
Online Learning and Control of Complex Dynamical
Systems from Sensory Input - Supplementary

Material

Oumayma Bounou1, Jean Ponce1, 2, and Justin Carpentier1

1Inria and Département d’Informatique de l’Ecole Normale Supérieure, PSL Research University
2Center for Data Science, New York University

1 Additional details on the experiments

1.1 Model architecture

The only learnable parameters (117,963 in all) in our model are those of the autoencoder. The
encoder is made of 6 blocks of 3× 3 convolutions with 16, 32, 64, 64, 32 and 8 channels followed by
max-pooling, batch normalization and ReLu layers, except for the last block which does not have
a ReLu layer. The decoder is a symmetric copy of the encoder. As our images are 64 × 64, the
last convolutional block yields a feature map with 8 channels and 1 × 1 spatial dimension, which
is reshaped into an 8 × 1 vector. The latent code we consider is thus directly the output of the
convolutional encoder. Contrary to [1], we do not follow our encoder by fully-connected layers to
obtain a compact code since the output of the convolutional encoder is alreay quite compact.
Models without updates take 2.5 hours to train on a Tesla V100-SXM2 GPU, and models with updates
take 4 hours to train. Models including control take longer to train (4 hours without updates and 6
hours with partial online updates) since the video sequences considered are longer. All models are
trained for 200 epochs with a batch size of 16 and a learning rate of 10−3 which is divided by 2 every
20 epochs.

1.2 Experiments on pendulum systems

1.2.1 Datasets generation

We have generated video datasets of cartpole and pendulum systems to which control inputs are
applied. The length of the generated videos is 10 s and points of the system are generated every 5 ms,
which is also the frequency at which controls are applied. Measurements (i.e, images) are taken every
50 ms. In the following, time steps will refer to measurements time steps (every 50 ms). To obtain
videos of actuated systems, we have generated a set of reference trajectories and velocities to be
followed by the systems. For simplicity, we specifiy the angle between the pole and the vertical, as
well as its temporal derivative, and also control these two quantities. Thus in the case of the cartpole,
only the pole is actuated, the translation of the cart remains free. Each reference trajectory is the sum
of three sinusoidal signals with different frequencies. Starting from a random initial configuration,
the system (pendulum or cartpole) receives a control input every 5 ms to match the target trajectory.
The reference trajectories are of the shape:{

qref (t) =
∑3
i=1 q0,i sin(ωit+ ϕi)

vref (t) =
∑3
i=1 q0,iωi cos(ωit+ ϕi),

(1)

where q0,i is the angular amplitude of the reference trajectory for the pole. In our experiments, q0,i
was uniformly sampled between 0 and π

3 radians for the pendulum, and between 0 and 2π
3 radians

for the cartpole. We take ωi = 2πfi where fi is uniformly sampled between 0 and 0.1 Hz for the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



cartpole system and between 0 and 0.3 Hz for the pendulum system. We take ϕi between 0 and 2π
radians for both systems.
Having generated these reference trajectories, the control input to apply to the systems every 5 ms is
determined as:

u(t) = −Kp(q(t)− qref (t))−Kd(v(t)− vref (t)), (2)

with Kp = 100 and Kd = 10.
Sinusoidal inputs and sums of sinusoidal inputs are commonly used to excite systems as they facilitate
system identification [2]. This is why we choose to use reference trajectories in the form of a sum of
sinusoids, since the controls we apply to the system are proportional to these trajectories, as can be
seen in Eq. (2).

1.2.2 More results

Prediction quality. In all the following figures, the left block corresponds to the first predicted
frames after those used to compute the matrix A, and the right block corresponds to predicted frames
after a horizon of 20 or 30 time steps. Figure 1 shows that for a simple system such as a pendulum
with low amplitude oscillations (between π

2 and 3π
2 radians), our offline model without any update

is sufficient to predict future frames correctly. However, for more complex systems such as the
pendulum with high amplitude oscillations (up to 2π radians) (Fig. 4, second row) or the double
pendulum (Fig. 5, second row), our offline model yields blurry predictions, that can be corrected by
performing online updates (even if they are not performed at every new measurement, but only every
15 measurements) (Figures 4 and 5, third row). Finally, for both systems, performing online updates
at each new measurement yields visually perfect predictions at all time steps. (Figures 4 and 5, fourth
row). The quality of the predictions for the double pendulum and the pendulum with high oscillations
amplitude is consistent with the time evolution of the RMSE loss for these systems (Fig. 6), whose
values are most likely over optimistic since most pixel values are 0 in our datasets.
Figures 2 and 3 compare the quality of the predictions of our model to the quality of prediction of the
baseline where the matrix A is learned as an additional parameter, and is thus constant over all the
dataset. In this case, the matrix A is not computed using codes of past frames, it is instead learned,
along with the parameters of the autoencoder. There is thus one single matrix A that is used for the
prediction of future frames of different trajectories. Figure 2 shows that when models are trained on a
dataset of a single pendulum with different trajectories (different initial conditions: initial position
and velocity), the baseline gives good short-horizon predictions (left block) but poor predictions for
longer horizons (right block). Our model does not exhibit such limitations. Figure 3 shows how
the baseline model is unable to predict future frames correctly, for even a single step in the future
(first frame of the left block), when it is trained on a dataset with multiple pendulums. This is not
surprising as a single matrix A can not account for the dynamics of several different systems.

Figure 1: Prediction for the pendulum with low oscillations amplitude (between π
2 and 3π

2
radians) on a dataset of pendulums of length varying between 0.3 m and 0.8 m. The first row
shows ground truth (GT) images. The second row shows predicted frames with our model without
updates. In the case of this simple system, our model without updates is enough.

2



Figure 2: Prediction for the pendulum with low oscillations amplitude (between π
2 and 3π

2
radians) and length 0.6 m. The first row shows ground truth (GT) images. The second row shows
predicted frames without updates with the baseline model where the matrix A is a learned parameter.
The third row is our model without updates.

Figure 3: Prediction for the pendulum with low oscillations amplitude (between π
2 and 3π

2
radians) with lengths varying from 0.3 to 0.8 m. The first row shows ground truth (GT) images.
The second row shows predicted frames with the baseline model where the matrix A is a learned
parameter.

Figure 4: Impact of online updates on the quality of the prediction for the pendulum with high
oscillations amplitude (between 0 and 2π radians) on a dataset of pendulums of length varying
between 0.3 m and 0.8 m. The first row shows ground truth (GT) images. The second row shows
predicted frames without updates. The third row shows predicted frames with our model trained with
partial online updates (every 15 measurements). The last row shows predicted frames with online
updates performed at each new measurement.

3



Figure 5: Impact of online updates on the quality of the prediction for the double pendulum.
The first row shows ground truth (GT) images. The second row shows predicted frames without
updates. The third row shows predicted frames with our model trained with partial online updates
(every 15 measurements). The last row shows predicted frames with online updates performed at
each new measurement.

Figure 6: Average per-pixel RMSE loss over a 15s prediction horizon. Left: Pendulum with high
amplitude oscillations (between 0 and 2π radians). Right: Double pendulum with a first pole
oscillating between π

2 and 3π
2 radians.

Control.
Figure 7 shows the trajectory obtained when driving the cartpole from an initial state specified by
two consecutive frames (red) to a position where the pole is inverted. 1 Solving the QP problem of
Eq. (13) of the main submission returns a sequence of controls [u1, . . . , u10] that are applied starting
from z0 and z1, the embeddings of the two first frames (red), such that for 0 ≤ t ≤ 11:

zt+2 = A1zt +A2zt+1 +But+1 (3)

where A1, A2 are blocks of the matrix Ã described in Eq. (10) of the main submission, in the case
where h = 2. The frames are obtained by decoding the sequence [z0, . . . , z11].

1As described in the main submission, our prediction model uses not one but at least two codes in the latent
space to predict the next one, which is why, for the control task, two initial frames are considered and used to
constraint the QP problem described in Eq. (13) of the main submission.

4



Figure 7: Illustration of cartpole control. Starting from an initial state specified by two consecutive
frames (in red), we estimate and apply the controls necessary to guide the pole to an inverted position
in a horizon of 0.5 s. The last frame shows the final position of the cartpole after all controls were
applied (in green).

1.3 Experiments on fluids

We extended our approach to the study of a fluid flowing past a cylinder following [1], through the
study of four of its physical quantities: density, x-momentum, y-momentum and energy.

1.3.1 Dataset generation

We followed the dataset generation protocol described in [1]: the solver PyFR [3]is used to solve the
Navier-Stokes equation [4] for each one of the four quantities mentioned in the previous paragraph,
with a discretization time step of 0.1 ms. The solutions are then formatted into 4-channels image-like
inputs of size 128× 256 (one channel per physical quantity), and one image is kept every 150 ms
(every 1500 steps of the solver) for each of the four quantities. The simulation is run in two different
settings: unforced and forced dynamics. In the unforced dynamics setting, the simulation is run during
636 seconds (which corresponds to a trajectory of 4328 frames) with no velocity being prescribed
to the cylinder. In the forced dynamics setting, the simulation is run during 750 seconds, (which
corresponds to a trajectory of 5000 frames) with a velocity being prescribed to the cylinder. The
obtained trajectories are then split into respectively 1200 and 1600 overlapping sequences, both with
a duration of 4.8 s.

1.3.2 Experimental protocol

We trained our model during 1000 epochs on 1200 32 frame-long (4.8 s) sequences in the case of
unforced dynamics, and on 1600 32 frame-long (4.8 s) sequences in the case of forced dynamics.
In this 32 frame-long sequence, encodings of the 16 first frames (2.4 s) were used to estimate the
dynamics matrix A (and the control matrix B in the case of forced dynamics), and the 16 (2.4 s)
following frames were predicted. We used a batch-size of 16 and a latent dimension nz = 8 in the
case of unforced dynamics, and nz = 32 in the case of forced dynamics. We set our initial learning
rate to 1e−3, and divided it by 2 every 100 epochs.

1.3.3 Results

Prediction. We evaluated our model on 100 frame-long (15 s) sequences. Figure 8 shows the average
L1 loss over time over 120 test trajectories using the three variations of our approach we detailed in
the main paper. Even though we see that variations of our model that include updates (at every time
step starting the 16th time step in green, or at a single time step, the 40th, in blue) have lower error
values that do not grow over time compared to our offline variation (where no update of the model is
performed), the error values for all three variations remain very low and are invisible to the naked
eye, as can be seen in Fig. 9.
In this work, we followed the experimental protocol described in [1] for comparison, however, we
believe that future work should consider multiple trajectories from different fluids (with different

5



physical parameters) instead of only one unique trajectory of one fluid, and that the sequences used
for training should not overlap.

Figure 8: Average L1 loss on all four quantities of the fluid system over a 15 s prediction horizon.

Control.
Figure 10 shows the trajectory of the x-momentum of the studied fluid obtained when applying a
sequence of controls to stabilize the fluid flow. The controls are a solution to the QP problem defined
in equation (13) of the main submission where z1 corresponds to an initial representation of the fluid,
and zf corresponds to a representation of the fluid where it is stabilized (i.e.; when its flow is laminar).
Note that each code zt is built by encoding the 4 physical quantities mentioned above at time t using
the learned encoder, and that the resulting controlled sequence in Fig. 10 only shows one quantity
(the x-momentum).

1.4 Training details

During training, we seek to minimize the loss defined in equation (12) of the main paper. For ease
of reading, equation (12) only accounts for the case of unforced dynamics (i.e.; where the studied
systems are not actuated, thus when we are only looking for the dynamics matrix A). In the case of
actuated systems, an additional term is added to this loss such that it becomes:

Lθ,µ({d1:T }i=1,...,N ) =
1

N

N∑
i=1

m∑
t=1

‖dit −Ψµ(Φθ(d
i
t))‖22︸ ︷︷ ︸

Auto-encoder loss

+

T∑
t=m+1

‖dit −Ψµ(At−mi Φθ(d
i
m) +Biu

i
t)‖22︸ ︷︷ ︸

Prediction loss

.

(4)
At each optimization step, Ai and Bi are estimated using equation (5) from the main paper for each
trajectory i [di1, . . . , d

i
T ]. In fact, they are estimated from the first m codes of [dit]t (obtained with

the encoder Φθ), then used to predict future codes through the relation zit+1 = Aiz
i
t + Biu

i
t. The

sequence [zit]t is then decoded using the decoder Ψµ. The parameters (θ, µ) of Φθ and Ψµ are then
updated. In practice, we see that the term

∑
i,t ‖zit+1 − (Aiz

i
t +Biu

i
t)‖22 decreases during training

without being explicitly minimized, as can be seen in Fig. 11.

2 Online updates

The estimation of the matrix A requires inverting the matrix:

M =

[
Inz

Z1

ZT1 −ρIT−1

]
. (5)

6



Figure 9: Prediction of the x-momentum. The top-left frame is the last frame of the 16 frame-long
sequence that was used to build the dynamics matrix A. All the following frames are predicted.

This can be efficiently performed through a Cholesky decomposition of the form LDLt because M is
the KKT matrix associated to a saddle point problem, and has positive definite and negative definite
blocks. In the case where our model is updated online, M must be recomputed at every update. We
can avoid recomputing it from scratch by performing rank-1 updates of its Cholesky decomposition
when new measurements are considered (which would correspond to adding one column to Z1 and
one row to ZT1 ).

7



Figure 10: Illustration of fluid control. Starting from an initial configuration of the fluid at a given
time step (top-left), we estimate and apply (in the learned latent space) the controls necessary to
stabilize it (bottom-right). The quantity shown here is the x-momentum.

Figure 11: Residual loss. Evolution of
∑
i,t ‖zit+1 − (Aiz

i
t +Biu

i
t)‖22 during training.

References

[1] J. Morton, A. Jameson, M. J. Kochenderfer, and F. D. Witherden, “Deep dynamical modeling
and control of unsteady fluid flows,” in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada (S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, eds.), pp. 9278–9288, 2018.

[2] O. Nelles, “Nonlinear dynamic system identification,” in Nonlinear System Identification, pp. 547–
577, Springer, 2001.

[3] F. Witherden, A. Farrington, and P. Vincent, “Pyfr: An open source framework for solving
advection–diffusion type problems on streaming architectures using the flux reconstruction
approach,” Computer Physics Communications, vol. 185, no. 11, pp. 3028–3040, 2014.

[4] Navier-Stokes equations, “Navier-stokes equations — Wikipedia, the free encyclopedia.”

8


	Additional details on the experiments
	Model architecture
	Experiments on pendulum systems
	Datasets generation
	More results

	Experiments on fluids
	Dataset generation
	Experimental protocol
	Results

	Training details

	Online updates

