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ABSTRACT CCS CONCEPTS

Federated learning is a promising distributed training paradigm
that effectively safeguards data privacy. However, it may involve
significant communication costs, which hinders training efficiency.
In this paper, we aim to enhance communication efficiency from
a new perspective. Specifically, we request the distributed clients
to find optimal model updates relative to global model parameters
within predefined random noise. For this purpose, we propose Fed-
erated Masked Random Noise (FedMRN), a novel framework
that enables clients to learn a 1-bit mask for each model parameter
and apply masked random noise (i.e., the Hadamard product of
random noise and masks) to represent model updates. To make
FedMRN feasible, we propose an advanced mask training strategy,
called progressive stochastic masking (PSM). After local training,
each client only need to transmit local masks and a random seed
to the server. Additionally, we provide theoretical guarantees for
the convergence of FedMRN under both strongly convex and non-
convex assumptions. Extensive experiments are conducted on four
popular datasets. The results show that FedMRN exhibits supe-
rior convergence speed and test accuracy compared to relevant
baselines, while attaining a similar level of accuracy as FedAvg.
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1 INTRODUCTION

Federated learning (FL) [25] is a distributed training framework
designed to protect data privacy. It allows distributed clients to
collaboratively train a global model while retaining their data lo-
cally. FL typically consists of four steps: (1) clients download the
global model from a central server, (2) clients train the global model
using their respective data, (3) clients upload the model updates
(changes in model parameters) back to the server, and (4) the server
aggregates these updates to generate a new global model. This cycle
is repeated for several rounds until the global model converges.
However, the iterative transmission of model parameters intro-
duces significant communication overhead, which may affect train-
ing efficiency. To reduce communication costs, existing methods
focus on two aspects: model compression and gradient compression.
The former directly compresses model parameters [12], while the
latter is to apply compression techniques on model updates after lo-
cal training, such as quantization [21, 31] and sparsification [1, 29].
Notably, model compression reduces the model size, thereby con-
straining its capacity and learning capabilities. Although gradient
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Figure 1: An illustration of FedMRN. G is a random noise generator. In the example, each binary mask m € {0, 1}, therefore the

masked random noise is sparse. It is worth noting that the m

ask can also take values from {-1, 1}, i.e., the signed mask. In such

case, the presence of a dotted line indicates changing the sign of the corresponding noise, rather than pruning it off.

compression does not affect the model size, it can introduce notable
errors into model updates, thereby influencing the convergence.

In this paper, we propose Federated Masked Random Noise
(FedMRN) to compress the uplink communication where clients
send model updates to the server. As shown in Figure 1, FedMRN
requests clients to find optimal model updates within predefined
random noise. In other words, model updates are now represented
by the masked random noise, which is the Hadamard product of the
random noise and binary masks. Note that the noise is determined
by a specific random seed. The only trainable variables are the
binary masks, which occupy 1 bit per parameter (bpp). Our moti-
vation for doing this is twofold. First, recent studies [2, 30, 43] have
confirmed the existence of the supermasks. These masks, when mul-
tiplied with randomly initialized weights, yield a model capable of
achieving satisfactory accuracy without ever training the weights.
To be more specific, finding masks for random noise can achieve
comparable performance to training the parameters directly. Sec-
ond, when it comes to FL, the objective of local training is to learn
the optimal model updates relative to the global model parameters
provided by the server. Therefore, we propose applying the concept
of supermasks to the learning of model updates. We believe that
training masks for random noise and generating masked random
noise to serve as model updates can be as effective as directly train-
ing model parameters and then generating model updates. In doing
so, we can compress the uplink communication overhead by a fac-
tor of 32, while neither reducing the number of model parameters
nor requiring post-training compression on model updates.

To find the optimal masks, we maintain an extra learnable copy
of model parameters within the local model, initialized with zeros
to represent model updates. The masks will then be generated on
the fly according to the random noise and model updates. In this
way, we can optimize the masks indirectly by optimizing the above
model updates. The generated masks will be used to map model up-
dates into masked random noise, this process is called masking. To
improve the accuracy of FedMRN, we further propose an advanced
masking strategy, called progressive stochastic masking (PSM). PSM
comprises two components: stochastic masking (SM) and progres-
sive masking (PM). SM determines the probability of a mask being

set to 1 based on the model update and the corresponding random
noise. It subsequently gets the mask by Bernoulli sampling with
such probability. Further, PM probabilistically determines whether
to perform masking on a model update. Specifically, during local
training, each element within the model updates has a probability
of being mapped into masked random noise. This probability grad-
ually increases to 1 during local training, ensuring that all model
updates will eventually be mapped into masked random noise.
The main contributions of this paper are summarized as follows:

e We propose a novel framework for communication-efficient
FL, termed FedMRN, in which clients are requested to find
optimal model updates within predefined random noise. In
the uplink stage, FedMRN enables clients to transmit just a
single 1-bit mask for each parameter to the server.

e We propose a local mask training strategy, dubbed progres-
sive stochastic masking, aimed at finding the optimal masked
random noise. The strategy consists of two key components:
stochastic masking and progressive masking.

e We provide theoretical convergence guarantees for FedMRN
under both strongly convex and non-convex assumptions,
showing a comparable convergence rate to FedAvg [25].

e We perform extensive experiments on four datasets to com-
pare FedMRN with relevant baselines. Experimental results
demonstrate that FedMRN exhibits superior convergence
speed and test accuracy compared to all baselines, while
attaining a similar level of accuracy as FedAvg. The code is
available at https://github.com/Leopold1423/fedmrn-mmz24.

2 RELATED WORK

2.1 Lottery Tickets and Supermasks

The lottery ticket hypothesis (LTH) [7] states that within a neural
network lie sparse subnetworks (aka winning tickets), capable of
achieving comparable accuracy to the fully trained dense network
when trained from scratch. Follow up work by Zhou et al. [43] finds
that winning tickets perform far better than chance even without
training. Inspired by this observation, Zhou et al. [43] propose
identifying the supermasks, i.e., masks that can be applied to an


https://github.com/Leopold1423/fedmrn-mm24

Masked Random Noise for Communication-Efficient Federated Learning

untrained network to produce a model with impressive accuracy.
Specifically, they learn a probability p for the mask of each randomly
initialized and frozen weight. In the forward pass, each mask is
obtained by Bernoulli sampling according to the corresponding
probability p = sigmoid(s), where s is the trainable variable and will
be optimized by gradient descent. Subsequently, Koster et al. [17]
have extended the value range of the mask to {—1, 0, 1}. These three
values represent sign-inverting, dropping, and keeping the weight,
respectively. In summary, above studies as well recent theoretical
results [24, 28] indicate that masking a randomly initialized network
can be as effective as directly training its weights.

2.2 Supermasks for Federated Learning

Recent studies [14, 19, 36] have employed supermasks to reduce
communication costs for FL. They attempt to find supermasks for
randomly initialized network in federated settings. Note that the
mask m is typically optimized by training a continuous score s.
Specifically, FedMask [19] gets the mask by m = I(sigmoid(s) >
0.5), utilizing the indicator function I. FedPM [14] generates the
mask through Bernoulli sampling, that is, m = Bern(sigmoid(s)).
HideNseek [36] changes the value range of the mask to {-1, 1},
where the mask is generated by m = 2I(s > 0) — 1.

Logically speaking, in FL, we should directly communicate and
aggregate the trainable parameters, i.e., the scores s. However, in
order to reduce communication costs, the above methods request
clients to upload only the binary masks generated from the scores s.
The server will aggregate the masks and then generate an estimate
for s. For example, s'*1 = sigmoid ! [Il( Zlkvzl Bern(sigmoid(s]i))]
in FedPM. Essentially, it is a form of model compression, where
the trainable scores are binarized into masks through Bernoulli
sampling. This will introduce significant errors to the updating of
the scores and hamper their stable and effective training.

We analyze that the above methods are very rough combinations
of the supermasks and FL. They are stuck in the inertia of finding
random subnetworks. FL encompasses two levels: (1) the entire
training process, whose goal is to find the optimal global param-
eters, and (2) the local training process, whose goal is to find the
optimal model updates relative to the currently received global pa-
rameters. To integrate supermasks into the former level, we should
leverage the entire training process to train the scores of masks. In
this case, model updates are the changes of scores. Consequently,
compressing these scores into masks for communication introduces
significant errors, thereby affecting their optimization. In this paper,
we propose to combine the supermasks with the latter level, i.e.,
local training, and try to learn model updates with supermasks.
Specifically, we train masks for random noise and generate masked
random noise to serve as model updates. In doing so, model updates
are no longer changes in scores, but directly the values of masks.
In summary, the biggest difference between our work and existing
studies is that we find masked random noise to serve as model
updates of local training, rather than as the final parameters.

2.3 Communication Compression

The first way of communication compression is model compres-
sion. For example, FedPara [12] performs low-rank decomposition
on weight matrices. FedSparsify [34] performs weight magnitude
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pruning during local training and only parameters with larger mag-
nitude will be sent to the server. These methods often have other
advantages besides efficient communication, such as smaller model
storage and less computational overhead. Nevertheless, their ca-
pacity to compress communication costs is frequently restricted.
Intense compression markedly diminishes the size of local models,
consequently undermining their learning ability.

Another way of communication compression is gradient com-
pression, such as sparsification [1, 29] and quantization [11, 15, 21,
31]. ZeroFL [29] prunes model updates based on the magnitude with
a given sparsity ratio. FedPAQ [31] propose to quantize local model
updates. [3, 15, 16, 35] has further investigated the application of
1-bit quantization (i.e., binarization) on model updates. Moreover,
DRIVE [38] and EDEN [37] use shared randomness to improve the
model accuracy of binarization and quantization. Let x € R4 denote
the vector to be compressed and R be a matrix generated with a
random seed. DRIVE compressed x into * = R~ !sign(Rx). Each
client only needs to upload the scalar @ and the signs of Rx to the
server. Note that the scalar « is calculated by clients to minimize
[|x — x]||. Later, EDEN has extended DRIVE to the case of quantiza-
tion and further improves the calculation process for the scalar «.
However, existing gradient compression methods are compressing
model updates in a post-training manner. In contrast, we directly
associate model updates with masked random noise during local
training, which is a form of learning to compress model updates.
This allows us to minimize the impact of errors caused by model
updates compression on accuracy through local training.

3 METHODOLOGY

3.1 Problem Formulation

FL involves N clients connecting to a central server. The general
goal of FL is to train a global model by multiple rounds of local
training on each client’s local dataset, which can be formulated as:

N
min F(w) = ) piFie(w), 1
weRd =i
where py. is the proportion of the k-th client’s data to all the data
of the N clients and Fy. is the objective function of the k-th client.
FedAvg [25] is a widely used FL algorithm. In the ¢-th round, the
server sends the global parameters w' to several randomly selected
K clients. The set of selected clients can be denoted as C;. Each se-
lected client seeks to determine the optimal model updates relative
to w! through multiple gradient descents on its local dataset:
. to oot
uznel]gd Fre(w' +uyp). (2)

Note that u]’; denotes the accumulation of updates produced by
multiple gradient descents. After local training, each client obtains
its local model updates u]tc and then send them to the server, who
then aggregates all the model updates to generate new global model

parameters as follows:

with=w + Z Py 3)
keCy
;_ Pk . : o
where p; = Sec, P denotes the proportion of the k-th client’s

data to all the data used in the ¢-th round.
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In this paper, we suggest identifying the optimal masked random
noise to serve as model updates relative to global parameters. Thus,
the objective of local training can be formulated as follows:

mzren{i(l)ql}d Fi(w' +G(s) O my), @)
Lefo,

where © is the Hadamard product, G is a random noise generator,
s,tC is the random seed, and mltc denotes the masks. G can corre-
spond to various data distributions, such as Gaussian, Uniform,
and Bernoulli distributions. The optimization space of the mask
can also be {—1, 1}, i.e., the signed mask. In fact, binary masks and
signed masks are equivalent to a certain extent, as illustrated by
the subsequent expansion: G(s) © ms = 2G(s) © m — G(s), where
ms € {—1,1}9 and m € {0, 1}9. It is evident that the noise required
for the binary masks m is twice that of the signed masks my.
After local training, each client only sends the random seed s,tc
and the masks mItC to the server. Then the server will recover the

masked random noise and performs central model aggregation by

witl = wh + Z p,’cg(s,i) 0] m]i. (5)
keCy
In the following, we will elaborate on the optimization of local
masks in Section 3.2, and introduce the pipeline of our federated
training framework in Section 3.3.

3.2 Progressive Stochastic Masking

In the ¢-th round, the clients will receive global model parameters
w from the server, and then employ them to initialize their local
models. Next, each client generates its local noise by a random
seed s]tc, that is Q(s]i). To find the optimal masks, we additionally
maintain a trainable copy of model parameters within the local
model, initialized with zeros to represent model updates. The masks
will then be generated on the fly according to the random noise and
model updates. In this way, the masks can be optimized indirectly
by optimizing the model updates. The notation of model updates
is u]tC , where k represents the client serial number, ¢ denotes the
current training round, and 7 denotes the current local step.

The process of generating masks and obtaining masked ran-
dom noise is termed masking. Next, we will introduce an effective
mask training strategy for local training, called progressive stochas-
tic masking (PSM). PSM includes the design of two components,
namely stochastic masking (SM) and progressive masking (PM).

3.2.1 Stochastic Masking. A simple way to generate masks is by
comparing the signs of model updates and random noise. Specifi-
cally, a mask should be set to 1 only when the model update and
the corresponding noise share the same sign. We name this method
deterministic masking (DM). There are many methods similar to
DM, such as the sign function used in SignSGD [3] and the indicator
function used in FedMask. However, DM suffers from a significant
flaw, that is seriously biased estimation. For ease of expression,
we next use &t = G(s) © m to represent the masked random noise.
The biased estimation refers to the huge deviation between u and
and the expectation of @i. More realistically, DM disregards the
amplitude of both model updates and the random noise.

To overcome this issue, we propose the stochastic masking strat-
egy, as shown in Figure 2(a). Specifically, SM first calculates the
probability that a mask is 1 based on the value of the model update
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Figure 2: Schematic diagram of SM and PM. In subfigure (b),
7 is the number of current local iterations, and S is the total
number of local iteration steps. p will increase to 1 as training
progresses, so that each element of the model updates will
eventually be mapped into masked noise.

and the random noise, and then uses this probability to sample the
binary mask from the Bernoulli distribution. For a model update u
and the corresponding noise n, the probability and the binary mask
has the following values:

m:Au%m:{; N fj;WWMﬂJL ©

where clip is to clamp the probability into the range of [0, 1]. Ob-
viously, E[nM(u,n) — u] = 0 when u/n € [0, 1]. That is, the ex-
pectation of the error caused by masking is zero. Also, we extend
our stochastic masking strategy to the signed masks, where the
calculation of the probability and the mask shall be changed to

1 wp. p=clip(utn/an,0,1),
-1 wp. 1-p.

In this case, E[nM(u, n) — u] = 0 when u/n € [—1, 1]. Applying the
mask generator M defined in Eq.(6) or (7) to element-wise process
the model updates u and the random noise G(s), we can derive the
formula for stochastic masking:

i =S(u,G(s) =G(s) ©M(n,G(s)) ®)

During forward propagation, the masked noise @ will be added
to the frozen global parameters to obtain the complete model pa-
rameters. However, the stochastic masking S includes the process
of Bernoulli sampling, which is non-differentiable. This renders
the gradient descent algorithms inapplicable. To optimize u and
thus optimizing the masks, we adopt Straight-through Estimator
(STE) [9] to treat SM as an identity map during backpropagation, i.e.,

m:M(u,n):{ (7)
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9S/ou = 1. Recent work has demonstrated that STE works as a first-
order approximation of the gradient and affirmed its efficacy [23].
Hence, the model updates u will be optimized by

AF (w! +47)

tr+l _ LT k
ue o =y it )
U

3.2.2  Progressive Masking. SM has addressed the issue of biased
estimation caused by masking. Specifically, E[@# — u] = 0 under
certain conditions. However, there is still a certain gap between the
model updates u and the masked noise @. As shown in Eq.(9), u is
essentially updated using the gradient of #. This gap can signifi-
cantly disrupt the optimization process for u, especially during the
initial training stages when u is far from stable convergence.

To reduce the gap between u and # during optimization, we
propose a progressive masking strategy. Figure 2(b) illustrates the
process, where each model update undergoes a probability of being
mapped into masked noise during forward propagation. As training
proceeds, the probability will gradually increase to 1, ensuring
that every element within the model updates will eventually be
mapped into masked noise. Here, we simply define the probability
to increase linearly, i.e., p = 7/S, where S is the total local iteration
steps and 7 is the serial number of the current step. The combination
of SM and PM yields PSM, wherein the actual model updates utilized
in the forward pass are

ut=1-P)oua+PoS(ugGs)). (10)

P = Bern(1 x p) € {0, 1}, each element within P is obtained by
Bernoulli sampling with probability p. @t = clip(u, G(s)), limiting
u to the interval of [0, G(s)], or [G(s), 0] where G(s) is negative.
For the signed mask, the interval will be [—|G(s)|, |G (s)]]-

As both SM and PM employ Bernoulli sampling, we offer a com-
parison to alleviate potential confusion. Bernoulli sampling in PM
determines whether to map a model update into masked noise, with
the probability based on the local training progress. Differently, in
SM, Bernoulli sampling determines whether to set a mask to 1, with
the probability calculated by the values of model updates and noise.

3.3 Federated Masked Random Noise

In the preceding subsections, we described our objectives and elu-
cidated the local training procedure. Hereafter, we present the com-
prehensive framework of FedMRN. The pipeline of FedMRN closely
resembles that of FedAvg, with nuanced differences in the local
training and central aggregation stages. Consequently, FedMRN
can be seamlessly integrated into prevalent FL frameworks. The
pipeline of FedMRN is detailed in Algorithm 1.

The server maintains a global model, whenever a new round of
training starts, it sends the latest global parameters to randomly
selected clients. These clients will load the global parameters, gener-
ate random noise, and initialize the local model updates with zeros.
Subsequently, clients conduct local training using the PSM strategy.
Line 15-18 in Algorithm 1 condenses all designs in Section 3.2. After
local training, each client produces the final masks mltC and send
them to the server along with the random seed s’ . Upon receiving
these contents, the server will recover the model updates (i.e., the
masked random noise) of each client and aggregate them using
Eq.(5) to generate global model parameters for the next round.
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Algorithm 1 Federated Masked Random Noise

Input: learning rate n; client data ratios {px|k € [N]}; noise gen-
erator G; mask generator M.
Output: Trained global model w.
1: Initialize the model parameters w
2: procedure SERVER-SIDE OPTIMIZATION
3: for each communication round ¢ € {1,2, ..., R} do

1.
5

4 Randomly select a subset of clients Cy;
5: Broadcast w! to each selected client;

6: for each selected client k in parallel do
7 m]tc,s]tc « ClientLocalUpdate(w");
8: Aggregate masked random noise by

o witl = wt + Dkec, Pkg(s;i)Gm;i;

Xkec; Pk

10: procedure CLIENTLOCALUPDATE(W?)
11: Load global model parameters w';

12: Generate noise by G with seed sltc;

13: Initializes model updates u]tc’1 with zeros;
14: for each local iteration 7 € {1,2,...,5} do
15: @t = Mu",G(sh) @ G(st);  #SM
16: P = Bern(1 x 7/s);

_t, oot
17: ay" = clip(uy’, G (sp));
18: a'=(1-Pou " +Poiu"; #PM
OF (Wi+ih”
19: ut,'r+1 —ubT k(“i tt“k )
k k auk’

20: return final masks M(u,i’SH, Q(sltc)) and the seed Sltc’

4 CONVERGENCE ANALYSIS

In this section, we present our theoretical guarantees on the con-
vergence of FedMRN, taking into account the non-independently
identically distributed (Non-IID) nature of local datasets. For sim-
plicity, we analyze the convergence of FedMRN using signed masks.
We first consider the strongly convex setting and state the conver-
gence guarantee of FedMRN for such losses in Theorem 1. Then,
in Theorem 2, we present the overall complexity of FedMRN for
finding a first-order stationary point of the global objective function
F, when the loss function is non-convex. All proofs are provided in
the Appendix.

Before that, we first give the following notations and assump-
tions required for convex and non-convex settings. Let F* and F;
be the minimum values of F and Fy, respectively. We use the term
r=F- Zlkvz 1 kaZ for quantifying the degree of data heterogene-
ity. In Section 3.3, the subscripts t € [R] and 7 € [S] are used to
represent the serial number of global rounds and local iterations, re-
spectively. In the following analysis, we will only use the subscript
t to represent the cumulative number of iteration steps in the sense
that t € [T], T = RS. Below are some commonly used assumptions:

AssuMPTION 1. (L-smoothness.) Fi, ..., Fy are all L-smooth: for
allw and v, Fr.(v) < Fp(w) + (v = w)T VF(w) + %Hv - w|%.

AssuMPTION 2. (Bounded variance.) Let §Itc be sampled from the

k-th client’s local data randomly. The variance of stochastic gradients
is bounded:EHVFk(W]t(, §]tc) - VFk(W]t()H <o forallk=1,..,N.
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AssumPTION 3. (Bounded gradient.) The expected squared norm of
stochastic gradients is uniformly bounded, i.e., E||VF}. (w]tc, flt{)H <G
forallk =1,..,Nandt=1,..,T.

AssuMPTION 4. (Bounded error.) The error caused by the masking
function S grows with the lz-norm of its argument, i.e., E||S (x, G(s))—
x|| < qllx]l.

AssumPTION 5. (Strongly convex.) Fy, ..., FN areu-strongly convex:
forallw and v, Fi.(v) = Fi(w) + (v — w) T VE.(w) + %Hv — w2

Assumptions 1-3 are commonplace in standard optimization
analyses [22, 33]. The condition in Assumption 4 is satisfied with
many compression schemes including the masking function S in
Eq.(8). Assumption 4 is also used in [16, 31] to analyze the con-
vergence of federated algorithms. Assumption 5 is about strong
convexity and will not be used in the non-convex settings.

THEOREM 1. (Strongly convex.) Let Assumptions 1-5 hold. Choose
k = L/u, y = max{8k, S} — 1 and the learning rate n; = 2/u(y+t). Gen-
erating the noise from the Bernoulli distribution {—2n¢SG, 2n19SG},
then FedMRN satisfies

E[F(wp)] - F* < —<_ (2B, #0+D)

< Ellw, — w*||?), (11
T > lwi —w*[I), (11)

+ 4q2(N—1)+N—K

2
where B = S +6LT +8(1 + g*)(S - 1)%G? RON-1) $2G2.

THEOREM 2. (Non-convex.) Let Assumptions 1-4 hold. Assume
the learning rate is set ton = L;T Generating the noise from the
Bernoulli distribution {—2nSG, 2nSG}, then the following first-order
stationary condition holds
2L(F - F* P

(Fw)=F) P 0

VT VT T

$2G?) and Q = 4(1+¢%)(S - 1)%G.

1 T-1
fgmmes
1=l

2(N— _
where P = ‘TWZ +q LT (g(;])jlj\)[ K

ProposITION 1. In Theorems 1 and 2, for simplicity, we only con-
sider the effect of SM and temporarily ignore PM. In fact, PM can

further reduce q by ,15—13 Zf:l 2 times.

REMARK 1. By setting q = 0, Theorem 1 is equivalent to the analysis
about FedAvg in [22]. By setting K = N and S = 1, Theorems 1 and 2
recovers the convergence rate of SignSGD [32] when used in distributed
training. By setting K = N,S = 1 and q = 0, Theorems 1 and 2 can
recover the convergence rate of vanilla SGD.

REMARK 2. Under the conditions of Theorem 1 and 2, the conver-
gence rate of both FedMRN and FedAvg (q = 0) is O(%) in the strongly

convex setting, and O( %) + O(‘/LT) in the non-convex setting.

5 EXPERIMENTS

5.1 Experimental Setup

5.1.1 Datasets and Models. In this section, we evaluate FedMRN
on four widely used datasets: FMNIST [40], SVHN [27], CIFAR-10
and CIFAR-100 [18]. For FMNIST and SVHN, we employ a convolu-
tional neural network (CNN) with four convolution layers and one
fully connected layer. For CIFAR-10 and CIFAR-100, we employ a
CNN with eight convolution layers and one fully connected layer.
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ReLU [8] is used as the activation function and batch normalization
(BN) [13] is utilized to ensure stable training. Experiments on other
tasks [5, 26] and models [10, 41] can be find in the Appendix.

5.1.2  Data Partitioning. We consider both cases of IID and Non-
IID data distribution, referring to the data partitioning benchmark
of FL [20]. Under IID partitioning, an equal quantity of data is
randomly sampled for each client. The Non-IID scenario further
encompasses two distinct label distributions, termed Non-IID-1 and
Non-IID-2. In Non-IID-1, the proportion of the same label among
clients follows the Dirichlet distribution [42], while in Non-IID-
2, each client only contains data of partial labels. For CIFAR-100,
we set the Dirichlet parameter to 0.2 in Non-IID-1 and assign 20
random labels to each client in Non-IID-2. For the other datasets,
we set the Dirichlet parameter to 0.3 in Non-IID-1 and assign 3
random labels to each client in Non-IID-2.

5.1.3 Baselines. FedAvg [25] is adopted as the backbone train-
ing algorithm. We compare FedMRN with several state-of-the-art
methods, including FedPM [14], FedSparsify [34], SignSGD [32],
Top-k [1], TernGrad [39], DRIVE [38], EDEN [37]. FedPM and
FedSparsify focus on model compression, while the remaining base-
lines concentrate on gradient compression. FedPM trains and com-
municates a binary mask for each model parameter. FedSparsify
prunes the model weights during local training with a specified
sparsity ratio and finally uploads the pruned model. Similarly, Top-
k prunes model updates after local training by a sparsity ratio.
SignSGD performs stochastic binarization on model updates, while
TernGrad converts the model updates to ternary values. EDEN and
DRIVE initially execute a random rotation on model updates (es-
sentially multiplying by a random matrix) before binarizing them.
The communication costs of FedPM, SignSGD, EDEN, DRIVE, and
FedMRN are all 1 bit per parameter (bpp). Therefore, for a fair
comparison, we set the sparsity of FedSparsify and Top-k to 97%,
resulting in approximately 32-fold compression. Note that we did
not consider the extra overhead of sparse encoding. Otherwise, a
higher sparsity would be required. Additionally, the communication
costs of TernGrad is log(3) bpp, surpassing that of other methods.

5.1.4 Hyperparameters. The number of clients is set to 100 and 10
clients will be selected for training in each round. The local epoch is
set to 10 and the batch size is set to 64. SGD [4] is used as the local
optimizer. The learning rate is tuned from {1.0,0.3,0.1,0.03,0.01}.
The number of rounds are set to 100 for FMNIST and SVHN, and
are set to 200 for CIFAR-10 and CIFAR-100. Note that FedMRN
and FedMRNS indicate the use of binary masks and signed masks,
respectively. The random noise in FedMRN follows a uniform dis-
tribution by default. The range of the distribution is [-1e-2, le-2]
for FedMRN and [-5e-3, 5e-3] for FedMRNS. Each experiment is
run five times on Nvidia 3090 GPUs with Intel Xeon E5-2673 CPUs.
Average results and the standard deviation are reported.

5.2 Overall Performance

In this subsection, we compare the performance of FedMRN and the
baselines by the global model accuracy and the convergence speed.
All numerical results are reported in Table 1. Further, to facilitate
comparison of accuracy, the accuracy loss of each method relative
to FedAvg is displayed in Table 2, where each term represents the
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Figure 3: Convergence curves under the Non-IID-2 data distribution.

Table 1: The accuracy of all methods on four datasets. The best accuracy is bolded and the next best accuracy is underlined.
FedMRN and FedMRNS indicate the use of binary masks {0, 1} and signed masks {-1, 1}, respectively.

FMNIST SVHN CIFAR-10 CIFAR-100
1D Non-IID-1 ~ Non-IID-2 D Non-IID-1  Non-lID-2 D Non-IID-1 ~ Non-lID-2 1D Non-IID-1  Non-lID-2
FedAvg 92.0(£0.1) 905(£0.1) 888(x0.2) 922(£0.1) 903(x02) 889 (x0.1) 882(x02) 841(x0.2) 80.8(£05) 56.1(x0.3) 548(0.5) 54.4(x0.2)
FedPM BL7(£0.4) 786(+02) 746 (£0.8) 66.3(£09) 524(x11) 483(£23) 502(x09) 463(£02) 443(x05) 229(x0.1) 16.6(£03) 134 (0.2)
FedSparsify  85.6 (£ 0.1) 809 (x12) 788(x15) 813(x03) 77.2(x04) 728(x11) 72(x07)  668(£07) 625(x05) 329(£02) 298(x03) 28.8(+0.1)
SignSGD 911 (£0.1) 88.4(+02) 87.1(x03) 90.8(x02) 87.3(x04) 865(£03) 853(x0.2) 751(£04) 762(x0.6) 480(£05) 39.2(x02) 44.0 (+0.2)
Top-k 90.1(x0.1) 88.6(x0.2) 867(x02) 90.0(x01) 877(x01) 864(x01) 841(x0.1) 77.9(x03) 751(x0.1) 502(x02) 47.6(x0.5) 430 (x0.7)
TernGard 914 (£0.2) 899 (+02) 87.9(x0.2) 917(x0.1) 89.6(x0.1) 87.7(£03) 869(x02) 819(£05) 79.2(x04) 535(£04) 521(x05) 523 (£0.3)
DRIVE 916 (+0.1) 89.9(£0.2) 881(x0.1) 916(x0.1) 89.6(£02) 87.8(x03) 87.2(£0.1) 824 (x04) 79.4(£03) 535(x02) 525(x03) 528 (x02)
EDEN 914(£0.2) 89.8(£02) 883(x03) 917(£0.1) 897(x0.1) 87.8(£02) 875(x02) 826(x04) 798(:04) 539(x03) 53.1(£02) 529 (0.1)
FedMRN 918 (£0.) 902(x0.1) 886(x0.2) 922(x0.1) 90.0(x03) 885(£02) 88.3(x0.2) 84.6(£0.2) 8L4(+04) 554(£05) 541(x02) 53.9(+0.4)
FedMRNS ~ 92.0 (£ 0.1) 90.5(+0.2) 88.9(x0.3) 924(£0.2) 90.5(x0.3) 887(£04) 880(x01) 845(£03) 8L0(x05) 56.1(x05) 547(x05) 54.2(+0.3)
Table 2: Accuracy loss compared to FedAvg. Second, we shall analyze the remaining gradient compression
methods. All these techniques entail lossy compression of model
FMNIST SVHN CIFAR-10 CIFAR-100 updates after local training. The errors caused by post-training com-
FedPM 36.4 -104.4 -1123 1124 pression will reduce accuracy to varying degrees. Table 2 demon-
FedSparsify -26.0 -401 518 738 strates that SignSGD and Top-k exhibit comparable accuracy, and
SignSGD -4.7 6.8 -16.5 -34.1 th tably lag behind Fed A ticularly evident in situati
Top-k 9 3 160 245 ey notably lag behind FedAvg, particularly evident in situations
TernGard 23 25 5.2 75 with high data heterogeneity. Compared with SignSGD, TernGrad
DRIVE -18 24 -4.1 6.6 extends the value range of compressed model updates from {—1, 1}
EDEN 18 23 32 55 to {—1,0,1}, slightly improving the accuracy at the expense of
FedMRN 07 07 1.2 19 higher communication costs. DRIVE and EDEN minimize the com-
FedMRNS 0.1 0.2 04 -0.3

cumulative accuracy loss across three data distributions. For space
constraints, we present only the convergence curves under the
Non-IID-2 data distribution, depicted in Figure 3.

First, we examine the model compression baselines, specifically
FedPM and FedSparsify. As shown in Figure 3, they two demon-
strate markedly lower convergence upper bounds, with a significant
decrease in accuracy compared to FedAvg or other baseline meth-
ods. This verifies our discussion in the related work section that
excessive model compression curtails the expressive capacity and
learning potential. Additionally, FedSparsify generally outperforms
FedPM in accuracy. That is, training and transferring binary masks
for frozen weights is less effective than just transferring the top 3%
of model parameters. This reveals the shortcomings of employing
masked noise as weights in FL. Instead, FedMRN shows that it is a
better choice to employ masked noise as model updates.

pression errors with additional calculations after local training.
They slightly improve the accuracy but introduce additional com-
putational latency. We will elaborate on this delay in Section 5.6.
Notably, FedMRN outperforms all baselines and is comparable to
FedAvg in both accuracy and convergence speed, regardless of
data distribution. From the perspective of gradient compression,
FedMRN is to map model updates into masked random noise, and
this process is indeed lossy. However, a fundamental distinction
from above methods is that FedMRN learns to compress model
updates during local training. This characteristic guarantees that
FedMRN can attain reduced compression errors without necessitat-
ing additional computational or communication overhead.

5.3 Ablation on Progressive Stochastic Masking

To evaluate the efficacy of PSM, we test the accuracy of FedMRN
under the Non-IID-2 data distributions without SM, PM, and PSM,
respectively. As shown in Figure 4, both SM and PM are essential
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for achieving the remarkable accuracy of FedMRN. Upon closer
examination, it becomes apparent that SM exerts a slightly more
pronounced influence on accuracy.
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Figure 4: Results of ablation studies.

5.4 Comparison with Post-Training Masking

To thoroughly analyze the superior performance of FedMRN, we
conduct a comparison with post-training masking. Specifically, we
apply stochastic masking on the model updates generated by Fe-
dAvg after local training. The sole distinction between [FedMRN
w.o. PM] and [FedAvg w. SM] lies in the timing of masking: during
or after local training. As illustrated in Figure 4, the accuracy of
[FedMRN w.o. PM] notably surpasses that of [FedAvg w. SM]. This
highlights the significant advantage of incorporating masking dur-
ing local training as opposed to post-training masking. Furthermore,
FedMRN consistently outperforms SignSGD, even in the absence
of PSM. This further underscores the superiority of learning to
compress model updates as opposed to post-training compression.

5.5 Impact of the Random Noise

By default, the random noise is uniformly distributed within the
intervals [-1e-2, 1e-2] and [-5e-3, 5e-3] for FedMRN and FedMRNS,
respectively. Here, we examine the impact of the noise distribution
and magnitude using CIFAR-10 under the Non-IID-2 data distribu-
tion. Specifically, we investigate the following distributions: Uni-
form [—a, «], Gaussian N (0, «), and Bernoulli {—a, a}. The noise
magnitude « is tuned among {6.25e-4, 1.25e-3, 2.5e-3, 5e-3, le-2, 2e-
2}. As shown in Figure 5, the noise distribution has little impact on
performance. The primary factor influencing accuracy is the magni-
tude of the noise. Besides, our observations indicate that FedMRNS
typically requires less noise compared to FedMRN. Specifically,
FedMRN achieves comparable accuracy to FedAvg when the noise
amplitude falls within {2.5e-3, 5e-3, le-2}, and FedMRNS achieves
this when the noise amplitude falls within {1.25e-3, 2.5e-3, 5e-3}.
The noise required by FedMRN is roughly twice that of FedMRNS.
This is intuitively sensible, as G(s) Oms = 2G(s) ©m—G(s), where
mg € {~1,1}4 and m € {0,1}4.

5.6 Training Complexity.

Here, we discuss the local training complexity for various methods.
Specifically, we measured the local training durations of different
methods and their time taken to acquire compressed model updates.
The data plotted in Figure 6 is the average of 10 measurements.
As shown in Figure 6, FedMRN, FedPM and FedSparsify change
the local model structure and slightly increase the local training
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Figure 5: The accuracy of FedMRN with different random
noise. The horizontal axis represents the noise magnitude.

time, which is negligible. Regarding the time taken for compressing
model updates, both EDEN and DRIVE evidently demand a longer
duration, up to one third of local training time. They reduce the
compression errors at the expense of extra computational overhead.
Differently, FedMRN utilizes the local training process to reduce
the compression errors. In summary, FedMRN introduces negligible
additional training time to the FL process.

FedMRN 3121 =56
EDEN 3010 10t
DRIVE 3010
TernGrad 3010 =85
Top-k =3010 =129
SignSGD 3010 119
FedSparsify 3330 =85
FedPM 3112 =57
FedAvg 3010 0
2000 2500 3000 3500 4000
Time (ms)

Local Training m Model Updates Compression

Figure 6: Local training complexity for various methods.

6 CONCLUSION AND TAKEAWAYS

In this paper, motivated by the existence of supermasks, we propose
to find optimal model updates within random noise. To this end, we
propose FedMRN, a novel framework for communication-efficient
FL. FedMRN enables clients to learn a mask for each model param-
eter and generate masked random noise to serve as model updates.
To find the optimal masks, we further propose an advanced mask
training strategy, called progressive stochastic masking. FedMRN
has been fully verified both theoretically and experimentally. The
results show that FedMRN is significantly better than relevant base-
lines and can achieve performance comparable to the FedAvg.
Our experiments and analysis suggest that masked random noise
can serve as a viable alternative to model updates. It is preferable
to employ the masked noise as model updates rather than as model
parameters. Upon further thoughts on FedMRN, we discover a
flaw in current methods of compressing model updates, that is
the post-training manner. FedMRN attempts to compress model
updates into masked noise during local training. It has proved
that learning to compress model updates yields superior results
compared to post-training compression. We believe this concept
has broad applicability in FL and deserves further exploration.
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Appendix

A ADDITIONAL EXPERIMENTS

We believe that FedMRN is task-independent. FedMRN is essen-
tially based on the existence of supermasks, which suggests that
learning masks for untrained weights (i.e., noise) can achieve sim-
ilar performance as directly training weights, without any task-
related restrictions. To prove this point in our settings, we added
experiments on two more tasks: Semantic Segmentation and Next-
Character Prediction. We test the performance of FedMRN based on
the code provided by LEAF [5] and FedSeg [26], respectively. The
datasets used are PascalVOC [6] and Shakespeare [5]. The models
used are BiSeNetV2 [41] and LSTM [10]. More details can be found
in https://github.com/Leopold1423/fedmrn-mmz24. The results in
Table 3 confirm the applicability of FedMRN across different tasks.

Table 3: Accuracy of FedMRN on other tasks.

Dataset with Model | FedAvg FedMRN

Shakespeare with LSTM 51.2(£0.2) 38.0 (£0.6) 49.6(+£0.2) 51.1(x0.1)
PascalVOC with BiSeNetV2 | 53.8 (+0.1) 44.3 (£0.3) 52.0 (£0.2) 54.2 (x0.1)

SignSGD  EDEN

B NOTATIONS AND GENERAL LEMMAS

In this study, we investigate the convergence of FedMRN under
both strongly convex and non-convex scenarios. Additionally, we
consider partial client participation and data heterogeneity. Our
theoretical analysis is rooted in the findings about Fed Avg presented
in [22]. Following [22], we also consider the situation where the
local dataset is balanced in the sense that p; = p2 = ... = pNy = ﬁ

B.1 Additional Notations

Let Wltc be the model parameters (the sum of frozen global param-
eters and learnable model updates) maintained in the k-th device
at the t-th step. Let I be the set of global synchronization steps,
ie,Is = {nSln = 1,2,...}.If t + 1 € Ig, FedMRN aggregates the
parameters of selected clients. C;11 denotes the set of randomly

selected clients. The optimization of FedMRN can be rewritten as

Vltcﬂ =w; — 1 VF(xp. &) (13)
Xk = Sm(Wk) (14)
Wit _ V,i“ ift+1¢ls, 5
k K Zkecm m(VHl) ift+1€lg.
where vi*! is the immediate result of one step SGD update from

k
w]tC within FedMRN. x]tc is the result of adding masked random

noise on frozen global model parameters. Notably, for any ¢, there
exists ty € Ig, suchthat0 <t -t < S—-1and Wltco = wy, for all
k € [N]. Essentially, tj is the latest synchronization step. Therefore,
= Sm(wtk) = S(wltC - Wiy, Q(s]tc)) + Wy,, where w]tc — Wy, is the
model updates. Similarly, S, (V]t:l) = S(v]’;+1 - Wi, Q(s/tcz\)] + W,
Zk:l ka]tC
ZkN 1 pkwt Only when t +1 € Is can we fetch w;4;. Fur-
Zk PkVE(xt) andg, = S prVF(xE, E).
—n:g: and Eg; = g;.

For convenience, we define two virtual sequences v; =
and w; =
ther, we define g; =
Therefore, V41 =
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B.2 General Lemmas

To convey the proof clearly, we provide three general lemmas. The
proofs of all lemmas are deferred to Section F.

LEmMA 1. Let Assumption 2 hold. It follows that

2
o
Ellg: — g:lI° < ~ (16)

LEMMA 2. Let Assumption 3 hold. Assume n; is non-increasing
and n; < 2np4s. It follows that E[w; — Xltc] =0 and

EllW: - xj |1* < 4(1+¢*)n7 (S - 1)*G%. (17)
LEmMA 3. Let Assumption 3, 4 hold. Assume n; is non-increasing
and n; < 2n44s. It follows that E[Wi41 — V1] = 0 and
N-1)+N-K
7 ( )+ n2s?
K(N-1)
C PROOF OF THEOREM 1

To prove Theorem 1, we additionally provide the following lemma:

E||Wee1 — Ve || < 4 G2 (18)

LEmMA 4. Let Assumption 1 and 5 hold. If n; < ﬁ, we have
Ellvee1 = wl|* < (1 - nep)Ellwe —w"|* + 6Ly;T
3 (19)

+n7Bllge - glI° +2 ) piBlIwe —xi |1,
k=1

As shown in Lemma 3, E[Wy+1 — V#+1] = 0. Therefore

El[Wee1 — W12 = El[Wie1 — Vi1 + Vo1 — w2

. (20)
= ElWrs1 = Va1 ll? + B[V — w2

Let A; = E||w; — w*||%. Adding Eq.(16-19) to Eq.(20), we can get
A1 < (1=nep)A* + 7B, (21)

2(N-1)+N-K
1)2G? 449 (K(N)+1)

tfy with g > 1 and y >0,
ﬁ and n; < 2r7t+5. We next prove

where B = oﬁz +6LT +8(1+¢%)(S - 52G2.

For a diminishing learning rate n; =
we have n; < min{lll ﬁ} =
T (y + 1)A1}. Firstly,
the definition of v ensures that it holds for t = 1. Secondly, assume
the conclusion holds for some ¢, it follows that

B 2
A — H 4 /3 B
t+1 < (1 l’]t}l)At +)7tB < (1 [ A S D,

A < t+y by induction, where v = max{

t+y t+ t+y)>
yt+y (t+y) (22)
t+y—1 BB Pu—1 < v
= ol —_ = .
(t+7y)? (t+y)2  (t+y)? t+y+1
Then by the L-smoothness of F,
L L v
E[F (W F* < A < —-—
[F(wo)] - <o (23)

Specifically, if we choose f = ﬁ’ Yy = max{S%, } — 1 and denote

K= ILJ ,thenn; = £ % One can verify that the choice of r; satisfies
Nt < 21445 for t > 1. Then, we have
2

v:max{ﬁu_Bl,(y+l)A1}
< F’B +(y+l)A1 < ﬁ +(y+ 1Ay, “
Bu— p2
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and
o _x 2B+

E[F(w -F"< e
[F(W:)] T 2y+t T y+top 2

Ar).  (25)

0|

D PROOF OF THEOREM 2

To prove Theorem 2, we additionally provide the following lemma:

we have

LEMMA 5. Let Assumption 1 hold. If n = ﬁ

BF(Wr41) < BF(W;) = JB||VF(Wp)||” + ”Eug I

L ~ L_. _
+1p2 ZpkEnvvf <L+ Bl - gl + LBl - v
2 pr 2 2

(26)

2_
we have Ly —n < 0, therefore

1
INT’ 2

Since n =

BF(Wr41) < BF(Wp) = JE||VF(w)||

e e, P 2 Lo 2
+ 5L > P = I+ Z-Ellge — gell* + JEIWe — el
k=1

(27)
The last three terms are bounded by Lemmas 1, 2 and 3, respec-
tively. Note that these three lemmas do not require the convexity
assumption. Adding Eq.(16-18) to Eq.(27), we can get

Ln? o2
EF(Ws1) < EF(W,) — TB||VF(w,)|? + =L T
2 2 N
/) 2,2 zLQ(N—1)+N K 922
+ 112401 4 S-1)2G KIS i e
SLA0 (s - 1°6+ Za T m o
(28)

Rearrange the terms and average over ¢t =0, ..., T — 1, we have

1 _ F(wo) — F(w*) Lp? o?
I — VF 2 < —_ 7 7 [
”;n WP s == ————+ =%
L N-1)+N-K

204 Pnts - 126 + JSLWN-D+N-K 2522

2 PG

(29)
_ _1
Picking the learning rate n = v We have

1= 2L(F(Wo)—F*) P Q

= DLEIVF(W)|P s —————+—=+=,  (30)

T4 VTV

444 2(N-1)+N-K

RON-1) 52G%) and Q = 4(1+¢%)(S—1)2G>.

where P =

E PROOF OF PROPOSITION 1

Now, we analyze the effect of PM. In FedMRN, PM is designed to
reduce the gap between the original model updates and the corre-
sponding mask random noise. This gap can actually be expressed
using Assumption 4, where E||S(x, G(s)) — x|| < q|x||. In this
paper, we let the probability in PM increase linearly with local
training, that is, p; = T%TSH. Thus, averaging the gap over S local
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steps, we have

S
5 2 EhSew (1 6(6) -

=< ZEPT 1S(x.6(s)) - x| (31)

<3 Zp Flall = & 5 A
=1
From the above results, we can see that PM reduces the average
value of g by ,/S—E >5_, 72 times.
F PROOF OF LEMMAS
F.1 Proof of Lemma 1

According to Assumption 2, the variance of the stochastic gradients
is bounded by o2, then we have

(n

N
Ellg: — &II* = Bll ) pi[VEe (Wi, &) = VER (w11

k=t (32)

N
REIVE (Wi, &) — VEe(WR)II* < D pho® =
1 k=1

M=

loa
N

o~
1l

F.2 Proof of Lemma 2

As stated in Section B.1, Xltc =Snm (Wltc) = S(wltC - Wi, g(si)) +Wt,,
where tj is the latest synchronization step. We first prove that the
stochastic masking is unbiased as follows

t t
llwh, = Weylloo = | D iV, ) oo < D mill VR (xF, ED) oo

i=ty i=ty

t t t
< O millVEGE, &)z < > miG < > 2amiG < 248G,
i=to i=ty i=ty

(33)
where the last three inequalities follow from ||VFk(w]t<, §]tc)|| <
G, ni < nm—s < 2np,and t —tp < S — 1, respectively. For the
noise sampled from Bernoulli distribution {-2#7¢SG, 279SG} or
{-215G, 275G}, each element of wi-W,/G (st) falls within the in-
terval [—1, 1]. In this case, the stochastic masking is unbiased as

discussed in Section 3.2, i.e., IE[X;< - w,tc] = 0. Further, we have

_ tn2 _ t t ty\2
Ellw; — x 17 = Ell(W; — wy) = (wi —xp )l

= B||W, — wi|[* + E[[w}, — x} || G
For the first term in Eq.(34), we have
Ellw; — wi|®
= E|(wh = Wg) = (W — W) ||* < Ellw,ﬁ = wi,l?
=1 (35)
=1 VB DI < (- to)EZ WIVE (<L 201

i=ty i=ty

< 4n?(t - 19)’G? < 4n?(S - 1)°G?

Here in the first inequality, we use E||X — EX||?> < E||X||?> where
X = Wltc — Wy, with probability py. The remaining inequalities
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follow the same reasons as Eq.(33). Then we consider the second
term in Eq.(34). According to Assumption 4, we have

Ellwi = xiI* < ¢°Eliwy, — W I” < 4¢%n7 (S - 1)°G*. (36)
Plugging Eq.(35) and Eq.(36) into Eq.(34), we have

Ellw: — x¢||* < 4(1+ ¢*)ni(S - 1)*G%. (37)

F.3 Proof of Lemma 3

As stated in Section B.1, W[H = \7;+1 when t + 1 ¢ I and W41 =

¥ SkeCrny Sm(VE), Vi1 = 5 T, viH when t +1 € Ig. In the
latter case, there are two kinds of randomness between w41 and
V141, respectively from the client’s random selection and stochastic
masking. To distinguish them, we use the notation Ec,,, when
we take expectation to erase the randomness of device selection,
and use the notation Eg when we take expectation to erase the
randomness of stochastic masking. Thus, when t + 1 € Ig, we have

Ew1 = By, [EsWe+1] = Ec,,, [E

Z Sm (Vt+1)

kECt+1
N (38)

=E<cm[ll< 2, v Z =V

keCyyy k:

and for the variance, we have

1
_ - 2 _ — +1y _ & 2
Blwen = Venl? =Bl >0 Sm(v™) ~ vt

keCri
1 1 _
=Elg D, SO v+ D) it - veal?
keCiiq keCry
1 _
=El¢ D, (S - v”l)||2+E||— PR ARG
keCyyiq kGCHl
Ay Az
(39)
To bound A1, we have
1
=El D, (Sm™ -vihI?
kECHl
1
= 2 Bl - v (40)
keCri
1 2 20242 2 20242
SFZM%SG qu]SG

keCi
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where we use the result of Eq.(36) in the last inequality. Then, to
bound A;, we have

1 _
Ar=Ele Y i vl
keCri

N
_ 1 . t+1 = 2
El ;H{z € Crr} (VI = W)

N
1 . _
= GBI Bl € Co)lvi™ — v
i=1
+ Zp(i,j € Cyt1) <V;§+1 - \_ft+1,V§~+1 - \7t+1>] (41)
i+j
1 N
_ t+1 - 2
= KNEZ; VI = Vol
K- Z< _ - >
“ Vi1, Vi T Vil
— J
KN(N 1) ,¢]

E —
KN(N 1)2 (NS g

where we use the following equalities: P(i € Cy) = % and

P(i,j € Cs41) = ﬁgljf]__ll)) for alli # j, and ZNI ||vt+1 —l? +

i <Vf+l - ‘7t+1,vs.+1 - ‘7t+1> = 0. Then reusing the result of
Eq.(35), we have

N-K -K
A E|lvi*! - < MoK s,
2= TN = 1)2 Vit = venl < gy 40t
(42)
Plugging A; and Ay, we have the result in Lemma 3:
N-1)+N-K
Bl —vra | < 4L DIN K o )

K(N-1)

F.4 Proof of Lemma 4

Notice that v;41 = — n+g: and Eg; = g;, then

EllVesr — W12 = EllWe — nege — W = nee + neell?
=Ellwe —w* — negel* +n7Ellge — gell®. (44)

A

We next focus on bounding A. Again we split A into three terms:

W: = w* = negell® = 1wy — w12 =2 (% — W™, 82) + 17118117
B, B;
(45)
From the the L-smoothness of Fy, it follows that

IVEe I < 2L(Fr () = Fp).- (46)
By the convexity of || - ||? and Eq.(46), we have
By = nillgll” < UtZPk”VFk(Xk)”z < 2Ly Zpkwk(xk) Fp).

k=1
(47)
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Note that

N
By = =2 (V_Vt - W*, gt> =-2n; Zpk <V_Vt _W*’ VFk(X;;)>
k=1

N N
= -2 Zpk (W, - x,tc, VFk(x]t()> — 21 Zpk (x,tC -w", VFk(x]t()> .

k=1 k=1
(48)
By Cauchy-Schwarz inequality and AM-GM inequality, we have

_ 1,
~2(w; - x, VE(xp)) < EIIW: =X+ e IVFe (112 (49)
By the p-strong convexity of Fj., we have

~(xf ~ W' VE () < ~(Fe(xp) = Fe(w) = & llxf— w2

(50)
Therefore, we have

A=E|w; —w*||?+B; +B;
N
< Bl =l + 2L1E ) pi(Fe(x}) = Ff)
k=1
Moo
+ mEZpk(;nwt = xL |2+ e[ VF (L)1)
k=1
S 7
—2miE ) pie(Fi(x}) = Fr(w') + 2l = w12
k=1

N
< (1= ) Bl = w2 + ) prBllwe — xE||?
k=1

N N
+4Ln} > pr(Fre(x) = FQ) = 2n¢ ) pre(Fe(x) = Fe(w"))
k=1 k=1

C
(51)
In the last inequality, we use Eq.(46) again and the fact that —IE:HX;C -

w12 = ~El[w; - x; 1> ~ Ellw; —w*||* < ~Ellw; —w*||%.
Next, we aim to bound C. We define y; = 25;(1 — 2Lp;). Since
ne < ﬁ, Nt < yr < 25 Then we split C into two terms:

N N
C==2n,(1=2Lne) )" pre(Fr(x) = Fp) + 20 Y pie(Fe(w*) = )
k=1 k=1
N N
=~y D p(Fe(x) = F) + (2 = ye) ) pic(F* = )
k=1 k=1

N
=t ) pr(Fe(x}) = F*) +4LyiT
k=1

(52)
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where in the last equation, we use the notation T’ = Zf: 1 PR(F* =
F))=F" - Zszl prFy. To bound the first term of C, we have

N
D P(Fi(x) = F)
k=1

N N
= > pr(Fe(xh) = Fe(w0) + 3 pie(Fie (1) = F)
k=1 k=1

N
= Zpk (VE(W1), X = We) + F(W;) = F*
k=1
1Y 1
> =5 2 Pl VF (W) <l = wil ] + Fwe) = F°

k=1

N
1
> = prelnL(Fi(wr) = Fp) + o Ik = Wl + Fwe) =
k=1
(53)
where the first inequality results from the convexity of Fy, the
second inequality follows from AM-GM inequality and the third
inequality follows from Eq.(46). Therefore, we have

N
1
C=v Y prlmL(Fe(we) — Fp) + o 1k = well’
k=1

— vt (F(Wy) — F*) +4LnT

N
=ye(nl=1) ) pr(F (W) = FY)
ye(ne kZ:1 k(P (Wi & (54)

N
Yt _
+ (L} +yene )T+ 5 - > prllx, =Wl
k=1

N

< 6LT+ ) pilixg, — Wl
k=1

where in the last inequality, we use the following facts: (1)n;L -1 <
-3 <0and I | py(Fe(W;)—F*) = F(W;)—F* 2 0(2)T > 0 and
4L17? +ymeLl < 677%L and (3) Zy_’;t <1
Recalling the expression of A and plugging C into it, we have
N
A< (1= pm)EIW, = w1 +2 " prBliw, - xLI|2 +6LyiT.
P
(55)
Plugging A into Eq.(44), we have the result in Lemma 4

El[9r41 — w*[|* < (1 - nep)Ellwe — w*||* + n7Ellg: — &:1I°
ol (56)

+6LniT+2 )" prBlw - xi||%.
k=1

F.5 Proof of Lemma 5

Recall that for any L-smooth function F, we have

L
F(Wi1) < F(Vr41) + (VF(V41), Wee1 — V1) + 5||Wt+1 -Vl
(57)
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As E[Ws+1 — Vi41] = 0, we have
L
EF(W¢t1) < BF(Vp41) + EE”WtH — Vel (58)

Since V441 = W; — ng;, therefore, with L-smoothness, we have

F(V41) < F(We) = n(VF(Wy), ge) + I%Zﬂgtﬂz (59)
The inner product term can be written in expectation as follows:
2B (VF(W;), g) = BIIVF(W)|I*+Ellge||* ~EIIVF (%:) -gelI* (60)
Now, we consider the last term in Eq.(60) with Eg; = Eg;
E\VF(W:) — gell* = EIIVF(Ws) — & + & — g1l
= B||VF(wr) - g1 + Ellg: — g:1°
= E||VF(W;) — VF(x})|[* + +E||g; — g:1I°

N
<12 prEllwe - x4 |12 + Bllg: — gl

k=1
(61)
Further, we have

_ n _ n
—NE(VF(W;),8:) < —EIEIIVF(Wt)II2 - EEIIgtII2

M2 N 2,1 2 (62)
_ t —
ol ;pkuwt—xkn + 5 llge gl
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Summing Eq.(62) into Eq.(60), we have

] o oz L 2
BEF(V¢41) < BF (W) - EEHVF(Wt)” + (T - E)E”gt”
" N n (63)
+ 217 3" prBIe - x{1? + ZEllge - gell”
k=1
El|g:]|? can be expanded as follows:
Ellg:||® = Ellgs — & + &:I* = Ellg:|I* + Ellg: — g:1*>  (64)
Therefore, we have
Ln? - B
BF(Vear) < BF(Wy) - JE|IVF(w)|I” + (<—D)Ellge I

n N Lp? (65)
2 - 2 . 2

+ol ];pkEHWt —xj1° + Z-Ellge gl

Summing Eq.(65) into Eq.(58) yields the result in Lemma 5.

BF(Wea1) < BF(w1) — TEIVE(wn) 2 + 22 g2
Wi+1) < EF (W) EE” F(wi)l +TE||gt||

N 2

L _

+ 212 piBIws - (I + Z-Bllge - gell® (66)
k=1

L_ _ _
+ EE”WHl —Vee1ll?
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