP block, each preceded by
a layernorm and GeLU nonlinear activations. Four layers of Transformers were stacked for both
the prior and posterior drift. The diffusion functions are parameterized by a non-linear diagonal
function, where each output coordinate is a function of only the corresponding input coordinate.
Each coordinates diffusion MLP has single dimension input and output with four hidden layers of 32
neurons each. In the diffusion functions tanh activations were used for added stability and the final
activation was exponential function so that the output is positive. The total number of parameters in
the drift and diffusion functions is 1,862,977.

Numerical Solver The SDE is numerically solved using the reversible Heun scheme [46], which
converges at strong order 0.5 to the Stratonovich SDE solution. A uniform timestep of 0.0625 is
used.

Backpropagation The SDE solver is differentiated through in the optimization process. For the
backward pass, an adjoint SDE is solved, following the derivation in [52]. Even though the Itô
integral is equivalent to the Stratonovich integral, using the Stratonovich SDE makes the form of the
adjoint SDE convenient to derive and constructs a more efficient backward process [46].

E Hyperparameters

The following hyperparameters were tuned over the validation set: learning rate, KL penalty and the
number of layers in each transformer block. We selected the best performing model based on mean
squared error on the validation trajectories, averaged over 8 rollout steps.

Learning rate schedule We trained the model for 25 epochs. The learning rate schedule followed
a linear warmup phase from 0 to the base learning rate ↵ over the first epoch. Over the remaining 24
epochs, the learning rate decays to 0 according to cosine decay schedule. The base learning rate ↵
is tuned separately for both the niLES and the deterministic NN model from among a logarithmic
distribution of learning rates.

13



KL penalty The KL penalty term follows a linear warmup to the final value � over the first ten
epochs. Beyond that, the KL penalty remains fixed at the same value for the rest of the training period.
The KL penalty term � was selected from among the values 0.001, 0.01, 0.1, 1. and 10.

Number of layers The number of layers in each phase of the MViT (see Appendix G) is tuned.
The validation error is found to saturate at 6 layers for each phase, while the inference time degrades
with increase in the number of layers.

Both deterministic NN and the niLES model were hyperparameter-tuned in the same way, except
when the hyperparameter (such as KL penalty) were not applicable to the deterministic NN model.

F Computational resources

We used 8 Nvidia V100s to train both the deterministic NN baseline and the niLES model. Training
was done for 25 epochs of the training data which took up to 20 hours. For the inference phase we
used Google Colab runtime with a single Nvidia V100. For the spectral element numerical solver,
we used double (float64) precision. The model parameters and intermediate model variables during
training and inference used single (float32) precision.

G Encoder-decoder architecture

The overall architecture of both the niLES model and the deterministic NN model consists of a
multiscale ViT (MViT) structure [27, 53]. The architecture of the deterministic NN consists of an
encoder and decoder, where the encoder follows the MViT architecture. The encoder maps the
input to a much lower latent dimension, while decoder mirrors the same architecture in the reverse
sequence. The total number of parameters in the Encoder-Decoder is 2,752,178.

Encoder The encoder E takes as input the LES field v defined on the coarse-grained discretization
G. We tackle 2D geometries using a mesh of E elements, each possessing (P + 1)2 nodal points
at which the velocity is defined where P is the polynomial order. The field v may be interpreted as
seqeuence of E = 144 tokens, with an input embedding dimension of d(P + 1)2. In the first layer,
the input is projected to an embedding dimension W = 48.

Taking cues from MViT [27, 53]; in a sequence of stages we decrease the number of tokens from E
to E0 = 9 (E0 ⌧ E), and each stage has M = 6 layers of Transformer blocks. In each stage, the
token length is reduced by 4x and the embedding dimension is doubled. The reduction of the number
of tokens by attained by mean-pooling the embeddings of the constituent tokens. The increase in the
embedding dimension is facilitated by the last MLP in the transformer block. We have a total of two
stages, so the final token length is therefore 144÷ (4⇥ 4) = 16 and the final embedding dimension
is 48⇥ 2⇥ 2 = 192.

Decoder The decoder D is similar to the encoder, except it operates in reverse order: i.e., it
increases the sequence length from E0 back to E. The same number of stages are employed, with M
layers of transformer blocks in each stage. It has the same number of parameters as E . The decoder,
mirroring the encoder, increases the token length by a factor of four at the end of each stage, and
decreases the embedding dimension by two.

Skip Connections At the end of every stage of the MViT, a skip connection is added between
corresponding layers from the encoder or decoder. For instance, there is a skip connection from the
end of the last encoder stage to the beginning of the first decoder stage.

14



References
[1] Ronald J Adrian. On the role of conditional averages in turbulence theory. Turbulence in Liquids, pages

323–332, 01 1977.

[2] Ronald J Adrian. Stochastic estimation of the structure of turbulent fields. Springer, 1996.

[3] Ronald J Adrian, BG Jones, MK Chung, Yassin Hassan, CK Nithianandan, and AT-C Tung. Approximation
of turbulent conditional averages by stochastic estimation. Physics of Fluids A: Fluid Dynamics, 1(6):992–
998, 1989.

[4] Nadine Aubry, Philip Holmes, John L Lumley, and Emily Stone. The dynamics of coherent structures in
the wall region of a turbulent boundary layer. Journal of fluid Mechanics, 192:115–173, 1988.

[5] Gary S Ayton, Will G Noid, and Gregory A Voth. Multiscale modeling of biomolecular systems: in serial
and in parallel. Current opinion in structural biology, 17(2):192–198, 2007.

[6] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven discretizations
for partial differential equations. Proceedings of the National Academy of Sciences, 116(31):15344–15349,
2019.

[7] Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
Nature, 525(7567):47–55, 2015.

[8] Andrea Beck, David Flad, and Claus-Dieter Munz. Deep neural networks for data-driven les closure
models. Journal of Computational Physics, 398:108910, 2019.

[9] Andrea Beck and Marius Kurz. A perspective on machine learning methods in turbulence modeling.
GAMM-Mitteilungen, 44(1):e202100002, 2021.

[10] G Berkooz. An observation on probability density equations, or, when do simulations reproduce statistics?
Nonlinearity, 7(2):313, 1994.

[11] Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-weather: A 3d
high-resolution model for fast and accurate global weather forecast. arXiv preprint arXiv:2211.02556,
2022.

[12] Hugh M Blackburn and S Schmidt. Spectral element filtering techniques for large eddy simulation with
dynamic estimation. Journal of Computational Physics, 186(2):610–629, 2003.

[13] Guido Boffetta and Robert E Ecke. Two-dimensional turbulence. Annual review of fluid mechanics,
44:427–451, 2012.

[14] Christoph Bosshard, Michel O Deville, Abdelouahab Dehbi, Emmanuel Leriche, et al. Udns or les, that is
the question. Open Journal of Fluid Dynamics, 5(04):339, 2015.

[15] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax: composable
transformations of python+ numpy programs. 2018.

[16] P Bradshaw. Turbulence modeling with application to turbomachinery. Progress in Aerospace Sciences,
32(6):575–624, 1996.

[17] Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

[18] Ashesh Chattopadhyay, Jaideep Pathak, Ebrahim Nabizadeh, Wahid Bhimji, and Pedram Hassanzadeh.
Long-term stability and generalization of observationally-constrained stochastic data-driven models for
geophysical turbulence. Environmental Data Science, 2:e1, 2023.

[19] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

[20] Carlo Cintolesi and Etienne Mémin. Stochastic modelling of turbulent flows for numerical simulations.
Fluids, 5(3):108, 2020.

[21] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical physics. IBM
Journal of Research and Development, 11(2):215–234, 1967.

15



[22] Daan Crommelin and Eric Vanden-Eijnden. Subgrid-scale parameterization with conditional markov
chains. Journal of the Atmospheric Sciences, 65(8):2661–2675, 2008.

[23] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for Incompressible Fluid Flow.
Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2002.

[24] Gideon Dresdner, Dmitrii Kochkov, Peter Norgaard, Leonardo Zepeda-Núñez, Jamie A Smith, Michael P
Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating turbulent flows. arXiv
preprint arXiv:2207.00556, 2022.

[25] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in the age of data. Annual
review of fluid mechanics, 51:357–377, 2019.

[26] Paul A Durbin. Some recent developments in turbulence closure modeling. Annu. Rev. Fluid Mech., 50,
2018.

[27] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and Christoph
Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6824–6835, 2021.

[28] Paul Fischer and Julia Mullen. Filter-based stabilization of spectral element methods. Comptes Rendus de
l’Académie des Sciences-Series I-Mathematics, 332(3):265–270, 2001.

[29] Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution reconstruction of turbulent flows with
machine learning. Journal of Fluid Mechanics, 870:106–120, 2019.

[30] Kai Fukami, Koji Fukagata, and Kunihiko Taira. Machine-learning-based spatio-temporal super resolution
reconstruction of turbulent flows. Journal of Fluid Mechanics, 909:A9, 2021.

[31] Massimo Germano, Ugo Piomelli, Parviz Moin, and William H Cabot. A dynamic subgrid-scale eddy
viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7):1760–1765, 1991.

[32] Ian Grooms and Andrew J Majda. Efficient stochastic superparameterization for geophysical turbulence.
Proceedings of the National Academy of Sciences, 110(12):4464–4469, 2013.

[33] Ian Grooms and Andrew J Majda. Stochastic superparameterization in quasigeostrophic turbulence.
Journal of Computational Physics, 271:78–98, 2014.

[34] Yifei Guan, Ashesh Chattopadhyay, Adam Subel, and Pedram Hassanzadeh. Stable a posteriori les of 2d
turbulence using convolutional neural networks: Backscattering analysis and generalization to higher re
via transfer learning. Journal of Computational Physics, 458:111090, 2022.

[35] Yifei Guan, Adam Subel, Ashesh Chattopadhyay, and Pedram Hassanzadeh. Learning physics-constrained
subgrid-scale closures in the small-data regime for stable and accurate les. Physica D: Nonlinear Phenom-
ena, 443:133568, 2023.

[36] Arthur P Guillaumin and Laure Zanna. Stochastic-deep learning parameterization of ocean momentum
forcing. Journal of Advances in Modeling Earth Systems, 13(9):e2021MS002534, 2021.

[37] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In International conference on learning representations, 2017.

[38] Thomas JR Hughes, Gonzalo R Feijóo, Luca Mazzei, and Jean-Baptiste Quincy. The variational multi-
scale method—a paradigm for computational mechanics. Computer methods in applied mechanics and
engineering, 166(1-2):3–24, 1998.

[39] Thomas JR Hughes, Luca Mazzei, and Kenneth E Jansen. Large eddy simulation and the variational
multiscale method. Computing and visualization in science, 3:47–59, 2000.

[40] Thomas JR Hughes, Assad A Oberai, and Luca Mazzei. Large eddy simulation of turbulent channel flows
by the variational multiscale method. Physics of fluids, 13(6):1784–1799, 2001.

[41] Javier Jimenez and Robert D Moser. Large-eddy simulations: where are we and what can we expect?
AIAA journal, 38(4):605–612, 2000.

[42] Myeongseok Kang, Youngmin Jeon, and Donghyun You. Neural-network-based mixed subgrid-scale
model for turbulent flow. Journal of Fluid Mechanics, 962:A38, 2023.

16



[43] Petr Karnakov, Sergey Litvinov, and Petros Koumoutsakos. Computing foaming flows across scales: From
breaking waves to microfluidics. Science Advances, 8(5):eabm0590, 2022.

[44] Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

[45] Patrick Kidger, James Foster, Xuechen Li, and Terry J Lyons. Neural sdes as infinite-dimensional gans. In
International Conference on Machine Learning, pages 5453–5463. PMLR, 2021.

[46] Patrick Kidger, James Foster, Xuechen Chen Li, and Terry Lyons. Efficient and accurate gradients for
neural sdes. Advances in Neural Information Processing Systems, 34:18747–18761, 2021.

[47] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of
Sciences, 118(21):e2101784118, 2021.

[48] Andrei Nikolaevich Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very
large reynolds numbers. Proceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences, 434(1890):9–13, 1991.

[49] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexander
Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. Graphcast: Learning skillful
medium-range global weather forecasting. arXiv preprint arXiv:2212.12794, 2022.

[50] Jacob A Langford and Robert D Moser. Optimal les formulations for isotropic turbulence. Journal of fluid
mechanics, 398:321–346, 1999.

[51] CE Leith. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer. Physics of Fluids A:
Fluid Dynamics, 2(3):297–299, 1990.

[52] Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David K Duvenaud. Scalable gradients and
variational inference for stochastic differential equations. In Symposium on Advances in Approximate
Bayesian Inference, pages 1–28. PMLR, 2020.

[53] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and Christoph
Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification and detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4804–4814,
2022.

[54] Yi Li, Eric Perlman, Minping Wan, Yunke Yang, Charles Meneveau, Randal Burns, Shiyi Chen, Alexander
Szalay, and Gregory Eyink. A public turbulence database cluster and applications to study lagrangian
evolution of velocity increments in turbulence. Journal of Turbulence, 9(9):N31, 2008.

[55] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv:2010.08895 [cs, math], May 2021. arXiv: 2010.08895.

[56] Björn List, Li-Wei Chen, and Nils Thuerey. Learned turbulence modelling with differentiable fluid solvers:
physics-based loss functions and optimisation horizons. Journal of Fluid Mechanics, 949:A25, 2022.

[57] Peter Lynch. The emergence of numerical weather prediction: Richardson’s dream. Cambridge University
Press, 2006.

[58] Jonathan F MacArt, Justin Sirignano, and Jonathan B Freund. Embedded training of neural-network
subgrid-scale turbulence models. Physical Review Fluids, 6(5):050502, 2021.

[59] Romit Maulik, Kai Fukami, Nesar Ramachandra, Koji Fukagata, and Kunihiko Taira. Probabilistic neural
networks for fluid flow surrogate modeling and data recovery. Physical Review Fluids, 5(10):104401, 2020.

[60] Romit Maulik, Omer San, Jamey D Jacob, and Christopher Crick. Sub-grid scale model classification and
blending through deep learning. Journal of Fluid Mechanics, 870:784–812, 2019.

[61] Siddhartha Mishra. A machine learning framework for data driven acceleration of computations of
differential equations. arXiv preprint arXiv:1807.09519, 2018.

[62] Steven A. Orszag. Analytical theories of turbulence. Journal of Fluid Mechanics, 41(2):363–386, 1970.

[63] Shaowu Pan and Karthik Duraisamy. Data-driven discovery of closure models. SIAM Journal on Applied
Dynamical Systems, 17(4):2381–2413, 2018.

17



[64] Jonghwan Park and Haecheon Choi. Toward neural-network-based large eddy simulation: Application to
turbulent channel flow. Journal of Fluid Mechanics, 914:A16, 2021.

[65] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza
Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcastnet: A
global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

[66] Stephen B Pope. Pdf methods for turbulent reactive flows. Progress in energy and combustion science,
11(2):119–192, 1985.

[67] Stephen B Pope. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of
Physics, 6:35–35, March 2004.

[68] Stephen B Pope and Stephen B Pope. Turbulent flows. Cambridge university press, 2000.

[69] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference on
Machine Learning, pages 5301–5310. PMLR, 2019.

[70] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015:
18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages
234–241. Springer, 2015.

[71] Andrew Ross, Ziwei Li, Pavel Perezhogin, Carlos Fernandez-Granda, and Laure Zanna. Benchmarking of
machine learning ocean subgrid parameterizations in an idealized model. Journal of Advances in Modeling
Earth Systems, 15(1):e2022MS003258, 2023.

[72] Pierre Sagaut. Large eddy simulation for incompressible flows: an introduction. Springer Science &
Business Media, 2005.

[73] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph networks. In International conference on machine
learning, pages 8459–8468. PMLR, 2020.

[74] Tapio Schneider, João Teixeira, Christopher S Bretherton, Florent Brient, Kyle G Pressel, Christoph Schär,
and A Pier Siebesma. Climate goals and computing the future of clouds. Nature Climate Change, 7(1):3–5,
2017.

[75] Claude Elwood Shannon. Communication in the presence of noise. Proceedings of the Institute of Radio
Engineers, 37(1):10–21, 1949.

[76] Joseph Smagorinsky. General circulation experiments with the primitive equations: I. the basic experiment.
Monthly weather review, 91(3):99–164, 1963.

[77] Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff, Jonathan
Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned coarse models for
efficient turbulence simulation. arXiv preprint arXiv:2112.15275, 2021.

[78] Adam Subel, Ashesh Chattopadhyay, Yifei Guan, and Pedram Hassanzadeh. Data-driven subgrid-scale
modeling of forced burgers turbulence using deep learning with generalization to higher reynolds numbers
via transfer learning. Physics of Fluids, 33(3):031702, 2021.

[79] Salar Taghizadeh, Freddie D Witherden, and Sharath S Girimaji. Turbulence closure modeling with
data-driven techniques: physical compatibility and consistency considerations. New Journal of Physics,
22(9):093023, 2020.

[80] Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent gaussian models
in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

[81] Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural Information
Processing Systems, 33:6111–6122, 2020.

[82] Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-informed
deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1457–1466, 2020.

[83] Winnie Xu, Ricky TQ Chen, Xuechen Li, and David Duvenaud. Infinitely deep bayesian neural networks
with stochastic differential equations. In International Conference on Artificial Intelligence and Statistics,
pages 721–738. PMLR, 2022.

18


	Introduction
	Background
	Methodology
	Main idea
	Implementation details

	Experimental results
	Setup
	Main Results

	Related work
	Conclusion
	Metrics
	Data generation
	Spectral element Navier-Stokes solver
	Neural SDE solver
	Hyperparameters
	Computational resources
	Encoder-decoder architecture

