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SUPPLEMENTARY MATERIAL

In this supplementary material, we provide the following sections for better understanding the paper:

A.  Examples of All Corruption Types.

More Fine-grained Robustness Evaluation Benchmark Experimental Results.
Comprehensive Robustness Evaluation Benchmark Experiment Results.
Histogram Equalization for Robustness Enhancement.

monw

Limitation and Discussion.

A EXAMPLES OF ALL CORRUPTION TYPES

In the main paper, we present examples of various corruption types. Figure[T]in this section illus-
trates all corruption types, each with a corruption severity level of 2.

Speckle Contrast Pixelate Jpeg Compressi

Figure 1: Our generated dataset encompasses 16 distinct corruption types, derived from Weather
(Snow, Frost, Fog, Brightness, and Spatter), Blur (Defocus Blur, Glass Blur, Motion Blur, and
Zoom Blur), Noise (Gaussian Noise, Shot Noise, Impulse Noise, and Speckle Noise), and Digital
(Contrast, Pixelate, and Jpeg Compression) corruption categories (the corrupted images in the figure
are sourced from CVUSA-C).

B MORE FINE-GRAINED ROBUSTNESS EVALUATION BENCHMARK
EXPERIMENTAL RESULTS

In the main paper, we present the performance of 8 cross-view geo-localization models, including
CVM-Net 20T8). OrCNN 2019). SAFA 2019). CVFT
[2020b), DSM (Shi et all 20204), L2LTR (Yang et all [2021), TransGeo 2022), and
GeoDTR (Zhang et al., 2022), on the fine-grained robustness evaluation benchmarks, CVUSA-C,
and CVACT_val-C, specifically focusing on R@1 performance. Within this section, we show the
experimental results for R@5, R@10, and R@1% on CVUSA-C in Tables [T] 2} and [3] and for
CVACT _val-C in Tables @ [5} and[6}
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Table 1: The experimental results of 8 cross-view geo-localization methods on the CVUSA-C. We
report the R@5 performance of each method under different corruption (obtained by averaging the

5 corruption severities), as well as the average performance R@5., under all corruption types.

CVUSA-C
Method | Clean Weather Blur Noise Digital R@5
Snow Frost Fog Bright Spatter | Defocus Glass Motion Zoom | Gaussian Shot Impulse Speckle | Contrast Pixel JPEG cor
CVM-Net | 49.98 | 295 2227 22.70 3274 1595 3.67 1421 498 1.09 542 371 4.11 6.76 1296 18.04 16.68 | 11.77
OriCNN | 66.82 | 19.21 17.58 20.81 45.67 46.03 | 44.66 5291 4286 27.27| 37.68 3203 4220 32.09 19.28 55.81 54.34| 36.90
SAFA 9693 |31.52 77.78 83.95 93.51 63.79 | 69.62 9330 7239 23.17| 4538 4024 4334 51.04 | 4532 9630 9227 | 63.93
CVFT | 84.69|17.90 5379 73.88 72.64 4690 | 4579 7145 5856 20.59| 37.75 33.65 3649 44.88 6126 81.76 71.38| 51.79
DSM 97.5 |3491 79.34 9376 9242 70.51 | 7832 94.14 80.04 40.12| 6101 5810 60.72  74.80 8333  96.76 93.62 | 74.49
L2LTR |98.27 | 8391 94.19 97.96 97.51 8850 | 96.19 98.03 96.89 63.58| 9172 91.69 9281 95.46 94.51 9824 97.14| 9240
TransGeo | 98.36 | 44.52 84.42 85.82 94.74 7890 | 92.58 97.65 9527 6239 | 84.58 82.85 8632  93.87 50.68 98.14 96.72 | 83.09
GeoDTR | 98.86 | 62.54 93.97 98.25 98.51 86.32 | 93.58 9839 90.59 48.74| 81.67 7856 82.15 91.03 86.22 98.73 96.78 | 86.63

Table 2: The experimental results of 8 cross-view geo-localization methods on the CVUSA-C. We
report the R@ 10 performance of each method under different corruption (obtained by averaging the

5 corruption severities), as well as the average performance R@ 10, under all corruption types.

CVUSA-C
Method | Clean ‘Weather Blur Noise Digital R@10,
Snow Frost Fog Bright Spatter [ Defocus Glass Motion Zoom | Gaussian Shot Impulse Speckle [ Contrast Pixel JPEG cor
CVM-Net | 63.18 | 485 31.64 3242 4335 2238 596 2088 7.89 1.93 8.16 580 643 10.18 19.16 2474 23.32| 16.82
OriCNN | 76.36 | 26.88 25.12 29.65 57.78 57.93 | 56.72 6492 5491 38.01 | 48.17 4191 5390  42.08 26.00 67.83 66.17 | 47.37
SAFA | 98.14 |37.56 83.25 88.53 96.13 69.08 | 7625 96.00 7849 29.44 | 50.17 4485 4861 56.54 51.37  97.82 9472 | 68.68
CVFT |90.49 |23.81 63.64 82.56 81.02 5507 | 55.53 80.41 6771 28.16| 44.88 40.25 4384 53.10 | 69.99 88.34 79.05| 59.83
DSM | 98.54 |39.64 83.69 96.01 9477 74.66 | 83.06 96.12 8428 4721 | 6478 62.13 6462  79.26 86.42 97.87 9540| 78.12
L2LTR |98.99 | 88.10 9598 98.70 9848 91.96 | 97.60 98.81 98.18 71.26| 9400 9420 9492 97.18 96.23  98.96 98.09 | 94.54
TransGeo | 99.04 | 51.27 88.48 89.41 96.64 8347 | 9509 98.60 97.03 70.56 | 87.87 86.65 89.52 9595 52.67 98.85 9791 | 86.25
GeoDTR | 99.34 [ 69.12 95.71 99.01 99.11 89.75 | 95.69 99.08 93.70 57.75| 8555 83.00 86.17 93.85 89.27 99.25 97.83 | 89.62

Table 3: The experimental results of 8 cross-view geo-localization methods on the CVUSA-C. We
report the R@ 1% performance of each method under different corruption (obtained by averaging the

5 corruption severities), as well as the average performance R@ 1%, under all corruption types.

CVUSA-C
Method | Clean ‘Weather Blur Noise Digital R@1%,
Snow Frost Fog Bright Spatter [ Defocus Glass Motion Zoom | Gaussian Shot Impulse Speckle | Contrast Pixel JPEG cor
CVM-Net | 93.62 [ 18.36 69.00 71.00 76.83 49.47 | 2120 5395 2645 1036| 2279 17.99 20.31 27.49 4339 5140 51.86| 39.49
OriCNN | 96.12 | 60.91 59.41 67.44 90.21 89.81 | 89.76 93.66 88.59 78.51| 8093 7556 87.19  76.90 5256  94.54 93.85| 79.99
SAFA | 99.64 | 61.11 9428 97.84 99.41 84.83 | 91.90 99.44 9284 56.52| 65.89 6095 6544 75.81 73.17  99.62 98.54| 82.35
CVFT |99.02|49.46 87.21 97.43 9647 7846 | 8231 96.68 89.34 60.85| 66.00 6029 6593 77.25 89.67 98.52 94.10| 80.62
DSM | 99.67 | 56.63 92.40 98.95 98.66 8574 | 9340 99.10 9349 69.10| 7548 7405 7593  90.06 9334 99.51 98.23| 87.13
L2LTR | 99.67 |95.76 98.73 99.65 99.56 97.66 | 99.46 99.62 99.55 89.04| 97.92 9830 9825 99.31 98.85 99.65 99.45| 98.17
TransGeo | 99.77 | 73.06 95.96 96.17 99.37 9391 | 9891 99.73 99.41 89.25| 9528 9503 96.19  99.06 5725 99.73 99.54| 92.99
GeoDTR | 99.86 | 84.17 98.61 99.77 99.79 96.00 | 98.94 99.79 98.46 80.88 | 93.41 92.59 94.13  98.41 95.37  99.81 99.45| 95.60

Table 4: The experimental results of 7 cross-view geo-localization methods on the CVACT _val-C.
We report the R@5 performance of each method under different corruption (obtained by averaging

the 5 corruption severities), as well as the average performance R@5,,, under all corruption types.

CVACT _val-C
Method | Clean Weather Blur Noise Digital R@5
Snow Frost Fog Bright Spatter [ Defocus Glass Motion Zoom | Gaussian Shot Tmpulse Speckle | Contrast Pixel JPEG cor
OriCNN | 68.28 [28.61 14.31 9.87 5020 6247 | 5321 61.89 5951 45.74| 5543 53.19 60.79 5442 10.34 6590 64.61 | 46.91
SAFA |92.80 | 31.07 46.81 55.18 83.61 6030 | 56.74 88.40 67.85 11.02| 6335 5846 6406 68.77 28.28 90.69 89.51| 60.26
CVFT | 81.33|2695 3735 6433 69.51 56.58 | 50.63 76.11 57.43 1099 | 54.17 47.89 5543 56.75 4771 79.44 79.03 | 5439
DSM 9244|4543 6834 8501 8358 66.03 | 7242 91.15 81.69 2733 | 7175 6641 71.64 7152 65.17  92.04 91.22| 72.30
L2LTR |94.59 |87.40 91.61 94.14 9292 89.01 | 9430 9465 9424 70.77| 93.65 9323 9396 93.63 91.73  94.66 94.14| 91.50
TransGeo | 94.14 | 65.34 76.39 49.55 87.31 8227 | 9249 9406 92.74 57.06| 92.68 9235 93.17 9347 30.30  94.10 93.63 | 80.43
GeoDTR | 95.44 | 66.69 87.28 93.88 94.74 77.57 | 92.10 95.11 87.62 18.74 | 89.12 8851 9042  92.80 66.35 95.34 95.11| 83.21

Table 5: The experimental results of 7 cross-view geo-localization methods on the CVACT _val-C.
We report the R@ 10 performance of each method under different corruption (obtained by averaging

the 5 corruption severities), as well as the average performance R@ 10, under all corruption types.

CVACT _val-C

Method | Clean Weather Blur Noise Digital R@10,

Snow Frost Fog Bright Spatter [ Defocus Glass Motion Zoom [ Gaussian Shot Tmpulse Speckle | Contrast Pixel JPEG cor

OriCNN | 7548 [ 36.54 19.73 13.86 5898 7036 | 6195 70.14 6821 5561 | 6391 62.01 69.03 63.03 13.66  73.76 72.44| 54.58
SAFA | 94.84|36.34 5335 64.14 87.82 6567 | 63.29 9189 7426 1553 | 6850 63.62 69.23 74.44 3426 93.52 92.57| 65.53
CVFT |86.52|32.92 44.14 72.05 76.64 63.68 | 58.73 82.55 6549 1572| 6092 5446 6247 6457 | 5357 8509 84.68| 61.11
DSM 93.99 | 51.08 73.68 88.25 87.07 70.86 | 76.95 9299 8529 33.17| 7562 70.84 75.71 81.65 68.87 93.74 93.08| 76.18
L2LTR | 9596 | 90.89 94.07 95.70 9501 9227 | 9582 96.08 95.83 77.48 | 9541 9511 95.66 9540 93.97 96.10 95.71| 93.78

TransGeo | 95.78 | 71.46 81.56 56.38 90.66 86.57 | 94.50 9559 94.60 64.94 | 94.83 9462 9511 9531 33.05 95.68 9531 | 83.76

GeoDTR | 96.72 | 72.73 90.73 95.65 96.30 82.15 | 9439 9646 90.60 25.05| 91.91 91.60 9296 9499 | 69.32 96.64 96.46| 86.12

Based on the overall experimental results we obtained, it becomes evident that the performance of
models in terms of R@5, R@10, and R@1% aligns with that of R@1. As a result, the relevant
analysis regarding R@1 in the main paper remains applicable to R@5, R@10, and R@1%, and is
thus not reiterated here.
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Table 6: The experimental results of 7 cross-view geo-localization methods on the CVACT _val-C.
We report the R@ 1% performance of each method under different corruption (obtained by averaging

the 5 corruption severities), as well as the average performance R@ 1%.,, under all corruption types.

CVACT _val-C

Method | Clean ‘Weather Blur Noise Digital R@1%,

Snow Frost Fog Bright Spatter [ Defocus  Glass Motion Zoom [ Gaussian _Shot TImpulse Speckle | Contrast Pixel JPEG o

OriCNN | 92.04 | 66.82 45.45 35.18 8449 89.97 | 8574 89.64 89.01 82.74 | 85.87 8527 &8.81 86.31 29.14  91.30 90.66 | 76.65
SAFA | 98.17 |58.34 76.87 88.53 96.24 8322 | 82.66 97.64 9048 3827 | 83.51 80.64 8490  90.05 55.65 9794 97.63| 81.41
CVFT | 9593|5581 6690 89.97 91.96 83.15 | 80.98 9440 8593 40.07| 7894 7352 81.26 84.72 7120 9534 95.14| 79.33
DSM | 97.32 | 69.81 87.52 9525 94.64 8428 | 88.58 9697 93.62 5566 | 8683 8385 8694 9156 | 79.74 9722 97.08| 86.85
L2LTR |98.37 |97.11 97.88 9831 98.14 97.56 | 98.30 98.36 98.30 91.48 | 9825 9820 9827 9825 | 97.85 9836 98.26| 97.68

TransGeo | 98.37 | 88.35 92.88 76.97 96.76 95.54 | 97.90 98.28 97.96 8592 | 98.16 98.10 98.21 98.21 41.88 9833 98.24| 91.35

GeoDTR | 98.77 | 87.57 96.88 98.43 98.64 93.15 | 97.88 98.59 96.34 51.77 | 97.04 97.24 97.51 98.34 76.79 98.65 98.62 | 92.71

C COMPREHENSIVE ROBUSTNESS EVALUATION BENCHMARK EXPERIMENT
RESULTS

The performances of different models on the Table 7: The experimental results of 8 cross-view
CVUSA-C-ALL, CVACT.val-C-ALL, and geo-localization methods on the comprehensive ro-
CVACT _test-C-ALL datasets are shown in Ta-  bustness evaluation benchmark CVUSA-C-ALL.

ble[7)and [§] To facilitate our analysis, we also

; o ; CVUSA-CALL
report their performance on the original vali- Method - I —

: H ; R@I R@5 R@I0 R@I% [ R@ly R@5, R@0m R@I%g
qatl().n set. From the exp erlmer_ltal results, it CVM | 2247 4998 6318 0362 | 609 1605  23.14 5231
is evident that, when evaluate using a compre- OriCNN | 4079 6682 7636 9612 | 938 2226  30.04 58.99

X X SAFA | 89.84 9693 98.14 99.64 | 6368 7808 8282 9391
hensive robustness evaluation benchmark, the CVFT | 6143 8469 9049 99.02 | 41.05 6401  72.64 91.37
L. . DSM | 9196 97.50 9854 99.67 | 7527 8626 8942 9507

performance degradation is closely positively L2LTR | 9405 9827 9899 99.67 | 87.93 9545 9701 9901
. e TransGeo | 94.08 9836 99.04 9977 | 8272 9195 9403  97.92

correlated with the orlglnal performance, GeoDTR | 9543 98.86  99.34  99.86 | 84.64 9329 9501 98.24

except for L2LTR. The L2LTR exhibits the highest level of robustness, albeit at the expense of
increased computational cost and a greater number of trainable parameters. This once again reminds
us that, in the pursuit of model lightweighting, we must consider whether there are other associated
trade-offs, as there is indeed - no free lunch.

Table 8: The experimental results of 7 cross-view geo-localization methods on the comprehensive
robustness evaluation benchmarks CVACT _val-C-ALL and CVACT _test-C-ALL.

Method CVACT _val-C-ALL ] CVACT _test-C-ALL ]
Clean Corruption Clean Corruption
R@I R@5 R@I0 R@I1% |R@Iy R@5, R@I0,, R@I%, | R@I R@5 R@I0 R@1% |R@Iq, R@5,, R@I0q, R@ %
OriCNN [46.96 68.28 7548 9201 | 1531 2831 3521 5839 [19.21 3597 4330 60.69 | 3.69 833 11.04 4393

SAFA |81.03 92.80 94.84 98.17 | 56.72  73.60 78.59 91.32 [55.50 79.94 85.08 9449 | 31.18 52.06 58.60 90.41
CVFT |[61.05 81.33 86.52 9593 | 4569 6645 72.97 88.38 [26.12 4533 53.80 71.69 | 22.82 4348 51.07 88.99
DSM  |8249 9244 9399 9732 | 70.04 8281 85.86 93.51 [59.30 8227 86.44 97.51 | 47.13 6841 73.52 93.18
L2LTR |84.89 94.59 9596 9837 | 82.13 93.34 94.93 98.10 |60.72 85.85 89.88 96.12 | 57.20 82.59 87.23 98.09
TransGeo | 84.95 94.14 95.78 9837 | 74.04 86.19 89.10 9498 |63.35 8643 90.10 98.47 | 52.18 74.35 78.99 95.03
GeoDTR | 86.21 9544 96.72 98.77 | 7740 88.95 91.28 9591 |64.52 88.59 9196 98.74 | 52.87 78.84 83.17 95.84

D HISTOGRAM EQUALIZATION FOR ROBUSTNESS ENHANCEMENT

We further examined the impact of employing histogram equalization on the robustness of cross-
view geo-localization models. In our study, we employ Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) (Pizer et al., 1987) to enhance the robustness of existing methods. On the CVUSA
dataset, we evaluated the performance of 3 classic cross-view geo-localization models using the
training strategy outlined in Section 3.2 of the main paper, as illustrated in the Figure [2]

From the experimental results, it becomes evident that training solely on data subjected to histogram
equalization does not significantly enhance the robustness of models. Conversely, combining his-
togram equalization with clean data in equal proportions can to some extent improve the robustness
of models, although the extent of improvement is notably inferior to stylization-based approaches.
Furthermore, it is noteworthy that the same training data yields varying effects on different models.
This underscores the importance of focusing on model robustness and highlights the challenges in
achieving universal enhancements across diverse model architectures.
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Figure 2: Visualization of CLAHE applied to CVUSA dataset. The illustration depicts standard
images (top row), and histogram-equalized images (bottom row). The rectangular sections on the
left represent different training strategies.

R@1.eor (%)

351 @~ Standard @~ Standard -~ Standars

- CLAHE & Standard - CLAHE & Standard - CLAHE & Standarg

0 1 a 5 0 1 4 5 [ 1

2 3 2 3 2 3
corruption severity corruption severity corruption severity

(a) SAFA (b) L2ZLTR (c) TransGeo

Figure 3: Training on histogram-equalized images enhance the robustness of SAFA, L2LTR, and
TransGeo on the CVUSA dataset, with each severity level representing the average across all 16
corruption types. Severity = 0 corresponds to clean images for testing . The Standard denotes
the original, unaltered training data, while CLAHE denotes training exclusively on images subjected
to histogram equalization. CLAHE & Standard denotes histogram equalization and original im-
ages are equally interleaved during the training process. Notably, the 3 different training strategies
require identical training complexity, and the experimental configurations and model structures re-
main consistent throughout.

E LIMITATION AND DISCUSSION

Limitation. This paper primarily discusses the robustness exhibited by classic cross-view geo-
localization models when ground query images are subjected to various forms of corruption.
To conduct our research, we applied existing image corruption algorithms to publicly available
CVUSA (Workman et all, 2015)) and CVACT datasets, forming the foundation
for our robustness evaluation benchmarks. Nevertheless, it is important to acknowledge the limita-
tions imposed by whether these image corruption algorithms faithfully replicate real-world scenar-
ios, which is evidently challenging. Consequently, in the future, we aspire to develop more advanced
image corruption algorithms to generate corruption scenarios that better align with real-world con-
ditions. Additionally, we explored two robustness enhancement techniques, namely stylization and
histogram equalization, aimed at enhancing the robustness of existing models. However, it is worth
noting that the principal constraint in utilizing these techniques is the necessity for preprocessing
and retraining models using the training data.

Discussion. While our primary focus lies in the evaluation of the robustness of cross-view geo-
localization models when subjected to input image corruption, we propose that the evaluation bench-
marks we introduce can have broader applicability. These benchmarks not only to cross-view geo-
localization tasks but can also be leveraged for cross-view camera pose estimation 2022;

Xia et al., 2022} [Lentsch et al., 2023) and cross-view image synthesis (Regmi & Borji, 2018} Tang
et al.,2020; [Toker et al.,[2021}; [Shi et al.| 2022)).
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