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ABSTRACT
Federated learning is a promising distributed training paradigm

that effectively safeguards data privacy. However, it may involve

significant communication costs, which hinders training efficiency.

In this paper, we aim to enhance communication efficiency from

a new perspective. Specifically, we request the distributed clients

to find optimal model updates relative to global model parameters

within predefined random noise. For this purpose, we propose Fed-
erated Masked Random Noise (FedMRN), a novel framework

that enables clients to learn a 1-bit mask for each model parameter

and apply masked random noise (i.e., the Hadamard product of

random noise and masks) to represent model updates. To make

FedMRN feasible, we propose an advanced mask training strategy,

called progressive stochastic masking (PSM). After local training,

each client only need to transmit local masks and a random seed

to the server. Additionally, we provide theoretical guarantees for

the convergence of FedMRN under both strongly convex and non-

convex assumptions. Extensive experiments are conducted on four

popular datasets. The results show that FedMRN exhibits supe-

rior convergence speed and test accuracy compared to relevant

baselines, while attaining a similar level of accuracy as FedAvg.
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1 INTRODUCTION
Federated learning (FL) [25] is a distributed training framework

designed to protect data privacy. It allows distributed clients to

collaboratively train a global model while retaining their data lo-

cally. FL typically consists of four steps: (1) clients download the

global model from a central server, (2) clients train the global model

using their respective data, (3) clients upload the model updates

(changes in model parameters) back to the server, and (4) the server

aggregates these updates to generate a new global model. This cycle

is repeated for several rounds until the global model converges.

However, the iterative transmission of model parameters intro-

duces significant communication overhead, which may affect train-

ing efficiency. To reduce communication costs, existing methods

focus on two aspects: model compression and gradient compression.

The former directly compresses model parameters [12], while the

latter is to apply compression techniques on model updates after lo-

cal training, such as quantization [21, 31] and sparsification [1, 29].

Notably, model compression reduces the model size, thereby con-

straining its capacity and learning capabilities. Although gradient
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Figure 1: An illustration of FedMRN. G is a random noise generator. In the example, each binary mask𝑚 ∈ {0, 1}, therefore the
masked random noise is sparse. It is worth noting that the mask can also take values from {−1, 1}, i.e., the signed mask. In such
case, the presence of a dotted line indicates changing the sign of the corresponding noise, rather than pruning it off.

compression does not affect the model size, it can introduce notable

errors into model updates, thereby influencing the convergence.

In this paper, we propose Federated Masked Random Noise

(FedMRN) to compress the uplink communication where clients

send model updates to the server. As shown in Figure 1, FedMRN

requests clients to find optimal model updates within predefined

random noise. In other words, model updates are now represented

by the masked random noise, which is the Hadamard product of the

random noise and binary masks. Note that the noise is determined

by a specific random seed. The only trainable variables are the

binary masks, which occupy 1 bit per parameter (bpp). Ourmoti-
vation for doing this is twofold. First, recent studies [2, 30, 43] have

confirmed the existence of the supermasks. These masks, whenmul-

tiplied with randomly initialized weights, yield a model capable of

achieving satisfactory accuracy without ever training the weights.

To be more specific, finding masks for random noise can achieve

comparable performance to training the parameters directly. Sec-

ond, when it comes to FL, the objective of local training is to learn

the optimal model updates relative to the global model parameters

provided by the server. Therefore, we propose applying the concept

of supermasks to the learning of model updates. We believe that

training masks for random noise and generating masked random

noise to serve as model updates can be as effective as directly train-

ing model parameters and then generating model updates. In doing

so, we can compress the uplink communication overhead by a fac-

tor of 32, while neither reducing the number of model parameters

nor requiring post-training compression on model updates.

To find the optimal masks, we maintain an extra learnable copy

of model parameters within the local model, initialized with zeros

to represent model updates. The masks will then be generated on

the fly according to the random noise and model updates. In this

way, we can optimize the masks indirectly by optimizing the above

model updates. The generated masks will be used to map model up-

dates into masked random noise, this process is called masking. To

improve the accuracy of FedMRN, we further propose an advanced

masking strategy, called progressive stochastic masking (PSM). PSM
comprises two components: stochastic masking (SM) and progres-

sive masking (PM). SM determines the probability of a mask being

set to 1 based on the model update and the corresponding random

noise. It subsequently gets the mask by Bernoulli sampling with

such probability. Further, PM probabilistically determines whether

to perform masking on a model update. Specifically, during local

training, each element within the model updates has a probability

of being mapped into masked random noise. This probability grad-

ually increases to 1 during local training, ensuring that all model

updates will eventually be mapped into masked random noise.

The main contributions of this paper are summarized as follows:

• We propose a novel framework for communication-efficient

FL, termed FedMRN, in which clients are requested to find

optimal model updates within predefined random noise. In

the uplink stage, FedMRN enables clients to transmit just a

single 1-bit mask for each parameter to the server.

• We propose a local mask training strategy, dubbed progres-

sive stochastic masking, aimed at finding the optimal masked

random noise. The strategy consists of two key components:

stochastic masking and progressive masking.

• We provide theoretical convergence guarantees for FedMRN

under both strongly convex and non-convex assumptions,

showing a comparable convergence rate to FedAvg [25].

• We perform extensive experiments on four datasets to com-

pare FedMRN with relevant baselines. Experimental results

demonstrate that FedMRN exhibits superior convergence

speed and test accuracy compared to all baselines, while

attaining a similar level of accuracy as FedAvg. The code is

available at https://github.com/Leopold1423/fedmrn-mm24.

2 RELATEDWORK
2.1 Lottery Tickets and Supermasks
The lottery ticket hypothesis (LTH) [7] states that within a neural

network lie sparse subnetworks (aka winning tickets), capable of

achieving comparable accuracy to the fully trained dense network

when trained from scratch. Follow up work by Zhou et al. [43] finds

that winning tickets perform far better than chance even without

training. Inspired by this observation, Zhou et al. [43] propose

identifying the supermasks, i.e., masks that can be applied to an

https://github.com/Leopold1423/fedmrn-mm24
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untrained network to produce a model with impressive accuracy.

Specifically, they learn a probability 𝑝 for themask of each randomly

initialized and frozen weight. In the forward pass, each mask is

obtained by Bernoulli sampling according to the corresponding

probability 𝑝 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑠), where 𝑠 is the trainable variable andwill
be optimized by gradient descent. Subsequently, Koster et al. [17]

have extended the value range of the mask to {−1, 0, 1}. These three
values represent sign-inverting, dropping, and keeping the weight,

respectively. In summary, above studies as well recent theoretical

results [24, 28] indicate that masking a randomly initialized network

can be as effective as directly training its weights.

2.2 Supermasks for Federated Learning
Recent studies [14, 19, 36] have employed supermasks to reduce

communication costs for FL. They attempt to find supermasks for

randomly initialized network in federated settings. Note that the

mask 𝑚 is typically optimized by training a continuous score 𝑠 .

Specifically, FedMask [19] gets the mask by𝑚 = I(𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑠) >
0.5), utilizing the indicator function I. FedPM [14] generates the

mask through Bernoulli sampling, that is,𝑚 = 𝐵𝑒𝑟𝑛(𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑠)).
HideNseek [36] changes the value range of the mask to {−1, 1},
where the mask is generated by𝑚 = 2I(𝑠 > 0) − 1.

Logically speaking, in FL, we should directly communicate and

aggregate the trainable parameters, i.e., the scores 𝒔. However, in
order to reduce communication costs, the above methods request

clients to upload only the binary masks generated from the scores 𝒔.
The server will aggregate the masks and then generate an estimate

for 𝒔. For example, 𝒔𝒕+1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑−1 [ 1

𝐾

∑𝑁
𝑘=1

𝐵𝑒𝑟𝑛(𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝒔𝑡
𝑘
))]

in FedPM. Essentially, it is a form of model compression, where

the trainable scores are binarized into masks through Bernoulli

sampling. This will introduce significant errors to the updating of

the scores and hamper their stable and effective training.

We analyze that the above methods are very rough combinations

of the supermasks and FL. They are stuck in the inertia of finding

random subnetworks. FL encompasses two levels: (1) the entire

training process, whose goal is to find the optimal global param-

eters, and (2) the local training process, whose goal is to find the

optimal model updates relative to the currently received global pa-

rameters. To integrate supermasks into the former level, we should

leverage the entire training process to train the scores of masks. In

this case, model updates are the changes of scores. Consequently,

compressing these scores into masks for communication introduces

significant errors, thereby affecting their optimization. In this paper,

we propose to combine the supermasks with the latter level, i.e.,

local training, and try to learn model updates with supermasks.

Specifically, we train masks for random noise and generate masked

random noise to serve as model updates. In doing so, model updates

are no longer changes in scores, but directly the values of masks.

In summary, the biggest difference between our work and existing

studies is that we find masked random noise to serve as model

updates of local training, rather than as the final parameters.

2.3 Communication Compression
The first way of communication compression is model compres-

sion. For example, FedPara [12] performs low-rank decomposition

on weight matrices. FedSparsify [34] performs weight magnitude

pruning during local training and only parameters with larger mag-

nitude will be sent to the server. These methods often have other

advantages besides efficient communication, such as smaller model

storage and less computational overhead. Nevertheless, their ca-

pacity to compress communication costs is frequently restricted.

Intense compression markedly diminishes the size of local models,

consequently undermining their learning ability.

Another way of communication compression is gradient com-

pression, such as sparsification [1, 29] and quantization [11, 15, 21,

31]. ZeroFL [29] prunes model updates based on themagnitude with

a given sparsity ratio. FedPAQ [31] propose to quantize local model

updates. [3, 15, 16, 35] has further investigated the application of

1-bit quantization (i.e., binarization) on model updates. Moreover,

DRIVE [38] and EDEN [37] use shared randomness to improve the

model accuracy of binarization and quantization. Let 𝒙 ∈ R𝑑 denote

the vector to be compressed and 𝑹 be a matrix generated with a

random seed. DRIVE compressed 𝒙 into 𝒙̂ = 𝛼𝑹−1
sign(𝑹𝒙). Each

client only needs to upload the scalar 𝛼 and the signs of 𝑹𝒙 to the

server. Note that the scalar 𝛼 is calculated by clients to minimize

∥𝒙 − 𝒙̂ ∥. Later, EDEN has extended DRIVE to the case of quantiza-

tion and further improves the calculation process for the scalar 𝛼 .

However, existing gradient compression methods are compressing

model updates in a post-training manner. In contrast, we directly

associate model updates with masked random noise during local

training, which is a form of learning to compress model updates.

This allows us to minimize the impact of errors caused by model

updates compression on accuracy through local training.

3 METHODOLOGY
3.1 Problem Formulation
FL involves 𝑁 clients connecting to a central server. The general

goal of FL is to train a global model by multiple rounds of local

training on each client’s local dataset, which can be formulated as:

min

w∈R𝑑
𝐹 (w) =

𝑁∑︁
𝑘=1

𝑝𝑘𝐹𝑘 (w), (1)

where 𝑝𝑘 is the proportion of the 𝑘-th client’s data to all the data

of the 𝑁 clients and 𝐹𝑘 is the objective function of the 𝑘-th client.

FedAvg [25] is a widely used FL algorithm. In the 𝑡-th round, the

server sends the global parameters w𝑡 to several randomly selected

𝐾 clients. The set of selected clients can be denoted as C𝑡 . Each se-

lected client seeks to determine the optimal model updates relative

to w𝑡 through multiple gradient descents on its local dataset:

min

𝒖𝑡
𝑘
∈R𝑑

𝐹𝑘 (w𝑡 + 𝒖𝑡𝑘 ) . (2)

Note that 𝒖𝑡
𝑘
denotes the accumulation of updates produced by

multiple gradient descents. After local training, each client obtains

its local model updates 𝒖𝑡
𝑘
and then send them to the server, who

then aggregates all the model updates to generate new global model

parameters as follows:

w𝑡+1 = w𝑡 +
∑︁
𝑘∈C𝑡

𝑝′
𝑘
𝒖𝑡
𝑘
. (3)

where 𝑝′
𝑘
=

𝑝𝑘∑
𝑘∈C𝑡 𝑝𝑘

denotes the proportion of the 𝑘-th client’s

data to all the data used in the 𝑡-th round.
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In this paper, we suggest identifying the optimal masked random

noise to serve as model updates relative to global parameters. Thus,

the objective of local training can be formulated as follows:

min

𝒎𝑡
𝑘
∈{0,1}𝑑

𝐹𝑘 (w𝑡 + G(𝑠𝑡𝑘 ) ⊙ 𝒎𝑡
𝑘
), (4)

where ⊙ is the Hadamard product, G is a random noise generator,

𝑠𝑡
𝑘
is the random seed, and 𝒎𝑡

𝑘
denotes the masks. G can corre-

spond to various data distributions, such as Gaussian, Uniform,

and Bernoulli distributions. The optimization space of the mask

can also be {−1, 1}, i.e., the signed mask. In fact, binary masks and

signed masks are equivalent to a certain extent, as illustrated by

the subsequent expansion: G(𝑠) ⊙ 𝒎𝑠 = 2G(𝑠) ⊙ 𝒎 − G(𝑠), where
𝒎𝑠 ∈ {−1, 1}𝑑 and 𝒎 ∈ {0, 1}𝑑 . It is evident that the noise required
for the binary masks 𝒎 is twice that of the signed masks 𝒎𝑠 .

After local training, each client only sends the random seed 𝑠𝑡
𝑘

and the masks 𝒎𝑡
𝑘
to the server. Then the server will recover the

masked random noise and performs central model aggregation by

w𝑡+1 = w𝑡 +
∑︁
𝑘∈C𝑡

𝑝′
𝑘
G(𝑠𝑡

𝑘
) ⊙ 𝒎𝑡

𝑘
. (5)

In the following, we will elaborate on the optimization of local

masks in Section 3.2, and introduce the pipeline of our federated

training framework in Section 3.3.

3.2 Progressive Stochastic Masking
In the 𝑡-th round, the clients will receive global model parameters

w𝑡 from the server, and then employ them to initialize their local

models. Next, each client generates its local noise by a random

seed 𝑠𝑡
𝑘
, that is G(𝑠𝑡

𝑘
). To find the optimal masks, we additionally

maintain a trainable copy of model parameters within the local

model, initialized with zeros to represent model updates. The masks

will then be generated on the fly according to the random noise and

model updates. In this way, the masks can be optimized indirectly

by optimizing the model updates. The notation of model updates

is 𝒖𝑡,𝜏
𝑘
, where 𝑘 represents the client serial number, 𝑡 denotes the

current training round, and 𝜏 denotes the current local step.

The process of generating masks and obtaining masked ran-

dom noise is termed masking. Next, we will introduce an effective

mask training strategy for local training, called progressive stochas-

tic masking (PSM). PSM includes the design of two components,

namely stochastic masking (SM) and progressive masking (PM).

3.2.1 Stochastic Masking. A simple way to generate masks is by

comparing the signs of model updates and random noise. Specifi-

cally, a mask should be set to 1 only when the model update and

the corresponding noise share the same sign. We name this method

deterministic masking (DM). There are many methods similar to

DM, such as the sign function used in SignSGD [3] and the indicator

function used in FedMask. However, DM suffers from a significant

flaw, that is seriously biased estimation. For ease of expression,

we next use 𝒖̂ = G(𝑠) ⊙ 𝒎 to represent the masked random noise.

The biased estimation refers to the huge deviation between 𝒖 and

and the expectation of 𝒖̂. More realistically, DM disregards the

amplitude of both model updates and the random noise.

To overcome this issue, we propose the stochastic masking strat-

egy, as shown in Figure 2(a). Specifically, SM first calculates the

probability that a mask is 1 based on the value of the model update

(a) Stochastic Masking (SM)

(b) Progressive Masking (PM)

Figure 2: Schematic diagram of SM and PM. In subfigure (b),
𝜏 is the number of current local iterations, and 𝑆 is the total
number of local iteration steps. 𝑝 will increase to 1 as training
progresses, so that each element of the model updates will
eventually be mapped into masked noise.

and the random noise, and then uses this probability to sample the

binary mask from the Bernoulli distribution. For a model update 𝑢

and the corresponding noise 𝑛, the probability and the binary mask

has the following values:

𝑚 =M(𝑢, 𝑛) =
{

1 w.p. 𝑝 = 𝑐𝑙𝑖𝑝 (𝑢/𝑛, 0, 1),
0 w.p. 1 − 𝑝, (6)

where 𝑐𝑙𝑖𝑝 is to clamp the probability into the range of [0, 1]. Ob-
viously, E[𝑛M(𝑢, 𝑛) − 𝑢] = 0 when 𝑢/𝑛 ∈ [0, 1]. That is, the ex-
pectation of the error caused by masking is zero. Also, we extend

our stochastic masking strategy to the signed masks, where the

calculation of the probability and the mask shall be changed to

𝑚 =M(𝑢, 𝑛) =
{

1 w.p. 𝑝 = 𝑐𝑙𝑖𝑝 (𝑢+𝑛/2𝑛, 0, 1),
−1 w.p. 1 − 𝑝. (7)

In this case, E[𝑛M(𝑢, 𝑛) −𝑢] = 0 when 𝑢/𝑛 ∈ [−1, 1]. Applying the
mask generatorM defined in Eq.(6) or (7) to element-wise process

the model updates 𝒖 and the random noise G(𝑠), we can derive the

formula for stochastic masking:

𝒖̂ = S(𝒖,G(𝑠)) = G(𝑠) ⊙ M(𝒖,G(𝑠)) (8)

During forward propagation, the masked noise 𝒖̂ will be added

to the frozen global parameters to obtain the complete model pa-

rameters. However, the stochastic masking S includes the process

of Bernoulli sampling, which is non-differentiable. This renders

the gradient descent algorithms inapplicable. To optimize 𝒖 and

thus optimizing the masks, we adopt Straight-through Estimator

(STE) [9] to treat SM as an identity map during backpropagation, i.e.,
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𝜕S/𝜕𝒖 = 1. Recent work has demonstrated that STE works as a first-

order approximation of the gradient and affirmed its efficacy [23].

Hence, the model updates 𝒖 will be optimized by

𝒖𝑡,𝜏+1
𝑘

= 𝒖𝑡,𝜏
𝑘
− 𝜂

𝜕𝐹𝑘 (w𝑡 + 𝒖̂𝑡,𝜏𝑘 )
𝜕𝒖̂𝑡,𝜏
𝑘

. (9)

3.2.2 Progressive Masking. SM has addressed the issue of biased

estimation caused by masking. Specifically, E[𝒖̂ − 𝒖] = 0 under

certain conditions. However, there is still a certain gap between the

model updates 𝒖 and the masked noise 𝒖̂. As shown in Eq.(9), 𝒖 is

essentially updated using the gradient of 𝒖̂. This gap can signifi-

cantly disrupt the optimization process for 𝒖, especially during the

initial training stages when 𝒖 is far from stable convergence.

To reduce the gap between 𝒖 and 𝒖̂ during optimization, we

propose a progressive masking strategy. Figure 2(b) illustrates the

process, where each model update undergoes a probability of being

mapped into masked noise during forward propagation. As training

proceeds, the probability will gradually increase to 1, ensuring

that every element within the model updates will eventually be

mapped into masked noise. Here, we simply define the probability

to increase linearly, i.e., 𝑝 = 𝜏/𝑆 , where 𝑆 is the total local iteration

steps and 𝜏 is the serial number of the current step. The combination

of SM and PM yields PSM, wherein the actual model updates utilized

in the forward pass are

𝒖̂ = (1 − 𝑷 ) ⊙ 𝒖̄ + 𝑷 ⊙ S(𝒖,G(𝑠)) . (10)

𝑷 = 𝐵𝑒𝑟𝑛(1 × 𝑝) ∈ {0, 1}𝑑 , each element within 𝑷 is obtained by

Bernoulli sampling with probability 𝑝 . 𝒖̄ = 𝑐𝑙𝑖𝑝 (𝒖,G(𝑠)), limiting

𝒖 to the interval of [0,G(𝑠)], or [G(𝑠), 0] where G(𝑠) is negative.
For the signed mask, the interval will be [−|G(𝑠) |, |G(𝑠) |].

As both SM and PM employ Bernoulli sampling, we offer a com-

parison to alleviate potential confusion. Bernoulli sampling in PM
determines whether to map a model update into masked noise, with

the probability based on the local training progress. Differently, in

SM, Bernoulli sampling determines whether to set a mask to 1, with

the probability calculated by the values of model updates and noise.

3.3 Federated Masked Random Noise
In the preceding subsections, we described our objectives and elu-

cidated the local training procedure. Hereafter, we present the com-

prehensive framework of FedMRN. The pipeline of FedMRN closely

resembles that of FedAvg, with nuanced differences in the local

training and central aggregation stages. Consequently, FedMRN

can be seamlessly integrated into prevalent FL frameworks. The

pipeline of FedMRN is detailed in Algorithm 1.

The server maintains a global model, whenever a new round of

training starts, it sends the latest global parameters to randomly

selected clients. These clients will load the global parameters, gener-

ate random noise, and initialize the local model updates with zeros.

Subsequently, clients conduct local training using the PSM strategy.

Line 15-18 in Algorithm 1 condenses all designs in Section 3.2. After

local training, each client produces the final masks 𝒎𝑡
𝑘
and send

them to the server along with the random seed 𝑠𝑡
𝑘
. Upon receiving

these contents, the server will recover the model updates (i.e., the

masked random noise) of each client and aggregate them using

Eq.(5) to generate global model parameters for the next round.

Algorithm 1 Federated Masked Random Noise

Input: learning rate 𝜂; client data ratios {𝑝𝑘 |𝑘 ∈ [𝑁 ]}; noise gen-
erator G; mask generatorM.

Output: Trained global model w.

1: Initialize the model parameters w1
;

2: procedure Server-side Optimization
3: for each communication round 𝑡 ∈ {1, 2, ..., 𝑅} do
4: Randomly select a subset of clients C𝑡 ;
5: Broadcast w𝑡 to each selected client;

6: for each selected client 𝑘 in parallel do
7: 𝒎𝑡

𝑘
, 𝑠𝑡
𝑘
← 𝐶𝑙𝑖𝑒𝑛𝑡𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒 (w𝑡 );

8: Aggregate masked random noise by

9: w𝑡+1 = w𝑡 +
∑

𝑘∈C𝑡 𝑝𝑘 G(𝑠
𝑡
𝑘
)⊙𝒎𝑡

𝑘∑
𝑘∈C𝑡 𝑝𝑘

;

10: procedure ClientLocalUpdate(w𝑡 )
11: Load global model parameters w𝑡 ;
12: Generate noise by G with seed 𝑠𝑡

𝑘
;

13: Initializes model updates 𝒖𝑡,1
𝑘

with zeros;

14: for each local iteration 𝜏 ∈ {1, 2, ..., 𝑆} do
15: 𝒖̂𝑡,𝜏

𝑘
=M(𝒖𝑡,𝜏

𝑘
,G(𝑠𝑡

𝑘
)) ⊙ G(𝑠𝑡

𝑘
); # SM

16: 𝑷 = 𝐵𝑒𝑟𝑛(1 × 𝜏/𝑆);
17: 𝒖̄𝑡,𝜏

𝑘
= 𝑐𝑙𝑖𝑝 (𝒖𝑡,𝜏

𝑘
,G(𝑠𝑡

𝑘
));

18: 𝒖̂𝑡,𝜏
𝑘

= (1 − 𝑷 ) ⊙ 𝒖̄𝑡,𝜏
𝑘
+ 𝑷 ⊙ 𝒖̂𝑡,𝜏

𝑘
; # PM

19: 𝒖𝑡,𝜏+1
𝑘

= 𝒖𝑡,𝜏
𝑘
− 𝜂 𝜕𝐹𝑘 (w

𝑡+𝒖̂𝑡,𝜏

𝑘
)

𝜕𝒖̂𝑡,𝜏

𝑘

20: return final masksM(𝒖𝑡,𝑆+1
𝑘

,G(𝑠𝑡
𝑘
)) and the seed 𝑠𝑡

𝑘
.

4 CONVERGENCE ANALYSIS
In this section, we present our theoretical guarantees on the con-

vergence of FedMRN, taking into account the non-independently

identically distributed (Non-IID) nature of local datasets. For sim-

plicity, we analyze the convergence of FedMRN using signed masks.

We first consider the strongly convex setting and state the conver-

gence guarantee of FedMRN for such losses in Theorem 1. Then,

in Theorem 2, we present the overall complexity of FedMRN for

finding a first-order stationary point of the global objective function

𝐹 , when the loss function is non-convex. All proofs are provided in

the Appendix.

Before that, we first give the following notations and assump-

tions required for convex and non-convex settings. Let 𝐹 ∗ and 𝐹 ∗
𝑘

be the minimum values of 𝐹 and 𝐹𝑘 , respectively. We use the term

Γ = 𝐹 ∗ −∑𝑁
𝑘=1

𝑝𝑘𝐹
∗
𝑘
for quantifying the degree of data heterogene-

ity. In Section 3.3, the subscripts 𝑡 ∈ [𝑅] and 𝜏 ∈ [𝑆] are used to

represent the serial number of global rounds and local iterations, re-

spectively. In the following analysis, we will only use the subscript

𝑡 to represent the cumulative number of iteration steps in the sense

that 𝑡 ∈ [𝑇 ],𝑇 = 𝑅𝑆 . Below are some commonly used assumptions:

Assumption 1. (L-smoothness.) 𝐹1, ..., 𝐹𝑁 are all 𝐿-smooth: for
all w and v, 𝐹𝑘 (v) ≤ 𝐹𝑘 (w) + (v −w)𝑇∇𝐹𝑘 (w) + 𝐿2 ∥v −w∥

2.

Assumption 2. (Bounded variance.) Let 𝜉𝑡
𝑘
be sampled from the

𝑘-th client’s local data randomly. The variance of stochastic gradients
is bounded: E∥∇𝐹𝑘 (w𝑡𝑘 , 𝜉

𝑡
𝑘
) − ∇𝐹𝑘 (w𝑡𝑘 )∥ ≤ 𝜎 for all 𝑘 = 1, ..., 𝑁 .
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Assumption 3. (Bounded gradient.) The expected squared norm of
stochastic gradients is uniformly bounded, i.e., E∥∇𝐹𝑘 (w𝑡𝑘 , 𝜉

𝑡
𝑘
)∥ ≤ 𝐺

for all 𝑘 = 1, ..., 𝑁 and 𝑡 = 1, ...,𝑇 .

Assumption 4. (Bounded error.) The error caused by the masking
functionS growswith the 𝑙2-norm of its argument, i.e.,E∥S(𝒙,G(𝑠))−
𝒙 ∥ ≤ 𝑞∥𝒙 ∥.

Assumption 5. (Strongly convex.) 𝐹1, ..., 𝐹𝑁 are𝑢-strongly convex:
for all w and v, 𝐹𝑘 (v) ≥ 𝐹𝑘 (w) + (v −w)𝑇∇𝐹𝑘 (w) +

𝜇
2
∥v −w∥2.

Assumptions 1-3 are commonplace in standard optimization

analyses [22, 33]. The condition in Assumption 4 is satisfied with

many compression schemes including the masking function S in

Eq.(8). Assumption 4 is also used in [16, 31] to analyze the con-

vergence of federated algorithms. Assumption 5 is about strong

convexity and will not be used in the non-convex settings.

Theorem 1. (Strongly convex.) Let Assumptions 1-5 hold. Choose
𝜅 = 𝐿/𝜇, 𝛾 = max{8𝜅, 𝑆} − 1 and the learning rate 𝜂𝑡 = 2/𝜇 (𝛾+𝑡 ) . Gen-
erating the noise from the Bernoulli distribution {−2𝜂0𝑆𝐺, 2𝜂0𝑆𝐺},
then FedMRN satisfies

E[𝐹 (w𝑇 )] − 𝐹 ∗ ≤
𝜅

𝛾 +𝑇 (
2𝐵

𝜇
+ 𝜇 (𝛾 + 1)

2

E∥w1 −w∗∥2), (11)

where 𝐵 = 𝜎2

𝑁
+ 6𝐿Γ + 8(1 + 𝑞2) (𝑆 − 1)2𝐺2 + 4

𝑞2 (𝑁−1)+𝑁−𝐾
𝐾 (𝑁−1) 𝑆2𝐺2.

Theorem 2. (Non-convex.) Let Assumptions 1-4 hold. Assume
the learning rate is set to 𝜂 = 1

𝐿
√
𝑇
. Generating the noise from the

Bernoulli distribution {−2𝜂𝑆𝐺, 2𝜂𝑆𝐺}, then the following first-order
stationary condition holds

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (w𝑡 )∥2 ≤
2𝐿(𝐹 (w0) − 𝐹 ∗)√

𝑇
+ 𝑃
√
𝑇
+ 𝑄
𝑇
, (12)

where 𝑃 = 𝜎2

𝑁
+ 4

𝑞2 (𝑁−1)+𝑁−𝐾
𝐾 (𝑁−1) 𝑆2𝐺2) and𝑄 = 4(1 +𝑞2) (𝑆 − 1)2𝐺2.

Proposition 1. In Theorems 1 and 2, for simplicity, we only con-
sider the effect of SM and temporarily ignore PM. In fact, PM can

further reduce 𝑞 by
√︃

1

𝑆3

∑𝑆
𝜏=1

𝜏2 times.

Remark 1. By setting𝑞 = 0, Theorem 1 is equivalent to the analysis
about FedAvg in [22]. By setting 𝐾 = 𝑁 and 𝑆 = 1, Theorems 1 and 2
recovers the convergence rate of SignSGD [32] when used in distributed
training. By setting 𝐾 = 𝑁, 𝑆 = 1 and 𝑞 = 0, Theorems 1 and 2 can
recover the convergence rate of vanilla SGD.

Remark 2. Under the conditions of Theorem 1 and 2, the conver-
gence rate of both FedMRN and FedAvg (𝑞 = 0) is O( 1

𝑇
) in the strongly

convex setting, and O( 1

𝑇
) + O( 1√

𝑇
) in the non-convex setting.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets and Models. In this section, we evaluate FedMRN

on four widely used datasets: FMNIST [40], SVHN [27], CIFAR-10

and CIFAR-100 [18]. For FMNIST and SVHN, we employ a convolu-

tional neural network (CNN) with four convolution layers and one

fully connected layer. For CIFAR-10 and CIFAR-100, we employ a

CNN with eight convolution layers and one fully connected layer.

ReLU [8] is used as the activation function and batch normalization

(BN) [13] is utilized to ensure stable training. Experiments on other

tasks [5, 26] and models [10, 41] can be find in the Appendix.

5.1.2 Data Partitioning. We consider both cases of IID and Non-

IID data distribution, referring to the data partitioning benchmark

of FL [20]. Under IID partitioning, an equal quantity of data is

randomly sampled for each client. The Non-IID scenario further

encompasses two distinct label distributions, termed Non-IID-1 and

Non-IID-2. In Non-IID-1, the proportion of the same label among

clients follows the Dirichlet distribution [42], while in Non-IID-

2, each client only contains data of partial labels. For CIFAR-100,

we set the Dirichlet parameter to 0.2 in Non-IID-1 and assign 20

random labels to each client in Non-IID-2. For the other datasets,

we set the Dirichlet parameter to 0.3 in Non-IID-1 and assign 3

random labels to each client in Non-IID-2.

5.1.3 Baselines. FedAvg [25] is adopted as the backbone train-

ing algorithm. We compare FedMRN with several state-of-the-art

methods, including FedPM [14], FedSparsify [34], SignSGD [32],

Top-𝑘 [1], TernGrad [39], DRIVE [38], EDEN [37]. FedPM and

FedSparsify focus on model compression, while the remaining base-

lines concentrate on gradient compression. FedPM trains and com-

municates a binary mask for each model parameter. FedSparsify

prunes the model weights during local training with a specified

sparsity ratio and finally uploads the pruned model. Similarly, Top-

𝑘 prunes model updates after local training by a sparsity ratio.

SignSGD performs stochastic binarization on model updates, while

TernGrad converts the model updates to ternary values. EDEN and

DRIVE initially execute a random rotation on model updates (es-

sentially multiplying by a random matrix) before binarizing them.

The communication costs of FedPM, SignSGD, EDEN, DRIVE, and

FedMRN are all 1 bit per parameter (bpp). Therefore, for a fair

comparison, we set the sparsity of FedSparsify and Top-𝑘 to 97%,

resulting in approximately 32-fold compression. Note that we did

not consider the extra overhead of sparse encoding. Otherwise, a

higher sparsity would be required. Additionally, the communication

costs of TernGrad is log(3) bpp, surpassing that of other methods.

5.1.4 Hyperparameters. The number of clients is set to 100 and 10

clients will be selected for training in each round. The local epoch is

set to 10 and the batch size is set to 64. SGD [4] is used as the local

optimizer. The learning rate is tuned from {1.0, 0.3, 0.1, 0.03, 0.01}.
The number of rounds are set to 100 for FMNIST and SVHN, and

are set to 200 for CIFAR-10 and CIFAR-100. Note that FedMRN
and FedMRNS indicate the use of binary masks and signed masks,

respectively. The random noise in FedMRN follows a uniform dis-

tribution by default. The range of the distribution is [-1e-2, 1e-2]

for FedMRN and [-5e-3, 5e-3] for FedMRNS. Each experiment is

run five times on Nvidia 3090 GPUs with Intel Xeon E5-2673 CPUs.

Average results and the standard deviation are reported.

5.2 Overall Performance
In this subsection, we compare the performance of FedMRN and the

baselines by the global model accuracy and the convergence speed.

All numerical results are reported in Table 1. Further, to facilitate

comparison of accuracy, the accuracy loss of each method relative

to FedAvg is displayed in Table 2, where each term represents the
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Figure 3: Convergence curves under the Non-IID-2 data distribution.

Table 1: The accuracy of all methods on four datasets. The best accuracy is bolded and the next best accuracy is underlined.
FedMRN and FedMRNS indicate the use of binary masks {0, 1} and signed masks {−1, 1}, respectively.

FMNIST SVHN CIFAR-10 CIFAR-100

IID Non-IID-1 Non-IID-2 IID Non-IID-1 Non-IID-2 IID Non-IID-1 Non-IID-2 IID Non-IID-1 Non-IID-2

FedAvg 92.0 (± 0.1) 90.5 (± 0.1) 88.8 (± 0.2) 92.2 (± 0.1) 90.3 (± 0.2) 88.9 (± 0.1) 88.2 (± 0.2) 84.1 (± 0.2) 80.8 (± 0.5) 56.1 (± 0.3) 54.8 (± 0.5) 54.4 (± 0.2)
FedPM 81.7 (± 0.4) 78.6 (± 0.2) 74.6 (± 0.8) 66.3 (± 0.9) 52.4 (± 1.1) 48.3 (± 2.3) 50.2 (± 0.9) 46.3 (± 0.2) 44.3 (± 0.5) 22.9 (± 0.1) 16.6 (± 0.3) 13.4 (± 0.2)

FedSparsify 85.6 (± 0.1) 80.9 (± 1.2) 78.8 (± 1.5) 81.3 (± 0.3) 77.2 (± 0.4) 72.8 (± 1.1) 72 (± 0.7) 66.8 (± 0.7) 62.5 (± 0.5) 32.9 (± 0.2) 29.8 (± 0.3) 28.8 (± 0.1)

SignSGD 91.1 (± 0.1) 88.4 (± 0.2) 87.1 (± 0.3) 90.8 (± 0.2) 87.3 (± 0.4) 86.5 (± 0.3) 85.3 (± 0.2) 75.1 (± 0.4) 76.2 (± 0.6) 48.0 (± 0.5) 39.2 (± 0.2) 44.0 (± 0.2)

Top-𝑘 90.1 (± 0.1) 88.6 (± 0.2) 86.7 (± 0.2) 90.0 (± 0.1) 87.7 (± 0.1) 86.4 (± 0.1) 84.1 (± 0.1) 77.9 (± 0.3) 75.1 (± 0.1) 50.2 (± 0.2) 47.6 (± 0.5) 43.0 (± 0.7)

TernGard 91.4 (± 0.2) 89.9 (± 0.2) 87.9 (± 0.2) 91.7 (± 0.1) 89.6 (± 0.1) 87.7 (± 0.3) 86.9 (± 0.2) 81.9 (± 0.5) 79.2 (± 0.4) 53.5 (± 0.4) 52.1 (± 0.5) 52.3 (± 0.3)

DRIVE 91.6 (± 0.1) 89.9 (± 0.2) 88.1 (± 0.1) 91.6 (± 0.1) 89.6 (± 0.2) 87.8 (± 0.3) 87.2 (± 0.1) 82.4 (± 0.4) 79.4 (± 0.3) 53.5 (± 0.2) 52.5 (± 0.3) 52.8 (± 0.2)

EDEN 91.4 (± 0.2) 89.8 (± 0.2) 88.3 (± 0.3) 91.7 (± 0.1) 89.7 (± 0.1) 87.8 (± 0.2) 87.5 (± 0.2) 82.6 (± 0.4) 79.8 (± 0.4) 53.9 (± 0.3) 53.1 (± 0.2) 52.9 (± 0.1)

FedMRN 91.8 (± 0.1) 90.2 (± 0.1) 88.6 (± 0.2) 92.2 (± 0.1) 90.0 (± 0.3) 88.5 (± 0.2) 88.3 (± 0.2) 84.6 (± 0.2) 81.4 (± 0.4) 55.4 (± 0.5) 54.1 (± 0.2) 53.9 (± 0.4)

FedMRNS 92.0 (± 0.1) 90.5 (± 0.2) 88.9 (± 0.3) 92.4 (± 0.2) 90.5 (± 0.3) 88.7 (± 0.4) 88.0 (± 0.1) 84.5 (± 0.3) 81.0 (± 0.5) 56.1 (± 0.5) 54.7 (± 0.5) 54.2 (± 0.3)

Table 2: Accuracy loss compared to FedAvg.

FMNIST SVHN CIFAR-10 CIFAR-100

FedPM -36.4 -104.4 -112.3 -112.4

FedSparsify -26.0 -40.1 -51.8 -73.8

SignSGD -4.7 -6.8 -16.5 -34.1

Top-𝑘 -5.9 -7.3 -16.0 -24.5

TernGard -2.3 -2.5 -5.2 -7.5

DRIVE -1.8 -2.4 -4.1 -6.6

EDEN -1.8 -2.3 -3.2 -5.5

FedMRN -0.7 -0.7 1.2 -1.9

FedMRNS 0.1 0.2 0.4 -0.3

cumulative accuracy loss across three data distributions. For space

constraints, we present only the convergence curves under the

Non-IID-2 data distribution, depicted in Figure 3.

First, we examine the model compression baselines, specifically

FedPM and FedSparsify. As shown in Figure 3, they two demon-

strate markedly lower convergence upper bounds, with a significant

decrease in accuracy compared to FedAvg or other baseline meth-

ods. This verifies our discussion in the related work section that

excessive model compression curtails the expressive capacity and

learning potential. Additionally, FedSparsify generally outperforms

FedPM in accuracy. That is, training and transferring binary masks

for frozen weights is less effective than just transferring the top 3%

of model parameters. This reveals the shortcomings of employing

masked noise as weights in FL. Instead, FedMRN shows that it is a

better choice to employ masked noise as model updates.

Second, we shall analyze the remaining gradient compression

methods. All these techniques entail lossy compression of model

updates after local training. The errors caused by post-training com-

pression will reduce accuracy to varying degrees. Table 2 demon-

strates that SignSGD and Top-𝑘 exhibit comparable accuracy, and

they notably lag behind FedAvg, particularly evident in situations

with high data heterogeneity. Compared with SignSGD, TernGrad

extends the value range of compressed model updates from {−1, 1}
to {−1, 0, 1}, slightly improving the accuracy at the expense of

higher communication costs. DRIVE and EDEN minimize the com-

pression errors with additional calculations after local training.

They slightly improve the accuracy but introduce additional com-

putational latency. We will elaborate on this delay in Section 5.6.

Notably, FedMRN outperforms all baselines and is comparable to

FedAvg in both accuracy and convergence speed, regardless of

data distribution. From the perspective of gradient compression,

FedMRN is to map model updates into masked random noise, and

this process is indeed lossy. However, a fundamental distinction

from above methods is that FedMRN learns to compress model

updates during local training. This characteristic guarantees that

FedMRN can attain reduced compression errors without necessitat-

ing additional computational or communication overhead.

5.3 Ablation on Progressive Stochastic Masking
To evaluate the efficacy of PSM, we test the accuracy of FedMRN

under the Non-IID-2 data distributions without SM, PM, and PSM,

respectively. As shown in Figure 4, both SM and PM are essential
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for achieving the remarkable accuracy of FedMRN. Upon closer

examination, it becomes apparent that SM exerts a slightly more

pronounced influence on accuracy.

Figure 4: Results of ablation studies.

5.4 Comparison with Post-Training Masking
To thoroughly analyze the superior performance of FedMRN, we

conduct a comparison with post-training masking. Specifically, we

apply stochastic masking on the model updates generated by Fe-

dAvg after local training. The sole distinction between [FedMRN

w.o. PM] and [FedAvg w. SM] lies in the timing of masking: during

or after local training. As illustrated in Figure 4, the accuracy of

[FedMRN w.o. PM] notably surpasses that of [FedAvg w. SM]. This

highlights the significant advantage of incorporating masking dur-

ing local training as opposed to post-trainingmasking. Furthermore,

FedMRN consistently outperforms SignSGD, even in the absence

of PSM. This further underscores the superiority of learning to

compress model updates as opposed to post-training compression.

5.5 Impact of the Random Noise
By default, the random noise is uniformly distributed within the

intervals [-1e-2, 1e-2] and [-5e-3, 5e-3] for FedMRN and FedMRNS,

respectively. Here, we examine the impact of the noise distribution

and magnitude using CIFAR-10 under the Non-IID-2 data distribu-

tion. Specifically, we investigate the following distributions: Uni-

form [−𝛼, 𝛼], Gaussian N(0, 𝛼), and Bernoulli {−𝛼, 𝛼}. The noise
magnitude 𝛼 is tuned among {6.25e-4, 1.25e-3, 2.5e-3, 5e-3, 1e-2, 2e-
2}. As shown in Figure 5, the noise distribution has little impact on

performance. The primary factor influencing accuracy is the magni-

tude of the noise. Besides, our observations indicate that FedMRNS

typically requires less noise compared to FedMRN. Specifically,

FedMRN achieves comparable accuracy to FedAvg when the noise

amplitude falls within {2.5e-3, 5e-3, 1e-2}, and FedMRNS achieves

this when the noise amplitude falls within {1.25e-3, 2.5e-3, 5e-3}.
The noise required by FedMRN is roughly twice that of FedMRNS.

This is intuitively sensible, as G(𝑠) ⊙𝒎𝑠 = 2G(𝑠) ⊙𝒎−G(𝑠), where
𝒎𝑠 ∈ {−1, 1}𝑑 and 𝒎 ∈ {0, 1}𝑑 .

5.6 Training Complexity.
Here, we discuss the local training complexity for various methods.

Specifically, we measured the local training durations of different

methods and their time taken to acquire compressed model updates.

The data plotted in Figure 6 is the average of 10 measurements.

As shown in Figure 6, FedMRN, FedPM and FedSparsify change

the local model structure and slightly increase the local training

Figure 5: The accuracy of FedMRN with different random
noise. The horizontal axis represents the noise magnitude.

time, which is negligible. Regarding the time taken for compressing

model updates, both EDEN and DRIVE evidently demand a longer

duration, up to one third of local training time. They reduce the

compression errors at the expense of extra computational overhead.

Differently, FedMRN utilizes the local training process to reduce

the compression errors. In summary, FedMRN introduces negligible

additional training time to the FL process.

Figure 6: Local training complexity for various methods.

6 CONCLUSION AND TAKEAWAYS
In this paper, motivated by the existence of supermasks, we propose

to find optimal model updates within random noise. To this end, we

propose FedMRN, a novel framework for communication-efficient

FL. FedMRN enables clients to learn a mask for each model param-

eter and generate masked random noise to serve as model updates.

To find the optimal masks, we further propose an advanced mask

training strategy, called progressive stochastic masking. FedMRN

has been fully verified both theoretically and experimentally. The

results show that FedMRN is significantly better than relevant base-

lines and can achieve performance comparable to the FedAvg.

Our experiments and analysis suggest that masked random noise

can serve as a viable alternative to model updates. It is preferable

to employ the masked noise as model updates rather than as model

parameters. Upon further thoughts on FedMRN, we discover a

flaw in current methods of compressing model updates, that is

the post-training manner. FedMRN attempts to compress model

updates into masked noise during local training. It has proved

that learning to compress model updates yields superior results

compared to post-training compression. We believe this concept

has broad applicability in FL and deserves further exploration.
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Appendix
A ADDITIONAL EXPERIMENTS
We believe that FedMRN is task-independent. FedMRN is essen-

tially based on the existence of supermasks, which suggests that

learning masks for untrained weights (i.e., noise) can achieve sim-

ilar performance as directly training weights, without any task-

related restrictions. To prove this point in our settings, we added

experiments on two more tasks: Semantic Segmentation and Next-

Character Prediction. We test the performance of FedMRN based on

the code provided by LEAF [5] and FedSeg [26], respectively. The

datasets used are PascalVOC [6] and Shakespeare [5]. The models

used are BiSeNetV2 [41] and LSTM [10]. More details can be found

in https://github.com/Leopold1423/fedmrn-mm24. The results in

Table 3 confirm the applicability of FedMRN across different tasks.

Table 3: Accuracy of FedMRN on other tasks.

Dataset with Model FedAvg SignSGD EDEN FedMRN

Shakespeare with LSTM 51.2 (±0.2) 38.0 (±0.6) 49.6 (±0.2) 51.1 (±0.1)
PascalVOC with BiSeNetV2 53.8 (±0.1) 44.3 (±0.3) 52.0 (±0.2) 54.2 (±0.1)

B NOTATIONS AND GENERAL LEMMAS
In this study, we investigate the convergence of FedMRN under

both strongly convex and non-convex scenarios. Additionally, we

consider partial client participation and data heterogeneity. Our

theoretical analysis is rooted in the findings about FedAvg presented

in [22]. Following [22], we also consider the situation where the

local dataset is balanced in the sense that 𝑝1 = 𝑝2 = ... = 𝑝𝑁 = 1

𝑁
.

B.1 Additional Notations
Let w𝑡

𝑘
be the model parameters (the sum of frozen global param-

eters and learnable model updates) maintained in the 𝑘-th device

at the 𝑡-th step. Let I𝑆 be the set of global synchronization steps,

i.e., I𝑆 = {𝑛𝑆 |𝑛 = 1, 2, ...}. If 𝑡 + 1 ∈ I𝑆 , FedMRN aggregates the

parameters of selected clients. C𝑡+1 denotes the set of randomly

selected clients. The optimization of FedMRN can be rewritten as

v𝑡+1
𝑘

= w𝑡
𝑘
− 𝜂𝑡∇𝐹𝑘 (x𝑡𝑘 , 𝜉

𝑡
𝑘
) (13)

x𝑡
𝑘
= S𝑚 (w𝑡𝑘 ) (14)

w𝑡+1
𝑘

=

{
v𝑡+1
𝑘

if 𝑡 + 1 ∉ I𝑆 ,
1

𝐾

∑
𝑘∈C𝑡+1 S𝑚 (v

𝑡+1
𝑘
) if 𝑡 + 1 ∈ I𝑆 .

(15)

where v𝑡+1
𝑘

is the immediate result of one step SGD update from

w𝑡
𝑘
within FedMRN. x𝑡

𝑘
is the result of adding masked random

noise on frozen global model parameters. Notably, for any 𝑡 , there

exists 𝑡0 ∈ I𝑆 , such that 0 ≤ 𝑡 − 𝑡0 ≤ 𝑆 − 1 and w𝑡0
𝑘

= w̄𝑡0 for all
𝑘 ∈ [𝑁 ]. Essentially, 𝑡0 is the latest synchronization step. Therefore,

x𝑡
𝑘
= S𝑚 (w𝑡𝑘 ) = S(w

𝑡
𝑘
− w̄𝑡0 ,G(𝑠𝑡𝑘 )) + w̄𝑡0 , where w

𝑡
𝑘
− w̄𝑡0 is the

model updates. Similarly, S𝑚 (v𝑡+1𝑘
) = S(v𝑡+1

𝑘
− w̄𝑡0 ,G(𝑠𝑡𝑘 )) + w̄𝑡0 .

For convenience, we define two virtual sequences v̄𝑡 =
∑𝑁
𝑘=1

𝑝𝑘v𝑡𝑘
and w̄𝑡 =

∑𝑁
𝑘=1

𝑝𝑘w𝑡𝑘 . Only when 𝑡 + 1 ∈ I𝑆 can we fetch w̄𝑡+1. Fur-
ther, we define ḡ𝑡 =

∑𝑁
𝑘=1

𝑝𝑘∇𝐹𝑘 (x𝑡𝑘 ) and g𝑡 =
∑𝑁
𝑘=1

𝑝𝑘∇𝐹𝑘 (x𝑡𝑘 , 𝜉
𝑡
𝑘
).

Therefore, v̄𝑡+1 = w̄𝑡 − 𝜂𝑡g𝑡 and Eg𝑡 = ḡ𝑡 .

B.2 General Lemmas
To convey the proof clearly, we provide three general lemmas. The

proofs of all lemmas are deferred to Section F.

Lemma 1. Let Assumption 2 hold. It follows that

E∥g𝑡 − ḡ𝑡 ∥2 ≤
𝜎2

𝑁
. (16)

Lemma 2. Let Assumption 3 hold. Assume 𝜂𝑡 is non-increasing
and 𝜂𝑡 ≤ 2𝜂𝑡+𝑆 . It follows that E[w̄𝑡 − x𝑡𝑘 ] = 0 and

E∥w̄𝑡 − x𝑡𝑘 ∥
2 ≤ 4(1 + 𝑞2)𝜂2

𝑡 (𝑆 − 1)2𝐺2 . (17)

Lemma 3. Let Assumption 3, 4 hold. Assume 𝜂𝑡 is non-increasing
and 𝜂𝑡 ≤ 2𝜂𝑡+𝑆 . It follows that E[w̄𝑡+1 − v̄𝑡+1] = 0 and

E∥w̄𝑡+1 − v̄𝑡+1∥2 ≤ 4

𝑞2 (𝑁 − 1) + 𝑁 − 𝐾
𝐾 (𝑁 − 1) 𝜂2

𝑡 𝑆
2𝐺2 . (18)

C PROOF OF THEOREM 1
To prove Theorem 1, we additionally provide the following lemma:

Lemma 4. Let Assumption 1 and 5 hold. If 𝜂𝑡 ≤ 1

4𝐿
, we have

E∥v̄𝑡+1 −w∗∥2 ≤ (1 − 𝜂𝑡 𝜇)E∥w̄𝑡 −w∗∥2 + 6𝐿𝜂2

𝑡 Γ

+ 𝜂2

𝑡 E∥g𝑡 − ḡ𝑡 ∥2 + 2

𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2 .

(19)

As shown in Lemma 3, E[w̄𝑡+1 − v̄𝑡+1] = 0. Therefore

E∥w̄𝑡+1 −w∗∥2 = E∥w̄𝑡+1 − v̄𝑡+1 + v̄𝑡+1 −w∗∥2

= E∥w̄𝑡+1 − v̄𝑡+1∥2 + E∥v̄𝑡+1 −w∗∥2 .
(20)

Let Δ𝑡 = E∥w̄𝑡 −w∗∥2. Adding Eq.(16-19) to Eq.(20), we can get

Δ𝑡+1 ≤ (1 − 𝜂𝑡 𝜇)Δ𝑡 + 𝜂2

𝑡 𝐵, (21)

where 𝐵 = 𝜎2

𝑁
+ 6𝐿Γ + 8(1 + 𝑞2) (𝑆 − 1)2𝐺2 + 4

𝑞2 (𝑁−1)+𝑁−𝐾
𝐾 (𝑁−1) 𝑆2𝐺2

.

For a diminishing learning rate 𝜂𝑡 =
𝛽
𝑡+𝛾 with 𝛽 > 1

𝜇 and 𝛾 > 0,

we have 𝜂1 ≤ min{ 1

𝜇 ,
1

4𝐿
} = 1

4𝐿
and 𝜂𝑡 ≤ 2𝜂𝑡+𝑆 . We next prove

Δ𝑡 ≤ 𝑣
𝑡+𝛾 by induction, where 𝑣 = max{ 𝛽

2𝐵

𝛽𝜇−1
, (𝛾 + 1)Δ1}. Firstly,

the definition of 𝑣 ensures that it holds for 𝑡 = 1. Secondly, assume

the conclusion holds for some 𝑡 , it follows that

Δ𝑡+1 ≤ (1 − 𝜂𝑡 𝜇)Δ𝑡 + 𝜂2

𝑡 𝐵 ≤ (1 −
𝛽𝜇

𝑡 + 𝛾 )
𝑣

𝑡 + 𝛾 +
𝛽2𝐵

(𝑡 + 𝛾)2

=
𝑡 + 𝛾 − 1

(𝑡 + 𝛾)2
𝑣 + 𝛽2𝐵

(𝑡 + 𝛾)2
− 𝛽𝜇 − 1

(𝑡 + 𝛾)2
𝑣 ≤ 𝑣

𝑡 + 𝛾 + 1

.

(22)

Then by the 𝐿-smoothness of 𝐹 ,

E[𝐹 (w̄𝑡 )] − 𝐹 ∗ ≤
𝐿

2

Δ𝑡 ≤
𝐿

2

𝑣

𝛾 + 𝑡 . (23)

Specifically, if we choose 𝛽 = 2

𝜇 , 𝛾 = max{8𝐿𝜇 , 𝑆} − 1 and denote

𝜅 = 𝐿
𝜇 , then𝜂𝑡 =

2

𝜇
1

𝛾+𝑡 . One can verify that the choice of𝜂𝑡 satisfies
𝜂𝑡 ≤ 2𝜂𝑡+𝑆 for 𝑡 ≥ 1. Then, we have

𝑣 = max{ 𝛽2𝐵

𝛽𝜇 − 1

, (𝛾 + 1)Δ1}

≤ 𝛽2𝐵

𝛽𝜇 − 1

+ (𝛾 + 1)Δ1 ≤
4𝐵

𝜇2
+ (𝛾 + 1)Δ1,

(24)

https://github.com/Leopold1423/fedmrn-mm24
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and

E[𝐹 (w̄𝑡 )] − 𝐹 ∗ ≤
𝐿

2

𝑣

𝛾 + 𝑡 ≤
𝜅

𝛾 + 𝑡 (
2𝐵

𝜇
+ 𝜇 (𝛾 + 1)

2

Δ1) . (25)

D PROOF OF THEOREM 2
To prove Theorem 2, we additionally provide the following lemma:

Lemma 5. Let Assumption 1 hold. If 𝜂 = 1

𝐿
√
𝑇
, we have

E𝐹 (w̄𝑡+1) ≤ E𝐹 (w̄𝑡 ) −
𝜂

2

E∥∇𝐹 (w̄𝑡 )∥2 +
𝐿𝜂2 − 𝜂

2

E∥ḡ𝑡 ∥2

+ 𝜂
2

𝐿2

𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2 + 𝐿𝜂

2

2

E∥ḡ𝑡 − g𝑡 ∥2 +
𝐿

2

E∥w̄𝑡+1 − v̄𝑡+1∥2

(26)

Since 𝜂 = 1

𝐿
√
𝑇
, we have

𝐿𝜂2−𝜂
2
≤ 0, therefore

E𝐹 (w̄𝑡+1) ≤ E𝐹 (w̄𝑡 ) −
𝜂

2

E∥∇𝐹 (w̄𝑡 )∥2

+ 𝜂
2

𝐿2

𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2 + 𝐿𝜂

2

2

E∥ḡ𝑡 − g𝑡 ∥2 +
𝐿

2

E∥w̄𝑡+1 − v̄𝑡+1∥2

(27)

The last three terms are bounded by Lemmas 1, 2 and 3, respec-

tively. Note that these three lemmas do not require the convexity

assumption. Adding Eq.(16-18) to Eq.(27), we can get

E𝐹 (w̄𝑡+1) ≤ E𝐹 (w̄𝑡 ) −
𝜂

2

E∥∇𝐹 (w̄𝑡 )∥2 +
𝐿𝜂2

2

𝜎2

𝑁

+ 𝜂
2

𝐿2
4(1 + 𝑞2)𝜂2 (𝑆 − 1)2𝐺2 + 𝐿

2

4

𝑞2 (𝑁 − 1) + 𝑁 − 𝐾
𝐾 (𝑁 − 1) 𝜂2

𝑡 𝑆
2𝐺2

(28)

Rearrange the terms and average over 𝑡 = 0, ...,𝑇 − 1, we have

1

2

𝜂
1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (w̄𝑡 )∥2 ≤
𝐹 (w̄0) − 𝐹 (w∗)

𝑇
+ 𝐿𝜂

2

2

𝜎2

𝑁

+ 𝜂
2

𝐿2
4(1 + 𝑞2)𝜂2 (𝑆 − 1)2𝐺2 + 𝐿

2

4

𝑞2 (𝑁 − 1) + 𝑁 − 𝐾
𝐾 (𝑁 − 1) 𝜂2

𝑡 𝑆
2𝐺2

(29)

Picking the learning rate 𝜂 = 1

𝐿
√
𝑇
, we have

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (w̄𝑡 )∥2 ≤
2𝐿(𝐹 (w̄0) − 𝐹 ∗)√

𝑇
+ 𝑃
√
𝑇
+ 𝑄
𝑇
, (30)

where 𝑃 = 𝜎2

𝑁
+ 4

𝑞2 (𝑁−1)+𝑁−𝐾
𝐾 (𝑁−1) 𝑆2𝐺2) and𝑄 = 4(1+𝑞2) (𝑆 − 1)2𝐺2

.

E PROOF OF PROPOSITION 1
Now, we analyze the effect of PM. In FedMRN, PM is designed to

reduce the gap between the original model updates and the corre-

sponding mask random noise. This gap can actually be expressed

using Assumption 4, where E∥S(𝒙,G(𝑠)) − 𝒙 ∥ ≤ 𝑞∥𝒙 ∥. In this

paper, we let the probability in PM increase linearly with local

training, that is, 𝑝𝜏 = 𝜏%𝑆+1
𝑆

. Thus, averaging the gap over 𝑆 local

steps, we have

1

𝑆

𝑆∑︁
𝜏=1

E∥S𝑃𝑀 (𝒙,G(𝑠)) − 𝒙 ∥2

=
1

𝑆

𝑆∑︁
𝜏=1

E𝑝2

𝜏 ∥S(𝒙,G(𝑠)) − 𝒙 ∥2

≤ 1

𝑆

𝑆∑︁
𝜏=1

𝑝2

𝜏𝑞
2∥𝒙 ∥2 =

1

𝑆3

𝑆∑︁
𝜏=1

𝜏2𝑞2∥𝒙 ∥2 .

(31)

From the above results, we can see that PM reduces the average

value of 𝑞 by

√︃
1

𝑆3

∑𝑆
𝜏=1

𝜏2
times.

F PROOF OF LEMMAS
F.1 Proof of Lemma 1
According to Assumption 2, the variance of the stochastic gradients

is bounded by 𝜎2
, then we have

E∥g𝑡 − ḡ𝑡 ∥2 = E∥
𝑁∑︁
𝑘=1

𝑝𝑘 [∇𝐹𝑘 (w𝑡𝑘 , 𝜉
𝑡
𝑘
) − ∇𝐹𝑘 (w𝑡𝑘 )] ∥

2

=

𝑁∑︁
𝑘=1

𝑝2

𝑘
E∥∇𝐹𝑘 (w𝑡𝑘 , 𝜉

𝑡
𝑘
) − ∇𝐹𝑘 (w𝑡𝑘 )∥

2 ≤
𝑁∑︁
𝑘=1

𝑝2

𝑘
𝜎2 =

𝜎2

𝑁

(32)

F.2 Proof of Lemma 2
As stated in Section B.1, x𝑡

𝑘
= S𝑚 (w𝑡𝑘 ) = S(w

𝑡
𝑘
− w̄𝑡0 ,G(𝑠𝑡𝑘 )) + w̄𝑡0 ,

where 𝑡0 is the latest synchronization step. We first prove that the

stochastic masking is unbiased as follows

∥w𝑡
𝑘
− w̄𝑡0 ∥∞ = ∥

𝑡∑︁
𝑖=𝑡0

𝜂𝑖∇𝐹𝑘 (x𝑘𝑖 , 𝜉
𝑘
𝑖 )∥∞ ≤

𝑡∑︁
𝑖=𝑡0

𝜂𝑖 ∥∇𝐹𝑘 (x𝑘𝑖 , 𝜉
𝑘
𝑖 )∥∞

≤
𝑡∑︁
𝑖=𝑡0

𝜂𝑖 ∥∇𝐹𝑘 (x𝑘𝑖 , 𝜉
𝑘
𝑖 )∥2 ≤

𝑡∑︁
𝑖=𝑡0

𝜂𝑖𝐺 ≤
𝑡∑︁
𝑖=𝑡0

2𝜂𝑡𝐺 ≤ 2𝜂𝑡𝑆𝐺,

(33)

where the last three inequalities follow from ∥∇𝐹𝑘 (w𝑡𝑘 , 𝜉
𝑡
𝑘
)∥ ≤

𝐺 , 𝜂𝑖 ≤ 𝜂𝑡−𝑆 ≤ 2𝜂𝑡 , and 𝑡 − 𝑡0 ≤ 𝑆 − 1, respectively. For the

noise sampled from Bernoulli distribution {−2𝜂0𝑆𝐺, 2𝜂0𝑆𝐺} or
{−2𝜂𝑆𝐺, 2𝜂𝑆𝐺}, each element of w𝑡

𝑘
−w̄𝑡

0
/G(𝑠𝑡

𝑘
) falls within the in-

terval [−1, 1]. In this case, the stochastic masking is unbiased as

discussed in Section 3.2, i.e., E[x𝑡
𝑘
−w𝑡

𝑘
] = 0. Further, we have

E∥w̄𝑡 − x𝑡𝑘 ∥
2 = E∥(w̄𝑡 −w𝑡𝑘 ) − (w

𝑡
𝑘
− x𝑡

𝑘
)∥2

= E∥w̄𝑡 −w𝑡𝑘 ∥
2 + E∥w𝑡

𝑘
− x𝑡

𝑘
∥2

(34)

For the first term in Eq.(34), we have

E∥w̄𝑡 −w𝑡𝑘 ∥
2

= E∥(w𝑡
𝑘
− w̄𝑡0 ) − (w̄𝑡 − w̄𝑡0 )∥2 ≤ E∥w𝑡

𝑘
− w̄𝑡0 ∥2

= ∥
𝑡−1∑︁
𝑖=𝑡0

𝜂𝑖∇𝐹𝑘 (x𝑖𝑘 , 𝜉
𝑖
𝑘
)∥2 ≤ (𝑡 − 𝑡0)E

𝑡−1∑︁
𝑖=𝑡0

𝜂2

𝑖 ∥∇𝐹𝑘 (x
𝑖
𝑘
, 𝜉𝑖
𝑘
)∥2

≤ 4𝜂2

𝑡 (𝑡 − 𝑡0)2𝐺2 ≤ 4𝜂2

𝑡 (𝑆 − 1)2𝐺2

(35)

Here in the first inequality, we use E∥𝑋 − E𝑋 ∥2 ≤ E∥𝑋 ∥2 where

𝑋 = w𝑡
𝑘
− w̄𝑡0 with probability 𝑝𝑘 . The remaining inequalities
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follow the same reasons as Eq.(33). Then we consider the second

term in Eq.(34). According to Assumption 4, we have

E∥w𝑡
𝑘
− x𝑡

𝑘
∥2 ≤ 𝑞2E∥w𝑡

𝑘
− w̄𝑡0 ∥2 ≤ 4𝑞2𝜂2

𝑡 (𝑆 − 1)2𝐺2 . (36)

Plugging Eq.(35) and Eq.(36) into Eq.(34), we have

E∥w̄𝑡 − x𝑡𝑘 ∥
2 ≤ 4(1 + 𝑞2)𝜂2

𝑡 (𝑆 − 1)2𝐺2 . (37)

F.3 Proof of Lemma 3
As stated in Section B.1, w̄𝑡+1 = v̄𝑡+1 when 𝑡 + 1 ∉ I𝑆 and w̄𝑡+1 =
1

𝐾

∑
𝑘∈C𝑡+1 S𝑚 (v

𝑡+1
𝑘
), v̄𝑡+1 = 1

𝑁

∑𝑁
𝑘=1

v𝑡+1
𝑘

when 𝑡 + 1 ∈ I𝑆 . In the

latter case, there are two kinds of randomness between w̄𝑡+1 and
v̄𝑡+1, respectively from the client’s random selection and stochastic

masking. To distinguish them, we use the notation EC𝑡+1 when

we take expectation to erase the randomness of device selection,

and use the notation ES when we take expectation to erase the

randomness of stochastic masking. Thus, when 𝑡 + 1 ∈ I𝑆 , we have

Ew̄𝑡+1 = EC𝑡+1 [ESw̄𝑡+1] = EC𝑡+1 [ES
1

𝐾

∑︁
𝑘∈C𝑡+1

S𝑚 (v𝑡+1𝑘
)]

= EC𝑡+1 [
1

𝐾

∑︁
𝑘∈C𝑡+1

v𝑡+1
𝑘
] = 1

𝑁

𝑁∑︁
𝑘=1

v𝑡+1
𝑘

= v̄𝑡+1

(38)

and for the variance, we have

E∥w̄𝑡+1 − v̄𝑡+1∥2 = E∥ 1

𝐾

∑︁
𝑘∈C𝑡+1

S𝑚 (v𝑡+1𝑘
) − v̄𝑡+1∥2

= E∥ 1

𝐾

∑︁
𝑘∈C𝑡+1

(S𝑚 (v𝑡+1𝑘
) − v𝑡+1

𝑘
) + 1

𝐾

∑︁
𝑘∈C𝑡+1

v𝑡+1
𝑘
− v̄𝑡+1∥2

= E∥ 1

𝐾

∑︁
𝑘∈C𝑡+1

(S𝑚 (v𝑡+1𝑘
) − v𝑡+1

𝑘
)∥2︸                                      ︷︷                                      ︸

𝐴1

+E∥ 1

𝐾

∑︁
𝑘∈C𝑡+1

v𝑡+1
𝑘
− v̄𝑡+1∥2︸                            ︷︷                            ︸

𝐴2

(39)

To bound 𝐴1, we have

𝐴1 = E∥ 1

𝐾

∑︁
𝑘∈C𝑡+1

(S𝑚 (v𝑡+1𝑘
) − v𝑡+1

𝑘
)∥2

=
1

𝐾2

∑︁
𝑘∈C𝑡+1

E∥(S𝑚 (v𝑡+1𝑘
) − v𝑡+1

𝑘
)∥2

≤ 1

𝐾2

∑︁
𝑘∈C𝑡+1

4𝑞2𝜂2

𝑡 𝑆
2𝐺2 =

4

𝐾
𝑞2𝜂2

𝑡 𝑆
2𝐺2,

(40)

where we use the result of Eq.(36) in the last inequality. Then, to

bound 𝐴2, we have

𝐴2 = E∥ 1

𝐾

∑︁
𝑘∈C𝑡+1

v𝑡+1
𝑘
− v̄𝑡+1∥2

=
1

𝐾2
E∥

𝑁∑︁
𝑖=1

I{𝑖 ∈ C𝑡+1}(v𝑡+1𝑖 − v̄𝑡+1)∥2

=
1

𝐾2
E[

𝑁∑︁
𝑖=1

P(𝑖 ∈ C𝑡+1)∥v𝑡+1𝑖 − v̄𝑡+1∥2

+
∑︁
𝑖≠𝑗

P(𝑖, 𝑗 ∈ C𝑡+1)
〈
v𝑡+1𝑖 − v̄𝑡+1, v𝑡+1𝑗 − v̄𝑡+1

〉
]

=
1

𝐾𝑁
E
𝑁∑︁
𝑖=1

∥v𝑡+1𝑖 − v̄𝑡+1∥2

+ 𝐾 − 1

𝐾𝑁 (𝑁 − 1)E
∑︁
𝑖≠𝑗

〈
v𝑡+1𝑖 − v̄𝑡+1, v𝑡+1𝑗 − v̄𝑡+1

〉
=

𝑁 − 𝐾
𝐾𝑁 (𝑁 − 1)

𝑁∑︁
𝑖=1

E∥v𝑡+1𝑖 − v̄𝑡+1∥2

(41)

where we use the following equalities: P(𝑖 ∈ C𝑡+1) = 𝐾
𝑁

and

P(𝑖, 𝑗 ∈ C𝑡+1) = 𝐾 (𝐾−1)
𝑁 (𝑁−1) for all 𝑖 ≠ 𝑗 , and

∑𝑁
𝑖=1
∥v𝑡+1
𝑖
− v̄𝑡+1∥2 +∑

𝑖≠𝑗

〈
v𝑡+1
𝑖
− v̄𝑡+1, v𝑡+1𝑗 − v̄𝑡+1

〉
= 0. Then reusing the result of

Eq.(35), we have

𝐴2 =
𝑁 − 𝐾

𝐾𝑁 (𝑁 − 1)

𝑁∑︁
𝑖=1

E∥v𝑡+1𝑖 − v̄𝑡+1∥2 ≤
𝑁 − 𝐾

𝐾 (𝑁 − 1) 4𝜂
2

𝑡 𝑆
2𝐺2 .

(42)

Plugging 𝐴1 and 𝐴2, we have the result in Lemma 3:

E∥w̄𝑡+1 − v̄𝑡+1∥2 ≤ 4

𝑞2 (𝑁 − 1) + 𝑁 − 𝐾
𝐾 (𝑁 − 1) 𝜂2

𝑡 𝑆
2𝐺2 . (43)

F.4 Proof of Lemma 4
Notice that v̄𝑡+1 = w̄𝑡 − 𝜂𝑡g𝑡 and Eg𝑡 = ḡ𝑡 , then

E∥v̄𝑡+1 −w∗∥2 = E∥w̄𝑡 − 𝜂𝑡g𝑡 −w∗ − 𝜂𝑡 ḡ𝑡 + 𝜂𝑡 ḡ𝑡 ∥2

= E∥w̄𝑡 −w∗ − 𝜂𝑡 ḡ𝑡 ∥2︸                     ︷︷                     ︸
𝐴

+𝜂2

𝑡 E∥g𝑡 − ḡ𝑡 ∥2 . (44)

We next focus on bounding 𝐴. Again we split 𝐴 into three terms:

∥w̄𝑡 −w∗ − 𝜂𝑡 ḡ𝑡 ∥2 = ∥w̄𝑡 −w∗∥2 −2𝜂𝑡
〈
w̄𝑡 −w∗, ḡ𝑡

〉︸                   ︷︷                   ︸
𝐵1

+𝜂2

𝑡 ∥ḡ𝑡 ∥2︸   ︷︷   ︸
𝐵2

.

(45)

From the the L-smoothness of 𝐹𝑘 , it follows that

∥∇𝐹𝑘 (x𝑡𝑘 )∥
2 ≤ 2𝐿(𝐹𝑘 (x𝑡𝑘 ) − 𝐹

∗
𝑘
). (46)

By the convexity of ∥ · ∥2 and Eq.(46), we have

𝐵2 = 𝜂2

𝑡 ∥ḡ𝑡 ∥2 ≤ 𝜂2

𝑡

𝑁∑︁
𝑘=1

𝑝𝑘 ∥∇𝐹𝑘 (x𝑡𝑘 )∥
2 ≤ 2𝐿𝜂2

𝑡

𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹
∗
𝑘
).

(47)



Masked Random Noise for Communication-Efficient Federated Learning MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Note that

𝐵1 = −2𝜂𝑡
〈
w̄𝑡 −w∗, ḡ𝑡

〉
= −2𝜂𝑡

𝑁∑︁
𝑘=1

𝑝𝑘
〈
w̄𝑡 −w∗,∇𝐹𝑘 (x𝑡𝑘 )

〉
= −2𝜂𝑡

𝑁∑︁
𝑘=1

𝑝𝑘
〈
w̄𝑡 − x𝑡𝑘 ,∇𝐹𝑘 (x

𝑡
𝑘
)
〉
− 2𝜂𝑡

𝑁∑︁
𝑘=1

𝑝𝑘
〈
x𝑡
𝑘
−w∗,∇𝐹𝑘 (x𝑡𝑘 )

〉
.

(48)

By Cauchy-Schwarz inequality and AM-GM inequality, we have

−2

〈
w̄𝑡 − x𝑡𝑘 ,∇𝐹𝑘 (x

𝑡
𝑘
)
〉
≤ 1

𝜂𝑡
∥w̄𝑡 − x𝑡𝑘 ∥

2 + 𝜂𝑡 ∥∇𝐹𝑘 (x𝑡𝑘 )∥
2 . (49)

By the 𝜇-strong convexity of 𝐹𝑘 , we have

−
〈
x𝑡
𝑘
−w∗,∇𝐹𝑘 (x𝑡𝑘 )

〉
≤ −(𝐹𝑘 (x𝑡𝑘 ) − 𝐹𝑘 (w

∗)) − 𝜇
2

∥x𝑡
𝑘
−w∗∥2 .

(50)

Therefore, we have

𝐴 = E∥w̄𝑡 −w∗∥2 + 𝐵1 + 𝐵2

≤ E∥w̄𝑡 −w∗∥2 + 2𝐿𝜂2

𝑡 E
𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹
∗
𝑘
)

+ 𝜂𝑡E
𝑁∑︁
𝑘=1

𝑝𝑘 (
1

𝜂𝑡
∥w̄𝑡 − x𝑡𝑘 ∥

2 + 𝜂𝑡 ∥∇𝐹𝑘 (x𝑡𝑘 )∥
2)

− 2𝜂𝑡E
𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹𝑘 (w
∗) + 𝜇

2

∥x𝑡
𝑘
−w∗∥2)

≤ (1 − 𝜇𝜂𝑡 )E∥w̄𝑡 −w∗∥2 +
𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2

+ 4𝐿𝜂2

𝑡

𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹
∗
𝑘
) − 2𝜂𝑡

𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹𝑘 (w
∗))︸                                                                        ︷︷                                                                        ︸

𝐶

(51)

In the last inequality, we use Eq.(46) again and the fact that −E∥x𝑡
𝑘
−

w∗∥2 = −E∥w̄𝑡 − x𝑡𝑘 ∥
2 − E∥w̄𝑡 −w∗∥2 ≤ −E∥w̄𝑡 −w∗∥2.

Next, we aim to bound 𝐶 . We define 𝛾𝑡 = 2𝜂𝑡 (1 − 2𝐿𝜂𝑡 ). Since
𝜂𝑡 ≤ 1

4𝐿
, 𝜂𝑡 ≤ 𝛾𝑡 ≤ 2𝜂𝑡 . Then we split 𝐶 into two terms:

𝐶 = −2𝜂𝑡 (1 − 2𝐿𝜂𝑡 )
𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹
∗
𝑘
) + 2𝜂𝑡

𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (w∗) − 𝐹 ∗𝑘 )

= −𝛾𝑡
𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹
∗) + (2𝜂𝑡 − 𝛾𝑡 )

𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹 ∗ − 𝐹 ∗𝑘 )

= −𝛾𝑡
𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹
∗) + 4𝐿𝜂2

𝑡 Γ

(52)

where in the last equation, we use the notation Γ =
∑𝑁
𝑘=1

𝑝𝑘 (𝐹 ∗ −
𝐹 ∗
𝑘
) = 𝐹 ∗ −∑𝑁

𝑘=1
𝑝𝑘𝐹
∗
𝑘
. To bound the first term of 𝐶 , we have

𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹
∗)

=

𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (x𝑡𝑘 ) − 𝐹𝑘 (w̄𝑡 )) +
𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (w̄𝑡 ) − 𝐹 ∗)

≥
𝑁∑︁
𝑘=1

𝑝𝑘
〈
∇𝐹𝑘 (w̄𝑡 ), x𝑡𝑘 − w̄𝑡

〉
+ 𝐹 (w̄𝑡 ) − 𝐹 ∗

≥ −1

2

𝑁∑︁
𝑘=1

𝑝𝑘 [𝜂𝑡 ∥∇𝐹𝑘 (w̄𝑡 )∥2 +
1

𝜂𝑡
∥x𝑡
𝑘
− w̄𝑡 ∥2] + 𝐹 (w̄𝑡 ) − 𝐹 ∗

≥ −
𝑁∑︁
𝑘=1

𝑝𝑘 [𝜂𝑡𝐿(𝐹𝑘 (w̄𝑡 ) − 𝐹 ∗𝑘 ) +
1

2𝜂𝑡
∥x𝑡
𝑘
− w̄𝑡 ∥2] + 𝐹 (w̄𝑡 ) − 𝐹 ∗

(53)

where the first inequality results from the convexity of 𝐹𝑘 , the

second inequality follows from AM-GM inequality and the third

inequality follows from Eq.(46). Therefore, we have

𝐶 = 𝛾𝑡

𝑁∑︁
𝑘=1

𝑝𝑘 [𝜂𝑡𝐿(𝐹𝑘 (w̄𝑡 ) − 𝐹 ∗𝑘 ) +
1

2𝜂𝑡
∥x𝑡
𝑘
− w̄𝑡 ∥2]

− 𝛾𝑡 (𝐹 (w̄𝑡 ) − 𝐹 ∗) + 4𝐿𝜂2

𝑡 Γ

= 𝛾𝑡 (𝜂𝑡𝐿 − 1)
𝑁∑︁
𝑘=1

𝑝𝑘 (𝐹𝑘 (w̄𝑡 ) − 𝐹 ∗𝑘 )

+ (4𝐿𝜂2

𝑡 + 𝛾𝑡𝜂𝑡𝐿)Γ +
𝛾𝑡

2𝜂𝑡

𝑁∑︁
𝑘=1

𝑝𝑘 ∥x𝑡𝑘 − w̄𝑡 ∥
2

≤ 6𝐿𝜂2

𝑡 Γ +
𝑁∑︁
𝑘=1

𝑝𝑘 ∥x𝑡𝑘 − w̄𝑡 ∥
2

(54)

where in the last inequality, we use the following facts: (1)𝜂𝑡𝐿− 1 ≤
− 3

4
≤ 0 and

∑𝑁
𝑘=1

𝑝𝑘 (𝐹𝑘 (w̄𝑡 ) − 𝐹 ∗) = 𝐹 (w̄𝑡 ) − 𝐹 ∗ ≥ 0 (2) Γ ≥ 0 and

4𝐿𝜂2

𝑡 + 𝛾𝑡𝜂𝑡𝐿 ≤ 6𝜂2

𝑡 𝐿 and (3)
𝛾𝑡
2𝜂𝑡
≤ 1.

Recalling the expression of 𝐴 and plugging 𝐶 into it, we have

𝐴 ≤ (1 − 𝜇𝜂𝑡 )E∥w̄𝑡 −w∗∥2 + 2

𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2 + 6𝐿𝜂2

𝑡 Γ.

(55)

Plugging 𝐴 into Eq.(44), we have the result in Lemma 4

E∥v̄𝑡+1 −w∗∥2 ≤ (1 − 𝜂𝑡 𝜇)E∥w̄𝑡 −w∗∥2 + 𝜂2

𝑡 E∥g𝑡 − ḡ𝑡 ∥2

+ 6𝐿𝜂2

𝑡 Γ + 2

𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2 .

(56)

F.5 Proof of Lemma 5
Recall that for any 𝐿-smooth function 𝐹 , we have

𝐹 (w̄𝑡+1) ≤ 𝐹 (v̄𝑡+1) + ⟨∇𝐹 (v̄𝑡+1), w̄𝑡+1 − v̄𝑡+1⟩ +
𝐿

2

∥w̄𝑡+1 − v̄𝑡+1∥2

(57)
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As E[w̄𝑡+1 − v̄𝑡+1] = 0, we have

E𝐹 (w̄𝑡+1) ≤ E𝐹 (v̄𝑡+1) +
𝐿

2

E∥w̄𝑡+1 − v̄𝑡+1∥2 (58)

Since v̄𝑡+1 = w̄𝑡 − 𝜂g𝑡 , therefore, with 𝐿-smoothness, we have

𝐹 (v̄𝑡+1) ≤ 𝐹 (w̄𝑡 ) − 𝜂 ⟨∇𝐹 (w̄𝑡 ), g𝑡 ⟩ +
𝐿𝜂2

2

∥g𝑡 ∥2 (59)

The inner product term can be written in expectation as follows:

2E ⟨∇𝐹 (w̄𝑡 ), g𝑡 ⟩ = E∥∇𝐹 (w̄𝑡 )∥2+E∥g𝑡 ∥2−E∥∇𝐹 (w̄𝑡 )−g𝑡 ∥2 (60)

Now, we consider the last term in Eq.(60) with Eg𝑡 = Eḡ𝑡

E∥∇𝐹 (w̄𝑡 ) − g𝑡 ∥2 = E∥∇𝐹 (w̄𝑡 ) − ḡ𝑡 + ḡ𝑡 − g𝑡 ∥2

= E∥∇𝐹 (w̄𝑡 ) − ḡ𝑡 ∥2 + E∥ḡ𝑡 − g𝑡 ∥2

= E∥∇𝐹 (w̄𝑡 ) − ∇𝐹 (x𝑡𝑘 )∥
2 + +E∥ḡ𝑡 − g𝑡 ∥2

≤ 𝐿2

𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2 + E∥ḡ𝑡 − g𝑡 ∥2

(61)

Further, we have

−𝜂E ⟨∇𝐹 (w̄𝑡 ), g𝑡 ⟩ ≤ −
𝜂

2

E∥∇𝐹 (w̄𝑡 )∥2 −
𝜂

2

E∥g𝑡 ∥2

+ 𝜂
2

𝐿2

𝑁∑︁
𝑘=1

𝑝𝑘 ∥w̄𝑡 − x𝑡𝑘 ∥
2 + 𝜂

2

∥ḡ𝑡 − g𝑡 ∥2
(62)

Summing Eq.(62) into Eq.(60), we have

E𝐹 (v̄𝑡+1) ≤ E𝐹 (w̄𝑡 ) −
𝜂

2

E∥∇𝐹 (w̄𝑡 )∥2 + (
𝐿𝜂2

2

− 𝜂
2

)E∥g𝑡 ∥2

+ 𝜂
2

𝐿2

𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2 + 𝜂

2

E∥ḡ𝑡 − g𝑡 ∥2
(63)

E∥g𝑡 ∥2 can be expanded as follows:

E∥g𝑡 ∥2 = E∥g𝑡 − ḡ𝑡 + ḡ𝑡 ∥2 = E∥ḡ𝑡 ∥2 + E∥g𝑡 − ḡ𝑡 ∥2 (64)

Therefore, we have

E𝐹 (v̄𝑡+1) ≤ E𝐹 (w̄𝑡 ) −
𝜂

2

E∥∇𝐹 (w̄𝑡 )∥2 + (
𝐿𝜂2 − 𝜂

2

)E∥ḡ𝑡 ∥2

+ 𝜂
2

𝐿2

𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2 + 𝐿𝜂

2

2

E∥ḡ𝑡 − g𝑡 ∥2
(65)

Summing Eq.(65) into Eq.(58) yields the result in Lemma 5.

E𝐹 (w̄𝑡+1) ≤ E𝐹 (w̄𝑡 ) −
𝜂

2

E∥∇𝐹 (w̄𝑡 )∥2 +
𝐿𝜂2 − 𝜂

2

E∥ḡ𝑡 ∥2

+ 𝜂
2

𝐿2

𝑁∑︁
𝑘=1

𝑝𝑘E∥w̄𝑡 − x𝑡𝑘 ∥
2 + 𝐿𝜂

2

2

E∥ḡ𝑡 − g𝑡 ∥2

+ 𝐿
2

E∥w̄𝑡+1 − v̄𝑡+1∥2

(66)
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