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ABSTRACT

When training a variational autoencoder (VAE) on a given dataset, determining
the optimal number of latent variables is mostly done by grid search — a costly
process in terms of computational time and carbon footprint. In this paper, we
explore the intrinsic dimension estimation (IDE

:::::::
estimates

::::::
(IDEs) of the data and

latent representations learned by VAEs. We show that the discrepancies between
the IDE of the mean and sampled representations of a VAE after only a few steps
of training reveal the presence of passive variables in the latent space, which, in
well-behaved VAEs, indicates a superfluous number of dimensions. Using this
property, we propose FONDUE: an algorithm which quickly finds the number of
latent dimensions after which the mean and sampled representations start to di-
verge (i.e., when passive variables are introduced), providing a principled method
for selecting the number of latent dimensions for VAEs and autoencoders.

1 INTRODUCTION

“How many latent variables should I use for this model?” is a question that many practitioners using
variational autoencoders (VAEs) or autoencoders (AEs) have to deal with. When the task has been
studied before, this information is available in the literature for the specific architecture and dataset
used. However, when it has not, answering this question becomes more complicated. Indeed, the
dimensionality of the latent representation is usually

:::::::
currently

:
determined empirically by increasing

the number of latent dimensions until the reconstruction
:::
loss

::
or

::::::::
accuracy

::
on

::
a

::::::::::
downstream

:::
task

:
does

not improve anymore (Doersch, 2016)
:::::::::::::::::::::::::::::::::::
(Doersch, 2016; Mai Ngoc & Hwang, 2020). This is a costly

process requiring multiple model training
:
to

:::::
fully

::::
train

:::::::
multiple

:::::::
models, and increasing the carbon

footprint and time needed for an experiment.

In recent years, topology-based methods have successfully been applied to
deep learning (Hensel et al., 2021) and generative models to design new
metrics (Khrulkov & Oseledets, 2018; Zhou et al., 2021; Rieck et al., 2019) and learning
methods (Falorsi et al., 2018; Perez Rey et al., 2020; Keller & Welling, 2021). They
have also been used to analyse the representations learned by deep neural networks
(DNNs) (Arvanitidis et al., 2018; Ansuini et al., 2019; Maheswaranathan et al., 2019; Naitzat et al., 2020)
:::
One

::::::
could

::::::
wonder

::
if
::

it
::::::

would
:::
be

::::::::
sufficient

::
to

::::
use

:
a
:::::

very
:::::
large

:::::::
number

::
of

:::::
latent

::::::::::
dimensions

::
in

::
all

::::::
cases.

:::::::::
However,

::::::
beside

::::::::
defeating

::::
the

:::::::
purpose

::
of

::::::::
learning

::::::::::
compressed

::::::::::::::
representations,

:::
this

:::
may

:::::
lead

::
to

::
a

:::::
range

::
of

::::::
issues.

:::::
For

::::::::
example,

:::
one

::::::
would

::::::
obtain

:::::
lower

::::::::
accuracy

:::
on

::::::::::
downstream

::::
tasks

::::::::::::::::::::::::
(Mai Ngoc & Hwang, 2020)

:::
and

::
—

::
if
:::
the

:::::::
number

::
of

::::::::::
dimensions

::
is

:::::::::
sufficiently

:::::
large

::
—

::::
very

::::
high

:::::::::::
reconstruction

::::
loss

::::::::::::::
(Doersch, 2016).

::::
This

::::::
would

:::
also

::::::
hinder

:::
the

::::::::::::
interpretability

::
of

::::::::::
downstream

:::
task

:::::::
models

::::
such

::
as

::::::
linear

:::::::::
regression,

:::::::
prevent

::::::::::
investigating

::::
the

::::::
learned

::::::::::::
representation

::::
with

:::::
latent

:::::::
traversal,

::::
and

:::::::
increase

:::
the

:::::::::
correlation

::
of

:::
the

:::::
latent

:::::::::::::
representations

:::::::::::::::::::::
(Bonheme & Grzes, 2021).

Intrinsic dimension estimation (IDE)

:::::::
Intrinsic

:::::::::
dimension

::::
(ID)

::::::::
estimation

:
— the estimation of the minimum number of variables needed

to describe the data — is an active area of reseach
:::::::
research in topology, and various estimation

methods have been proposed (Facco et al., 2017; Levina & Bickel, 2004). Using these techniques
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,
::
In

:::::
recent

::::::
years,

:::::
these

:::::::::
techniques

::::
have

:::::::::::
successfully

::::
been

:::::::
applied

::
to

::::
deep

::::::::
learning

::
to

:::::::::
empirically

::::
show

::::
that

:
the intrinsic dimension (ID) of images was empirically shown to be much lower than

their extrinsic dimension (i.e., the number of pixels) (Gong et al., 2019; Ansuini et al., 2019; Pope
et al., 2021). Moreover, Ansuini et al. (2019) observed ,

::::
and that the ID

::::::::
estimates

::::::
(IDEs) of neural

network classifiers with good generalisation tended to first increase, then decrease until reaching a
very low ID

::::
IDE in the last layer

::::::::::::::::::
(Ansuini et al., 2019)

:
.
::::::::
However,

::
to

:::
the

::::
best

::
of

:::
our

::::::::::
knowledge,

::
ID

::::::::
estimation

:::::::::
techniques

:::::
have

::::
never

:::::
been

::::::
applied

::
to

:::::
VAEs.

As IDE provides an estimate of the minimum number of variables needed to describe the data, it
could be an invaluable tool to determine the number of latent variables needed for VAEs and avoid
costly grid searches, effectively reducing the carbon footprint of model implementations.

::::
After

::::::::
exploring

:::
the

::::
IDEs

::
of

:::
the

:::::::::::::
representations

::::::
learned

:::
by

:::::
VAEs

::
at

:::::::
different

::::::
layers,

:::
we

::::
will

::::
show

::::
that

::
by

:::::::::
combining

:::
this

:::::::::
technique

::::
with

:::::::::
knowledge

:::
of

:::
the

::::::::
properties

:::
of

:::::
VAEs,

:::
we

::::
can

::::::
design

:
a
::::::

simple
:::

yet
:::::::
efficient

::::::::
algorithm

::::::
which

:::::
fulfills

::::
the

::::::
criteria

::
of

:::
the

:::::::
current

:::::::
methods

::::
(i.e.,

::::
low

::::::::::::
reconstruction

::::
loss,

::::
high

:::::::
accuracy

:::
on

::::::::::
downstream

::::::
tasks),

::::::
without

::::::::
requiring

::
to

::::
fully

::::
train

::::::::
multiple

::::::
models.

:

Thus, our objective in this paper is to verify whether the ID of different layers can be used to
determine the number of latent variables in VAEs.

Our contributions are as follows:

(i) We provide an experimental study of the IDE
::::
IDEs

:
of VAEs, and

:::::
found

:::
that

:::
(1)

:::
the

:::::
layers

::
of

:::::
VAEs

:::::
reach

:::::
stable

:::::
IDEs

::::
very

:::::
early

::
in
::::

the
:::::::
training;

::::
and

:::
(2)

:::
the

::::
IDE

::
of
::::

the
:::::
mean

:::
and

:::::::
sampled

::::::::::::
representations

::
is

:::::::
different

:::::
when

:::::
some

:::::
latent

::::::::
variables

:::::::
collapse.

:

(ii)
:::::
Based

::
on

:::::
these

::::::::::
observation

:::
we

::::::
propose

::::::::::
FONDUE:

::
an

::::::::
algorithm

::::::
which

:::::::::::
automatically

::::
finds

::
the

:::::::
number

::
of

:::::
latent

::::::::::
dimensions

:::
that

:::::
leads

::
to

:
a
::::
low

::::::::::::
reconstruction

:::
loss

::::
and

::::
good

::::::::
accuracy.

::
In

:::::::::
opposition

::
to

::::::
current

::::::::
methods

::::::::::::::::::::::::::::::::::::
(Doersch, 2016; Mai Ngoc & Hwang, 2020),

::
it

::::
does

:::
not

::::::
require

::::::
human

:::::::::
supervision

::
or
::::::::
multiple

:::::
model

:::::::
training.

:

(iii)
::
To

:::::
foster

::::::::::::::
reproducibility,

:::
we

:
have released more than 35,000 IDE scores

::
ID

::::::::
estimates

(https://t.ly/8r3N1).
(iv) We have released the

:::
The

:
library created for this experiment (t.ly/Oh7s) . It can be

reused with other IDE
::
ID

:::::::::
estimation techniques or models for further research in the do-

main.
(v) During our analysis of VAEs, we found that (1) the deeper the layer of the encoder, the

lower the estimated IDs, whereas the layers of the decoder all have the same IDE; (2) the
extrinsic dimensionality of the latent representations is generally higher than its IDE; (3)
the layers reach a stable ID very early in the training; and (4) the IDE of mean and sampled
representations is different when some latent variables collapse.

(vi) Based on these findings, we propose FONDUE: an algorithm for Finding the Optimal
Number of Dimensions by Unsupervised Estimation, which works well on the three
datasets used in our experiment.

2 BACKGROUND

2.1 VARIATIONAL AUTOENCODERS

VAEs (Kingma & Welling, 2014; Rezende & Mohamed, 2015) are deep probabilistic generative
models based on variational inference. The encoder maps an input x to a latent representation z, and
the decoder attempts to reconstruct x using z. This can be optimised by maximising L, the evidence
lower bound (ELBO)

L(θ,φ;x) = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−DKL (qφ(z|x)||p(z))︸ ︷︷ ︸
regularisation term

, (1)

where p(z) is generally modelled as a standard multivariate Gaussian distributionN (0, I) to permit
a closed form computation of the regularisation term (Doersch, 2016). The regularisation term can

1Due to their size and to preserve anonymity, the 300 models trained for this experiment will be released
after the review.
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be further penalised by a weight β (Higgins et al., 2017) such that

L(θ,φ;x) = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−βDKL (qφ(z|x)||p(z))︸ ︷︷ ︸
regularisation term

, (2)

reducing to equation 1 when β = 1 and to a deterministic auto-encoder
::::::::::
autoencoder

::::
(AE)

:
when

β = 0.
::::
Note

:::
that

:::
we

:::::::
mention

::::
AEs

::::
here

::
as

::
a

:::
way

:::
of

:::::::::
explaining

::
β,

:::
and

::::
refer

:::
the

::::::
reader

::
to Appendix J

::
for

:::
an

::::::::
overview

::
of

::::
AEs.

:

Posterior collapse and polarised
::::::::
Polarised

:
regime When β > 1, VAEs can produce

disentangled representations (Higgins et al., 2017) but too high values of β result in posterior
collapse

::
are

:::::::::::
encouraged

:::
to

:::::
have

::
a
:::::

high
:::::::::

precision
:
(i.e., z ∼ N (0, I)) making the model

unusable (Lucas et al., 2019a;b; Dai et al., 2020). Indeed, the sampled representation will not
retain any information from the input, making it impossible for the decoder to correctly
reconstruct the image. Nevertheless, for VAEs

:::
low

::::::::
variance)

:::
on

:::
the

:::::
latent

::::::::
variables

::::
that

::::
they

:::
use

::::
(the

::::::
active

:::::::::
variables)

:::::
while

:::::::::::
maintaining

:::
the

:::::::::
remaining

:::
—

:::::::
passive

:::
—

:::::::::
variables

:::::
close

::
to

:::::::
N (0, I)

:::::::::::::::::
(Rolinek et al., 2019)

:
.
:::::

This
:::::::::

behaviour
::::::
typical

::::
for

:::::
VAEs

::
is
::::::

known
:::

as
::::::::
polarised

::::::
regime

::
or

::::::::
posterior

:::::::
collapse

::::
and

::
is

:::::::::
necessary

:::
for

::::::
VAEs to provide good reconstruction (Dai & Wipf,

2018; Dai et al., 2020), it is necessary for any superfluous dimensions of z to be collapsed and
ignored by the decoder. These collapsed dimensions are called passive variables ; the remaining,
:
.
::::::::
Because

::::
they

:::
are

:::::
close

::
to

::
a
:::::::
standard

:::::::::
Gaussian

::::::::::
distribution,

:::
the

:::::::
passive

::::::::
variables

:::
can

:::
be

::::
used

::
by

:::
the

::::::
model

:::
to

:::::
lower

:::
the

::::
KL

:::::::::
divergence

::::
and

:::::::::::
compensate

:::
the

::::::::
increased

::::::::::
divergence

::::::::
generated

::
by

:::
the

:
active variables. When this selective posterior collapse behaviour — also known as the

polarised regime (Rolinek et al., 2019) — happens, the passive variables are very different in mean
and sampled representations

::::::::
Moreover,

:::::
their

:::::
mean

::::::::::::
representation

::::
will

::::::::
generally

:::
be

:::::
close

::
to

::::
zero

::::::::
regardless

::
of

:::
the

:::::
input

:::::
while

::::
their

:::::::
sampled

::::::::::::
representation

::::
will

::::
have

:
a
:::::::
variance

:::::
close

::
to

::
1 (Bonheme

& Grzes, 2021) (see also Appendices E and F).

2.2 INTRINSIC DIMENSION ESTIMATION

It is generally assumed that a dataset X of m i.i.d. data examples Xi ∈ Rn is a locally smooth
non-linear transformation g of a lower-dimensional dataset Y of m i.i.d. samples Yi ∈ Rd, where
d 6 n (Campadelli et al., 2015; Chollet, 2021). The goal of intrinsic dimension estimation (IDE)
::
ID

:::::::::
estimation

:
is to recover d given X . In this section, we will detail two IDE

::
ID

:::::::::
estimation tech-

niques which use the statistical properties of the neighbourhood of each data point to estimate d,
and provide good results for approximating the ID of deep neural network representations and deep
learning datasets (Ansuini et al., 2019; Gong et al., 2019; Pope et al., 2021).

:::
See Appendix H

:::
and

::::::::::::::::::::
Campadelli et al. (2015)

:::
for

::::
more

::::::
details

::
on

:::
ID

:::::::::
estimation

:::::::::
techniques.

:

Maximum Likelihood Estimation Levina & Bickel (2004) modelled the neighbourhood of a
given point Xi as a Poisson process in a d-dimensional sphere SXi

(R) of radius R around Xi.
This Poisson process is denoted {N(t,Xi), 0 6 t 6 R}, where N(t,Xi) is a random variable
(distributed according to a Poisson distribution) representing the number of neighbours ofXi within
a radius t,

:::
and

::
is
:::::::::
distributed

:::::::::
according

::
to

:
a
:::::::
Poisson

::::::::::
distribution2. Each point Xj ∈ SXi

(R) is thus
considered as an event, its arrival time t = T (Xi,Xj) being the Euclidean distance from Xi to
its jth neighbour Xj . By expressing the rate λ(t,Xi) of the process N(t,Xi) as a function of the
surface area of the sphere — and thus relating λ(t,Xi) to d — they obtain a maximum likelihood
estimation (MLE) of the intrinsic dimension

::
ID d:

d̄R(Xi) =

 1

N(R,Xi)

N(R,Xi)∑
j=1

log
R

T (Xi,Xj)

−1 . (3)

Equation 3 is then simplified by fixing the number of neighbours, k, instead of the radius R of the
sphere, such that

d̄k(Xi) =

 1

k − 1

k−1∑
j=1

log
T (Xi,Xk)

T (Xi,Xj)

−1 , (4)

2
::::
Note

:::
that

:::
this

::::
does

::
not

:::::
imply

:::
any

::::::::::
distributional

:::::::::
assumption

::::
about

:::
the

:::::
dataset
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where the last summand is omitted, as it is zero for j = k. The final estimate
::::
IDE d̄k is the averaged

score over n data examples (Levina & Bickel, 2004)

d̄k =
1

n

n∑
i=1

d̄k(Xi). (5)

To obtain an accurate estimation of the ID with MLE, it is very important to choose a sufficient
number of neighbours k to form a dense small sphere (Levina & Bickel, 2004). On one hand, if k
is too small, MLE will generally underestimate the ID, and suffer from high variance (Levina &
Bickel, 2004; Campadelli et al., 2015; Pope et al., 2021). On the other hand, if k is too large, the ID
will be overestimated (Levina & Bickel, 2004; Pope et al., 2021).

TwoNN Facco et al. (2017) proposed an estimation of the ID based on the ratio of the two nearest
neighbours of Xi, rXi

= T (Xi,Xl)
T (Xi,Xj)

, where Xj and Xl are the first and second closest neighbours
of Xi, respectively. r follows a Pareto distribution with scale s = 1 and shape d, and its density
function f(r) is

f(r) =
dsd

rd+1
= dr−(d+1). (6)

Its cumulative distribution function is thus

F (r) = 1− sd

rd
= 1− r−d, (7)

and, using Equation 7, one can readily obtain d = − log(1−F (r))
log r . From this, we can see that d is

the slope of the straight line passing through the origin, which is given by the set of coordinates
S = {( log rXi

,− log(1− F (rXi
)) ) | i = 1, · · · ,m}, and can be recovered by linear regression.

As TwoNN uses only two neighbours, it can be sensitive to outliers (Facco et al., 2017) and do not
perform well on high ID (Pope et al., 2021), overestimating the ID in both cases.

Ensuring an accurate analysis Given the limitations previously mentioned, we take two remedial
actions to guarantee that our analysis is as accurate as possible. To provide an IDE which is as
accurate as possible with MLE, we will measure the MLE with an increasing number of neighbours
and, similar to Karbauskaitė et al. (2011), retain the IDE which is stable for the largest number of
k values. TwoNN will be used as a complementary metric to validate our choice of k for MLE. In
case of significant discrepancies with a significantly higher TwoNN IDE, we will rely on the results
provided by MLE.

2.3
::::::::
RELATED

::::::
WORK

::
To

:::
the

::::
best

::
of

:::
our

::::::::::
knowledge,

:::
the

::::::::
literature

:::
on

::::::
finding

::
an

::::::::::
appropriate

:::::::
number

::
of

:::::
latent

:::::::::
dimensions

::
for

:::::
VAEs

::
is
:::::::
limited,

:::
and

:::::::
existing

:::::::::
techniques

::::::
always

::::
rely

::
on

:::
the

::::::
elbow

::::::
method

::::
(i.e.,

:::::::
visually

::::::
finding

:::::
where

:
a
:::::
curve

::::::::
“bends”)

::::::::::::::::
(James et al., 2013).

:

::::::::::
Comparing

::::::::::::::
reconstruction

::::::
error

:::::::::::::
Doersch (2016)

:::::
trained

:::::::::
multiple

:::::::
models

:::::
with

::::::::
different

:::::::
numbers

::
of

:::::
latent

:::::::::
dimensions

::::
and

:::::::
selected

:::
the

::::
ones

::::
with

:::
the

:::::
lowest

::::::::::::
reconstruction

:::::
error.

:::::
They

::::
noted

:::
that

::::::
models

:::::::::::
performance

::::
were

:::::::::
noticeably

:::::
worse

:::::
when

:::::
using

:::::::
extreme

:::::::
numbers

::
of

:::::
latent

::::::::::
dimensions.

::
In

::::
their

::::::::::
experiment,

:::
this

::::::::
happened

:::
for

::::::
|z| < 4

::::
and

:::::::::::
|z| > 10, 000

:::
for

:::::::
MNIST.

::::::::::
Comparing

:::::::::
accuracy

:::
on

::::::::::::
downstream

:::::
tasks

:::::::::::::::::::::::
Mai Ngoc & Hwang (2020)

::::::::
suggested

:::
to

::::
train

:::::::
multiple

::::::
models

:::::
with

:::::::
different

:::::::
number

:::
of

:::::
latent

::::::::::
dimensions,

:::::
then

::::::::
compare

:::
the

::::::::
accuracy

::
of

:::
the

::::
latent

:::::::::::::
representations

:::
on

:
a
:::::::::::

downstream
::::
task.

:::::
They

::::::::
observed

::::
that

:::::
while

::
a

:::::
higher

:::::::
number

::
of

:::::
latent

:::::::::
dimensions

:::::
could

::::
lead

::
to

:
a
:::::
lower

::::::::::::
reconstruction

:::::
error,

::
it

:::::::
generally

::::::
caused

:::::::::
instability

::
on

::::::::::
downstream

::::
tasks.

:::::
They

::::
thus

:::::::::
concluded

::::
that

:::
the

::::
best

::::::
number

:::
of

:::::
latent

:::::::::
dimensions

:::
for

::::::
VAEs

:::::
should

:::
be

:::
the

:::
one

::::
with

::
the

:::::
least

:::::::::::
classification

:::::::
variance

:::
and

::::::
highest

::::::::
accuracy,

::::
and

:::::::
obtained

::::::
similar

::::::
results

:::
for

::::
AEs.

:

4
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3 EXPERIMENTAL SETUP

As mentioned in , the main objective of our experiment is to investigate the IDs
:::
We

::::
will

:::
first

:::::::::
investigate

::
the

:::::
IDEs

:
of the representations learned by VAEs to assess whether

:::::
show

:::
that they can be

used to determine the optimal number of latent dimensions of VAEs.

To do so, we will train VAEs with at least 8 different numbers of latent dimensions on 3 datasets
of increasing ID and estimate the ID of each layer of the models. We will then analyse these results
::
in Section 4.2 and use them to verify our objectives in

:::::
design

:::
an

::::::::
algorithm

::
to

:::::::
Facilely

::::::
Obtain

:::
the

:::::::
Number

::
of

:::::
latent

::::::::::
Dimensions

::
by

::::::::::::
Unsupervised

:::::::::
Estimation

::::::::::
(FONDUE)

::
in Section 4.3.

:::
We

:::
will

::::
then

::::::
assess

:::
the

:::::::::::
performance

::
of

:::::::::
FONDUE

:::
and

::::::::
compare

::
it

::::
with

:::
the

:::::::
existing

:::::::::
techniques

::
of

::::::::
dimension

::::::::
selection

:::::::::
discussed

::
in

:
Section 2.3.

:::::
This

::::
will

::
be

:::::
done

:::
by

:::::::
ensuring

::::
that

:::
the

:::::::
number

::
of

:::::::::
dimensions

:::::::
selected

:::
by

:::
the

::::::
elbow

:::::::
method

:::
for

::::::::::::
reconstruction

:::
and

:::::::::::
downstream

:::::
tasks

::
is

::::::::
consistent

::::
with

::
the

:::::
value

::::::::
proposed

:::
by

:::::::::
FONDUE.

Datasets We use three datasets with an increasing number of intrinsic dimensions: Symmetric
solids (Murphy et al., 2021), dSprites (Higgins et al., 2017), and Celeba (Liu et al., 2015). The
numbers of generative factors of the first two datasets are 2 and 5, respectively, and the IDE of
these two datasets should be close to these values. While we do not know the generative factors of
Celeba, Pope et al. (2021) reported an IDE greater than 20, which is high enough for our experiment.

Data preprocessing Each image is resized to 64× 64× c, where c = 1 for Symmetric solids and
dSprites, and c = 3 for Celeba. We also removed duplicate images (i.e., cases where different rota-
tions resulted in the same image) and labels from Symmetric solids and created a reduced version:
symsol reduced which is available at https://t.ly/_CdH.

VAE training We use the β-VAE architecture detailed in Higgins et al. (2017) for all the datasets,
together with the standard learning objective of VAEs, as presented in Equation 1. Each VAE is
trained 5 times with a number of latent dimensions n = 3, 6, 8, 10, 12, 18, 24, 32 on every dataset.
For Celeba, which has the highest IDE, we additionally train VAEs with latent dimensions n =
42, 52, 62, 100, 150, 200.

Estimations of the ID For all the models, we estimate the ID of the layers’ activations using 3
batches of 10,000 data examples each. As in Pope et al. (2021), the MLE scores are computed with
k = 3, 5, 10, 20.

::::::::
Moreover,

:::
we

:::::
repeat

:::
the

:::::
MLE

:::::::::::
computations

::
3
:::::
times

::::
with

:::::::
different

:::::
seeds

::
to

:::::
detect

:::
any

:::::::
variance

::
in

:::::::::
estimates.

:::::::::::
Downstream

:::::
tasks

::
To

:::::::
monitor

::::
how

:::::
good

:::
the

::::::
learned

:::::
latent

:::::::::::::
representations

:::
are

:::
on

::::::::::
downstream

::::
tasks,

::::
we

:::
use

:::
the

:::::
shape

:::::::
attribute

:::
of

::::::
Symsol

::::
and

:::::::
dSprites

:::
for

::::::::::
multi-class

:::::::::::
classification,

::::
and

:::
the

::
40

:::::
binary

::::::::
attributes

:::
of

::::::
Celeba

:::
for

:::::::::
multi-label

::::::::::::
classification.

::::
We

::::
train

:
a
:::::::

logistic
:::::::::
regression

:::::
model

:::
for

::::
each

:::
task

::::
and

:::::::
evaluate

:::
the

::::::
results

::::
with

::::::::
macro-F1

::::::
scores.

Additional details on our implementation can be found in Appendix C and our code is available at
t.ly/Oh7s.

4 RESULTS

In this section, we will analyse the results of the experiment detailed in Section 3. First, we will
review the IDE of the different datasets in Section 4.1. Then, in Section 4.2, we will discuss the
variation of IDs

:::::
IDEs between different layers of VAEs when we change the number of latent di-

mensions and how it evolves during training. Finally, based on the findings of these sections, we
will answer the objective of by proposing FONDUE —

:::::::
propose an algorithm to automatically find

the optimal number of latent dimensions for VAEs inan efficient and unsupervised way — in
::::::
Facilely

:::::
Obtain

:::
the

:::::::
Number

:::
of

:::::
latent

::::::::::
Dimensions

::
by

::::::::::::
Unsupervised

:::::::::
Estimation

::::::::::
(FONDUE)

::
in Section 4.3.
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Figure 1: Intrinsic dimension estimation
::::
IDEs

:
of dSprites, Celeba, and Symsol using different

ID estimators
::::::::
estimation

::::::::
methods.We can see that MLE have very close estimates for 10 and 20

neighbours, which generally agree with TwoNN estimates. However, TwoNN seems to overestimate
the ID of Celeba.

4.1 ESTIMATING THE INTRINSIC DIMENSIONS OF THE DATASETS

Following Karbauskaitė et al. (2011), we will retain for our analysis the MLE estimates which are
stable for the largest number of k values, as detailed in Section 2.2. We can see in Figure 1 that
the MLE estimations become stable when k is between 10 and 20, similar to what was reported
by Levina & Bickel (2004). These IDEs are also generally close to TwoNN estimations, except for
Celeba, where TwoNN seems to overestimate the ID, as previously reported by Pope et al. (2021).
In the rest of this paper, we will thus consider the IDEs obtained from MLE with k = 20 as our most
likely IDEs.

As mentioned in Section 3, we have selected 3 datasets of increasing intrinsic dimensionality: Sym-
sol (Murphy et al., 2021), dSprites (Higgins et al., 2017), and Celeba (Liu et al., 2015). Celeba’s
IDE was previously estimated to be 26 for MLE with k = 20 (Pope et al., 2021), and we know that
Symsol and dSprites have 2 and 5 generative factors, respectively. We thus expect their IDEs to be
close to these values. We can see in Figure 1 that MLE and TwoNN overestimate the IDs of Symsol
and dSprites, with IDEs of 4 and 11 instead of the expected 2 and 5. Our result for Celeba is close
to Pope et al. (2021) with an estimate of 22; the slight difference may be attributed to the difference
in our averaging process (Pope et al. (2021) used the averaging described by MacKay & Ghahramani
(2005) instead of the original averaging of Levina & Bickel (2004) given in Equation 5).

Overall, we can see that we get an upper bound on the true ID of the data for the datasets whose ID
are known. However, as we will study the variations of ID over different layers, our experiment will
not be impacted by any

::
we

:::::
show

::::::::::::
experimentally

:::
in Appendix I

:::
that

:::
the

:
overestimation of the true

ID
:::
data

:::
ID

::::
does

:::
not

::::
have

:::
any

:::::::
negative

::::::
impact

:::
on

:::
our

::::::
results.

4.2 ANALYSING THE IDE
::::
IDES

:
OF THE DIFFERENT LAYERS OF VAES

Now that we have an IDE for each of the datasets, we are interested in observing how the ID of
VAEsvaries

::::
IDEs

::
of

::::::
VAEs’

:::::::::::::
representations

::::
vary between layers and

::::::
epochs,

:
when they are trained

with different numbers of latent variables .
:::
(see Appendix H

::
for

:::::::::
additional

:::::::::::
observations).

:

Mean and sampled representations have different IDEs Looking into the IDEs of mean and
sampled representations in Figure 2, we see a clear pattern emerge: when increasing the number of
latent variables the IDEs remain similar up to a point, then abruptly diverge. As discussed in Sec-
tion 2.1, once a VAE has enough latent variables to encode the information needed by the decoder,
the remaining variables will become passive to minimise the KL divergence in Equation 2. This phe-
nomenon will naturally occur when we increase the number of latent variables. Bonheme & Grzes
(2021) observed that, in the context of the polarised regime, passive variables were very different in
mean and sampled representations. Indeed, for sampled representations, the set of passive variables
will be sampled from N (0, I) where they will stay close to 0 with very low variance in mean rep-

6



Under review as a conference paper at ICLR 2023

Symsol dSprites Celeba β-VAE trained on dSprites with 10 latent variables and β = 20. Intrinsic
dimension estimation of VAEs trained with an increasing number of latent dimensions |z|. (a), (b),

and (c) show the results on Symsol, dSprites, and Celeba, respectively. (d) shows the results of
β-VAEs trained on dSprites with 10 latent variables and β = 20 to cause posterior collapse.

The ID of the encoder decreases, but the ID of the decoder stays constant We can seein that
the ID of the representations learned by the encoder decreases until we reach the mean and variance
layers, which is consistent with the observations reported for classification (Ansuini et al., 2019).
Interestingly, for dSprites and Symsol, when the number of latent variables is at least equal to the
ID of the data, the IDE of the mean and variance representations is very close to the true data ID.

After a local increase of the ID in the sampled representations, the ID of the decoder representations
stays close to the ID of the mean representations and does not change much between layers.

10 20 30
|z|

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ID
E

Mean
Variance
Sampled

(a) Symsol
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Figure 2: Intrinsic dimension estimation
:::
IDE

:
of the mean, variance, and sampled representations of

VAEs trained with an increasing number of latent dimensions |z|. (a), (b), and (c) shows the results
on Symsol, dSprites, and Celeba, respectively.

resentations. They also introduced the concept of mixed variables — variables that are passive only
for some data examples — and shown that they were also leading to different mean and sampled
representations, albeit to a minor extent. We can thus hypothesise that the difference between the
mean and sampled IDEs grows with the number of mixed and passive variables. This is verified
by computing the number of active, mixed, and passive variables using the method of Bonheme &
Grzes (2021), as shown in Figure 3.
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(b) dSprites
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Figure 3: Quantity of active, mixed, and passive variables of VAEs trained with an increasing num-
ber of latent dimensions |z|. (a), (b), and (c) show the results on Symsol, dSprites, and Celeba,
respectively.

What happens in the case of posterior collapse? By using a β-VAE with very large β (e.g.,
β = 20), one can induce posterior collapse, where a majority of the latent variables become passive
and prevent the decoder from accessing sufficient information about the input to provide a good
reconstruction. This phenomenon is illustrated in , where the IDs of the encoder are similar to what
one would obtain for a well performing model in the first 5 layers, indicating that these early layers
of the encoder still encode some useful information about the data. The IDs then drop in the last
three layers of the encoder, indicating that most variables are passive, and only a very small amount
of information is retained. The ID of the sampled representation (see sampled in ) is then artificially
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inflated by the passive variables and becomes very close to the number of dimensions |z|. From this,
the decoder is unable to learn much and has thus a low ID, close to the ID of the mean representation
(see the points on the RHS of ).
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Figure 4: The evolution over multiple epochs of the IDE of the representations learned by VAEs
using 10 latent variables on Symsol, dSprites, and Celeba.

The IDs
::::
IDEs

:
of the model’s representations do not change much after the first epoch The

IDs
::::
IDEs

:
of the different layers do not change much after the first epoch for well-performing models

(see Figure 4). However, for Celeba, whose number of latent dimensions is lower than the data IDE
and thus cannot reconstruct the data well, the ID tends

::::
IDEs

::::
tend to change more in the early layers

of the encoder, with
:::::::::
displaying a higher variancein IDE.

4.3 FINDING THE OPTIMAL NUMBER OF DIMENSIONS BY UNSUPERVISED ESTIMATION

As discussed in Section 4.2, the IDs
::::
IDEs of the mean and sampled representations start to diverge

when (unused) passive variables appear, and this is already visible after the first epochs of training.
We can thus use the difference of IDs

::::
IDEs between the mean and sampled representations to find the

number of latent dimensions retaining the most information while remaining sufficiently compressed
(i.e., no passive variables). To this aim, we propose an algorithm for Finding the Optimal Number
of Dimensions from Unsupervised Estimation (FONDUE)

::::::::
FONDUE:

:::
an

::::::::
algorithm

::
to

:::::::::::
automatically

:::::::
estimate

:::
the

::::::
number

:::::
latent

::::::::::
dimensions

:::
for

:::::
VAEs

::
in

::
an

:::::::
efficient

::::
and

:::::::::::
unsupervised

:::
way.

Theorem 1. Any execution of FONDUE (Algorithm 1) returns the largest number of dimensions p
for which IDEz − IDEµ 6 threshold, where IDEz , and IDEµ are the IDEs

:::
ID

::::::::
estimates of the

sampled and mean representations, respectively.

Proof Sketch. In Algorithm 1, we define a lower and upper bound of the ID estimate, l and u, and
update the predicted number of latent variables p until, after i iterations, pi = li. Using the loop
invariant li 6 pi 6 ui, we can show that the algorithm terminates when li = pi = floor

(
li+ui

2

)
,

which can only be reached when ui = pi + 1, that is, when pi is the maximum number of latent
dimensions for which we have IDEz−IDEµ 6 threshold. See Appendix A for the full proof.

::::
How

::::
does

:::::::::
FONDUE

::::::
work?

::::::::
FONDUE

::::
will

:::
seek

::
to
:::::
reach

:::
the

:::::::::
maximum

::::::
number

::
of

::::::::::
dimensions

::
for

:::::
which

:::
the

::::::::
difference

::::::::
between

:::
the

:::::
mean

:::
and

:::::::
sampled

:::::
IDEs

::
is

:::::
lower

::::
than

::
t.

::
At

::::
each

::::::::
iteration,

::
it

:::
will

::::
train

:
a
::::
VAE

:::
for

:
a
::::
few

::::::
epochs

::::::::
(generally

::::
just

::::
one)

:::
and

:::::::
retrieve

:::
the

::::
mean

::::
and

:::::::
sampled

::::::::::::
representations

:::::::::::
corresponding

:::
to

::::::
10,000

::::
data

:::::::::
examples.

:::::::
Using

:::::
MLE

::::
with

:::::::
k = 20,

:::
we

:::::
then

:::::
obtain

::::
the

::::::
(scalar)

::::
IDEs

::
of

:::
the

:::::
mean

::::
and

:::::::
sampled

:::::::::::::
representations

:::
(i.e.

::::::
IDEµ::::

and
::::::
IDEz)

:::
and

::::::::
compute

:::
the

::::::::
difference

:::::::
between

:::::
them.

::
If

:::
this

:::::::::
difference

::
is

:::::
lower

::::
than

::
or

:::::
equal

::
to

:::
the

:::::::::
threshold,

:::
we

:::
set

:::
the

::::::
current

::::::
number

::
of

:::::
latent

::::::::::
dimensions

::
to

:::
our

:::::
lower

::::::
bound

:::
and

:::::
train

:
a
:::::
VAE

:::::
again

::::
with

:::::
twice

:::
the

:::::::
number

::
of

::::::
latents,

::
as

::::::::
illustrated

::
in
:

Figure 5.
:::

If
:::
the

::::::::
difference

::
is
::::::
higher

::::
than

:::
the

:::::::::
threshold,

:::
we

::
set

::::
the

::::::
current

::::::
number

::
of

:::::
latent

:::::::::
dimensions

:::
to

:::
our

:::::
upper

::::::
bound

:::
and

::::
train

::
a
::::
VAE

:::::
again

::::
with

::::
half

:::
the

:::::::
number

::
of

::::::
latents,

::
as

::::::::
illustrated

::
in

:
Figure 6.

::::
We

:::::
iterate

:::::
these

:::
two

:::::
steps

::::
until

::::
our

::::::
current

:::::::
number

::
of

:::::
latent

::::::::::
dimensions

:
is

8
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::
the

::::::
largest

:::::::
possible

:::::::::::::
dimensionality

::
for

::::::
which

:::
the

::::::::
difference

::
is

::::::
smaller

::::
than

::
or

:::::
equal

::
to

:::
the

::::::::
threshold.

:::::::::
Obtaining

:::::
stable

:::::::::
estimates To ensure stable ID estimates

::::
IDEs, we computed FONDUE multiple

times, gradually increasing the number of epochs e until the predicted p stopped changing. As
reported in Table 1, the results were already stable after one epoch, except for Symsol which needed
two3. We set a fixed threshold t = 0.2 (20% of the data IDE) in all our experiments and used
memoisation (see Algorithm 2) to avoid unnecessary retraining and speed up Algorithm 1.

:::
For

:
a

::::
more

:::::::
in-depth

:::::::::
discussion

:::
on

::::
how

::
to

::
set

:::
the

::::::::
threshold

:::::
value,

:::
we

:::::
refer

:::
the

:::::
reader

::
to

:
Appendix K

:
.
:

Algorithm 1: FONDUE

1: procedure FONDUE(t, IDEdata, epochs)
2: l← 0 . Lower bound
3: u←∞ . Upper bound
4: p← IDEdata . Current number of latent dimensions
5: mem← {}
6: threshold← t×p

100 ::::::::::::::::
threshold← t× p

:

7: while p 6= l do
8: IDEz, IDEµ ← GET-MEM(mem, p, epochs)
9: if IDEz − IDEµ 6 threshold then . Figure 5

10: l← p
11: p← min(p× 2, u)
12: else . Figure 6
13: u← p
14: p← floor

(
l+u
2

)
15: end if
16: end while
17: return p
18: end procedure

Algorithm 2: GET-MEM

1: procedure GET-MEM(mem, p, e)
2: if mem[p] = ∅ then
3: vae← TRAIN-VAE(dim = p, n epochs = e)
4: IDEz, IDEµ ← IDEs(vae)
5: mem[p]← IDEz, IDEµ
6: end if
7: return mem[p]
8: end procedure

Figure 5: Update l and
increase p until IDEz −
IDEµ > threshold.

Figure 6: Update u and
decrease p until IDEz −
IDEµ 6 threshold.

:::::::::
Analysing

::::
the

:::::::
results

:::
of

::::::::::
FONDUE

:::
As

::::::
shown

::::
in

:
Table 1

:
,
::::

the
:::::::::

execution
::::::

time
:::

for
::::::
finding

:::
the

::::::::
number

::
of

:::::::::::
dimensions

:::
for

::::
one

:::::::
dataset

:::
is

:::::
much

:::::::
shorter

:::::
than

:::
for

:::::
fully

:::::::
training

:::
one

::::::
model

::::::::::::::
(approximately

:::
2h

::::::
using

:::
the

::::::
same

:::::::
GPUs).

:::::::::::
Moreover,

::::
the

::::::::
number

:::
of

:::::
latent

:::::::::
dimensions

::::::::
predicted

:::
by

:::::::::
FONDUE

:::
is

:::::::::
consistent

::::
with

:::::::
existing

::::::::::
techniques

:::::
based

:::
on

::::
the

:::::
elbow

::::::
method

:::::::::::::::::::::::::::::::::::::
(Doersch, 2016; Mai Ngoc & Hwang, 2020)

:::
with

:::
the

:::::::::
additional

::::
gain

:::
of

:::::
being

:::::::
obtained

::
in

::
an

:::::::::::
unsupervised

::::
way

:::::::
without

::::
fully

:::::::
training

:::
any

:::::::
models.

:::::::
Indeed,

:::
for

::
all

:::
the

::::::::
datasets,

:::
the

::::::
number

::
of

:::::::::
dimensions

::::::::
provided

::
by

:::::::::
FONDUE

::::::::::
corresponds

:::
to

:::
low

::::::::::::
reconstruction

::::
loss

:::
on

:::::::::
generation

:::
and

::::
high

::
F1

::::::
scores

::
on

::::::::::
downstream

:::::
tasks.

:

Analysing the results of FONDUE As shown in , the execution time for finding the optimal
number of dimensions of a dataset is much shorter than for fully training one model (approximately
2h using the same GPUs), making the algorithm clearly more efficient than grid search. Moreover,

3Note that the numbers of epochs given in Table 1 correspond to the minimum number of epochs needed
for FONDUE to be stable. For example, if we obtain the same score after 1 and 2 epochs, the number of epochs
given in Table 1 is 1.
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Figure 7: Reconstruction and regularisation loss
:::
and

:::
F1

::::::
score

::::::::
obtained

:::
for

::::::::::
generation

:::
and

::::::::::
downstream

::::
tasks

:
of VAEs for Symsol, dSprites, and Celeba with an increasing number of latent

variables.
:::
The

:::::::
vertical

:::
line

::::::::
indicates

:::
the

:::::::
number

::
of

:::::::::
dimensions

:::::
found

:::
by

:::::::::
FONDUE.

Table 1: Number of latent variables |z| obtained with FONDUE. The results are averaged over 5
seeds, and computation times are reported for NVIDIA A100 GPUs. The computation time is given
for one run of FONDUE over the minimum number of epochs needed to obtain a stable score.

Dataset Dimensionality (avg ± SD) Time/run Models trained Epochs/training

Symsol 11 ± 0 7 min 6 2
dSprites 12.2 ± 0.4 20 min 5 1
Celeba 50.2 ± 0.9 14 min 9 1

the number of latent dimensions predicted by FONDUE is consistent with well-performing models.
Indeed, for dSprites and Symsol, the selected numbers of dimensions correspond to the number of
dimensions after which the reconstruction error stops decreasing and the regularisation loss remains
stable (see ). For Celeba, the reconstruction loss continues to improve slightly after 50 latent
dimensions, due to the addition of mixed variables between 52 and 100 latent dimensions. While
one could increase the threshold of FONDUE to take more mixed variables into account, this may
not always be desirable. Indeed, mixed variables encode features specific to a subtype of data
examples (Bonheme & Grzes, 2021) and will provide less compact representations for a gain in
reconstruction quality which may only be marginal.
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Figure 8: Reconstruction loss
:::
and

:::
F1

:::::
score

::::::::
obtained

:::
for

::::::::::
generation

:::
and

:::::::::::
downstream

:::::
tasks

:
of

::::::::::
deterministic

:
AEs for Symsol, dSprites, and Celeba with an increasing number of latent variables.

:::
The

:::::::
vertical

:::
line

::::::::
indicates

:::
the

::::::
number

::
of

::::::::::
dimensions

:::::
found

:::
by

:::::::::
FONDUE.

Can FONDUE be applied to other architectures and learning objectives? We can see in Fig-
ure 8 that deterministic AEs with equivalent architectures to the VAEs in are performing well when
provided with the same

:::
are

:::::::::
performing

::::::::
similarly

::
to

:::::
VAEs

:::
in

:::::
terms

::
of

::::::::::::
reconstruction

::::
loss

::::
using

:::
the

number of latent dimensions , indicating that FONDUE’s results could
:::::::
obtained

::::
with

:::::::::
FONDUE.

::::
This

::
is

:::
also

:::
the

:::::
case

:::
for

:::
the

::
F1

:::::
score

:::
on

::::::::::
downstream

:::::
tasks

::::::
except

:::
for

:::::::
Symsol,

:::::
which

::::::
would

::::
need

::::
more

::::
than

:::
30

:::::
latent

:::::::
variables

::
to
:::::

reach
:::
an

::
F1

:::::
score

::
as
:::::

good
::
as

::::::
VAEs.

:::::::
Overall,

:::::
these

::::::
results

::::::
indicate

10
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:::
that

:::
the

:::::::::::::
dimensionality

:::::::
selected

:::
by

::::::::
FONDUE

::::
can be reused for AEs trained on the same dataset

with an identical architecture
::
for

:::::::::::::
reconstruction,

:::
but

::::
may

:::::::
provide

:
a
:::::
lower

:::::::
estimate

:::
for

::::::::::
downstream

::::
tasks

::
in

:::::
cases

:::::
where

:::::
AEs’

::::::::::::
representations

:::
are

::::
less

:::::::
efficient

::::
than

::::::
VAEs’. FONDUE also seems to be

robust to architectural changes and worked equally well with fully-connected architectures (see Ap-
pendix D).

5 CONCLUSION

By studying the ID estimates
::::
IDEs of the representations learned by VAEs, we have seen thatthe

deeper the encoder’s layers, the lower their ID, while the ID of the decoder’s layers consistently
stayed close to the ID of the mean representation. We also observed increasing discrepancies
between mean and sampled IDs ,

::::
very

:::::
early

::
in

:::
the

::::::
training

:::::::
process,

:::::
mean

::::
and

:::::::
sampled

::::
IDEs

::::::
display

::::::::
increasing

:::::::::::
discrepancies

:
when the number of latent variable was large enough for passive and mixed

variables to appear.

This phenomenon is seen very early in the training process, and it leads
:::::
These

:::::::::::
observations

:::
lead

:
to

FONDUE: an algorithm which can find the number of latent dimensions after which the mean and
sampled representations start to strongly diverge. After proving the correctness of our algorithm, we
have shown that it is a computationally efficient alternative to grid search — taking only minutes to
provide an estimation of the optimal number of dimensions to use — which leads to a good tradeoff
between the reconstruction and regularisation losses. Moreover, FONDUE

:::::
faster,

:::::::::::
unsupervised

::::::::
alternative

::
to
:::::::

existing
::::::::
methods

:::::
which

::::
does

::::
not

::::::
require

::
to

::::
fully

::::
train

::::
any

::::::
model,

:
is not impacted by

architectural changes, and its prediction can
::
can

:::
be

::::
used

:::
for

:::::::::::
deterministic

::::
AEs.

:

::::::
Future

:::::
work

:::::
While

:::::::::
FONDUE

:::
has

:::::
been

:::::::::::
demonstrated

::
to
:::

be
:::
an

:::::::
efficient

:::::::::
algorithm,

::
it

:::::
could

::
be

::::::::
improved

:::
and

::::::::
extended

::
in

::::::
several

:::::
ways:

:::
(1)

::::::::
FONDUE

::
is

::::::
mainly

::::::::
motivated

:::
by

::::::::
empirical

:::::::::
observation

:::
and

::::::
would

::::::
benefit

:::::
from

::
a

:::::::::::::
complementary

:::::::::
theoretical

:::::::::
approach

:::::
(e.g.,

:::::
based

:::
on

:::::::::::::
well-researched

:::::::
concepts

:::::
such

:::
as

::::::::::
information

:::::::::
bottleneck

:::::::::::::::::::::::::::::::::::::::::
(Alemi et al., 2017; Voloshynovskiy et al., 2019)

:
);

:::
(2)

::
we

:::::
have

::::::
shown

::::
that

:::
the

:::::::::::
dimensions

:::::
given

:::
by

:::::::::
FONDUE

:::::
could

:
also be used for deterministic

autoencoders.
::::
AEs,

:::
but

::
it

:::::
would

::
be

:::::::::
interesting

::
to
::::
see

:
if
::::
this

::::::
applies

::
to

:
a
:::::
larger

:::::
range

::
of

:::::::::::
unsupervised

::::::
models

::::
(e.g.,

::::::
GANs,

:::::::::
clustering

:::::::
methods,

:::::
etc.);

::
(3)

:::::::::
FONDUE

:::
can

::
be

::::::::
extended

::
in

:
a
:::::::
number

::
of

::::
ways

::
by

:::::::
replacing

:::
the

:::::::::
difference

::
of

::::
IDE

::
in Algorithm 2

::
by

:::
any

:::::::
function

::::
that

::::::
reliably

::::::::
provides

:::::::
different

:::::
results

::
in

::::
mean

::::
and

:::::::
sampled

::::::::::::
representations

:::::
early

::
in

:::
the

:::::::
training.

:::::
These

:::::::::
extensions

:::::
could

::
be

::::::::
beneficial

::::
both

::
in

:::::
terms

::
of

::::::::
execution

::::
time

:::
(if

::
the

::::::::
function

::
is

:::::
faster)

::::
and

:::::::::
theoretical

::::::
insights

:::
(if

:::
the

:::::::
function

::
is

::::
more

::::::::::
theoretically

:::::::::
grounded).

:

11
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A PROOF OF THEOREM 1

This section provides the full proof of Theorem 1. To ease its reading, let us first define an axiom
based on our observation from Section 4.2 that the IDEs of the mean and sampled representations
start to diverge only after the number of latent dimensions has become large enough for (unused)
passive variables to appear.

Axiom 1. Let IDEyx be the IDE of layer x using y latent dimensions. Given the sets A =
{a|IDEaz − IDEaµ 6 threshold} and B = {b|IDEbz − IDEbµ > threshold}, we have
a < b ∀ a ∈ A, ∀ b ∈ B.

Remark 1. Given that l and u only take values of latent dimensions for which IDEz − IDEµ 6
threshold and IDEz − IDEµ > threshold, respectively, Axiom 1 implies that for all iterations i,
li ∈ A and ui ∈ B and li < ui.

Using the loop invariant li 6 pi 6 ui for each iteration i, we will now show that Algorithm 1
terminates when li = pi = floor

(
li+ui

2

)
, which can only be reached when ui = pi+1, that is when

pi is the maximum number of latent dimensions for which we have IDEz − IDEµ 6 threshold.

Proof.

Initialisation: l0 = 0, p0 = IDEdata, u0 =∞, thus l0 < p0 < u0.

Maintenance: We will consider both branches of the if statement separately:

• For IDEz − IDEµ 6 threshold (lines 9-11), ui = ui−1, pi = min(pi−1 × 2, ui), and
li = pi−1. We directly see that pi 6 ui. We know from Remark 1 that li < ui and we also
have li < pi−1×2, it follows that li < pi. Grouping both inequalities, we get li < pi 6 ui.

• For IDEz − IDEµ > threshold (lines 12-14), ui = pi−1, li = li−1, and pi =

floor
(
li+ui

2

)
. Using Remark 1 we can directly see that li 6 floor

(
li+ui

2

)
< ui and

we obtain li 6 pi < ui.

Termination: The loop terminates when li = pi. Given that li < pi when IDEz − IDEµ 6
threshold, this is only possible when IDEz − IDEµ > threshold, which is when pi =

floor
(
li+ui

2

)
. We know from Remark 1 that li < ui, so we must have (li + ui) mod 2 > 0.

As amod 2 ∈ {0, 1}, the only possible value for ui to satisfy li = pi = floor
(
li+ui

2

)
is ui = pi+1.

Thus, pi is the largest number of latent dimensions for which IDEz − IDEµ 6 threshold.

B RESOURCES

As mentioned in Sections 1 and 3, we released the code of our experiment, the pre-trained models,
and IDEs:

• The IDEs can be downloaded from an anonymous Google account using the following tiny
URL https://t.ly/8r3N

• symsol reduced, the reduced version of Symmetric solids, can be downloaded using
an anonymous Google account using the following tiny URL https://t.ly/_CdH

• The code can also be downloaded from an anonymous Google account using another tiny
URL t.ly/Oh7s

• Our pre-trained models are large and could not be shared with the reviewers using an anony-
mous link. The URL to the models will, however, be available in the non-anonymised
version of this paper.

:::
The

::::
300

::::::
models

:::::::::
correspond

::
to

::
5
::::
runs

::
of

:::::
VAEs

::::::
trained

:::::
with:
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•
:
8
:::::::

choices
:::

of
::::::

latent
::::::::::

dimensions
::::

for
:::::::
Symsol

::::
and

::::::::
dSprites,

::::::
using

::::::::::::
convolutional

::::
and

:::::::::::::
fully-connected

:::::::::::
architectures,

:::::::
resulting

::
in

::::
160

::::::
models

:

•
::
14

:::::::
choices

:::
of

:::::
latent

::::::::::
dimensions

::::
for

:::::::
Celeba,

:::::
using

::::::::::::
convolutional

::::
and

:::::::::::::
fully-connected

:::::::::::
architectures,

:::::::
resulting

::
in

::::
140

::::::
models

:

:::
The

::::
total

::::
300

:::::::::
pre-trained

::::::
models

:::::
were

::::
then

::::
used

::
to

:::::::
compute

:::::::
estimate

::::
IDs

::
as

::::::::
described

::::::
below.

::::
Note

:::
that

:::::
while

:::::
these

::::::
models

::::::
would

::::
save

:::::
some

::::::::::::
computational

::::
time

:
if
:::::

used
::
to

::::::::
reproduce

:::
the

::::::::::
experiment,

:::
they

:::
are

:::::
only

:::::::
provided

:::
to

::::::
reduce

:::
the

::::::
carbon

:::::::
footprint

:::
of

::::::::::
reproducing

:::
the

::::::::::
experiment

::
as

:::
one

:::::
could

:::::
easily

:::::
retrain

:::
the

:::::::
models

::::
using

:::
the

::::::
details

::
of

:::
our

::::::::::::::
implementation.

:

:::
The

:::::
IDEs

:::::::::
mentioned

:::::
above

::::::::::
correspond

::
to

:::
the

::::::
35,000

::
ID

::::::::
estimates

:::
of

:::
the

::
14

:::::
layers

:::
of

:::
the

:
5
::::
runs

::
of

::
the

:::::
VAEs

::::::::::
considered,

:::
and

:::::::::
computed

::::
using

::
5

::::::::::::
configurations

:::::
(MLE

::::
with

:::::::::::::
k = 3, 5, 10, 20

:::
and

:::::::
TwoNN)

:::::
where

:::
the

:::::
MLE

:::
was

:::::::::
computed

:
3
:::::
times

:::
for

::::
each

::
k,

:::::
using

:::::::
different

:::::
seeds.

::::
We

::::::::
computed

:::::
these

:::
for:

:

•
:
8
::::::
choices

:::
of

:::::
latent

:::::::::
dimensions

:::
for

:::::::
Symsol

:::
and

:::::::
dSprites,

::::::::
resulting

::
in

::::::
16,800

:::
ID

::::::::
estimates.

:

•
::
14

::::::
choices

:::
of

:::::
latent

:::::::::
dimensions

:::
for

:::::::
Celeba,

:::::::
resulting

::
in

::::::
14,700

:::
ID

::::::::
estimates.

:

•
:
1
::::::
choice

::
of

:::::
latent

:::::::::
dimension

::::
with

::::::
β = 20

:::
for

::::::::
dSprites,

:::::::
resulting

::
in

:::::
1,050

:::
ID

::::::::
estimates.

:

•
:
1
::::::
choice

::
of

:::::
latent

:::::::::
dimension

::
at

:
1
:::::
early

:::::
epoch

:::
for

:::::::
dSprites,

::::::
Celeba

::::
and

:::::::
Symsol,

:::::::
resulting

::
in

:::::
3,150

::
ID

:::::::::
estimates.

:::
The

::::
total

::::::
35,700

:::::
IDEs

::::
were

::::
then

::::
used

::
in

:
Figures 2, 4, and 13.

:

C EXPERIMENTAL SETUP

Our implementation uses the same hyperparameters as Locatello et al. (2019), as listed in Table 2.
We reimplemented the Locatello et al. (2019) code base, designed for Tensorflow 1, in Tensorflow 2
using Keras. The model architectures used are also similar, as described in Table 3 and 4. We used
the convolutional architecture in the main paper and the fully-connected architecture in Appendix D.
Each model is trained 5 times with seed values from 0 to 4. Every image input is normalised to have
pixel values between 0 and 1. TwoNN is used with an anchor of 0.9, and the hyperparameters for
MLE can be found in Table 5.

Table 2: VAEs hyperparameters

Parameter Value

Batch size 64
Latent space dimension 3, 6, 8, 10, 12, 18, 24, 32.

For Celeba only: 42, 52, 62, 100, 150, 200
Optimizer Adam
Adam: β1 0.9
Adam: β2 0.999
Adam: ε 1e-8
Adam: learning rate 0.0001
Reconstruction loss Bernoulli
Training steps 300,000
Train/test split 90/10
β 1

D FONDUE ON FULLY-CONNECTED ARCHITECTURES

We report the results obtained by FONDUE for fully-connected (FC) architectures in Table 6
and Figure 9. As shown in Table 6, the execution time for finding the optimal

::::::::
estimating

:::
the number

of dimensions of a
::
for

::::
one dataset is much shorter than for training one model (this is approximately

2h on the same GPUs), in similarity with convolutional VAEs. As in Section 4.3, FONDUE cor-
rectly finds the number of latent dimensions after which the mean and sampled IDEs start to diverge,
as shown in Figure 9. One can see that the number of latent variables needed for FC VAEs is much
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Table 3: Architecture

Encoder Decoder

Input: R64×63×channels R10

Conv, kernel=4×4, filters=32, activa-
tion=ReLU, strides=2

FC, output shape=256, activation=ReLU

Conv, kernel=4×4, filters=32, activa-
tion=ReLU, strides=2

FC, output shape=4x4x64, activation=ReLU

Conv, kernel=4×4, filters=64, activa-
tion=ReLU, strides=2

Deconv, kernel=4×4, filters=64, activa-
tion=ReLU, strides=2

Conv, kernel=4×4, filters=64, activa-
tion=ReLU, strides=2

Deconv, kernel=4×4, filters=32, activa-
tion=ReLU, strides=2

FC, output shape=256, activation=ReLU,
strides=2

Deconv, kernel=4×4, filters=32, activa-
tion=ReLU, strides=2

FC, output shape=2x10 Deconv, kernel=4×4, filters=channels, activa-
tion=ReLU, strides=2

Table 4: Fully-connected architecture

Encoder Decoder

Input: R64×63×channels R10

FC, output shape=1200, activation=ReLU FC, output shape=256, activation=tanh
FC, output shape=1200, activation=ReLU FC, output shape=1200, activation=tanh
FC, output shape=2x10 FC, output shape=1200, activation=tanh

Table 5: MLE hyperparameters

Parameter Value

k 3, 5, 10, 20
anchor 0.8
seed 0
runs 5

lower than for convolutional VAEs (see Table 1 for comparison). For dSprites, it is near the true ID
of the data, and for Celeba, it is close to the data IDE reported in Figure 1 of Section 4.1.

As in Section 4.3, we gradually increase the number of epochs until FONDUE reaches a stable
estimation of the latent dimensions. As these models have fewer parameters than the convolutional
architecture used in Section 4.3, they converge more slowly and need to be trained for more epochs
on Celeba and Symsol before reaching a stable estimation (Arora et al., 2018; Sankararaman et al.,
2020). dSprites contains more data examples than the other datasets and less complex data than
Celeba, which can explain its quicker convergence.

For dSprites and Symsol, the number of dimensions selected by FONDUE corresponds to the num-
ber of dimensions after which the reconstruction stops improving and the regularisation loss

::
KL

:::::::::
divergence remains stable (see Figure 10). For Celeba, the reconstruction continues to improve
slightly after 39 latent dimensions, due to the addition of variables between 42 and 100 latent di-
mensions, as illustrated in Figure 11. As in convolutional architectures, one could increase the
threshold of FONDUE to take more mixed variables into account.

Overall, we can see that FONDUE also provides good results on the FC architectures, despite a
slower convergence, showing robustness to architectural changes.
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Table 6: Number of latent variables obtained with FONDUE for fully-connected architectures. The
results are averaged over 5 seeds, and computation times are reported for NVIDIA A100 GPUs. The
computation time is given for one run of FONDUE over the minimum number of epochs needed to
obtain a stable score.

Dataset Dimensionality (avg ± SD) Time/run Models trained Epochs/training

Symsol 8 ± 0 15 min 6 6
dSprites 6.6 ± 0.5 16 min 5 1
Celeba 39 ± 0.6 50 min 7 9
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Figure 9: Number of latent dimensions provided by FONDUE for fully-connected VAEs: |z| = 8
on Symsol, |z| = 7 on dSprites, and |z| = 39 on Celeba.
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Figure 10: Reconstruction and
:::
KL

:::::::::
divergences

:::::
(i.e., regularisation scores)

:
of fully-connected VAEs

for Symsol, dSprites, and Celeba with an increasing number of latent variables |z|.
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Figure 11: Quantity of active, mixed, and passive variables of VAEs trained with an increasing
number of latent dimensions |z|. (a), (b), and (c) show the results on Symsol, dSprites, and Celeba,
respectively.
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E ADDITIONAL DETAILS ON MEAN, VARIANCE, AND SAMPLED
REPRESENTATIONS

This section presents a concise illustration of what mean, variance, and sampled representations are.
As shown in Figure 12, the mean, variance and sampled representations are the last 3 layers of the
encoder, where the sampled representation, z, is the input of the decoder.

Encoder




Decoder

Mean
representation

Variance
representation

Sampled
representation

Figure 12: The structure of a VAE

F PASSIVE VARIABLES AND POSTERIOR COLLAPSE

As discussed in Section 2.1, passive variables appear in latent representations of VAEs in two cases:
polarised regime and posterior collapse. In well-behaved VAEs (i.e., in the case of polarised regime),
passive variables arise when the number of latent dimensions is larger than the number of latent
variables needed by the VAE to encode latent representations. These passive variables contribute
to lowering the regularisation loss term of Equation 1 without increasing the reconstruction loss.
However, passive variables can also be encountered as part of a pathological state where the recon-
struction loss is very high and the regularisation loss is pushed towards zero (i.e., when posterior
collapse takes place). This issue can happen for various reasons (Dai et al., 2020), but is clearly dis-
tinct from the polarised regime as the reconstruction loss is very high and the latent representations
contain little to no active variables.

In both cases, passive variables are very different in mean and sampled representations, due to the
sampling process z ∼ µ + ε

√
σI , where ε ∼ N (0, I), µ is the mean representation and σI the

diagonal matrix of the variance representations. For the regularisation term to be low, one needs to
create passive variables, that is, as many dimensions of z as close as possible to N (0, I). This can
easily be done by setting some elements of µ to 0 and their corresponding variance to 1. As a result,
passive variables, when observed over multiple data examples will have a mean of 0 in the mean and
sampled representations. However, their variance will be close to 0 in the mean representations, and
close to 1 in their sampled counterpart (Rolinek et al., 2019; Bonheme & Grzes, 2021).

G WHY NOT USE VARIABLE TYPE INSTEAD OF IDE FOR FONDUE?

As passive variables are easy to detect, one could wonder why they were not used directly to deter-
mine the number of latent dimensions instead of comparing IDEs of models trained for a few epochs
multiple times. For example, it would be quicker to train one model with a large number of latent
variables for a few epochs and retrieve the number of active (or active and mixed) variables detected,
as for example, illustrated in Algorithm 3.

How does Algorithm 3 work? We define the initial number of latent variables as twice the data
IDE. Then, if we want to have enough dimensions for active and mixed variables, we double the
number of latent variables until we find at least one passive variable and return the sum of active and
mixed variables as the chosen number of latent dimensions. If we want instead to have only active
variables, we double the number of latent variables until we find at least either one passive or mixed
variable and return the number of active variables as the chosen number of latent dimensions.
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Why use Algorithm 1 instead? As shown in Table 7, the identification of variable types displays
a high variance during early training, which generally makes Algorithm 3 less reliable than Al-
gorithm 1 for equivalent computation time. In addition to this instability, the numbers of latent
dimensions predicted by Algorithm 3 in Table 7 are far from optimal compared to Table 1. There is
a large overestimation in Symsol and an underestimation in Celeba. These issues may be explained
by the fact that Algorithm 1 is based on mean and sampled representations, while Algorithm 3
solely relies on variance representations, decreasing the stability during early training. Moreover,
mixed and passive variables are not discriminated correctly in early epochs, possibly for the same
reasons, preventing any modulation of compression/reconstruction quality that could be achieved
with Algorithm 1.

Algorithm 3 FONDUE with variable types

procedure FONDUE-VAR(data ide, epochs, keep mixed)
l← 2 ∗ data ide
n← −1
while n < 0 do

vae← train V AE(dim = l, n epochs = epochs)
av,mv, pv ← variable types(vae) . Number of active, mixed and passive variables
if pv > 0 and keep mixed then

n← av +mv
else if (mv > 0 or pv > 0) and not keep mixed then

n← av
else

l← l ∗ 2
end if

end while
return n

end procedure

Table 7: Number of latent variables obtained with FONDUE-var. The results are averaged over 5
seeds and computation times are reported for NVIDIA A100 GPUs.

Dataset Dimensionality (avg ± SD) Time/run Models trained Epochs/training

Symsol 14 ± 1.2 2 min 3 1
Symsol 17 ± 1.7 3 min 3 2
Symsol 15 ± 1.1 10 min 3 5
dSprites 9.2 ± 1.3 4 min 1 1
dSprites 8.8 ± 1.2 8 min 1 2
dSprites 9.6 ± 0.5 20 min 1 5
Celeba 38.6 ± 2.6 1 min 1 1
Celeba 38.6 ± 0.4 2 min 1 2
Celeba 41.2 ± 0.4 6 min 1 5

H
::::::::::::::
ADDITIONAL

:::::::::
DETAILS

::::
ON

:::
ID

:::::::::::::
ESTIMATION

:::::::
USING

::::::
MLE

:::
The

::::::::
objective

::
of

::::
this

::::::
section

::
is

::
to

:::::::
provide

::
an

:::::::
intuitive

:::::
view

::
of

:::
ID

:::::::::
estimation

:::::
using

:::::
MLE.

:::
We

::::
refer

::
the

::::::
reader

::
to Section 2.2

:::
and

::::::::::::::::::::
Levina & Bickel (2004)

::
for

::
a
::::
more

::::::::
technical

:::::::::
discussion.

:

::::::::::::::::::::
Levina & Bickel (2004)

:::::
model

::
the

:::::::
number

::
of

:::::::::
neighbours

::
of

::
a
::::
point

:::
Xi::

in
::
a

:::::
radius

::
R

:::::
using

:
a
::::::
Poisson

::::::
process.

:::::
This

::::::
Poisson

:::::::
process,

::::::::::::::::::::
{N(t,Xi), 0 6 t 6 R},

::::
will

:::::
count

:::
the

::::
total

::::::
number

::
of
::::::
points

:::::
falling

:::
into

:::
the

:::::::::
successive

::::::::::::
d-dimensional

:::::::
spheres

::
of

:::::
radius

::::::::::
0 6 t 6 R.

:::::::::
Intuitively,

:::::
when

:::::
d = 3

::::
this

:::
can

::
be

::::::
thought

::
of

:::
as

::
an

:::::
onion

:::
to

:::::
which

:::
we

::::
add

::
an

:::::
outer

::::
peel

:::
for

::::
each

:::::::::
increasing

:::::
radius

:::::
value

::
t,
:::::
until

::
we

::::
reach

:::
the

:::::::::
maximum

:::::
radius

:::
R.

:::::
Thus,

::::
each

::::::::
N(t,Xi)::::

will
::::
give

::
us

::
a

:::::::
snapshot

::
of

:::
the

:::::::
number

::
of

:::::
points

::::::::
contained

::
in

::
all

:::
the

:::::
peels

::::::
stacked

:::
so

::
far

::
in
:::
the

:::::
onion

:::
of

:::::
radius

::
t.

::
As

::::::::
N(t,Xi)::

is
::
a
:::::::
function

::
of

:::
the

:::::::
surface

::::
area

::
of

:::
the

::::::
sphere,

:::
its

:::
rate

::
is
::

a
:::::::
function

::
of
::
d
::::
and

:::
one

:::
can

:::::::
estimate

:
d
:::::
using

:::::
MLE.

:::::::::
However,

::
we

::::::::
generally

::::::
cannot

::::::
access

::
all

:::
the

:::::::
existing

::::::::::
neighbours

::
of

:::
Xi::

in
:
a
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Table 8:
:::::::
Number

::
of

:::::
latent

::::::::
variables

::
|z|

::::::::
obtained

::::
with

:::::::::
FONDUE

:::::
using

::::
MLE

::::
with

::::::::
different

::::::
number

::
of

:::::::::
neighbours

:::
k.

::::
The

::::::
results

:::
are

::::::::
averaged

::::
over

::
5
:::::
seeds,

::::
and

:::::::::::
computation

:::::
times

:::
are

:::::::
reported

:::
for

:::::::
NVIDIA

:::::
A100

::::::
GPUs.

:::
We

:::::
retain

:::
the

:::::
same

::::::
number

::
of

:::::::
epochs

::
as

::
in Table 1

:
.

:
k
: ::

|z|
::::
(avg

::
±
::::
SD)

:::::::
Symsol

::
|z|

::::
(avg

::
±
::::
SD)

:::::::
dSprites

: ::
|z|

::::
(avg

::
±
::::
SD)

::::::
Celeba

:
3
: :::::::

1.6±1.2
:::::::
9.4±0.5

::::::::
45.2±0.6

:
5
: :::::::

4.4±1.4
::::::::
10.4±0.8

::::::::
46.8±1.1

::
10

: ::::
5±2

::::::::
10.4±0.5

::::::::
48.8±1.0

::
20

: ::
11

::
±

::
0

::::
12.2

::
±

:::
0.4

::::
50.2

::
±

:::
0.9

::::
given

::::::
radius

::::::
without

::::::
infinite

::::
data,

:::
so

::
we

:::::::::::
approximate

::
the

:::::::
process

:::::
using

:
a
::::
fixed

:::::::
number

::
of

:::::::::
neighbours.

::::
Now,

::::::
let

::::
us

::::::::::
consider

:::::
the

:::::::
point

::::::::::::::
Xi = (0, 0, 0)

::::::
and

::::
3

::::::::
closest

:::::::::::
neighbours

:::::::::::::::::::::::::::
Y = {(0, 1, 0)(1, 0, 0), (2, 0, 0)}.

:::::
We

:::::
have

:::::::::::::::
N(t = 1, Xi) = 2

::::
and

::::::::::::::::
N(t = 2, Xi) = 3

:::::::
because

:::::
Y1,Y2:::

are
::::::
within

:
a
::::::
radius

:::::
t = 1

::
of

:::
Xi,::::

and
::
all

:::
Yj:::

are
:::::
within

::
a
:::::
radius

::::::
t = 2.

:::::
Using

:::
the

::::::::
distances

:::::::
between

:::
Xi :::

and
::
its

::::::::::
neighbours,

::::::::::::
T (Xi,Yj),the

:::::::::::::
dimensionality

:::
can

::
be

::::::::
estimated

::
by

:
Equation 4

:
as

:::::::
follows.

:

d̄3(Xi) =

1

2

2∑
j=1

log
T (Xi,Y3)

T (Xi,Yj)

−1 ,
=

1

2

2∑
j=1

log
2

T (Xi,Yj)

−1 ,
= [log 2]

−1
,

≈ 3.3,
:::::::::::::::::::::::::::::::

(8)

:::::
which

::
is

:::::::::
reasonably

::::
close

:::
to

::
the

::::
true

::::
data

:::
ID.

:

::
To

:::::
make

::::
sure

::::
that

:::
the

:::::::
estimate

::
is
::::::

stable,
:::

we
::::::

repeat
::::
this

:::::::::
estimation

::::
over

:::::::
multiple

::::
data

::::::
points

:::
and

::::::
average

:::
the

::::::
results

::
as

:::
per

:
Equation 5

:
.

I
::::::::
IMPACT

:::
OF

::
k
::::

ON
:::::::::::
FONDUE

::::
MLE

::
is
::::::::

sensitive
::
to

::::
the

::::::
number

:::
of

:::::::::
neighbours

:::
k,

::::
and

::
to

:::
the

::::
best

::
of

::::
our

::::::::::
knowledge,

:::::
there

::
is

::
no

::::::::
principled

:::::::
method

::
to

:::::
select

::
it.

:::
As

:::::::::
mentioned

::
in Section 4.1

:
,
:::
our

::::::::
objective

:
is
::
to
::::::::
compare

:::
the

::::
IDEs

::
of

:::::::
different

:::::::::::::
representations,

:::
not

::
to

:::::::::
accurately

:::::::
estimate

:::::
their

:::
true

:::
ID.

::::::
Thus,

::::::
having

:::::
stable

::
ID

::::::::
estimates

:
is
:::
as

::::::::
important

::
as

::::
than

:::::
being

::
as

:::::
close

::
as

:::::::
possible

::
to

:::
the

::::
true

:::
ID,

:::::
which

::
is
:::::
what

::::::
guided

:::
our

:::::::
selection

::::::
process

:::
for

::
k.

::::
We

:::::::
selected

::
k
::::::

based
::
on

::
a
:::::::::::
combination

::
of

:::::::
multiple

:::::::
criteria

::
to

::::::
ensure

::::::::::
consistency.

::::::::::
Specifically,

:::
we

::::::
ensured

::::
that:

:

•
::
the

:::::::
amount

::
of

::::
data

::::
used

:::
was

::::::::::
sufficiently

::::
large

:::::::
(10,000

:::::::
samples)

::::
and

::
the

:::::::
selected

::
k

:::::::
provided

:
a
:::::
stable

:::::::
estimate

::::
over

:::::::
multiple

:::::
runs,

::
as

::::::::::::
recommended

::
by

::::::::::::::::::::
Levina & Bickel (2004),

:

•
::
the

:::::
IDEs

::::::::
obtained

::::
with

:::
the

:::::::
selected

::
k

::::
were

::::::
similar

:::
to

:::
the

::::
IDEs

::::::::
obtained

::::
with

:::
the

::::::
closest

::::
value

::
of

:::
k,

::
as

::::::::::::
recommended

::
by

::::::::::::::::::::::
(Karbauskaitė et al., 2011),

:

•
::
the

:::::
IDEs

::::::::
obtained

:::::
with

:::
the

:::::::
selected

::
k
:::::

were
:::::::::

generally
::::::
similar

::
to
::::

the
::::::::
estimated

::::::
values

:::::::
provided

:::
by

:::::::
TwoNN.

::
As

::::::
shown

:::
in

:
Table 8,

::::
the

::::::
results

::::::::
obtained

::
by

:::::::::
FONDUE

:::::
with

:::::::
k < 20

:::
are

::::::::
generally

::::::
either

:::
less

::::::::
consistent

::::
(e.g.

::::
see

:::::
large

::::::::
variance

::
of

::::::::
estimates

::::
for

::::::::
Symsol),

::
or

:::::
close

::
to

::::
the

::::::::
estimates

:::::::
obtained

::::
with

::::::
k = 20

:::::
(e.g.,

:::
see

:::::::::
dSprites).

:::::::::
Moreover,

:::
the

:::::::::::::
dimensionality

:::::::
obtained

:::::
with

::::::
k = 20

::::::
aligns

:::
best

::::
with

::::
good

::::::::::::
reconstruction

::::::
scores,

:::
and

:::::::::
equivalent

::
or

:::::
better

:::::::::::
performance

::
on

::::::::::
downstream

:::::
tasks,

::
as
::::
seen

::
in Figure 7.

:
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J
:::::::::::::::::::::
NON-VARIATIONAL

:::::::::::::::::
AUTOENCODERS

::::
Deep

:::::::::::
deterministic

::::::::::::
autoencoders

:::::
(AEs)

::::::::::::::
(Kramer, 1991)

::
can

:::
be

:::::::
thought

::
of

::
as
::

a
:::::::::
non-linear

::::::
version

::
of

::::
PCA

::::::::::::::
(Pearson, 1901).

::::::
They

:::
are

:::::::::
composed

::
of

:::
an

:::::::
encoder

::::::
fφ(X)

::::::
which

:::::
maps

:::
the

::::
data

:::::
points

::
X

::
to

::::::::::
compressed

:::::::::::::
representations

:::
Z,

::::
and

:
a
:::::::
decoder

::::::
gθ(Z)

::::::
which

::::::
attempt

:::
to

:::::::::
reconstruct

:::
X

::::
from

:::::::::
compressed

::::::::::::
representation

:::
Z.

::::
AEs

:::
are

::::::::
optimised

::
to

::::::::
minimise

:::
the

::::::::::::
reconstruction

::::
error

:::::::::::
L(X, gθ(Z))

::::
(e.g.,

::::::
MSE).

K
:::::
HOW

::::
TO

::::::::
SELECT

::
A
:::::::
GOOD

:::::::
VALUE

::::
OF

::
t?

:::::
While

:
t
::::
was

:::
set

::
to

:
a
:::::

fixed
:::::
value

::
of

:::
0.2

::
in
::::

this
::::::
paper’s

::::::::::
experiment,

::::
one

:::::
could

:::::::
wonder

:
if
::::

this
:::::
would

::
be

:
a
:::::
good

::
fit

:::
for

::::
their

::::::::
particular

:::
use

:::::
case,

::::
and,

:
if
::::
not,

::::
how

::
to

::::::
choose

:::
the

:::::
value

::
of

::
t.

:::::
While

:::
we

::
do

:::
not

::::
have

::
an

:::::::::
automated

::::
way

::
to

:::::
select

::::
this

:::::::::
parameter,

:::
we

::::::
believe

::::
that

::::::
having

::
an

:::::::
intuitive

::::
idea

:::
of

::::
what

:
t

::::::::
represents

:::::
could

::::::
inform

::::
such

::
a

:::::::
decision.

:

::
By

:::::::
looking

::
at

:
Figures 2 and 3,

::::
one

:::
can

:::
see

::::
that

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::
IDEs

::
of

:::
the

:::::
mean

:::
and

:::::::
sampled

::::::::::::
representations

::
is
::::::::
generally

:::::
close

::
to

:::
the

::::::
number

:::
of

::::::::
additional

::::::
mixed

:::
and

::::::
passive

::::::::
variables.

:
t
::::::::
represents

::::
this

:::::::
number

::
of

:::::
“extra

:::::::::
variables”

::::::
(mixed

::::
and

:::::::
passive)

:::
that

:::
we

:::::
want

::
to

:::::
allow

:::
the

:::::
model

::
to

:::
use.

::::
As

::::
more

::::::::
complex

:::::::
datasets

::::
with

::::
high

:::
ID

::::::::
generally

:::::::
display

::::
more

::::::
mixed

::::::::
variables,

:::
we

:::
set

:
t

::
as

:
a
:::::::
fraction

:::
of

:::
the

::::
data

::::
IDE

::
to

:::::
allow

:::
the

:::::::
number

:::
of

::::::
“extra”

::::::::
variables

:::::::
selected

::
to

:::::
scale

::::
with

:::
the

::::
IDE.

:::
For

::::::::
example,

:::::
given

::::
data

::::
with

::::
IDE

::
of

:::
25,

::::::
t = 0.2

::::::
would

:::::::
roughly

::
be

:::::::::
equivalent

::
to

::::::::
allowing

::
for

::::::::::
25 ∗ 0.2 = 5

:::::::::
non-active

::::::::
variables

::::::
(mixed

::
or

::::::::
passives)

::
in

:::
the

::::::::::::
representation

::::::
chosen.

:

::::::::
Allowing

::::
more

:::::::
“extra”

:::::::
variables

::::::
(larger

::
t)
::::
will

::::::::
generally

:::::::
provide

:::::
higher

:::::::::
likelihood

::::
and

:::::
could

:::
thus

::
be

:::::::::
considered

::::::
when

:::
the

:::::
focus

::
is

:::
on

::::
data

:::::::::
generation

:::
of

::::::::
complex

:::::::
datasets

::::::
(where

:::::
these

:::::
types

::
of

:::::::
variables

::::
can

::::::::
generally

::
be

::::::::
learned).

::::::::
However,

:::
too

:::::
many

:::::
extra

:::::::
variables

::::
may

::::::::
decrease

:::
the

:::::::
accuracy

::
on

::::::::::
downstream

:::::
tasks

::::::::::::::::::::::::
(Mai Ngoc & Hwang, 2020)

:::
and

:::
lead

:::
to

::
an

::::::::
increased

:::::::::
correlation

:::
of

:::
the

::::
mean

::::::::::::
representations

::::::::::::::::::::::
(Bonheme & Grzes, 2021).

::::
So,

:::
the

:::::
value

::
of

:
t
::::
will

::::::
mainly

::::::
depend

:::
on

:::::::::
complexity

::
of

::
the

::::::
dataset

::::
and

:::
the

::::
goal

::
of

:::
the

::::::
model,

:::::
which

::
is

::::
why

:::
we

::::::
cannot

::::::
provide

::
a

::::::::
principled

::::
way

::
to

:::::
define

::
it.

::::::::
However,

:::
our

:::::::::
experiment

::::::
shows

:::
that

:::::::
t = 0.2

:
is
::
a
::::
good

::::::
initial

:::::
value.

L
:::::::::::::
ADDITIONAL

::::::::::
RESULTS

::::
This

::::::
section

:::::::
provides

::::::::
additional

:::::::::::
observations

::
of

:::
the

:::::
IDEs

::
of

:::::
VAEs

:::::
which

:::
are

:::::::::::::
complementary

::
to sec-

tion 4.2
::
but

:::
not

::::::::
necessary

:::
for

::::::::::::
understanding

:::::::::
FONDUE.

:

:::::
What

::::::::
happens

::
in

:::
the

:::::
case

::
of

:::::::::
posterior

::::::::
collapse?

::
By

:::::
using

::
a
:::::::
β-VAE

::::
with

::::
very

:::::
large

::
β

::::
(e.g.,

:::::::
β = 20),

:::
one

::::
can

::::::
induce

:::::::
posterior

::::::::
collapse,

:::::
where

:
a
::::::::
majority

::
of

:::
the

:::::
latent

:::::::
variables

:::::::
become

::::::
passive

:::
and

:::::::
prevent

:::
the

:::::::
decoder

::::
from

:::::::::
accessing

::::::::
sufficient

::::::::::
information

:::::
about

:::
the

:::::
input

::
to
:::::::

provide
::
a
::::
good

::::::::::::
reconstruction.

:::::
This

:::::::::::
phenomenon

:::
is

::::::::
illustrated

:::
in

:
Figure 13d,

::::::
where

:::
the

:::::
IDEs

:::
of

:::
the

:::::::
encoder

::::::::::::
representations

:::
are

::::::
similar

::
to

::::
what

::::
one

:::::
would

:::::
obtain

:::
for

:
a
::::
well

::::::::::
performing

:::::
model

::
in

:::
the

:::
first

::
5
:::::
layers,

::::::::
indicating

:::
that

:::::
these

:::::
early

:::::
layers

::
of

:::
the

:::::::
encoder

:::
still

::::::
encode

:::::
some

:::::
useful

::::::::::
information

:::::
about

:::
the

::::
data.

:::
The

:::::
IDEs

::::
then

::::
drop

::
in

:::
the

:::
last

::::
three

::::::
layers

::
of

:::
the

:::::::
encoder,

::::::::
indicating

::::
that

::::
most

::::::::
variables

:::
are

::::::
passive,

:::
and

::::
only

:
a
::::
very

:::::
small

::::::
amount

::
of
::::::::::
information

::
is

::::::::
retained.

:::
The

::::
IDE

::
of

:::
the

:::::::
sampled

::::::::::::
representation

:::
(see

:::::::
sampled

::
in

:
Figure 13d)

::
is

::::
then

:::::::::
artificially

::::::
inflated

:::
by

:::
the

::::::
passive

::::::::
variables

:::
and

::::::::
becomes

::::
very

::::
close

::
to

:::
the

::::::
number

::
of

::::::::::
dimensions

:::
|z|.

:::::
From

::::
this,

:::
the

:::::::
decoder

::
is

::::::
unable

::
to

::::
learn

:::::
much

::::
and

:::
has

::::
thus

:
a
:::
low

::::
IDE,

::::
close

::
to
:::
the

::::
IDE

::
of

:::
the

:::::
mean

::::::::::::
representation

::::
(see

:::
the

:::::
points

:::
on

:::
the

::::
RHS

::
of

:
Figure 13d

:
).
:

:::
The

:::::
IDEs

::
of

:::
the

::::::::
encoder

:::::::::::::
representations

::::::::
decrease,

::::
but

:::
the

::::
IDEs

:::
of

:::
the

:::::::
decoder

:::::::::::::
representations

:::
stay

::::::::
constant

:::
We

:::
can

:::
see

::
in

:
Figure 13

:::
that

:::
the

::::
IDE

::
of

:::
the

:::::::::::::
representations

::::::
learned

:::
by

:::
the

::::::
encoder

::::::::
decreases

::::
until

:::
we

:::::
reach

:::
the

:::::
mean

::::
and

:::::::
variance

::::::
layers,

::::::
which

::
is

::::::::
consistent

:::::
with

:::
the

::::::::::
observations

:::::::
reported

:::
for

:::::::::::
classification

:::::::::::::::::
(Ansuini et al., 2019)

:
.
:::::::::::

Interestingly,
:::

for
::::::::

dSprites
:::
and

:::::::
Symsol,

:::::
when

:::
the

::::::
number

:::
of

:::::
latent

::::::::
variables

::
is
:::

at
::::
least

:::::
equal

:::
to

:::
the

::::
IDE

:::
of

:::
the

:::::
data,

:::
the

:::::
IDE

::
of

::::
the

:::::
mean

:::
and

:::::::
variance

::::::::::::
representations

::
is
:::::

very
::::
close

:::
to

:::
the

:::
true

::::
data

::::
ID.

:::::
After

:
a
:::::
local

:::::::
increase

::
of

:::
the

::::
IDE

::
in
:::

the
:::::::
sampled

:::::::::::::
representations,

:::
the

::::
IDE

::
of

:::
the

:::::::
decoder

::::::::::::
representations

:::::
stays

:::::
close

::
to

:::
the

:::
IDE

:::
of

:::
the

::::
mean

::::::::::::
representations

:::
and

:::::
does

:::
not

::::::
change

:::::
much

:::::::
between

::::::
layers.
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(d)
:::::
β-VAE

:::::
trained

:::
on

::::::
dSprites

::::
with

::
10

:::::
latent

:::::::
variables

:::
and

::::::
β = 20.

Figure 13:
::::
IDEs

::
of
::::::

VAEs
::::::
trained

::::
with

::
an

:::::::::
increasing

:::::::
number

::
of

:::::
latent

::::::::::
dimensions

:::
|z|.

::::
(a),

:::
(b),

:::
and

::
(c)

:::::
show

:::
the

::::::
results

::
on

:::::::
Symsol,

::::::::
dSprites,

:::
and

:::::::
Celeba,

::::::::::
respectively.

:::
(d)

::::::
shows

:::
the

:::::
results

::
of

:::::::
β-VAEs

::::::
trained

::
on

:::::::
dSprites

::::
with

:::
10

:::::
latent

:::::::
variables

::::
and

::::::
β = 20

::
to

:::::
cause

::::::::
posterior

:::::::
collapse.

23


	Introduction
	Background
	Variational Autoencoders
	Intrinsic dimension estimation
	Related work

	Experimental setup
	Results
	Estimating the intrinsic dimensions of the datasets
	Analysing the IDEs of the different layers of VAEs
	Finding the number of dimensions by unsupervised estimation

	Conclusion
	Proof of Theorem 1
	Resources
	Experimental setup
	FONDUE on fully-connected architectures
	Additional details on mean, variance, and sampled representations
	Passive variables and posterior collapse
	Why not use variable type instead of IDE for FONDUE?
	Additional details on ID estimation using MLE
	Impact of k on FONDUE
	Non-Variational Autoencoders
	How to select a good value of t?
	Additional results

