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SUPPLEMENTARY MATERIAL

In this supplementary material, we provide the following sections for better understanding the paper:

A. Examples of All Corruption Types.
B. More Fine-grained Robustness Evaluation Benchmark Experimental Results.
C. Comprehensive Robustness Evaluation Benchmark Experiment Results.
D. Histogram Equalization for Robustness Enhancement.
E. Limitation and Discussion.

A EXAMPLES OF ALL CORRUPTION TYPES

In the main paper, we present examples of various corruption types. Figure 1 in this section illus-
trates all corruption types, each with a corruption severity level of 2.

Figure 1: Our generated dataset encompasses 16 distinct corruption types, derived from Weather
(Snow, Frost, Fog, Brightness, and Spatter), Blur (Defocus Blur, Glass Blur, Motion Blur, and
Zoom Blur), Noise (Gaussian Noise, Shot Noise, Impulse Noise, and Speckle Noise), and Digital
(Contrast, Pixelate, and Jpeg Compression) corruption categories (the corrupted images in the figure
are sourced from CVUSA-C).

B MORE FINE-GRAINED ROBUSTNESS EVALUATION BENCHMARK
EXPERIMENTAL RESULTS

In the main paper, we present the performance of 8 cross-view geo-localization models, including
CVM-Net (Hu et al., 2018), OriCNN (Liu & Li, 2019), SAFA (Shi et al., 2019), CVFT (Shi et al.,
2020b), DSM (Shi et al., 2020a), L2LTR (Yang et al., 2021), TransGeo (Zhu et al., 2022), and
GeoDTR (Zhang et al., 2022), on the fine-grained robustness evaluation benchmarks, CVUSA-C,
and CVACT val-C, specifically focusing on R@1 performance. Within this section, we show the
experimental results for R@5, R@10, and R@1% on CVUSA-C in Tables 1, 2, and 3, and for
CVACT val-C in Tables 4, 5, and 6.
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Table 1: The experimental results of 8 cross-view geo-localization methods on the CVUSA-C. We
report the R@5 performance of each method under different corruption (obtained by averaging the
5 corruption severities), as well as the average performance R@5cor under all corruption types.

Method Clean
CVUSA-C

Weather Blur Noise Digital R@5corSnow Frost Fog Bright Spatter Defocus Glass Motion Zoom Gaussian Shot Impulse Speckle Contrast Pixel JPEG
CVM-Net 49.98 2.95 22.27 22.70 32.74 15.95 3.67 14.21 4.98 1.09 5.42 3.71 4.11 6.76 12.96 18.04 16.68 11.77
OriCNN 66.82 19.21 17.58 20.81 45.67 46.03 44.66 52.91 42.86 27.27 37.68 32.03 42.20 32.09 19.28 55.81 54.34 36.90
SAFA 96.93 31.52 77.78 83.95 93.51 63.79 69.62 93.30 72.39 23.17 45.38 40.24 43.34 51.04 45.32 96.30 92.27 63.93
CVFT 84.69 17.90 53.79 73.88 72.64 46.90 45.79 71.45 58.56 20.59 37.75 33.65 36.49 44.88 61.26 81.76 71.38 51.79
DSM 97.5 34.91 79.34 93.76 92.42 70.51 78.32 94.14 80.04 40.12 61.01 58.10 60.72 74.80 83.33 96.76 93.62 74.49

L2LTR 98.27 83.91 94.19 97.96 97.51 88.50 96.19 98.03 96.89 63.58 91.72 91.69 92.81 95.46 94.51 98.24 97.14 92.40
TransGeo 98.36 44.52 84.42 85.82 94.74 78.90 92.58 97.65 95.27 62.39 84.58 82.85 86.32 93.87 50.68 98.14 96.72 83.09
GeoDTR 98.86 62.54 93.97 98.25 98.51 86.32 93.58 98.39 90.59 48.74 81.67 78.56 82.15 91.03 86.22 98.73 96.78 86.63

Table 2: The experimental results of 8 cross-view geo-localization methods on the CVUSA-C. We
report the R@10 performance of each method under different corruption (obtained by averaging the
5 corruption severities), as well as the average performance R@10cor under all corruption types.

Method Clean
CVUSA-C

Weather Blur Noise Digital R@10corSnow Frost Fog Bright Spatter Defocus Glass Motion Zoom Gaussian Shot Impulse Speckle Contrast Pixel JPEG
CVM-Net 63.18 4.85 31.64 32.42 43.35 22.38 5.96 20.88 7.89 1.93 8.16 5.80 6.43 10.18 19.16 24.74 23.32 16.82
OriCNN 76.36 26.88 25.12 29.65 57.78 57.93 56.72 64.92 54.91 38.01 48.17 41.91 53.90 42.08 26.00 67.83 66.17 47.37
SAFA 98.14 37.56 83.25 88.53 96.13 69.08 76.25 96.00 78.49 29.44 50.17 44.85 48.61 56.54 51.37 97.82 94.72 68.68
CVFT 90.49 23.81 63.64 82.56 81.02 55.07 55.53 80.41 67.71 28.16 44.88 40.25 43.84 53.10 69.99 88.34 79.05 59.83
DSM 98.54 39.64 83.69 96.01 94.77 74.66 83.06 96.12 84.28 47.21 64.78 62.13 64.62 79.26 86.42 97.87 95.40 78.12

L2LTR 98.99 88.10 95.98 98.70 98.48 91.96 97.60 98.81 98.18 71.26 94.00 94.20 94.92 97.18 96.23 98.96 98.09 94.54
TransGeo 99.04 51.27 88.48 89.41 96.64 83.47 95.09 98.60 97.03 70.56 87.87 86.65 89.52 95.95 52.67 98.85 97.91 86.25
GeoDTR 99.34 69.12 95.71 99.01 99.11 89.75 95.69 99.08 93.70 57.75 85.55 83.00 86.17 93.85 89.27 99.25 97.83 89.62

Table 3: The experimental results of 8 cross-view geo-localization methods on the CVUSA-C. We
report the R@1% performance of each method under different corruption (obtained by averaging the
5 corruption severities), as well as the average performance R@1%cor under all corruption types.

Method Clean
CVUSA-C

Weather Blur Noise Digital R@1%corSnow Frost Fog Bright Spatter Defocus Glass Motion Zoom Gaussian Shot Impulse Speckle Contrast Pixel JPEG
CVM-Net 93.62 18.36 69.00 71.00 76.83 49.47 21.20 53.95 26.45 10.36 22.79 17.99 20.31 27.49 43.39 51.40 51.86 39.49
OriCNN 96.12 60.91 59.41 67.44 90.21 89.81 89.76 93.66 88.59 78.51 80.93 75.56 87.19 76.90 52.56 94.54 93.85 79.99
SAFA 99.64 61.11 94.28 97.84 99.41 84.83 91.90 99.44 92.84 56.52 65.89 60.95 65.44 75.81 73.17 99.62 98.54 82.35
CVFT 99.02 49.46 87.21 97.43 96.47 78.46 82.31 96.68 89.34 60.85 66.00 60.29 65.93 77.25 89.67 98.52 94.10 80.62
DSM 99.67 56.63 92.40 98.95 98.66 85.74 93.40 99.10 93.49 69.10 75.48 74.05 75.93 90.06 93.34 99.51 98.23 87.13

L2LTR 99.67 95.76 98.73 99.65 99.56 97.66 99.46 99.62 99.55 89.04 97.92 98.30 98.25 99.31 98.85 99.65 99.45 98.17
TransGeo 99.77 73.06 95.96 96.17 99.37 93.91 98.91 99.73 99.41 89.25 95.28 95.03 96.19 99.06 57.25 99.73 99.54 92.99
GeoDTR 99.86 84.17 98.61 99.77 99.79 96.00 98.94 99.79 98.46 80.88 93.41 92.59 94.13 98.41 95.37 99.81 99.45 95.60

Table 4: The experimental results of 7 cross-view geo-localization methods on the CVACT val-C.
We report the R@5 performance of each method under different corruption (obtained by averaging
the 5 corruption severities), as well as the average performance R@5cor under all corruption types.

Method Clean
CVACT val-C

Weather Blur Noise Digital R@5corSnow Frost Fog Bright Spatter Defocus Glass Motion Zoom Gaussian Shot Impulse Speckle Contrast Pixel JPEG
OriCNN 68.28 28.61 14.31 9.87 50.20 62.47 53.21 61.89 59.51 45.74 55.43 53.19 60.79 54.42 10.34 65.90 64.61 46.91
SAFA 92.80 31.07 46.81 55.18 83.61 60.30 56.74 88.40 67.85 11.02 63.35 58.46 64.06 68.77 28.28 90.69 89.51 60.26
CVFT 81.33 26.95 37.35 64.33 69.51 56.58 50.63 76.11 57.43 10.99 54.17 47.89 55.43 56.75 47.71 79.44 79.03 54.39
DSM 92.44 45.43 68.34 85.01 83.58 66.03 72.42 91.15 81.69 27.33 71.75 66.41 71.64 77.52 65.17 92.04 91.22 72.30

L2LTR 94.59 87.40 91.61 94.14 92.92 89.01 94.30 94.65 94.24 70.77 93.65 93.23 93.96 93.63 91.73 94.66 94.14 91.50
TransGeo 94.14 65.34 76.39 49.55 87.31 82.27 92.49 94.06 92.74 57.06 92.68 92.35 93.17 93.47 30.30 94.10 93.63 80.43
GeoDTR 95.44 66.69 87.28 93.88 94.74 77.57 92.10 95.11 87.62 18.74 89.12 88.51 90.42 92.80 66.35 95.34 95.11 83.21

Table 5: The experimental results of 7 cross-view geo-localization methods on the CVACT val-C.
We report the R@10 performance of each method under different corruption (obtained by averaging
the 5 corruption severities), as well as the average performance R@10cor under all corruption types.

Method Clean
CVACT val-C

Weather Blur Noise Digital R@10corSnow Frost Fog Bright Spatter Defocus Glass Motion Zoom Gaussian Shot Impulse Speckle Contrast Pixel JPEG
OriCNN 75.48 36.54 19.73 13.86 58.98 70.36 61.95 70.14 68.21 55.61 63.91 62.01 69.03 63.03 13.66 73.76 72.44 54.58
SAFA 94.84 36.34 53.35 64.14 87.82 65.67 63.29 91.89 74.26 15.53 68.50 63.62 69.23 74.44 34.26 93.52 92.57 65.53
CVFT 86.52 32.92 44.14 72.05 76.64 63.68 58.73 82.55 65.49 15.72 60.92 54.46 62.47 64.57 53.57 85.09 84.68 61.11
DSM 93.99 51.08 73.68 88.25 87.07 70.86 76.95 92.99 85.29 33.17 75.62 70.84 75.77 81.65 68.87 93.74 93.08 76.18

L2LTR 95.96 90.89 94.07 95.70 95.01 92.27 95.82 96.08 95.83 77.48 95.41 95.11 95.66 95.40 93.97 96.10 95.71 93.78
TransGeo 95.78 71.46 81.56 56.38 90.66 86.57 94.50 95.59 94.60 64.94 94.83 94.62 95.11 95.31 33.05 95.68 95.31 83.76
GeoDTR 96.72 72.73 90.73 95.65 96.30 82.15 94.39 96.46 90.60 25.05 91.91 91.60 92.96 94.99 69.32 96.64 96.46 86.12

Based on the overall experimental results we obtained, it becomes evident that the performance of
models in terms of R@5, R@10, and R@1% aligns with that of R@1. As a result, the relevant
analysis regarding R@1 in the main paper remains applicable to R@5, R@10, and R@1%, and is
thus not reiterated here.
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Table 6: The experimental results of 7 cross-view geo-localization methods on the CVACT val-C.
We report the R@1% performance of each method under different corruption (obtained by averaging
the 5 corruption severities), as well as the average performance R@1%cor under all corruption types.

Method Clean
CVACT val-C

Weather Blur Noise Digital R@1%corSnow Frost Fog Bright Spatter Defocus Glass Motion Zoom Gaussian Shot Impulse Speckle Contrast Pixel JPEG
OriCNN 92.04 66.82 45.45 35.18 84.49 89.97 85.74 89.64 89.01 82.74 85.87 85.27 88.81 86.31 29.14 91.30 90.66 76.65
SAFA 98.17 58.34 76.87 88.53 96.24 83.22 82.66 97.64 90.48 38.27 83.51 80.64 84.90 90.05 55.65 97.94 97.63 81.41
CVFT 95.93 55.81 66.90 89.97 91.96 83.15 80.98 94.40 85.93 40.07 78.94 73.52 81.26 84.72 71.20 95.34 95.14 79.33
DSM 97.32 69.81 87.52 95.25 94.64 84.28 88.58 96.97 93.62 55.66 86.83 83.85 86.94 91.56 79.74 97.22 97.08 86.85

L2LTR 98.37 97.11 97.88 98.31 98.14 97.56 98.30 98.36 98.30 91.48 98.25 98.20 98.27 98.25 97.85 98.36 98.26 97.68
TransGeo 98.37 88.35 92.88 76.97 96.76 95.54 97.90 98.28 97.96 85.92 98.16 98.10 98.21 98.21 41.88 98.33 98.24 91.35
GeoDTR 98.77 87.57 96.88 98.43 98.64 93.15 97.88 98.59 96.34 51.77 97.04 97.24 97.51 98.34 76.79 98.65 98.62 92.71

C COMPREHENSIVE ROBUSTNESS EVALUATION BENCHMARK EXPERIMENT
RESULTS

The performances of different models on the
CVUSA-C-ALL, CVACT val-C-ALL, and
CVACT test-C-ALL datasets are shown in Ta-
ble 7 and 8. To facilitate our analysis, we also
report their performance on the original vali-
dation set. From the experimental results, it
is evident that, when evaluate using a compre-
hensive robustness evaluation benchmark, the
performance degradation is closely positively
correlated with the original performance,

Table 7: The experimental results of 8 cross-view
geo-localization methods on the comprehensive ro-
bustness evaluation benchmark CVUSA-C-ALL.

Method CVUSA-C-ALL
Clean Corruption

R@1 R@5 R@10 R@1% R@1cor R@5cor R@10cor R@1%cor
CVM 22.47 49.98 63.18 93.62 6.09 16.05 23.14 52.51

OriCNN 40.79 66.82 76.36 96.12 9.38 22.26 30.04 58.99
SAFA 89.84 96.93 98.14 99.64 63.68 78.08 82.82 93.91
CVFT 61.43 84.69 90.49 99.02 41.05 64.01 72.64 91.37
DSM 91.96 97.50 98.54 99.67 75.27 86.26 89.42 95.07

L2LTR 94.05 98.27 98.99 99.67 87.93 95.45 97.01 99.01
TransGeo 94.08 98.36 99.04 99.77 82.72 91.95 94.03 97.92
GeoDTR 95.43 98.86 99.34 99.86 84.64 93.29 95.01 98.24

except for L2LTR. The L2LTR exhibits the highest level of robustness, albeit at the expense of
increased computational cost and a greater number of trainable parameters. This once again reminds
us that, in the pursuit of model lightweighting, we must consider whether there are other associated
trade-offs, as there is indeed - no free lunch.

Table 8: The experimental results of 7 cross-view geo-localization methods on the comprehensive
robustness evaluation benchmarks CVACT val-C-ALL and CVACT test-C-ALL.

Method CVACT val-C-ALL CVACT test-C-ALL
Clean Corruption Clean Corruption

R@1 R@5 R@10 R@1% R@1cor R@5cor R@10cor R@1%cor R@1 R@5 R@10 R@1% R@1cor R@5cor R@10cor R@1%cor
OriCNN 46.96 68.28 75.48 92.01 15.31 28.31 35.21 58.39 19.21 35.97 43.30 60.69 3.69 8.33 11.04 43.93
SAFA 81.03 92.80 94.84 98.17 56.72 73.60 78.59 91.32 55.50 79.94 85.08 94.49 31.18 52.06 58.60 90.41
CVFT 61.05 81.33 86.52 95.93 45.69 66.45 72.97 88.38 26.12 45.33 53.80 71.69 22.82 43.48 51.07 88.99
DSM 82.49 92.44 93.99 97.32 70.04 82.81 85.86 93.51 59.30 82.27 86.44 97.51 47.13 68.41 73.52 93.18

L2LTR 84.89 94.59 95.96 98.37 82.13 93.34 94.93 98.10 60.72 85.85 89.88 96.12 57.20 82.59 87.23 98.09
TransGeo 84.95 94.14 95.78 98.37 74.04 86.19 89.10 94.98 63.35 86.43 90.10 98.47 52.18 74.35 78.99 95.03
GeoDTR 86.21 95.44 96.72 98.77 77.40 88.95 91.28 95.91 64.52 88.59 91.96 98.74 52.87 78.84 83.17 95.84

D HISTOGRAM EQUALIZATION FOR ROBUSTNESS ENHANCEMENT

We further examined the impact of employing histogram equalization on the robustness of cross-
view geo-localization models. In our study, we employ Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) (Pizer et al., 1987) to enhance the robustness of existing methods. On the CVUSA
dataset, we evaluated the performance of 3 classic cross-view geo-localization models using the
training strategy outlined in Section 3.2 of the main paper, as illustrated in the Figure 2.

From the experimental results, it becomes evident that training solely on data subjected to histogram
equalization does not significantly enhance the robustness of models. Conversely, combining his-
togram equalization with clean data in equal proportions can to some extent improve the robustness
of models, although the extent of improvement is notably inferior to stylization-based approaches.
Furthermore, it is noteworthy that the same training data yields varying effects on different models.
This underscores the importance of focusing on model robustness and highlights the challenges in
achieving universal enhancements across diverse model architectures.
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Figure 2: Visualization of CLAHE applied to CVUSA dataset. The illustration depicts standard
images (top row), and histogram-equalized images (bottom row). The rectangular sections on the
left represent different training strategies.

(a) SAFA (b) L2LTR (c) TransGeo

Figure 3: Training on histogram-equalized images enhance the robustness of SAFA, L2LTR, and
TransGeo on the CVUSA dataset, with each severity level representing the average across all 16
corruption types. Severity = 0 corresponds to clean images for testing . The Standard denotes
the original, unaltered training data, while CLAHE denotes training exclusively on images subjected
to histogram equalization. CLAHE & Standard denotes histogram equalization and original im-
ages are equally interleaved during the training process. Notably, the 3 different training strategies
require identical training complexity, and the experimental configurations and model structures re-
main consistent throughout.

E LIMITATION AND DISCUSSION

Limitation. This paper primarily discusses the robustness exhibited by classic cross-view geo-
localization models when ground query images are subjected to various forms of corruption.
To conduct our research, we applied existing image corruption algorithms to publicly available
CVUSA (Workman et al., 2015) and CVACT (Liu & Li, 2019) datasets, forming the foundation
for our robustness evaluation benchmarks. Nevertheless, it is important to acknowledge the limita-
tions imposed by whether these image corruption algorithms faithfully replicate real-world scenar-
ios, which is evidently challenging. Consequently, in the future, we aspire to develop more advanced
image corruption algorithms to generate corruption scenarios that better align with real-world con-
ditions. Additionally, we explored two robustness enhancement techniques, namely stylization and
histogram equalization, aimed at enhancing the robustness of existing models. However, it is worth
noting that the principal constraint in utilizing these techniques is the necessity for preprocessing
and retraining models using the training data.

Discussion. While our primary focus lies in the evaluation of the robustness of cross-view geo-
localization models when subjected to input image corruption, we propose that the evaluation bench-
marks we introduce can have broader applicability. These benchmarks not only to cross-view geo-
localization tasks but can also be leveraged for cross-view camera pose estimation (Shi & Li, 2022;
Xia et al., 2022; Lentsch et al., 2023) and cross-view image synthesis (Regmi & Borji, 2018; Tang
et al., 2020; Toker et al., 2021; Shi et al., 2022).
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Satellite-to-street view synthesis for geo-localization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 6488–6497, 2021.

Scott Workman, Richard Souvenir, and Nathan Jacobs. Wide-area image geolocalization with aerial
reference imagery. In Proceedings of the IEEE International Conference on Computer Vision, pp.
3961–3969, 2015.

Zimin Xia, Olaf Booij, Marco Manfredi, and Julian FP Kooij. Visual cross-view metric localization
with dense uncertainty estimates. In European Conference on Computer Vision, pp. 90–106.
Springer, 2022.

Hongji Yang, Xiufan Lu, and Yingying Zhu. Cross-view geo-localization with layer-to-layer trans-
former. Advances in Neural Information Processing Systems, 34:29009–29020, 2021.

Xiaohan Zhang, Xingyu Li, Waqas Sultani, Yi Zhou, and Safwan Wshah. Cross-view geo-
localization via learning disentangled geometric layout correspondence. arXiv preprint
arXiv:2212.04074, 2022.

Sijie Zhu, Mubarak Shah, and Chen Chen. Transgeo: Transformer is all you need for cross-view
image geo-localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1162–1171, 2022.

5


	Examples of All Corruption Types
	More Fine-grained Robustness Evaluation Benchmark Experimental Results
	Comprehensive Robustness Evaluation Benchmark Experiment Results
	Histogram Equalization for Robustness Enhancement
	Limitation and Discussion

