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A SOME BASIC FORMULAS

Here, we derive some results linking the solution of the transport equation (TE) with that of the
probability flow equation (4).

A.1 PROBABILITY DENSITY AND PROBABILITY CURRENT

We begin with a lemma.
Lemma A.1. Let ⇢t : ⌦ ! R�0 satisfy the transport equation

@t⇢t(x) = �r · (vt(x)⇢t(x)) . (A.1)
Assume that vt(x) is C2 in both t and x for t � 0 and globally Lipschitz in x. Then, given any
t, t0 � 0, the solution of (A.1) satisfies

⇢t(x) = ⇢t0(Xt,t0(x)) exp

✓
�
Z t

t0
r · v⌧ (Xt,⌧ (x))d⌧

◆
(A.2)

where X⌧,t is the probability flow solution to (4). In addition, given any test function � : ⌦ ! R, we
have Z

⌦
�(x)⇢t(x)dx =

Z

⌦
�(Xt0,t(x))⇢t0(x)dx. (A.3)

In words, Lemma A.1 states that an evaluation of the PDF ⇢t at a given point x may be obtained by
evolving the probability flow equation (4) backwards to some earlier time t0 to find the point x0 that
evolves to x at time t, assuming that ⇢t0(x0) is available. In particular, for t0 = 0, we obtain

⇢t(x) = ⇢0(Xt,0(x)) exp
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0
r · v⌧ (Xt,⌧ (x))d⌧

◆
, (A.4)

and Z

⌦
�(x)⇢t(x)dx =

Z

⌦
�(X0,t(x))⇢0(x)dx. (A.5)

Since the probability current is by definition vt(x)⇢t(x), using (A.4) to express ⇢t(x) also gives the
follwing equation for the current:

vt(x)⇢t(x) = vt(x)⇢0(Xt,0(x)) exp

✓
�
Z t

0
r · v⌧ (X⌧,t(x))d⌧

◆
. (A.6)

Proof. The assumed C2 and globally Lipschitz conditions on vt guarantee global existence (on t � 0)
and uniqueness of the solution to (4). Differentiating ⇢t(Xt0,t(x)) with respect to t and using (4) and
(A.1) we deduce

d

dt
⇢t(Xt0,t(x)) = @t⇢t(Xt0,t(x)) +

d

dt
Xt0,t(x) · r⇢t(Xt0,t(x))

= @t⇢t(Xt0,t(x)) + vt(Xt0,t(x)) · r⇢t(Xt0,t(x))

= �r · vt(Xt0,t(x)) ⇢t(Xt0,t(x))

(A.7)

Integrating this equation in t from t = t0 to t = t gives

⇢t(Xt0,t(x)) = ⇢t0(x) exp

✓
�
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t0
r · v⌧ (Xt0,⌧ (x))d⌧

◆
(A.8)

Evaluating this expression at x = Xt,t0(x) and using the group properties (i) Xt0,t(Xt,t0(x)) = x and
(ii) Xt0,⌧ (Xt,t0(x)) = Xt,⌧ (x) gives (A.2). Equation (A.3) can be derived by using (A.2) to express
⇢t(x) in the integral at the left hand-side, changing integration variable x ! Xt0,t(x) and noting
that the factor exp

⇣
�
R t
t0 r · v⌧ (Xt,⌧ (x))

⌘
is precisely the Jacobian of this change of variable. The

result is the integral at the right hand-side of (A.3).

Lemma A.1 also holds locally in time for any vt(x) that is C2 in both t and x. In particular, it holds
locally if we set st(x) = r log ⇢t(x) and if we assume that ⇢0(x) is (i) positive everywhere on ⌦ and
(ii) C3 in x. In this case, (A.1) is the Fokker-Planck equation (FPE) and (A.2) holds for the solution
to that equation.
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A.2 CALCULATION OF THE DIFFERENTIAL ENTROPY

We now consider computation of the differential entropy, and state a similar result.

Lemma A.2. Assume that ⇢0 : ⌦ ! R�0 is positive everywhere on ⌦ and C3 in its argument. Let
⇢t : ⌦ ! R�0 denote the solution to the Fokker Planck equation (FPE) (or equivalently, to the
transport equation (A.1) with st(x) = r log ⇢t(x) in the definition of vt(x)). Then the differential
entropy St = �

R
⌦ log ⇢t(x) ⇢t(x)dx can expressed as

St = �
Z

⌦
log ⇢t(X0,t(x)) ⇢0(x)dx = S0 +

Z t

0

Z

⌦
r · v⌧ (X0,⌧ (x))⇢0(x)dxd⌧ (A.9)

or

St = S0 �
Z t

0

Z

⌦
s⌧ (X0,⌧ (x)) · v⌧ (X0,⌧ (x))⇢0(x)dxd⌧ (A.10)

Proof. We first derive (A.9). Observe that applying (A.5) with � = log ⇢t leads to the first equality.
The second can then be deduced from (A.4). To derive (A.10), notice that from (A.1),

d

dt
St =

Z

⌦
log ⇢t(x)r · (vt(x)⇢t(x)) dx,

= �
Z

⌦
r log ⇢t(x) · vt(x)⇢t(x)dx,

= �
Z

⌦
st(x) · vt(x)⇢t(x)dx

(A.11)

Above, we used integration by parts to obtain the second equality and st = r log ⇢t to get the third.
Now, using (A.5) with � = st · vt integrating the result gives (A.10).

A.3 RESAMPLING OF ⇢t AT ANY TIME t

If the score st ⇡ r log ⇢t is known to sufficient accuracy, ⇢t can be resampled at any time t using
the dynamics

dX⌧ = st(X⌧ )d⌧ + dW⌧ . (A.12)

In (A.12), ⌧ is an artificial time used for sampling that is distinct from the physical time in (1). For
st = r log ⇢t, the equilibrium distribution of (A.12) is exactly ⇢t. In practice, st will be imperfect
and will have an error that increases away from the samples used to learn it; as a result, (A.12) should
be used near samples for a fixed amount of time to avoid the introduction of additional errors.

B FURTHER DETAILS ON SCORE-BASED TRANSPORT MODELING

Like SBDM, SBTM is based on the observation that we can learn the score r log ⇢t of a target
distribution ⇢t globally on some interval t 2 [0, T ] via the minimization problem

min
{st:t2[0,T )}

Z T

0
�(t)

Z

⌦
|st(x) � r log ⇢t(x)|2 ⇢t(x)dxdt (B.1)

where �(t) > 0 is a pre-defined function that weights the data over the time interval (e.g. �(t) = 1
or �(t) = e�t). As stated in the main text, the primary difference between SBDM and SBTM is
the definition of ⇢t. In SBDM, ⇢t is an external input given by the solution to the Fokker-Planck
equation (FPE). In SBTM, ⇢t is the solution to the transport equation (A.1), which itself depends
on st. As a result, unlike in SBDM, ⇢t must be treated as a functional of st. We now study what
this entails, first working with the transport equation (A.1) directly in App. B.1 and then with the
probability flow equation (4) in App. B.2. While the second approach is the one that is amenable to a
practical implementation, the first is conceptually simpler.

14



Under review as a conference paper at ICLR 2023

B.1 SBTM IN THE EULERIAN FRAME

The Eulerian equivalent of Proposition 1 can be stated as:
Proposition B.1 (SBTM in the Eulerian frame). Assume that the conditions listed in Sec. 1.2 hold.
Fix T 2 (0,1], let � : [0, T ) ! R>0 be a positive function, and consider the optimization problem

min
{st:t2[0,T )}

Z T

0
�(t)

Z

⌦
|st(x) � r log ⇢t(x)|2 ⇢t(x)dxdt

subject to: @t⇢t(x) = �r · (vt(x)⇢t(x)) , x 2 ⌦

(SBTM2)

with vt(x) = bt(x) � Dt(x)st(x). Then the minimizer of (SBTM2) is unique and given by s⇤t (x) =
r log ⇢⇤t (x) where ⇢⇤t : ⌦ ! R>0 solves

@t⇢
⇤
t (x) = �r · (bt(x)⇢⇤t (x) � Dt(x)r⇢⇤t (x)) , x 2 ⌦. (FPE)

In words, this proposition states that solving the constrained optimization problem (SBTM2) is
equivalent to solving the Fokker-Planck equation (FPE).
Remark B.2. A similar result holds if we replace (SBTM2) by the diffusion-weighted loss

min
{st:t2[0,T ]}

Z T

0

Z

⌦
|st(x) � r log ⇢t(x)|2Dt(x)

⇢t(x)dxdt, (SBTM2’)

subject to the same constraints, with | · |2Dt(x)
= h·, Dt(x)·i. In this case, the minimizer need not be

unique if Dt(x) is not invertible. Nevertheless, all minimizers agree in the range of Dt(x), in the
sense that they satisfy Dt(x)s⇤t (x) = Dt(x)r log ⇢⇤t (x), where ⇢⇤t is the solution to (FPE). Since
Dt(x)s⇤t (x) is the quantity that enters the transport equation (TE) and the probability flow ODE (4),
agreement in the range is all that matters.

Proof. The constrained minimization problem (SBTM2’) can be handled by considering the extended
objective Z T

0

Z

⌦

⇣
|st � r log ⇢t|2 ⇢t + µt (@t⇢t + r · (vt⇢t))

⌘
dxdt (B.2)

where vt = bt � Dtst and µt : Rd ! R�0 is a Lagrange multiplier. The Euler-Lagrange equations
associated with (B.2) read

@t⇢t = �r · ((bt � Dtst)⇢t)

@tµt = (bt � Dtst) · rµt + |st|2 � |r log ⇢t|2 + 2r · (st � r log ⇢t) ,

0 = µT (x),

0 = st � r log ⇢t � Dtrµt

(B.3)

Clearly, these equations are satisfied if s⇤t (x) = r log ⇢⇤t (x) for all x 2 ⌦, µ⇤
t (x) = 0 for all x, and

⇢⇤t solves (FPE). This solution is also a global minimizer, because it zeroes the value of the objective.
Moreover, all global minimizers must satisfy s⇤t (x) = r log ⇢⇤t (x) (⇢t�almost everywhere), as this
is the only way to zero the objective.

It is also easy to see that there are no other local minimizers. To check this, we can eliminate st from
(B.3) using the fourth equation. This reduces the first three to

@t⇢t = �r ·
�
bt⇢t � Dtr⇢t � ⇢tD

2
t rµt

�

@tµt = bt · rµt +Dtr log ⇢t · rµt + 2r · (Dtrµt) , µT (x) = 0,
(B.4)

Since the equation for µt is homogeneous in µt and µT = 0, we must have µt = 0 for all t 2 [0, T ),
and the equation for ⇢t reduces to (FPE).

Remark B.3. We would like to stress that (SBTM2) is nontrivial because ⇢t is a functional of st. In
particular, we can expand the integrand in the objective function of (SBTM2) and use integration by
parts to rewrite it as

Z T

0

Z

⌦
|st(x) � r log ⇢t(x)|2 ⇢t(x)dxdt

=

Z T

0

Z

⌦

�
|st(x)|2 + 2r · st(x) + |r log ⇢t(x)|2

�
⇢t(x)dxdt.

However, unlike SBDM, the last term cannot be neglected because it is not a constant in st.
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B.2 SBTM IN THE LAGRANGIAN FRAME

As stated, Proposition B.1 is not practical, because it is phrased in terms of the density ⇢t. The follow-
ing result demonstrates that the transport map identity (5) can be used to re-express Proposition B.1
entirely in terms of known quantities.
Proposition 1 (SBTM in the Lagrangian frame). Assume that the conditions listed in Sec. 1.2 hold.
Fix T 2 (0,1] and let � : [0, T ) ! R>0 be a positive function. Define vt(x) = bt(x) � Dt(x)st(x)
and consider the optimization problem

min
st : t2[0,T )

Z T

0
�(t)

Z

⌦
|st(Xt(x)) � Gt(x)|2 ⇢0(x)dxdt,

subject to:
d

dt
Xt(x) = vt(Xt(x)),

d

dt
Gt(x) + [rvt(Xt(x))]

TGt(x) = �rr · vt(Xt(x)),

(SBTM)

with initial conditions X0(x) = x and G0(x) = r log ⇢0(x) = s0(x). Then, the unique minimizer
of (SBTM) is s⇤t (x) = �r log ⇢⇤t (x) where ⇢⇤t : ⌦ ! R>0 solves the Fokker-Planck equation (FPE).
Moreover, the map X⇤

t associated to this minimizer is a transport map from ⇢0 to ⇢⇤t :

x ⇠ ⇢0 implies that X⇤
t (x) ⇠ ⇢⇤t , t 2 [0, T ]. (8)

Remark B.4. Following Remark B.2, a similar result holds if we replace (SBTM) by the diffusion-
weighted loss

min
{st:t2[0,T ]}

Z T

0
�(t)

Z

⌦
|st(Xt(x)) � Gt(x)|2Dt(Xt(x))

⇢0(x)dxdt (SBTM’)

subject to the same constraints.

Proof. Let us first show that Gt(x) = r log ⇢t(Xt(x)) satisfies (SBTM) if ⇢t = Xt]⇢0, i.e. if ⇢t
satisfies the transport equation (TE). Since (TE) implies that

@t log ⇢t(x) + vt(x) · r log ⇢t(x) = �r · vt(x), (B.5)

taking the gradient of this last equation gives

@tr log ⇢t(x) + [rvt(x)]
Tr log ⇢t(x) + rr log ⇢t(x) · vt(x) = �rr · vt(x) (B.6)

Therefore Gt(x) = r log ⇢t(Xt(x)) solves

d

dt
Gt(x) = @tr log ⇢t(Xt(x)) + rr log ⇢t(Xt(x)) · d

dt
Xt(x)

= @tr log ⇢t(Xt(x)) + rr log ⇢t(Xt(x)) · vt(x)
= �rr · vt(Xt(x)) � [rvt(Xt(x))]

Tr log ⇢t(Xt(x))

(B.7)

and we recover the equation for Gt(x) in (SBTM). Hence, the objective in (SBTM) can also be
written as Z T

0

Z

⌦
|st(Xt(x)) � r log ⇢t(Xt(x))|2 ⇢0(x)dxdt

=

Z T

0

Z

⌦
|st(x) � r log ⇢t(x)|2 ⇢t(x)dxdt

(B.8)

where the second equality follows from (A.5) if ⇢t(x) satisfies (A.1). Therefore, (SBTM) is equivalent
to (SBTM2).

In terms of a practical implementation, the objective in (SBTM) can be evaluated by generating
samples {xi}ni=1 from ⇢0 and solving the equations for Xt and Gt using the initial conditions
X0(xi) = xi and G0(xi) = r log ⇢0(xi). Note that evaluating this second initial condition only
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requires one to know ⇢0 up to a normalization factor. To evaluate the gradient of the objective, we
can introduce equations adjoint to those for Xt and Gt. They read, respectively

d

dt
✓t(x) + [rvt(Xt(x))]

T✓t(x) = ⌘t(x) · rrvt(Xt(x))Gt(x)

+ ⌘t(x) · rrrvt(Xt(x))Gt(x)

+ 2rst(Xt(x))(st(Xt(x)) � Gt(x)),

✓T (x) = 0

d

dt
⌘t(x) � rvt(Xt(x))⌘t(x) = 2(Gt(x) � st(Xt(x))),

⌘T (x) = 0.

(B.9)

In terms of these functions, the gradient of the objective is the gradient with respect to st(x) (or the
parameters in this function when it is modeled by a neural network) of the extended objective:

L[st] =

Z T

0

Z

⌦
|st(Xt(x)) � Gt(x)|2 ⇢0(x)dxdt

+

Z T

0

Z

⌦
✓t(x) ·

⇣
Ẋt(x) � vt(Xt(x))

⌘
⇢0(x)dxdt

+

Z T

0

Z

⌦
⌘t(x) ·

⇣
Ġt(x) + [rvt(Xt(x))]

TGt(x)

+ rr · vt(Xt(x))
⌘
⇢0(x)dxdt,

(B.10)

where vt(x) = bt(x) +Dt(x)st(x).

B.3 BOUNDING THE KL DIVERGENCE

Let us restate Proposition 2 for convenience:

Proposition 2 (Control of the KL divergence). Let ⇢t denote the solution to the transport equa-
tion (TE) with vt(x) = bt(x) � Dt(x)st(x) and let ⇢⇤t denote the solution to the Fokker-Planck
equation (FPE). Assume that ⇢t=0(x) = ⇢⇤t=0(x) for all x 2 ⌦. Then for any T 2 [0,1)

DKL(⇢T |⇢⇤T )  Dm

2

Z T

0

Z

⌦
|st(Xt(x)) � Gt(x)|2 ⇢0(x)dxdt (9)

where Xt(·) and Gt(·) obey the dynamics in (SBTM) and Dm = supt�0 supx2⌦ kDt(x)k < 1
with kDt(x)k = supz:kzk=1 z

TDt(x)z.

Proof. By assumption, ⇢t solves (TE) and ⇢⇤t solves (FPE). Denote by vt(x) = bt(x) � Dt(x)st(x)
and v⇤t (x) = bt(x) � Dt(x)s⇤t (x) with s⇤t (x) = r log ⇢⇤t (x). Then, we have

d

dt
DKL(⇢t|⇢⇤t ) =

d

dt

Z

⌦
log

✓
⇢t(x)

⇢⇤t (x)

◆
⇢t(x)dx,

= �
Z

⌦

⇢t(x)

⇢⇤t (x)
@t⇢

⇤
t (x)dx+

Z

⌦
log

✓
⇢t(x)

⇢⇤t (x)

◆
@t⇢t(x)dx,

= �
Z

⌦
v⇤t (x) · r

✓
⇢t(x)

⇢⇤t (x)

◆
⇢⇤t (x)dx+

Z

⌦
vt(x) · r log

✓
⇢t(x)

⇢⇤t (x)

◆
⇢t(x)dx,

= �
Z

⌦
(v⇤t (x) � vt(x)) · (r log ⇢t(x) � r log ⇢⇤t (x)) ⇢t(x)dx,

=

Z

⌦
(s⇤t (x) � st(x)) · Dt(x) (r log ⇢t(x) � s⇤t (x)) ⇢t(x)dx.
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Above, we used integration by parts to get the third equality. Using the identity (A.5), this can be
expressed in terms of the transport map Xt as

d

dt
DKL(⇢t|⇢⇤t )

=

Z

⌦
(s⇤t (Xt(x)) � st(Xt(x))) · Dt(Xt(x)) (r log ⇢t(Xt(x)) � s⇤t (Xt(x))) ⇢0(x)dx

=

Z

⌦
(s⇤t (Xt(x)) � st(Xt(x))) · Dt(Xt(x)) (Gt(x) � s⇤t (Xt(x))) ⇢0(x)dx

where we used the definition of Gt(x) to get the second equality. Since (dropping the argument for
simplicity of notation and denoting |a|2Dt

= a · Dta)

|Gt � st|2Dt
= |Gt � s⇤t + s⇤t � st|2Dt

= |Gt � s⇤t |2Dt
+ |s⇤t � st|2Dt

+ 2(Gt � s⇤t ) · Dt(s
⇤
t � st)

� 2(Gt � s⇤t ) · Dt(s
⇤
t � st)

(B.11)

we deduce that
d

dt
DKL(⇢t|⇢⇤t )  1

2

Z

⌦
|st(Xt(x)) � Gt(x)|2Dt(x)

⇢0(x)dx (B.12)

Integrating this equation on t 2 [0, T ] using DKL(⇢0|⇢⇤0) = 0 implies (9) by definition of Dm.

Remark B.5. Note that (B.12) gives a better bound than (9), thereby justifying use of the diffusion-
weighted objective in (SBTM’). Note also that if ⇢0 6= ⇢⇤0 we simply get

DKL(⇢T |⇢⇤T )  DKL(⇢0|⇢⇤0) +
1

2

Z T

0

Z

⌦
|st(Xt(x)) � Gt(x)|2Dt(x)

⇢0(x)dxdt (B.13)

B.4 SEQUENTIAL SBTM

Let us restate Proposition 3 for convenience:
Proposition 3 (Sequential SBTM). In the same setting as Proposition 1, let Xt be a transport map
from ⇢0 to ⇢t such that Xt]⇢0 = ⇢t. Fix t � 0 and consider the optimization problem

min
st

Z

⌦

�
|st(Xt(x))|2 + 2r · st(Xt(x))

�
⇢0(x)dx. (seqSBTM)

Then the minimizer s⇤t of (seqSBTM) is unique and is given by s⇤t = r log ⇢t.

Proof. If Xt]⇢0 = ⇢t, then by definition we have the identity
Z

⌦

�
|st(Xt(x))|2 + 2r · st(Xt(x))

�
⇢0(x)dx

=

Z

⌦

�
|st(x)|2 + 2r · st(x)

�
⇢t(x)dx. (B.14)

This means that the optimization problem in (seqSBTM) is equivalent to

min
st2Ft

Z

⌦

�
|st(x)|2 + 2r · st(x)

�
⇢t(x)dx. (SBTM3)

The minimizer of this problem is unique and given by s⇤t (x) = r log ⇢t(x).

B.5 DENOISING LOSS

The following standard trick can be used to avoid computing the divergence of st(x):
Lemma B.6. Given ⇠ = N(0, I), we have

lim
↵#0

↵�1E
�
st(x+ ↵⇠) · ⇠

�
= r · st(x),

lim
↵#0

↵�1E
�
st(x+ ↵�t(x)⇠) · �t(x)⇠

�
= tr (Dt(x)rst(x))

(B.15)
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Proof. We have

↵�1st(x+ ↵⇠) · ⇠ = ↵�1st(x) · ⇠ + (rst(x)⇠) · ⇠ + o(↵) (B.16)

The expectation of the first term on the right-hand side of this equation is zero; the expectation of the
second gives the result in (B.15). Hence, taking the expectation of (B.16) and evaluating the result
in the limit as ↵ # 0 gives the first equation in (B.15). The second equation in (B.15) can be proven
similarly using �t(x)�t(x)T = Dt(x).

Replacing r · st(x) in (seqSBTM) with the first expression in (B.16) for a fixed ↵ > 0 gives the loss

L[st] = E⇠

Z

⌦

�
|st(Xt(x))|2 + 2st(Xt(x) + ↵⇠) · ⇠

�
⇢0(x)dx

�
. (B.17)

Evaluating the square term at a perturbed data point and re-weighting by ↵2 recovers the denoising
loss of Vincent (2011)

L[st] = E⇠

"Z

⌦

����st(Xt(x) + ↵⇠) +
⇠

↵2

����
2

⇢0(x)dx

#
. (B.18)

In practice, we observe that the smoothing effect of the noise in (B.17) & (B.18) allows the objective
to probe regions nearby the samples, and hence improves exploration.

We can also improve the accuracy of the approximation with a “doubling trick” that applies two
draws of the noise of opposite sign to reduce the variance. This amounts to replacing the expectations
in (B.15) with

1
2↵

�1E
⇥
st(x+ ↵⇠) · ⇠ � st(x � ↵⇠) · ⇠

⇤
,

1
2↵

�1E
⇥
st(x+ ↵�t(x)⇠) · �t(x)⇠ � st(x � ↵�t(x)⇠) · �t(x)⇠

⇤
,

(B.19)

whose limits as ↵ ! 0 are r · st(x) and tr (Dt(x)rst(x)), respectively. In practice, we observe that
this approach always helps. Moreover, we observe that use of the denoising loss stabilizes training,
so that it is preferable to full computation of r · st(x) even when the latter is feasible.

C GAUSSIAN CASE

Here, we consider the case of an Ornstein-Uhlenbeck (OU) process where the score can be written
analytically, thereby providing a benchmark for our approach. The example treated in Section 4.1.1
with details in Appendix D.1 is a special case of such an OU process with additional symmetry arising
from permutations of the particles.

The SDE reads
dXt = ��t(Xt � bt)dt+

p
2�tdWt (C.1)

where Xt 2 Rd, �t 2 Rd⇥d is a time-dependent positive-definite tensor (not necessarily symmetric),
bt 2 Rd is a time-dependent vector, and �t 2 Rd⇥d is a time-dependent tensor. The Fokker-Planck
equation associated with (C.1) is

@t⇢t(x) = �r · ((�tx � bt)⇢t(x) � Dtr⇢t(x)) (C.2)

where Dt = �t�T
t . Assuming that the initial condition is Gaussian, ⇢0 = N(m0, C0) with C0 =

CT
0 2 Rd⇥d positive-definite, the solution is Gaussian at all times t � 0, ⇢t = N(mt, Ct) with mt

and Ct = CT
t solutions to

ṁt = ��t(mt � bt)

Ċt = ��tCt � Ct�
T
t + 2Dt

(C.3)

This implies in particular that

st(x) = r log ⇢t(x) = �C�1
t (x � mt). (C.4)

so that the probability flow equation for Xt and the equation for Gt written in (SBTM) read

Ẋt(x) = (DtC
�1
t � �t)Xt(x) + �tbt � DtC

�1
t mt,

Ġt(x) = (�T
t � C�1

t Dt)Gt(x),
(C.5)
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with initial condition X0(x) = x and G0(x) = r log ⇢0(x) = �C�1
0 (x � m0). It is easy to

see that with x ⇠ ⇢0 = N(m0, C0) we have Xt(x) ⇠ ⇢t = N(mt, Ct) since, from the first
equation in (C.5), the mean and variance of Xt satisfy (C.3). Similarly, when x ⇠ ⇢0 = N(m0, C0),
G0(x) ⇠ N(0, C�1

0 ), so that Gt(x) ⇠ N(0, C�1
t ) because the second equation in (C.5) is linear and

hence preserves Gaussianity. Moreover, E0Gt(x) = 0 and Bt = BT
t = E0[Gt(x)GT

t (x)] satisfies

d

dt
Bt = (�T

t � C�1
t Dt)Bt +Bt(�t � DtC

�1
t ) (C.6)

The solution to this equation is Bt = C�1
t since substituting this ansatz into (C.6) gives the equation

for C�1
t that we can deduce from (C.3)

d

dt
C�1

t = C�1
t ĊtC

�1
t = �C�1

t �t � �T
t C

�1
t + 2C�1

t DtC
�1
t . (C.7)

Note that if �t = �, bt = b, and Dt = D are all time-independent, then limt!1 ⇢t = N(m1, C1)
with m1 = b and C1 the solution to the Lyapunov matrix equation

�C1 + C1�T = 2D. (C.8)

This means that at long times the coefficients at the right-hand sides of (C.5) also settle on constant
values. However, Xt and Gt do not necessarily stop evolving; one situation where they too tend to fix
values is when the OU process is in detailed balance, i.e. when � = DA for some A = AT 2 Rd⇥d

positive-definite. In that case, the solution to (C.8) is C1 = A�1 and it is easy to see that at long
times the right hand sides of (C.5) tend to zero.
Remark C.1. This last conclusion is actually more generic than for a simple OU process. For any
SDE in detailed balance, i.e. that can be written as

dXt = �D(Xt)rU(Xt)dt+ r · D(Xt)dt+
p
2�t(Xt)dWt (C.9)

where U : Rd ! R>0 is a C2-potential such that Z =
R
Rd e�U(x)dx < 1, we have that

limt!1 ⇢t(x) = Z�1e�U(x), and the corresponding flows Xt and Gt eventually stop as t ! 1. In
this case, ⇢t follows gradient descent in W2 over the energy

E[⇢] =

Z

Rd

(U(x) + log ⇢(x))⇢(x)dx (C.10)

The unique PDF minimizing this energy is Z�1e�U(x), and as t ! 1 Xt converges towards a
transport map between the initial ⇢0 and Z�1e�U(x).

D EXPERIMENTAL DETAILS AND ADDITIONAL EXAMPLES

All numerical experiments were performed in jax using the dm-haiku package to implement the
networks and the optax package for optimization.

D.1 HARMONICALLY INTERACTING PARTICLES IN A HARMONIC TRAP

Network architecture Both the single-particle energy U✓t,1 : Rd ! R and two-particle interaction
energy U✓t,2 : Rd ⇥ Rd ! R are parameterized as single hidden-layer neural networks with the
swish activation function (Ramachandran et al., 2017) and n_hidden = 100 hidden neurons.
The hidden layer biases are initialized to zero while the hidden layer weights are initialized from
a truncated normal distribution with variance 1/fan_in, following the guidelines recommended
in (Ioffe & Szegedy, 2015).

Optimization The Adam (Kingma & Ba, 2017) optimizer is used with an initial learning rate of
⌘ = 10�4 and otherwise default settings. At time t = 0, the analytical relative loss

L[s0] =

R
|s0(x) � r log ⇢0(x)|2⇢0(x)dxR

|r log ⇢0(x)|2⇢0(x)dx
(D.1)
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is minimized to a value less than 10�4 using knowledge of the initial condition ⇢0 = N
�
�0,�2

0I
�

with �0 = 0.25. In (D.1), the expectation with respect to ⇢0 is approximated by an initial set of

samples xj =
⇣
x(1)
j , x(2)

j , . . . , x(N)
j

⌘T
with j = 1, . . . , n drawn from ⇢0. In the experiments, we set

n = 100. We set the physical timestep �t = 10�3 and take n_opt_steps = 25 steps of Adam until
the norm of the gradient is below gtol = 0.1.

Analytical moments First define the mean, second moment, and covariance according to

m(i)
t = E

⇥
X(i)

t

⇤
,

M (ij)
t = E

⇥
X(i)

t

�
X(j)

t

�T⇤
,

C(ij)
t = M (ij) � m(i)

�
m(j)

�T
.

It is straightforward to show that the mean and covariance obey the dynamics

ṁ(i)
t = �(m(i)

t � �t) +
↵

N

NX

k=1

⇣
m(i)

t � m(k)
t

⌘
, (D.2)

Ċ(ij)
t = �2(1 � ↵)C(ij)

t + 2DI�ij � ↵

N

NX

k=1

⇣
C(kj)

t + C(ik)
t

⌘
(D.3)

Because the particles are indistinguishable so long as they are initialized from a distribution that is
symmetric with respect to permutations of their labeling, the moments will satisfy the ansatz

m(i)
t = m̄(t), i = 1, . . . , N (D.4)

C(ij)
t = Cd(t)�ij + Co(t)(1 � �ij), i, j = 1, . . . , N. (D.5)

The dynamics for the vector m̄ : R�0 ! Rd̄, as well as the matrices Cd : R�0 ! Rd̄⇥d̄ and
Co : R�0 ! Rd̄⇥d̄ can then be obtained from (D.2) and (D.3) as

˙̄m = �t � m̄,

Ċd = 2(↵ � 1)Cd � 2
↵

N
(Cd + (n � 1)Co) + 2DI,

Ċo = 2(↵ � 1)Co � 2
↵

N
(Cd + (n � 1)Co) .

For a given � : R ! Rd̄, these equations can be solved analytically in Mathematica as a function of
time, giving the mean mt = m̄(t) ⌦ 1N 2 RNd̄ and covariance Ct = (Cd(t) � Co(t)) ⌦ IN⇥N +
Co(t)⌦

�
1N1TN

�
2 RNd̄⇥Nd̄. Because the solution is Gaussian for all t, we then obtain the analytical

solution to the Fokker-Planck equation ⇢⇤t = N (mt, Ct) and the corresponding analytical score
�r log ⇢⇤t (x) = C�1

t (x � mt).

Potential structure Here, we show that the potential for this example lies in the class of potentials
described by (13). From Equation D.5, we have a characterization of the structure of the covariance
matrix Ct for the analytical potential Ut(x) =

1
2 (x � mt)TC

�1
t (x � mt). In particular, Ct is block

circulant, and hence is block diagonalized by the roots of unity (the block discrete Fourier transform).
That is, we may take a “block eigenvector” of the form !k =

�
Id̄⇥d̄⇢

k, Id̄⇥d̄⇢
2k, . . . , Id̄⇥d̄⇢

(N�1)k
�T

with ⇢ = exp(�2⇡i/N) for k = 0, . . . N � 1. By direct calculation, this block diagonalization leads
to two distinct block eigenmatrices,

Ct = V

0

BB@

Cd(t) + (N � 1)Co(t) 0 0 . . . 0
0 Cd(t) � Co(t) 0 . . . 0

0 0
. . . . . . 0

0 0 0 . . . Cd(t) � Co(t)

1

CCAV �1

where V 2 RNd̄⇥Nd̄ denotes the matrix with block columns !k. The inverse matrix C�1
t then

must similarly have only two distinct block eigenmatrices given by (Cd(t) + (N � 1)Co(t))
�1 and

(Cd(t) � Co(t))
�1. By inversion of the block Fourier transform, we then find that

�
C�1

t

�(ij)
= C̄d�ij + C̄o(1 � �ij)
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for some matrices C̄d, C̄o. Hence, by direct calculation

(x � mt)
T C�1

t (x � mt) =
NX

i,j

⇣
x(i) � m(i)

t

⌘T �
C�1

t

�(ij) ⇣
x(j) � m(j)

t

⌘

=
NX

i,j

⇣
x(i) � m̄(t)

⌘T �
C̄d�ij + C̄o(1 � �ij)

� ⇣
x(j) � m̄(t)

⌘

=
NX

i

⇣
x(i) � m̄(t)

⌘T
C̄d

⇣
x(i) � m̄(t)

⌘T

+
NX

i 6=j

⇣
x(i) � m̄(t)

⌘T
C̄o

⇣
x(j) � m̄(t)

⌘

Above, we may identify the first term in the last line as
PN

i=1 U1(x(i)) and the second term in the
last line as 1

N

PN
i 6=j U2(x(i), x(j)). Moreover, U2(·, ·) is symmetric with respect to its arguments.

Analytical Entropy For this example, the entropy can be computed analytically and compared
directly to the learned numerical estimate. By definition,

St = �
Z

RNd̄

log ⇢t(x)⇢t(x)dx,

= �
Z

RNd̄

✓
�Nd̄

2
log(2⇡) � 1

2
log detCt � 1

2
(x � mt)

TC�1
t (x � mt)

◆
⇢t(x)dx,

=
Nd̄

2
(log (2⇡) + 1) +

1

2
log detCt.

Additional figures Images of the learned velocity field and potential in comparison to the
corresponding analytical solutions can be found in Figures D.1 and D.2, respectively. Fur-
ther detail can be found in the corresponding captions. We stress that the two-dimensional
images represent single-particle slices of the high-dimensional functions. A movie of
the particle motion can be found at the link https://drive.google.com/file/d/
1G6-c0NNFtXW3UxFM0RwqPSDsVD6mDGkq/view?usp=sharing. The movie highlights
the similarity between the learned and SDE trajectories, while the noise free system collapses to a
point.

D.2 SOFT SPHERES IN AN ANHARMONIC TRAP

Network architecture Both potential terms U✓t,1 and U✓t,2 are modeled as four hidden-layer deep
fully connected networks with n_hidden = 32 neurons in each layer. The initialization is identical
to Appendix D.2.

Optimization and initialization The Adam optimizer is used with an initial learning rate of
⌘ = 5 ⇥ 10�3 and otherwise default settings. At time t = 0, the loss (D.1) is minimized to a
value less than 10�4 over n samples x0,j ⇠ N(�0,�2

0I) with �0 = 0.5 and n = 1000, similar to
Appendix D.2. After this initial optimization, 100 steps of the SDE (15) are taken in artificial time ⌧
with fixed physical t = 0 to ensure that no spheres are overlapping at initialization. Past this initial
stage, the denoising loss is used with a noise scale � = 0.025. The loss is minimized by taking
n_opt_steps = 25 steps of Adam until the norm of the gradient is below gtol = 0.5. The physical
timestep is set to �t = 10�3.

Additional figures A depiction of the one-particle potential, estimated as the negative
logarithm of the one-particle PDF obtained via kernel density estimation, can be found
in Figure D.3 (for further details, see the caption). Movies of the particle motion with
respect to the moving trap can be found at https://drive.google.com/file/d/
111HPnZD37pjgO2tDgXQRbabvlELXwTC3/view?usp=sharing and https://drive.
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Figure D.1: A system of N = 50 harmonically interacting particles in a harmonic trap: slices of
the high-dimensional velocity field. Cross sections of the velocity field for N = 50 harmonically
interacting particles in a moving harmonic trap. Columns depict the learned, analytical, noise-free,
and error between the learned and analytical velocity fields, respectively. Rows indicate different
time points, corresponding to t = 1.25, 2.5, 3.75, and 5.0, respectively. Each velocity field is plotted
as a function of a single particle’s coordinate (denoted as x and y); all other particle coordinates are
fixed to be at the location of a sample. Color depicts the magnitude of the velocity field while arrows
indicate the direction. Learned, analytical, and noise-free share a colorbar for direct comparison; the
error occurs on a different scale and is plotted with its own colorbar. White circles in the error plot
indicate samples projected onto the xy plane; locations of low error correlate well with the presence
of samples.

23

https://drive.google.com/file/d/1j6T7vJVulF46aN_ByWxXOxtTULv17Emv/view?usp=sharing
https://drive.google.com/file/d/1j6T7vJVulF46aN_ByWxXOxtTULv17Emv/view?usp=sharing
https://drive.google.com/file/d/1j6T7vJVulF46aN_ByWxXOxtTULv17Emv/view?usp=sharing
https://drive.google.com/file/d/1j6T7vJVulF46aN_ByWxXOxtTULv17Emv/view?usp=sharing
https://drive.google.com/file/d/1j6T7vJVulF46aN_ByWxXOxtTULv17Emv/view?usp=sharing


Under review as a conference paper at ICLR 2023

�2

0

2
y

learned analytical error

�2

0

2

y

�2

0

2

y

�2 0 2
x

�2

0

2

y

�2 0 2
x

�2 0 2
x

5 10 15 0.0 2.5 5.0

Figure D.2: A system of N = 50 harmonically interacting particles in a harmonic trap: slices
of the high-dimensional potential. Cross sections of the potential field U✓t(x) computed via (13).
Columns depict the learned, analytical, and error between the learned and analytical, respectively.
Rows indicate distinct time points, corresponding to t = 1.25, 2.5, 3.75, and 5.0, respectively. As
in Figure D.1, each potential field is plotted as a function of a single particle’s coordinate (denoted
as x and y) with other particle coordinates fixed on a sample. All potentials are normalized via an
overall shift so that the minimum value is zero. White circles in the error plot indicate samples from
the learned system projected onto the xy plane.
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google.com/file/d/1j6T7vJVulF46aN_ByWxXOxtTULv17Emv/view?usp=
sharing, while movies in a fixed reference frame can be found at https://drive.google.
com/file/d/18PWSW1YOfCsJt5v7szyCf4IDXzJtggIt/view?usp=sharing and
https://drive.google.com/file/d/1SbLtFaAB-tAteUfJWwlTUcdoSapYPHsY/
view?usp=sharing. The movies highlight configurational re-arrangements and a “rolling
motion” that preserves the statistics of the SDE not seen in the noise free system.

D.3 AN ACTIVE SWIMMER

Here, we study an “active swimmer” model that describes the motion of a particle in an anharmonic
trap with a preference to travel in a noisy direction. The system is two-dimensional, and is given by
the stochastic differential equation for the position x and velocity v

dx =
�
�x3 + v

�
dt,

dv = ��vdt+
p
2�DdWt.

(D.6)

Despite its low-dimensionality, (D.6) exhibits convergence to a non-equilibrium statistical steady
state in which the probability current jt(x) = vt(x)⇢t(x) is non-zero.

Setup We set � = 0.1 and D = 1.0. Because noise only enters the system through the velocity
variable v in (D.6), the score can be taken to be one-dimensional. This is equivalent to learning the
score only in the range of the rank-deficient diffusion matrix. We parameterize the score directly
st : R2 ! R using a three-hidden layer neural network with n_hidden = 32 neurons per hidden
layer.

Optimization and initialization The network initialization is identical to the previous two exper-
iments. The physical timestep is set to �t = 10�3. The Adam optimizer is used with an initial
learning rate of ⌘ = 10�4. At time t = 0 the loss (D.1) is minimized to a tolerance of 10�4 over
n = 5000 samples drawn from an initial distribution N(0,�2

0I) with �0 = 1. The denoising loss is
used with a noise scale � = 0.05, using n_opt_steps = 25 steps of Adam until the norm of the
gradient is below gtol = 0.5.

Results Depictions of the sample trajectories {xi(t), vi(t)}ni=1 in phase space are shown in Fig-
ure D.4. The trajectories demonstrate that the distribution of the learned samples qualitatively matches
the distribution of the SDE samples. The noise-free system grows increasingly and overly compressed
with time. The learned velocity field effectively captures a non-zero rotational steady-state current
that qualitatively matches the current of the SDE but enjoys more interpretable sample trajectories.

A movie of the motion of the samples (xi, vi) in phase space can be seen at https:
//drive.google.com/file/d/1YqMEF7HO1z47CRwC8JJUTD1ehIQ_fbjj/view?
usp=sharing. The movie highlights convergence of the learned solution to a non-zero steady-state
probability current that qualitatively matches that of the SDE. By contrast, the noise-free system
becomes increasingly concentrated with time, failing to accurately capture the current. Figure D.5
depicts the learned velocity field vt(x) = bt(x) � Dst(x). The figure highlights the structure of
the steady-state current, which contains an elliptical region with closed orbits. The elliptical region
remains roughly fixed in size as time proceeds, while the orbits of the noise-free system in Figure D.6
become increasing compressed. Kernel density estimation demonstrates that an estimated PDF for
the samples of learned solution qualitatively matches that of the SDE (Figure D.7).
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Figure D.3: A system of N = 5 soft-sphere particles in an anharmonic trap: one-particle potential.
Cross sections of the one-particle potential field U(x) = � log ⇢KDE(x) where ⇢KDE denotes a
kernel density estimate of the one-particle density obtained by pooling all particles and treating
them as equivalent two-dimensional samples, shown relative to the moving mean. Columns depict
the learned, SDE, and noise free systems, respectively. Purple dots indicate samples from the
corresponding system. Rows indicate distinct time points, corresponding to t = 1.25, 2.5, 3.75, and
4.95, respectively. All potentials are normalized via an overall shift so that the minimum value is
zero, and are clipped to a maximum value of 15. The learned and SDE potentials match well, while
the noise free KDE becomes too peaked and develops a spurious maximum that causes the particles
to align in a ring.
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Figure D.4: An active swimmer: sample trajectories. Samples in the xv plane. Columns denote
solution type and rows indicate snapshots in time (t = 0, 0.25, 0.5, 3.0, respectively). The learned
and SDE systems develop bimodality while the noise free system collapses with time and does not
correctly capture the variance.
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Figure D.5: An active swimmer: learned velocity. The learned velocity field (right-hand side of (4))
for the active swimmer example. Color indicates the magnitude of the velocity field computed on
a grid, while arrows indicate the direction of the velocity field on samples. Time corresponds to
progressing in the grid along columns from the top-left to the bottom-right image (t = k ⇥ .75 with
k the image number, zero-indexed). The learned velocity field converges to closed streamlines that
enforce a nonzero steady-state current.
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Figure D.6: An active swimmer: noise free velocity. Noise free velocity field. As in Figure D.5, color
indicates the magnitude of the velocity field while arrows indicate the direction, and time corresponds
to progressing in the grid along columns from the top-left to the bottom-right image (t = k ⇥ .75
with k the image number, zero-indexed). The velocity field in the noise-free case incorrectly pushes
the swimmers to lie along a thin band.
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Figure D.7: An active swimmer: density. PDFs computed via kernel density estimation in the xv plane.
Columns denote solution type and rows denote snapshots in time (t = 0, 0.5, 1.5, 6.0, respectively).
Similar to the samples presented in Figure D.4, the KDE reveals bimodality in the probability density
due to the presence of the particle velocity field. The noise free system becomes too concentrated and
does not accurately capture the shape of the SDE and learned solutions, while the SDE and learned
solutions are nearly identical.
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