Under review as a conference paper at ICLR 2025

Appendices

A PROOFS

A.1 THE PROOF OF LEMMA 4.3

Lemma 4.3 (weak bisimulation metric). The weak-bisimulation metric is a contraction mapping
w.r.t the L™ norm on RS*S, and there exists a fixed-point dyy, for Fy.

Proof. To prove that the F7j, function has a fixed point dfj,, we first need to prove that it is a
contraction mapping.

As Definition given the fixed expectation of €(s;, s;), weak-bisimulation metric is,
Fi(d) (si,55) = € (510 55) = Wi (d) (PT,PL) (12)
Consider d, d’ € M, we derive,

| Fi (d) (siy85) — Fi (d') (i, 85)] (13)
= e (si55) + Wi(d) (PLPT) = e (si5) - Wi(d) (P2 PE)

b (72.72)) (03|
= 'YZ CLZ‘Sl aj|5j)7);lj (3;) 7’;1]7 ()(d dl)(;’ ;)

Therefore, 77, (d) is a contraction mapping w.r.t. the L, norm and there exists a unique fixed-point
T for Fi, (d). O

A.2 PROOFS OF THEOREM 4.4 AND THEOREM 4.5

Before proving Theorem and Theorem we need to present a weak assumption regard-
ing the reward expectation under sparse reward settings. Then, we set the hyperparameter p, >
T EajNﬂrgj |, where /i is the mean of the trainable Gaussian distribution €(s;, s;) in the
weak bisimulation meric, i.e., pi. = Eq, o, ~p[€(ss, 55)].

ai —

Assumption A.1 (sparse-reward expectatlon) Given a reward function r% = r(s;, a;) with sparse
reward settings, the expectation of r§i before obtaining the success reward sansﬁes Eqpmnrst < C,
where C is a sufficiently small constant.

Taking the verification environment of this work with sparse rewards as an example, experience
shows that almost all transition rewards are usually minimal or even zero before reaching the goal.
Therefore, the above Assumption[A.T]is a weak assumption that is easy to satisfy in a sparse reward
environment.

Then, based on the above weak assumptions, we can easily obtain,

a;
O S ‘EaiNﬂrsZ - ECLJNTK'T

(14)

In order to make |Eg,~73" — EajNWrZﬂ < p. hold, we only need to satisfy C; < 1/2p,. in the
actual implementation, where the hyperparameters C; and .. can be seen in Appendix

In light of the above conclusions, we then prove Theorem {.4]and Theorem [.5]respectively.

Theorem 4.4 (Value difference bound). Given states s; and s;, and a policy m, we have,

V7™ (si) = V7 (s5)] < diy (s, 55) (15)

15

Under review as a conference paper at ICLR 2025

Proof. We follow the work (Castrol, 2020) to prove the value function difference bound. To
prove the above theory, we first introduce the standard value function V7, ;(s;) = Eq 778 +
Y ees Pi(s")V,T(s') and the update operation with the property of contraction mapping (see
Lemmald.3),

T (5155) = € (si,5,) + W (@) (PTPE) (16)
with initial V" = 0 and dj, , = 0.

Then, we proceed it by induction. For initial case n = 0, obviously |V (s;) — Vi (s;)| <
d%o(si, sj) holds, and we then suppose true up to case n. Therefore, we have,

’Vfﬂ (si) — Vit (33)’

Egnnrgl + 72 PI(s)VI(s') — (Eaj,wrgjf + fyz Ps, (s VT (s’)) ‘

s'eS s’eS

a; a;
S Eajonrs) — Eajnrrs? +

VYV (PI(s) = PF <s’>)‘

s'eS

a; a;
S ‘Eaiw‘n’rs; _]Eajrvﬂrs_;

+ | (@5, (P2 P3|
— € (si:89) + (e (siv5,) = YW (dfy,) (PE.PE)

< €(si5) + | YW (@) (PLLPL)| = div o (si08)) a7

where the second inequality comes from the dual representation of the Wasserstein distance (Villani,
2021), and the last inequality is true when satisfying C; < 1/2u. based on the Assumption
By the above steps, we can summarize that, Vn € N,Vs;,s; € S, [V7 (i) — V[T 1(s5)] <
Ay py1(8i, 85) holds. O

— a; aj
_ (‘anwr& Eoymnt

Theorem 4.5 (relaxed value difference bound). Given states s; and s;, and a policy m, we have,
dTI% (Si,Sj) S dg[/ (Sl‘,Sj) (18)

Proof. To prove dj(si,s5) < df,(s;,s;), we just need to prove dfy, (s;,s;) — d5(si,s;) > 0.
Clearly, given C; < 1/2u¢, we have,

diy (si,85) — df (si 55)
= (7W1(d) (77;773;.) + e(si,sj))
~(+9Wi(d) (P, P7))
= €(s,85) — ‘anﬂr‘;" - an,rrgﬂ >0 (19)
Then, d(si,s;) < dfy,(s;, sj) holds. O

Qg a;
]E(l,;NTI'TSi Eajwﬂ'rsj

B BACKGROUND SUPPLEMENT

B.1 BISIMULATION RELATION

Bisimulation Relations can be applied to group states in Markov Decision Processes (MDPs) that are
behaviorally equivalent, aiding in state space reduction and efficient policy learning. Bisimulation
Relation is defined as follows.
Definition B.1 (Bisimulation Relations (Givan et al., 2003)). Given an MDP M = (S, A, P,r), a
relation E C S x S is a bisimulation relation, if whenever (s;,s;) € E the following properties
hold,
R(si,a) =R(s;j,a) Vae A (20)

P(G|s;,a) = P(Glsj,a) Yae A, VG e Sp (21)
where S is the partition of S defined by the relation E (the set of all groups G of equivalent states),
and P(G’S, a) =Y eq 77(5’|s, a).

16

Under review as a conference paper at ICLR 2025

B.2 REPRESENTATIONS IN SPARSE REWARDS

Reward signals can implicitly represent specific or abstract regions in observations that cause re-
wards (Yarats et all [2021a). Recently, some work has modeled reward signals to obtain useful
representation information from observations, such as bisimulation metric representation based on
reward differences (Wang et al., 2024)). However, when faced with real tasks with sparse rewards,
metrics tend to converge to the zero-fixed point due to continuous zero rewards, i.e., representa-
tion collapse (Liao et al.,[2023). Although prior work has shown that modeling reward sequences
can collect richer reward signals (Kemertas & Aumentado-Armstrong} 2021} |Yang et al.| [2022)), the
above problem is still difficult to avoid. Instead, it is more important to balance the dependence on
reward utilization in sparse reward environments.

C IMPLEMENTATIONS

C.1 ACTOR-CRITIC

Following the work |Yarats et al.| (2021b)), we employ the Actor-Critic (AC) algorithm (Konda &
Tsitsiklis, [1999) as the backbone framework of DrQ-v2, where the DrQ-v2 is the basic structure of
the above experimental approaches. In general, AC is an off-policy reinforcement learning algorithm
for continuous control, consisting of a Critic network with a value function Q(s¢, a;) and an Actor
network with a policy function 7,,(s;). Similar to Barth-Maron et al.|(2018)), this setting uniformly
uses the n-step return value to enhance the Temporal-Difference error estimation, and uses double
Qr—o and Qi1 to alleviate the overestimation bias. Therefore, we train the Critic network using
the following loss:

n—1
‘CQ (ﬁka wa) =Ep [Q79k (wa (sf) 7at) - (ZO rylrt-‘ri + ’}/nkH:l%I’ll Q%q: (¢ (St—‘rn) 7at+n,)>]
_ _ (22)
where Q:,?: is the target Q function with frozen network parameters 9, and ¥ is updated from the
exponential moving average (EMA) of the trainable parameters ;. D represents the experience
replay buffer in off-policy DRL.

In addition, since DrQ-v2 adopts a deterministic policy, I train the Actor network with parameter v
with the following loss,

£7(v) = —Ep | min Qu, (6 (50) 70 (60 (1)) +2) (3)

where the action noise € ~ clip(A(0, 02)) is used to ensure the stochastic nature in the deterministic
policy. In the interactive phase, ¢ ~ A (0,07) , where o; is scheduled standard deviation for the
exploration noise. Notably, the encoder parameters ¢,, will not be trained by the Actor gradient, see
DrQ-v2 for details.

C.2 HYPERPARAMETERS

For the approaches involved in the experimental section, the main encoder network consists of 4
convolutional layers with the same filter sizes 3 x 3 and strides 2, 1, 1 and 1, respectively. In the
Actor and Critic networks, an encoder trunk network is independently set up to map the encoded
convolution output to a 50-dimensional feature vector, thereby serving the learning of policies and
value functions. For the settings of the SRL representation module, we set a 2-step transition dis-
tribution difference to achieve a trade-off between the utilization of the dynamics model and the
deviation caused by its accuracy. In addition, we set the sparse reward expectation C; = 0.1 in
Assumption To satisfy the condition C; < 1/2p., we conservatively set the mean p. = 0.5
of the Gaussian distribution function A (fi¢, 3g). It is worth noting that the replay buffer size in
this work is set to 2e°, which is 20% of the previous capacity. This can effectively verify the effi-
ciency of approaches while avoiding huge resource consumption. In fact, the experimental results
also show that the replay buffer size of 2¢5 may be sufficient. Please see the table below for detailed
hyperparameters.

17

Under review as a conference paper at ICLR 2025

Table 3: Networks dimensions and hyperparameters.

Hyperparameter \ Shared Setting

Training steps 1 ~4M

Seed frames 4000

Exploration steps 2000

Evaluation episodes 10

Replay buffer capacity 2e°

Episode length 1000 for DMControl, 500 for MetaWorld,
200 for pen and 100 for hammer

Batch size 512 for walker_run and walker_walk,

Frame stack
Discount factor ~

otherwise 256
1 for Adroit, otherwise 3
0.97 for MetaWorld, otherwise 0.99

State dims 9 x 84 x 84
Encoder conv kernels [32,32,32,32]
Encoder conv filter size [3x3,3%x3,3x3,3x3]
Encoder conv strides [2,1,1,1]
Hidden dims 1024
Latent state dims 50
Action repeat 2
n-step returns 3
Optimizer Adam
Learning rate le~*

TQ 0.01
Gradient training frequency 2
Exploration temperature 0.1
Hyperparameter SRL Setting
State transition step 7' 2
Sparse reward expectation C'y 0.1
Trainable Gaussian distribution mean fi. 0.5

C.3 LEARNING ALGORITHM

We describe the main algorithm steps as follows.

Algorithm 1 Scalable Representation Learning (SRL)

1: Initialize a replay buffer D with size NV, encoder ¢, policy 7 , latent model 75¢.
2: for m < 1 to (# epochs) do

Sample a trainable Gaussian noise € = p. + o1 fo(¢z(s5), ¢=(s;)), where o1 ~ N(0,1)
Train encoder Eg; 5, [||¢w (5i) — du(s5)]l2 — TT (si,55;@,0)] with 75{; in Equation |)
23)

3: for i < 1to (# episodes per epoch) do

4: Encode state z: = ¢u (st)

5: Execute action a; ~ 7y (z:) + € where € ~ N(0, 07).

6: Run a step in environments s¢11 ~ P(-|s¢, ar)

7: Collect data D < D U {St, Aty Tt41, Sz+1}

8: end for

9: for k < 1 to (# gradient steps) do

10: Sample batch B; ~ D

11: Rearrange batch B; = Rearrange(B;)

12:

13:

14: Train the Actor-Critic: B, [£9 (%=0,1, ¢w) + L™ ()] in Equation and Equation (
15: Train latent model E, ||757Lr (+|Z¢, at) — Zey1||2 with frozen latent states
16: Update target critics:Es, thz — 179Qu, + (1 — TQ)ngi,Vk’ =0,1
17: end for
18: end for

18

Under review as a conference paper at ICLR 2025

D EXPERIMENTAL SUPPLEMENT

D.1 THE BEHAVIOR SIMILARITY UNDER ENCODER SPACES

To quantitatively analyze the accuracy of the converged SRL and DBC encoders in terms of be-
havioral similarity metrics, we calculate the encoding distances d = ||¢.,(s;) — ¢u(s;)]l2, (0 <
1,7 < 500) of their pairwise combinations over 500 states and show the two pairs of states with
the smallest encoding distance in Figure [8] It is worth noting that to avoid combinations with
too close state transition steps, we set |[i — j| > 250 to ensure the effectiveness of the encoding
distance. [|a; (si, si41) — @;j(s;, Sj41) |

As depicted in Figure[8] on the left and right sides, we display the two closest groups of encoded
distances for each DMC task under the SRL and DBC encoders, respectively. We can easily observe
that the two sets of encoding states with the closest distance identified by the SRL encoder, also have
very similar behavioral manifestation or task features intuitively. For example, in the walker_run,
the differences between the states in each group are almost indistinguishable. In contrast, although
the states classified by the DBC method have certain similarities, there are obvious differences in
the detailed behaviors, so the effect is not good enough. In summary, the above results show that the
weak bisimulation metric can effectively cluster similar states, and this ability actually requires SRL
to accurately extract task-relevant features in the state, which strongly proves that SRL has powerful
representation learning performance.

SRL DBC

(c) quadruped_run

_7

(d) reacher_hard

Figure 8: Comparison of the behavioral similarity of state pairs under the latent space of SRL and
DBC encoders. Left: SRL, Right: DBC.

D.2 TASK-RELEVANT VISUALIZATIONS

As shown in Figure[9} we visualize the regions (green) of interest learned by convergent SRL and
DBC encoders in the MetaWorld environment. Overall, we can observe that the features extracted
by the SRL encoder (left side) are generally more complete and unambiguous. Interestingly, upon
closer inspection, we notice that the SRL encoder may have also learned to recognize and emphasize
potential safety boundaries, such as the operation boundaries on the desktop in the box-close

19

Under review as a conference paper at ICLR 2025

task. In contrast, the encoding abilities of DBC (right) are bad, as they either only notice partial
components (e.g., cups and pallets), while failing to capture potential task components (e.g., buttons
and target points), or result in disorganized and unclear visualized regions, such as the box-close
task. More importantly, the task relationships between components, the abstract features of logic,
and the scope of the components themselves seem difficult to represent. Due to the lack of an overall
understanding of the task, it is difficult for the DBC to perform each necessary operation in an orderly
manner and complete the task. To sum up, SRL can more systematically and clearly extract the entity
features and abstract features required to support decision-making tasks compared to the baseline,
and demonstrates strong representation learning capabilities in sparse reward environments.

SRL DBC

(d) box-close

(f) Stick-pull

Figure 9: Visualization comparison between task-relevant features captured by the SRL and DBC
encoders. Left: SRL, Right: DBC, with green heatmaps representing the task-relevant regions
of interest as identified by the final convolutional layer of each encoder. Note that we employed
consistent color parameters across both visualizations to ensure a fair comparison.

20

Under review as a conference paper at ICLR 2025

D.3 REWARD COMPARISON

As shown in Figure [T0] and Figure [IT} we report the comparison curves of mean episode rewards
between SRL and baselines in the MetaWorld and Adroit environments, respectively. The highest
episode reward results are recorded in Table[d] We can observe that, despite the difficulty of the task
settings, our method achieves the highest rewards across all tasks. As a key baseline for bisimulation-
based methods, DBC performed poorly in almost all tasks, and in some cases, it struggled to achieve
dense rewards within the limited training frames.

pick-place coffee-push stick-pull
4000 4000 4000
wn
e
© 3000 3000 3000
=
g
< 2000 2000 2000
©
()
€ 1000 1000 1000
0 0 0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
box-close coffee-pull soccer
4000
— DM 2000
“ DBC 3000
£ 3000 DrQ-v2 1500
ag) —— SRL (ours) 2000
< 2000 1000
C
3 1000 W‘*
€ 1000 500 "
0 0
00 02 04 06 08 10 0.0 0.5 1.0 1.5 2.0 0 1 2 3
env steps (x10°) env steps (x10°) env steps (x10°)

Figure 10: Learning curves of rewards for SRL and baselines on 6 complex tasks with sparse rewards
in MetaWorld. Each curve represents the average of three random seeds, with the shaded regions
indicating the standard deviation.

pen hammer

80 —— DrM
“ 150 DBC
£ 60 —— DrQ-v2
@ 100 —— SRL (ou
- 40
3
£ 20 50

0 0 FPOTAEPP I PrON |

0 1 2 3 4 0.0 0.5 1.0 1.5 2.0
env steps (x10°) env steps (x10°)

Figure 11: Learning curves of rewards for SRL and baselines on two complex tasks with sparse
rewards in Adroit. Each curve represents the average of three random seeds, with the shaded regions
indicating the standard deviation.

Table 4: Comparison results of the best mean episode reward on complex MetaWorld and Adroit
tasks with sparse rewards.

Methods pick-place coffee-push stick-pull box-close coffee-pull soccer pen hammer
DM 3345480 22134898 3091168 2538+747 14244253 12984280 65.24+7.0 45.8+£59.5
DBC 986+479 6304383 843+647 395+122 1665+58 784+241 60.6+3.7 2.7+0.0
DrQ-v2 4061£76 1460£59 22944421 2242+788 1225+£572 15984168 31.2+£20.0 9.1£13.6
SRL (ours) 4281+194 4254+73 4319+110 36504203 29164559 19254+211 79.4+8.0 171.3+13.6

21

Under review as a conference paper at ICLR 2025

D.4 SUPPLEMENTARY COMPARATIVE EXPERIMENT

We show the comparison results between SRL and the method of Kemertas et al. (Kemertas &
[Aumentado-Armstrong| [2021)) in Figure [T2] as their work also aims to solve the problem of repre-
sentation collapse within bisimulation metrics caused by sparse reward settings. Specifically, we
insert SRL into their framework to maintain completely consistent parameter and environment set-
tings. Furthermore, we selected ”ContinuousCartpole-v0” and ”SparsePendulum-v0” with reward
sparse modification as test tasks, and completed three sets of comparative experiments with the
N, = {1,2,3} distractor noise dimensions respectively. First of all, we can easily see that the
SRL (Ours) method achieves better performance in the ”ContinuousCartpole-v0” task with state di-
mension dim(S) = 4, and significant performance improvements in the “SparsePendulum-v0” task
with dim(S) = 6. In addition, according to the their work, the improvement brought by embedding
normalization, i.e., “norm” is very critical, so we also show the performance of their method with
the “without norm” setting. In contrast, SRL without embedding normalization can also achieve the
best performance.

Sparse Cartpole (N, =1)

Sparse Cartpole (N, =2)

Sparse Cartpole (N, =3)

200 - 200 4 200 A
35
150 o i
o 150 o 150
3
2 100 ~ 100 4 100 -
E 50
w 50 4 50 A
0 -
04 0
T T T T T T T T T T T T
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
Sparse Pendulum (N, =1) Sparse Pendulum (N, =2) Sparse Pendulum (N, = 3)
200 - 200 A 200
%) 4 150 + .
8 150 150
—
g 100
2 100 100
-4
© 50 1 50 -
50 -
>
o SRL
Kemertas et al. 0 o
0 =~ Kemertas et al. (no norm)

T T T
10000 20000 30000

Training Steps

T T T T
10000 20000 30000 0

Training Steps

T T T
0 10000 20000 30000 0

Training Steps
Figure 12: Experimental results on the modified Gym tasks: Cartpole (top row) and Pendulum

(bottom row). Each curve is averaged over 10 seeds with one standard deviation shaded in the
default setting.

22

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning
	Bisimulation Metric

	Methodology
	Problems of Bisimulation Metrics
	Weak Bisimulation Metric
	The Scalable Representation Learning
	Overall Architecture

	Experiments
	DMControl Experiments
	Robotic Manipulation Experiments
	Ablation Study

	Conclusion
	Proofs
	The Proof of Lemma 4.3
	Proofs of Theorem 4.4 and Theorem 4.5

	Background Supplement
	Bisimulation Relation
	Representations in Sparse Rewards

	Implementations
	Actor-Critic
	Hyperparameters
	Learning Algorithm

	Experimental Supplement
	The Behavior Similarity under Encoder Spaces
	Task-relevant Visualizations
	Reward Comparison
	Supplementary comparative experiment

