
Reliable Estimation of KL Divergence using a
Discriminator in Reproducing Kernel Hilbert Space

Supplementary Material

Sandesh Ghimire ∗, Aria Masoomi, Jennifer Dy
Department of Electrical and Computer Engineering

Northeastern University
sandesh@ece.neu.edu, masoomi.a@northeastern.edu, jdy@ece.neu.edu

Organization: This supplementary material is presented in a format parallel to the main paper.
The section numbers and titles are consistent with the main paper. But, here we also add one new
section: Section 10 where we describe the societal impacts and possible negative impacts of the
paper. Similarly, the Theorem numbers are consistent with the main paper, but we also have several
additional theorems and lemmas which were not included in the main paper.

4 Problem Formulation and Contribution

GAN-type Objective for KL Estimation Let f be a discriminator, f : X → IR. Let p(x) and
q(x) be two probability density functions defined over the space X . First, we train a discriminator as:

f∗ = argmax
f

[Ep(x) log σ(f(x)) + Eq(x) log(1− σ(f(x)))] (1)

where σ is the Sigmoid function given by σ(x) = ex

1+ex . Then the KL divergence KL(p(x)||q(x)) is
given by:

KL(p(x)||q(x)) = Ep(x)[f
∗(x)] (2)

Proof. The proof is based on similar proofs in [7, 8] and presented here for the sake of completeness.

We rewrite the objective as :∫
p(x) log σ(f(x)) + q(x) log(1− σ(f(x)))dx (3)

This integral is maximum with respect to f if and only if the integrand is maximal for every x. As
argued in the Proposition 1 of [2], the function

t 7→ a log(t) + b log(1− t) (4)
attains its maximum at t = a

a+b showing that,

σ(f∗(x)) =
p(x)

p(x) + q(x)
(5)

Plugging the expression for Sigmoid function, we obtain,

f∗(x) =
p(x)

q(x)
(6)

Therefore, by the definition of KL divergence, we have:

KL(p(x)||q(x)) = Ep(x)[
p(x)

q(x)
] = Ep(x)[f

∗(x)] (7)

∗Webpage: https://sandeshgh.com/

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://sandeshgh.com/

6 Error Analysis and Control

We start with the set of assumptions based on which our theory is developed.

A1. The input domains X andW are compact.

A2. The functions φθ and g are Lipschitz continuous with Lipschitz constant Lφ and Lg respec-
tively.

A3. Higher order derivatives Dα
xK(x, t) of kernel K exist up to some high order ν/2 .

Proposition 1. Under the assumptions A1, A2, we have
i) sup

x,t
Kθ(x, t) <∞, and

ii) ||g||2L2(dτ)
<∞.

Proof. i) By the definition Kθ(x, t) = γ〈φθ(x), φθ(t)〉. Using Cauchy Schwartz,

Kθ(x, t) ≤ γ||φθ(x)||||φθ(t)|| (8)
≤ γLφ||x||Lφ||t|| (9)
<∞ (10)

where we used the fact that X is bounded, and therefore, ||x|| and ||t|| are finite.
ii) By definition,

||g||2L2(dτ)
=

∫
g(w)2dτ(w) (11)

≤
∫
L2
g||w||2dτ(w) (12)

= L2
gtr(Cw) (13)

where Cw is the uncentered covariance matrix of the Gaussian distributed w. Therefore, we immedi-
ately obtain ||g||2L2(dτ)

<∞.

These results are useful in constructing a function f in RKHS in Theorem 1 (Section 5) of the main
paper.

6.1 Bounding the Error Probability of KL Estimates

We bound the deviation-from-mean error in two steps: 1) we derive a bound for a fixed kernel, 2) we
take supremum of this bound over all the kernels parameterized by θ.

For a fixed kernel, we first bound the probability of deviation-from-mean error in terms of the covering
number in Lemma 1. Then, we use an estimate of the covering number of RKHS due to [1] to obtain
a bound of error probability in terms of the kernel Kθ in Lemma 3. Note that, Lemma 3 is proved for
a fixed kernel Kθ, where θ is fixed. Then finally in Theorem 2, we take supremum over all kernels
Kθs to obtain a bound on error probability on a space of functions with all possible kernels.

Lemma 1. Let fmHK be the optimal discriminator function in an RKHSHK which is bounded by M
with respect to ||.||∞. Let KLm(fmHK) = 1

m

∑
i f

m
HK (xi) and KL(fmHK) = Ep(x)[f

m
HK (x)] be the

estimate of KL divergence from m samples and that by using true distribution p(x) respectively. Then
the probability of error at some accuracy level, ε is lower-bounded as:

Prob.(|KLm(fmHK)−KL(fmHK)| ≤ ε) ≥ 1− 2N (HK ,
ε

4
√
SK

) exp(− mε
2

4M2
)

where N (HK , η) denotes the covering number of a RKHS space HK with disks of radius η, and
SK = sup

x,t
K(x, t) which we refer as kernel complexity

2

Proof. Let `z(f) = Ep(x)[f(x)]− 1
m

∑
i f(xi) denotes the error in the estimate such that we want

to bound |`z(f)|. We have,

`z(f1)− `z(f2) = Ep(x)[f1(x)− f2(x)]− 1

m

∑
i

f1(xi)− f2(xi)

We know Ep(x)[f1(x)− f2(x)] ≤ ||f1 − f2||∞ and 1
m

∑
i f1(xi)− f2(xi) ≤ ||f1 − f2||∞. Using

the triangle inequality, we obtain |`z(f1)− `z(f2)| ≤ 2||f1 − f2||∞. Now, consider f ∈ HK , then,

|f(x)| = |〈Kx, f〉| ≤ ||f ||||Kx|| = ||f ||
√
K(x, x) (14)

This implies the RKHS space norm and `∞ norm of a function are related by

||f ||∞ ≤
√
SK ||f ||HK (15)

Hence, we have:

|`z(f1)− `z(f2)| ≤ 2
√
SK ||f1 − f2||HK (16)

The idea of the covering number is to cover the whole RKHS space HK with disks of some fixed
radius η, which helps us bound the error probability in terms of the number of such disks. Let
N (HK , η) be such disks covering the whole RKHS space. Then, for any function f in HK , we
can find some disk, Dj with centre fj , such that ||f − fj ||HK ≤ η. From eq.(16), we have
|`z(f) − `z(fj)| ≤ 2

√
SK ||f − fj ||HK ≤ 2

√
SKη. Now, we choose η = ε

2
√
SK

. Plugging in
ε = 2

√
SKη in the previous equation, we obtain, |`z(f)− `z(fj)| ≤ ε. This is true for any f within

the diskDj . Now, we show `z(fj) ≥ |`z(f)|−ε. To show this, |`z(f)| = |`z(f)−`z(fj)+`z(fj)| ≤
|`z(f)− `z(fj)|+ |`z(fj)| using triangle inequality. Therefore, |`z(f)| ≤ ε+ |`z(fj)|, from which
we obtain `z(fj) ≥ |`z(f)| − ε. From this statement, it is easy to see that, for any f ∈ Dj , if
|`z(f)| ≥ 2ε, then it must be true that |`z(fj)| ≥ ε. Concisely, we write

sup
f∈Dj

|`z(f)| ≥ 2ε =⇒ |`z(fj)| ≥ ε (17)

Using the Hoeffding’s inequality, Prob.(|`z(fj)| ≥ ε) ≤ 2e−
mε2

2M2 and eq.(17), we can show

Prob.(sup
f∈Dj

|`z(f)| ≥ 2ε) ≤ 2e−
mε2

2M2 (18)

The reasoning behind this equation is as follows. Let us denote the left hand side and right hand side of
eq.(17) as events A and B; i.e., sup

f∈Dj
|`z(f)| ≥ 2ε is denoted by A and |`z(fj)| ≥ ε as B. Then eq.(17)

says A implies B. That means whenever A happens, B also happens, but not vice versa. Therefore,
represented as a set, set A is possibly smaller than B, and furthermore, A is a subset of B. When A is
a subset of B, we have Pr(A) ≤ Pr(B) by using the Monotonicity property of probability measure.

Using Hoeffding’s inequality, we can further obtain, Pr(B) = Pr(|`z(fj)| ≥ ε) ≤ 2e
−mε2

2M2 . Since

Pr(A) ≤ Pr(B), we obtain, Pr(A) ≤ 2e
−mε2

2M2 which is exactly eq.(18).

Applying union bound over all the disks, we obtain,

Prob.(sup
f∈H
|`z(f)| ≥ 2ε) ≤ 2N (H, ε

2
√
SK

)e−
mε2

2M2 (19)

which is of the form Pr(X ≥ 2ε) ≤ a. We take the probability of its complement. From eq.(19),
therefore, we can obtain Pr(X ≤ 2ε) ≥ 1 − a, which would be Pr(sup

f∈H
|`z(f)| ≤ 2ε) ≥ 1 −

2N (H, ε
2
√
SK

)e−
mε2

2M2 Then, we finally set ε = ε/2 to obtain,

Prob.(sup
f∈H
|`z(f)| ≤ ε) ≥ 1− 2N (H, ε

4
√
SK

)e−
mε2

4M2

which proves the lemma.

3

On M-boundedness of fmHK
To prove the lemma, we assumed that fmHK is M bounded. To see why this is reasonable, from eq.15,
we have ||fmHK ||∞ ≤

√
SK ||fmHK ||HK ≤

√
SK ||g||L2(dρ). Therefore, fmHK is bounded if SK and

||g||L2(dρ) are bounded, which is true by Proposition 1.

Remark 1. We derived the error bound based on the Hoeffding’s inequality by assuming that our
only knowledge about f is that it is bounded. If we have other knowledge, for example, if we know
the variance of f , we could use Bernstein’s inequality instead of Hoeffding’s inequality with minimal
change to the proof. To the extent we are interested in the contribution of neural network in error
bound, however, there is not much gain by using one inequality or the other. Hence, we stick with
Hoeffding’s inequality and note other possibilities.
Remark 2. Note that in Lemma 1, the radius of disks are inversely related to the the quantity, SK ,
meaning that if SK is high, we would need large number of disks to fill the RKHS space. Hence,
it denotes a quantity that reflects the complexity of the RKHS space. We, therefore, term it kernel
complexity. Also in eq. 15 and the discussion about the M-boundedness, we see that the maximum
value |f(x)| depends on SK , again providing insight into how SK may control both maximum
fluctuation and the boundedness.

Lemma 1 bounds the probability of error in terms of the covering number of the RKHS space. Next,
we use Lemma 2 due to [1] to obtain an error bound in estimating KL divergence with finite samples
in Theorem 2.
Lemma 2 ([1]). Let K : X × X → R be a C∞ Mercer kernel and the inclusion IK : HK ↪−→ C(X)
be the compact embedding defined by K to the Banach space C(X). Let BR be the ball of radius R
in RKHSHK . Then ∀η > 0, R > 0, ν > n, we have

lnN (IK(BR), η) ≤
(
RCν
η

) 2n
ν

(20)

whereN gives the covering number of the space IK(BR) with discs of radius η, and n represents the
dimension of the input space X . Cν is given by Cν = Cs

√
||Ls|| where Ls is a linear embedding

from square integrable space L2(dρ) to the Sobolev space Hν/2, ||Ls|| denotes operator norm and
Cs is a constant.

To prove Lemma 2, the RKHS space is embedded in the Sobolev Space Hν/2 using LK and then
covering number of Sobolev space is used. Thus the norm of LK and the degree of Sobolev space,
ν/2, appears in the covering number of a ball inHK . In Lemma 3, we use this Lemma to bound the
estimation error of KL divergence.
Lemma 3. Let KL(fmHKθ

) and KLm(fmHKθ
) be the estimates of KL divergence obtained by using

true distribution p(x) and m samples respectively and using a fixed kernel, Kθ as described in
Lemma 1, then the probability of error in the estimation at the error level ε is given by:

Prob.(|KLm(fmHKθ
)−KL(fmHKθ

)| ≥ ε) ≤ 2 exp

[(
4RCs

√
SK(θ)||Ls(θ)||
ε

) 2n
ν

− mε2

4M2

]

Proof. Lemma 2 gives the covering number of a ball of radius R in an RKHS space. In Lemma 1, if
we consider the hypothesis space to be a ball of radius R, we can apply Lemma 2 in it. Additionally,
since we fix the radius of disks to be η = ε

4
√
SK

in Lemma 1, we obtain,

Prob.(|KLm(fmHKθ
)−KL(fmHKθ

)| ≥ ε) ≤ 2 exp
[(4

√
SKθRCν

ε

) 2n
ν

− mε2

4M2

]
(21)

Substituting Cν = Cs
√
||LKθ ||, we obtain,

Prob.(|KLm(fmHK)−KL(fmHKθ
)| ≥ ε) ≤ 1− 2 exp

[(
4RCs

√
SKθ ||LKθ ||
ε

) 2n
ν

− mε2

4M2

]
(22)

4

Theorem 2. Let KL(fmH) and KLm(fmH) be the estimates of KL divergence obtained by using true
distribution p(x) and m samples respectively as described in Lemma 1, then the probability of error
in the estimation at the error level ε is given by:

Prob.(|KLm(fmH)−KL(fmH)| ≤ ε) ≥ 1− 2 exp

[(
4RCp

√
Sp||Lp||
ε

) 2n
ν

− mε2

4M2

]
where Cp

√
Sp||Lp|| = sup

Kθ

Cs
√
SK(θ)||Ls||, i.e. Cp, Sp,Lp correspond to a kernel for which

the bound is maximum.

Proof. Lemma 3 gives an error bound for a fixed kernel, Kθ. To find an upper bound over all possible
kernels, we take the supremum over all kernels.

Prob.(|KLm(fmH)−KL(fmH)| ≥ ε) ≤ sup
Kθ

Prob.(|KLm(fmHKθ
)−KL(fmHKθ

)| ≥ ε) (23)

≤ 2 exp

[(
4RCp

√
Sp||Lp||
ε

) 2n
ν

− mε2

4M2

]
(24)

where Sp = SK(θp) and Lp = LK(θp), i.e., Sp and Lp correspond to kernel complexity and
Sobolev operator norm corresponding to optimal kernel Kθp that extremizes eq. (23). Theorem
statement readily follows from eq. (24)

7 Variance and Consistency of the Estimate

7.1 Variance Analysis

Theorem 3. Let X = KLm(fmH) be the estimated KL divergence using m samples as described in
Theorem 2. Assuming that X follows a Gaussian distribution X ∼ N (µ, ς2), we can obtain an upper
bound on this variance of the estimate as follows:

ς ≤ ε

√
2erf−1

[
− 4 exp

[(
4RCp
√
Sp||Lp||
ε

) 2n
ν

− mε2

4M2

]
+ 1
] (25)

where erf is the Gauss error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt (26)

and it is a monotonic function.

Proof. X follows a Gaussian distribution with mean µ and variance ς2. Let its cumulative distribution
function be Φµ,ς . By definition,

P (X ≤ x̂) = Φµ,ς(x̂) (27)
P (X ≥ x̂) = 1− Φµ,ς(x̂) (28)

P (X − µ ≥ ε) = 1− Φµ,ς(µ+ ε) (29)

Since two sided probability is higher than one sided, we have,

P (X − µ ≥ ε) ≤ P (|X − µ| ≥ ε) (30)

≤ 2 exp

[(
4RCs

√
SK ||Ls||
ε

) 2n
ν

− mε2

4M2

]
(31)

where we used Theorem 2. Using eq.29, we have,

1− Φµ,ς(µ+ ε) ≤ 2 exp

[(
4RCs

√
SK ||Ls||
ε

) 2n
ν

− mε2

4M2

]
(32)

5

For a Gaussian distribution, we can use the following expression for the cumulative distribution
function,

Φµ,ς(x̂) =
1

2

[
1 + erf

(x̂− µ
ς
√

2

)]
(33)

where erf is the Gauss error function. Using this in the eq.32,

1− erf
(ε

ς
√

2

)
≤ 4 exp

[(
4RCs

√
SK ||Ls||
ε

) 2n
ν

− mε2

4M2

]
(34)

erf
(ε

ς
√

2

)
≥ −4 exp

[(
4RCs

√
SK ||Ls||
ε

) 2n
ν

− mε2

4M2

]
+ 1 (35)

Since the function erf is invertible within domain (-1,1), we have,

ε

ς
√

2
≥ erf−1

[
− 4 exp

[(4RCs
√
SK ||Ls||
ε

) 2n
ν

− mε2

4M2

]
+ 1

]
(36)

ς ≤ ε

√
2erf−1

[
− 4 exp

[(
4RCs
√
SK ||Ls||
ε

) 2n
ν

− mε2

4M2

]
+ 1
] (37)

Note that Theorem 3 makes a strong assumption that the estimate is distributed as a Gaussian
distribution. While it gives us good intuition about the decay of variance as the complexity increases,
it is natural to inquire about the validity of this type of relation in a more general sense without
assumption on the probability distribution of the estimate. To make a general statement, the key idea
is to understand how the cumulative distribution function (CDF) is related to the variance. To clarify

this point further, let’s look at the eq.(33): 1−Φµ,ς(µ+ ε) ≤ 2 exp

[(
4RCs
√
SK ||Ls||
ε

) 2n
ν

− mε2

4M2

]
.

This equation connects the CDF to the variables like SK , R, Ls of the discriminator function space
without assuming anything about the shape of the distribution. For a Gaussian distribution, we plug
in CDF of a Gaussian distribution, Φµ,ς(x̂) = 1

2

[
1 + erf

(
x̂−µ
ς
√
2

)]
and obtain the result of Theorem

3. For any other distribution, we can carry out similar analysis. A key factor that determines the
behavior between the variance and the discriminator complexity is how variance appears in the CDF
expression. For example, in both Gaussian distribution and in exponential distribution, we know that
the relation between CDF function and variance is inversely related. We believe that as long as this
inverse type of relation between CDF and variance holds, we can obtain statements like Theorem 3
for other distributions as well. This leads to a key insight: similar to the Gaussian case, the decaying
behavior of the variance with decreasing complexity holds as long as the inverse relation between the
CDF function and the variance holds.

7.2 Consistency of Estimates

Theorem 4. Let f∗ and fmh and f∗h be optimal discriminators defined as

f∗ = argmax
f

[Ep(x) log σ(f(x)) + Eq(x) log(1− σ(f(x)))] (38)

f∗h = argmax
f∈h

[Ep(x) log σ(f(x)) + Eq(x) log(1− σ(f(x)))] (39)

fmh = argmax
f∈h

[1

m

∑
xi∼p(xi)

log σ(f(xi)) +
1

m

∑
xj∼q(xj)

log(1− σ(f(xj)))
]
− λ0
m
||g||2L2(dτ)

(40)

and the KL estimate is given by KL(f) = Ep(x)[f(x)], KLm(f) = 1
m

∑
xi∼p(xi)[f(x)]. Then,

in the limiting case as m→∞, |KLm(fmh)−KL(f∗)| P−→ 0 i.e., the convergence is in probability.

6

Proof. Estimation error can be divided into three terms as

KLm(fmh)−KL(f∗) = KLm(fmh)−KL(fmh)︸ ︷︷ ︸
Deviation-from-mean error

+KL(fmh)−KL(f∗h)︸ ︷︷ ︸
Discriminator induced error

+KL(f∗h)−KL(f∗)︸ ︷︷ ︸
Bias

(41)

Therefore,

|KLm(fmh)−KL(f∗)| ≤ |KLm(fmh)−KL(fmh)|+ |KL(fmh)−KL(f∗h)|
+ |KL(f∗h)−KL(f∗)| (42)

To show that the total error goes to zero, we show that each term on the right goes to zero. The last
term is the bias and we assume that the RKHS space h = H we consider consists the true solution,
f∗. Hence the bias goes to zero.

Using Theorem 2, it is immediately clear that the first term, |KLm(fmh)−KL(fmh)| approaches
zero in probability in the limiting case as m→∞.

The only remaining is the second term, |KL(fmh)−KL(f∗h)|. In Theorem 5 we show that this term
also goes to zero almost surely as m→∞.

Theorem 5. Let f∗h and f∗h be the optimal discriminators as defined in eq. (39) and eq. (40),
and the KL divergence estimate using discriminators learned using finite and infinite samples be
KL(fmh) =

∫
[fmh (x)]p(x)dx and KL(f∗h) =

∫
[f∗h(x)]p(x)dx, where, Then, in the limiting case,

we have
lim
m→∞

|KL(fmh)−KL(f∗h)| = 0

Proof.

|KL(fmh)−KL(f∗h)| = |
∫

[fmh (x)− f∗h(x)]p(x)dx|

≤ sup
x
|fmh (x)− f∗h(x)| = ||fmh (x)− f∗h(x)||∞

Therefore, we can show lim
m→∞

KL(fmh)−KL(f∗h) = 0 if lim
m→∞

||fmh (x)− f∗h(x)||∞ = 0, that is, if

the function fmh (x) converges uniformly to function f∗h(x) in the limiting case.

The two maximizer functions are given by

f∗h = argmax
f∈h

[Ep(x) log σ(f(x)) + Eq(x) log(1− σ(f(x)))] (43)

fmh = argmax
f∈h

[1

m

∑
xi∼p(xi)

log σ(f(xi)) +
1

m

∑
xj∼q(xj)

log(1− σ(f(xj)))
]
− λ0
m
||g||2 (44)

As a first step in showing that fmh uniformly approaches f∗h , we first show that lim
m→∞

λ0

m ||g||
2 = 0 in

Lemma 4.

Then, to prove the rest, let us denote,

Gm(f) =
1

m

∑
xi∼p(xi)

log σ(f(xi)) +
1

m

∑
xj∼q(xj)

log(1− σ(f(xj)))

G(f) = Ep(x) log σ(f(x)) + Eq(x) log(1− σ(f(x)))

In Lemma 5, we prove that functionals G(f) and Gm(f) are concave with respect to function f . In
the light of these two lemmas, we argue

lim
m→∞

||fmh (x)− f∗h(x)||∞ = 0 if lim
m→∞

sup
f
|Gm(f)−G(f)| = 0 (45)

7

Next, we show lim
m→∞

sup
f
|Gm(f)−G(f)| = 0 as follows. We have,

|Gm −G| =|
1

m

∑
xi∼p(xi)

log σ(f(xi)) +
1

m

∑
xj∼q(xj)

log(1− σ(f(xj)))

− Ep(x) log σ(f(x)) + Eq(x) log(1− σ(f(x)))| (46)

≤| 1
m

∑
xi∼p(xi)

log σ(f(xi))− Ep(x) log σ(f(x))|

+ | 1
m

∑
xj∼q(xj)

log(1− σ(f(xj)))− Eq(x) log(1− σ(f(x)))| (47)

lim
m→∞

sup
f
|Gm(f)−G(f)| ≤ lim

m→∞
sup
f
| 1
m

∑
xi∼p(xi)

log σ(f(xi))− Ep(x) log σ(f(x))|

+ lim
m→∞

sup
f
| 1
m

∑
xj∼q(xj)

log(1− σ(f(xj)))− Eq(x) log(1− σ(f(x)))| (48)

Both the terms on right hand side go to zero if log ◦σ ◦ f is in a Glivenko Cantelli class of functions
using Empirical Process Theory [10], which we prove in Lemma 6. That completes the proof.

Lemma 4. lim
m→∞

λ0

m ||g||
2 = 0

Proof. ||g||L2(dρ) is bounded because g is Lipschitz continuous and its domain is bounded. Since,
||g||L2(dρ) is bounded, we immediately obtain the required statement.

Lemma 5. The functional G(f) is concave with respect to function f in the following sense:
θ1G(f1) + θ2G(f2) ≤ G(θ1f1 + θ2f2) for any θ1, θ2 ∈ (0, 1) such that θ1 + θ2 = 1. The same is
true for Gm(f).

Proof.

θ1G(f1) + θ2G(f2) = θ1

[∫
p(x) log σ(f1(x))dx+

∫
q(x) log(1− σ(f1(x)))dx

]
+ θ2

[∫
p(x) log σ(f2(x))dx+

∫
q(x) log(1− σ(f2(x)))dx

]
(49)

=

∫
p(x)

[
θ1 log σ(f1(x))dx+ θ2 log σ(f2(x))dx

]
+

∫
q(x)

[
θ1 log σ(−f1(x))dx+ θ2 log σ(−f2(x))dx

]
(50)

≤
∫
p(x) log σ[θ1f1(x) + θ2f2(x)]dx

+

∫
q(x) log σ[−(θ1f1(x) + θ2f2(x))]dx (51)

= G(θ1f1 + θ2f2) (52)

where we used the fact that log(1−σ(f(x))) = log σ(−f(x)) (this is straightforward using definition
of Sigmoid function, σ) in line 50. In line 51, we used the fact that log σ is a concave function (see
Lemma 8).

Lemma 6. log ◦σ ◦ f is a Glivenko Cantelli class of function.

Proof. In Lemma 7, we show that, by definition, f is Lipschitz continuous with some Lipschitz
constant Lf . In Lemma 8 we show that if f is a Lipschitz continuous function from X to (−∞,∞)
with Lipschitz constant, Lf , then log σf is a function from X to (−∞, 0) with same Lipschitz
constant Lf . Hence, v = log σf is a a function from X to (−r, 0). Note that since X is bounded

8

and f is Lipschitz continuous from X to R, we can always find some r such that v maps from X to
(−r, 0).

Now, we show that v = log σf is Glivenko Cantelli by entropy number. Let V = {v : v =
log(σ(f)), f ∈ F}. In Lemma 10, we use theorem from [10] to show that V is Glivenko Cantelli if
and only if

1

m
logN(ε,VM , `1(Pm))

P→ 0, (53)

for any M > 0, ε, where VM is the class of functions v1{E ≤ M} where v ranges over V and E
is an envelope function to V . Since we proved that log(σ(f)(x)) < 0 for any x, we can choose
E = v0(x) = 0 as a constant function that is an envelope to V . For any M > 0, therefore,
1{E ≤M} = 1 trivially and VM = V . Hence, we just need to show

1

m
logN(ε,V, `1(Pm))

P→ 0 (54)

In Lemma 9, we show that the entropy number of such a function is given by

logN (ε,V, `1(Pm)) ≤
(

16L.diam(X)

ε

)ddim(X)

log

(
4r

ε

)
(55)

and therefore is bounded and independent of the sample size m. Hence, 1
m logN(ε,V, `1(Pm)) goes

to 0.

Lemma 7. The function f defined in Theorem 1 on the main paper as:

f(x) =

∫
W
g(w)ψ(x,w)dτ(w), (56)

where ψ(x,w) = φθ(x)Tw and the function φθ is Lipschitz continuous with Lipschitz constant Lφ.
Then, the function f is Lipschitz continuous with some Lipschitz constant, Lf .

Proof. By the definition,

f(x) = 〈g(w), ψ(x,w)〉L2(dτ) (57)

For any two points x1 and x2,

|f(x1)− f(x2)| = 〈g(w), ψ(x1, w)− ψ(x2, w)〉L2(dτ) (58)

≤ ||g(w)||L2(dτ)||ψ(x1, w)− ψ(x2, w)||L2(dτ) (59)

where we used Cauchy Schwartz. Now, taking the difference in ψ, it can be written as

||ψ(x1, w)− ψ(x2, w)||L2(dτ) =

√∫
[ψ(x1, w)− ψ(x2, w)]2dτ(w) (60)

=

√∫
[(φθ(x1)− φθ(x2))Tw]2dτ(w) (61)

≤

√∫
||φθ(x1)− φθ(x2)||2||w||2dτ(w) (62)

where we again used Cauchy Schwartz in the last line since [(φθ(x1) − φθ(x2))Tw] is an inner
product in RD where D is the dimension of w. Since φθ is Lipschitz continuous with Lipschitz
constant Lφ, we have

||φθ(x1)− φθ(x2)|| ≤ Lφ||x1 − x2||
Using this inequality in eq.62, we obtain

||ψ(x1, w)− ψ(x2, w)||L2(dτ) ≤ Lφ||x1 − x2||

√∫
||w||2dτ(w) (63)

= Lφ||x1 − x2||
√
tr(Cw) (64)

9

where, Cw is the uncentered covariance matrix of Gaussian distributed w. Plugging eq.(64) in eq.(59),
we obtain

|f(x1)− f(x2)| ≤ ||g(w)||L2(dτ)Lφ
√
tr(Cw)||x1 − x2|| (65)

Since, we have that ||g(w)||L2(dτ) <∞ (see Lemma 4), we have proved that f is Lipschitz continuous
with Lipschitz constant given by Lf ≤ ||g(w)||L2(dτ)Lφ

√
tr(Cw).

Lemma 8. The function log ◦σ exhibits following properties:
i) It is a concave function with its derivative always between 0 and 1
ii) If the Lipschitz constant of f is Lf , so is the Lipschitz constant of log ◦σ ◦ f

Proof. i) Let us denote u(x) = log(σ(x)). Then, we have,

u(x) = log
ex

1 + ex
= x− log(1 + ex) (66)

u′(x) = 1− ex

1 + ex
=

1

1 + ex
(67)

0 < u′(x) < 1, ∀x ∈ (−∞,∞) (68)

which proves that the derivative is between 0 and 1. To show that u(x) is concave, it is sufficient to
note that its second derivative is always negative.

ii) Let us use notation u = log(σ), and let f2 = f(x2), f1 = f(x1), u2 = u(f(x2)), u1 = u(f(x1)).
Since the maximum derivative of u is upper bounded by 1, u as a function of f has Lipschitz constant
1 and therefore, we can write

u2 − u1 = u(f2)− u(f1) ≤ f2 − f1 = f(x2)− f(x1) (69)
≤ Lf ||x2 − x1|| (70)

where the last inequality is because f is Lipschitz continuous with Lipschitz constant Lf . This proves
that the Lipschitz constant of log ◦σ ◦ f is also Lf .

Lemma 9. Let FL be the space of L-Lipschitz functions mapping the metric space (X , ρ) to [0,r].
Let ddim(X) and diam(X) denote the doubling dimension and diameter of X respectively. Then,
i) the covering numbers of FL can be estimated in terms of the covering numbers of X :

N (ε,FL, ||.||∞) ≤
(

4r

ε

)N (ε/8L,X ,||.||∞)

(71)

ii) the entropy number of FL can be estimated as:

logN (ε,FL, ||.||∞) ≤
(

16L.diam(X)

ε

)ddim(X)

log

(
4r

ε

)
(72)

iii) the entropy number with respect to `1(Pm) =
∫
|f |dPm = 1

m

∑
k |f(xk)| defined with respect to

the m input points, is the same as (ii), i.e.

logN (ε,FL, `1(Pm)) ≤
(

16L.diam(X)

ε

)ddim(X)

log

(
4r

ε

)
(73)

where Pm is an empirical probability measure with respect to m inputs points in X .

Proof. The proof is adapted from [4] Lemma 2 and [3] Lemma 6, and modified to handle range [0, r].

i) We first cover the domain X by N balls U1, U2, ..., U|N |, where N = N (ε/8L,X , ||.||∞) is the
covering number of X , N = {xi ∈ Ui}|N |i=1 is a set of center points of |N | balls and ε′ = ε/8L is the
radius of the covering balls.

Now, our strategy is to construct an ε cover F̂ = {f̂1, ..., f̂|F̂ |} for FL with respect to ||.||∞. To do

so, at every point xi ∈ N , we choose the value of f̂(xi) to be some multiple of 2Lε′ = ε
4 , while

10

maintaining ||f̂ ||Lip ≤ 2L. We then construct a 2L-Lipschitz extension for f̂ from N to all over
X (note that such an extension always exists, see [6, 11]).

With this construction, we can show that every f ∈ FL is close to some f̂ ∈ F̂ in the sense that
||f − f̂ ||∞ ≤ ε. To show this, note the following:

|f(x)− f̂(x)| ≤ |f(x)− f(xN)|+ |f(xN)− f̂(xN)|+ |f̂(xN)− f̂(x)| (74)
≤ L.ρ(x, xN) + ε/4 + 2L.ρ(x, xN) (75)
≤ ε (76)

where the inequality in eq.75 is due to the fact that f is L-Lipschitz and f̂ is 2L-Lipschitz and since
we have covered the input space X , each x is within ε′ of some xN . Also note that for every f(xN)

we can find f̂(xN) within some radius ε/4; this is because we choose f(xN) to be some multiple
of 2Lε′. Finally, we need to compute the cardinality of F̂ , i.e. |F̂ |. For any xi ∈ |N |, f̂ can take
one of the multiple of 2Lε′ values. Hence, there are r/2Lε′ such possibilities as the range is [0, r].
Since there are |N | such possibilities for xi, the upper bound on all possible function values f̂ is
(r
2Lε′)

|N | = (4r
ε)|N |, which proves the first statement after plugging in the value of |N |.

ii) Taking logarithm of the result in i)

logN (ε,FL, ||.||∞) ≤ N (ε/8L,X , ||.||∞) log

(
4r

ε

)
(77)

The covering number of the input space, X in terms of doubling dimension, ddim(X) and diameter,
diam(X) can be written as [5]:

N (ε,X , ||.||∞) ≤
(

2diam(X)

ε

)ddim(X)

(78)

Plugging this expression in eq.(77), we obtain the required expression.

iii) The result in i) is with respect to ||.||∞. In eq.(75), we showed that for any f ∈ FL there is
some f̂ ∈ F̂ within a radius of ε such that ||f − f̂ ||∞ ≤ ε. Here, we show that this also implies that
||f − f̂ ||`1(Pm) ≤ ε. We show this as follows:

||f − f̂ ||`1(Pm) =
1

m

m∑
k=1

|f(xk)− f̂(xk)| (79)

≤ 1

m

m∑
k=1

ε = ε (80)

Therefore, the entropy number with respect to `1(Pm) metric is same as the entropy number with
respect to the ||.||∞, which proves our third claim.

Lemma 10 ([10] Theorem 3.5.). Let V be a class of measurable functions with envelope E such
that P (E) <∞. Let VM be the class of functions v.1{E ≤M} where v ranges over V . Then, V is
a Glivenco Cantelli class of functions, i.e. it satisfies

sup
v∈V
|Pmv − Pv| (81)

, if and only if

1

m
logN(ε,VM , L1(Pm))

P→ 0, (82)

for every ε > 0 and M > 0, where Pv =
∫
vdP and Pmv = 1

m

∑
k v(xk).

8 Experimental Results

Code: The code is made publicly available at https://github.com/sandeshgh/Reliable-KL-estimation
Below we describe some aspects of our implementation.

11

https://github.com/sandeshgh/Reliable-KL-estimation

8.1 Two Gaussian

8.1.1 Architecture and Implementation

RKHS Discriminator Architecture (Pytorch Code)

class RKHS_Net(nn.Module):
def __init__(self, dim =10, mid_dim1=20, mid_dim2=20, mid_dim3=20, D=50, gamma

=1, metric = ’rbf’, lip=5, g_lip =5):
super(RKHS_Net, self).__init__()
self.gamma = torch.FloatTensor([gamma])
self.metric = metric
self.D = D
self.act = nn.ReLU()
self.lin1 = spectral_norm(nn.Linear(dim, mid_dim1), k =g_lip)
self.lin2 = spectral_norm(nn.Linear(mid_dim1, mid_dim2), k =g_lip)
self.lin3 = spectral_norm(nn.Linear(mid_dim2 , mid_dim3), k =g_lip)
self.lin4 = spectral_norm(nn.Linear(mid_dim3, 1), k =g_lip)

self.g = nn.Sequential(self.lin1,
self.act,
self.lin2,
self.act,
self.lin3,
self.act,
self.lin4
)

self.lin_phi1 = spectral_norm(nn.Linear(2, mid_dim1), k=lip)
self.lin_phi2 = spectral_norm(nn.Linear(mid_dim1, mid_dim2), k=lip)
self.lin_phi3 = spectral_norm(nn.Linear(mid_dim2, mid_dim3), k=lip)
self.lin_phi4 = spectral_norm(nn.Linear(mid_dim3, dim), k=lip)

self.phi = nn.Sequential(self.lin_phi1,
self.act,
self.lin_phi2,
self.act,
self.lin_phi3,
self.act,
self.lin_phi4
)

def forward(self, y):
x=self.phi(y)
d = x.shape[1]
if self.metric ==’rbf’:

w= torch.sqrt(2*self.gamma)*torch.randn(size=(self.D,d))
w=w.to(x.device)
psi = ((torch.matmul(x,w.permute(1,0))

))*(torch.sqrt(2/torch.FloatTensor([self.D])).to(x.device))
w_a = w
g= self.g(w_a)
f = (psi*g.permute(1,0)).mean(1)
g_norm =(g**2).mean()
return f, g_norm

Simple Neural Network Discriminator Architecture (Pytorch Code)

class DNet_basic(nn.Module):
def __init__(self, input_dim, mid_dim1, mid_dim2, output_dim, lip_constraint =

False, lip = 5):
super(DNet_basic, self).__init__()

self.act = nn.ReLU()

12

self.lin1 = nn.Linear(input_dim, mid_dim1)
self.lin2 = nn.Linear(mid_dim1, mid_dim2)
self.lin3 = nn.Linear(mid_dim2, mid_dim2)
self.lin4 = nn.Linear(mid_dim2, output_dim)
self.sigmoid=nn.Sigmoid()

self.phi = nn.Sequential(self.lin1,
self.act,
self.lin2,
self.act,
self.lin3,
self.act,
self.lin4
)

def forward(self, x):
t = self.phi(x)
return t

Discrete approximation: Both the discriminators have stacked Fully connected layers and activa-
tion function. In the proposed RKHS discriminator, we have an additional network self.g which
we use to approximate the continuous integral f(x) =

∫
W g(w)ψ(x,w)dτ(w) with the following

discrete approximation:

f(x) =
1

D

D∑
k=1

g(wk)(φTwk

√
2

D
) (83)

where w is sampled from a Normal distribution with variance γ. In our experiments D = 500
was sufficient. Note that the Neural network discriminator is similar to φTw, except that w is not
randomly sampled and there is no g network.

Lipschitz constraints: : To enforce Lipschitz constraints on network g and φ consistent with our
assumptions and theoretical results, we use spectral normalization in the RKHS discriminator while
it is absent in the basic Neural network discriminator.

8.1.2 Data and Hyperparameters

Data: Since this is a toy experiment, data were generated locally using pytorch command randn to
sample from Gaussian distribution.

Learning rate: 5× 10−3 (both models)
No. of samples from each distribution: 2500 (both models)
Minibatch size: 50 (both models)
λ : 0.005 (RKHS disc.)
Hyperparameter selection: (RKHS disc.) The hyperparameters like learning rate and λ were
selected by first estimating KL divergence at a mid value like 13. Then, same value was used in all
experiments.

8.1.3 Computational Resources and Time

Running one experiment of KL divergence calculation takes 74 s for the basic algorithm while it
takes 245 s for the proposed method in a single GeForce GTX 1080 Ti GPU with 11GB memory.

8.2 Mutual Information Estimation

8.2.1 Models, Architecture and Implementation

RKHS Discriminator Architecture (Pytorch Code)

class ConcatLipFeatures(nn.Module):

13

def __init__(self, dim, hidden_dim, layers, activation,lip, gamma =1, metric =
’rbf’, D=500, mid_dim=5, g_lip =2, **extra_kwargs):
super(ConcatLipFeatures, self).__init__()
self.gamma = torch.FloatTensor([gamma])
self.metric = metric
self.D = D
self.act = nn.ReLU()
self.lin1 = spectral_norm(nn.Linear(hidden_dim, mid_dim), k = g_lip)
self.lin2 = spectral_norm(nn.Linear(mid_dim, mid_dim), k = g_lip)
self.lin3 = spectral_norm(nn.Linear(mid_dim, mid_dim), k = g_lip)
self.lin4 = spectral_norm(nn.Linear(mid_dim, 1), k = g_lip)

self.g = nn.Sequential(self.lin1,
self.act,
self.lin2,
self.act,
self.lin3,
self.act,
self.lin4
)

output of this layer is d dim features
self.rkhs_layer = feature_perceptron(dim * 2, hidden_dim, 1, layers,

activation, lip)

def forward(self, x, y):
batch_size = x.size(0)
Tile all possible combinations of x and y
x_tiled = torch.stack([x] * batch_size, dim=0)
y_tiled = torch.stack([y] * batch_size, dim=1)
xy is [batch_size * batch_size, x_dim + y_dim]
xy_pairs = torch.reshape(torch.cat((x_tiled, y_tiled), dim=2), [

batch_size * batch_size, -1])
Compute features for each x_i, y_j pair.
phi = self.rkhs_layer(xy_pairs)
d = phi.shape[1]
if self.metric == ’rbf’:

w = torch.sqrt(2 * self.gamma) * torch.randn(size=(self.D, d))
w = w.to(x.device)
psi = ((torch.matmul(phi, w.permute(1, 0)))) * (torch.sqrt(2 /

torch.FloatTensor([self.D])).to(x.device))
w_a = w # torch.cat((w,u.permute(1,0)),1)
g = self.g(w_a)
f = (psi * g.permute(1, 0)).mean(1)
g_norm = (g ** 2).mean()
return f, g_norm

Simple Neural Network Discriminator Architecture (Pytorch Code)

class ConcatCritic(nn.Module):
def __init__(self, dim, hidden_dim, layers, activation, **extra_kwargs):

super(ConcatCritic, self).__init__()
output is scalar score
self._f = mlp(dim * 2, hidden_dim, 1, layers, activation)

def forward(self, x, y):
batch_size = x.size(0)
Tile all possible combinations of x and y
x_tiled = torch.stack([x] * batch_size, dim=0)
y_tiled = torch.stack([y] * batch_size, dim=1)
xy is [batch_size * batch_size, x_dim + y_dim]
xy_pairs = torch.reshape(torch.cat((x_tiled, y_tiled), dim=2), [

batch_size * batch_size, -1])
Compute scores for each x_i, y_j pair.
scores = self._f(xy_pairs)

14

return torch.reshape(scores, [batch_size, batch_size]).t()

Similar to the previous experiment, the RKHS discriminator and the Neural network discriminator
are similar in core design. The main difference lies in that the RKHS discriminator has this inner
product construction same as eq.(83) in previous subsection. To achieve this construction, the RKHS
discriminator an additional network, self.g and enforces Lipschitz constraint through spectral
normalization, which are absent in simple Neural network discriminator.

8.2.2 Data and Hyperparameters

Data: The experimental setup and data generation follow
https://github.com/ermongroup/smile-mi-estimator.
Common for all methods
batch size: 64
no. of layers: 2
hidden dim: 256
no. of iterations: 40000
learning rate: 5× 10−4

Specific to the proposed method
γ :5
Lipschitz constant enforced, Lφ (layer wise): 5
Lipschitz constant enforced, Lg (layer wise): 5

8.2.3 Computational Resources and Time

GPU: GeForce RTX 2080 Ti 11 GB

Below, we report time taken by each method to complete an experiment to obtain mutual information
between two 20-d Gaussian distributed random variables using 40, 000 samples from each distribution
and mutual information increasing stepwise.

Table 1: Time taken to complete one experiment

CPC NWJ SMILE Ours (RKHS disc.)

52 s 48 s 52 s 63 s

8.2.4 Existing Assets

We used the code from the repo https://github.com/ermongroup/smile-mi-estimator to
generate data as well as run baseline mutual information methods. This code corresponds to the Song
et al. [9].

8.3 Adversarial Variational Bayes

8.3.1 Models, Architecture and Implementation

RKHS Discriminator Architecture (Pytorch Code)

class Discriminator_RKHS(nn.Module):
def __init__(self, x_dim, h_dim, z_dim, lip = 5, g_lip = 5, dim = 10, mid_dim1

= 20, mid_dim2 = 20, mid_dim3 = 20, D=100, gamma =1, metric = ’rbf’):
super(Discriminator_RKHS, self).__init__()
self.metric = metric
self.gamma = torch.FloatTensor([gamma])
self.D = D
self.phi = nn.Sequential(

spectral_norm(nn.Linear(x_dim + z_dim, h_dim), k = lip),
nn.LeakyReLU(),
spectral_norm(nn.Linear(h_dim, h_dim), k = lip),

15

nn.LeakyReLU(),

spectral_norm(nn.Linear(h_dim, h_dim), k = lip),
nn.LeakyReLU(),
spectral_norm(nn.Linear(h_dim, h_dim), k = lip),
nn.LeakyReLU(),
spectral_norm(nn.Linear(h_dim, int(h_dim/4)), k = lip)

)

self.act = nn.ReLU()
self.lin1 = spectral_norm(nn.Linear(int(h_dim/4), mid_dim1), k=g_lip)
self.lin2 = spectral_norm(nn.Linear(mid_dim1, mid_dim2), k=g_lip)
self.lin3 = spectral_norm(nn.Linear(mid_dim2, mid_dim3), k=g_lip)
self.lin4 = spectral_norm(nn.Linear(mid_dim3, 1), k=g_lip)

self.g = nn.Sequential(self.lin1,
self.act,
self.lin2,
self.act,
self.lin3,
self.act,
self.lin4
)

def weight_init(self, mean, std):
for m in self._modules:

normal_init(self._modules[m], mean, std)

def forward(self, y, z):
y = y.view(y.shape[0], -1)
y = torch.cat([y, z], 1)
x =self.phi(y)
d = x.shape[1]

if self.metric == ’rbf’:
w = torch.sqrt(2 * self.gamma) * torch.randn(size=(self.D, d))

w = w.to(x.device)
psi = ((torch.matmul(x, w.permute(1, 0)))) * (torch.sqrt(2 /

torch.FloatTensor([self.D])).to(x.device))
w_a = w
g = self.g(w_a)
f = (psi * g.permute(1, 0)).mean(1)
g_norm = (g ** 2).mean()
return f, g_norm

Simple Neural Network Discriminator Architecture (Pytorch Code)

class Discriminator_simple(nn.Module):
def __init__(self, x_dim, h_dim, z_dim):

super(Discriminator_simple, self).__init__()
self.net = nn.Sequential(

nn.Linear(x_dim + z_dim, h_dim),
nn.LeakyReLU(),
nn.Linear(h_dim, h_dim),
nn.LeakyReLU(),

nn.Linear(h_dim, h_dim),
nn.LeakyReLU(),
nn.Linear(h_dim, h_dim),
nn.LeakyReLU(),
nn.Linear(h_dim, int(h_dim/4)),
nn.LeakyReLU(),
nn.Linear(int(h_dim/4), 1)

16

)

def weight_init(self, mean, std):
for m in self._modules:

normal_init(self._modules[m], mean, std)

def forward(self, x, z):
x = x.view(x.shape[0], -1)
x = torch.cat([x, z], 1)
out =self.net(x)
x = x + torch.sum(z ** 2, 1)
return out

8.3.2 Data and Hyperparameters

Data: Standard MNIST dataset is used.

Learning rate: 10−3 (both models)
Minibatch size: 1024 (both models)
Hidden dim of encoder/decoder: 800 (both)
Hidden dim discriminator: 1024 (both)
λ : 1 (RKHS disc.)

8.3.3 Computational Resources and Time

GPU: GeForce GTX 1080 Ti 11GB
Time taken to train MNIST for 1000 epochs using AVB with simple Neural net discriminator: 11.3
hrs
Time taken to train MNIST for 1000 epochs using AVB with RKHS discriminator: 14.7 hrs

8.3.4 Existing Assets

We followed the official implementation of Adversarial Variational Bayes [7] at
https://github.com/LMescheder/AdversarialVariationalBayes

10 Societal Impacts

We discuss possible negative impacts in two categories: 1) Impact of theoretical contribution, 2)
Impact of applications

Societal Impact of theoretical contribution: The main theoretical contribution of the paper is its
connection between reliable/stable estimation and complexity analysis of the discriminator function
space. In its general form, this contribution does not, by itself, pose any negative societal impact.
Rather, it is about stabilizing algorithms. So, it contributes towards more robust and stable algorithms,
and may help in developing more secure applications. We do not foresee any negative societal
impacts in safety and security of human beings and automatic systems, human rights, human
livelihood or economic security, environment. We do not see it causing theft, harassment, fraud, bias
or discrimination.

Societal Impact of possible applications: As demonstrated in the experiment section, this work
can be applied to information theoretic applications that require mutual information or KL divergence
estimation. For example, it has been used in generative modeling like variational autoencoder, varia-
tional Bayes or in stabilizing generative adversarial networks (GANs). These generative modeling
techniques are, by themselves, quite general and can have numerous applications, including the
ones with negative impacts. By helping in accurate estimation of KL divergence and by providing
theoretical analysis, this work is contributing to develop stronger generative models and by extension
could be indirectly helping in their negative uses. In that aspect, we appeal everyone using the
algorithms and ideas in this paper to be thoughtful and responsible in their use.

17

References
[1] Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin of the

American mathematical society, 39(1):1–49, 2002.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[3] Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient regression in metric
spaces via approximate lipschitz extension. In Edwin Hancock and Marcello Pelillo, editors,
Similarity-Based Pattern Recognition, pages 43–58, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[4] A. Kontorovich and R. Weiss. Maximum margin multiclass nearest neighbors. International
Conference on Machine Learning, abs/1401.7898, 2014.

[5] Robert Krauthgamer and James R Lee. Navigating nets: Simple algorithms for proximity search.
In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages
798–807, 2004.

[6] E. J. McShane. Extension of range of functions. Bulletin of the American Mathematical
Society, 40(12):837 – 842, 1934.

[7] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational bayes: Unify-
ing variational autoencoders and generative adversarial networks. In International Conference
on Machine Learning (ICML), 2017.

[8] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised
map inference for image super-resolution. ICLR, 2017.

[9] Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual informa-
tion estimators. In International Conference on Learning Representations, 2020.

[10] Aad W Van Der Vaart and Jon A Wellner. Weak convergence. In Weak convergence and
empirical processes. Springer, 1996.

[11] Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets.
Transactions of the American Mathematical Society, 36(1):63–89, 1934.

18

	Problem Formulation and Contribution
	Error Analysis and Control
	Bounding the Error Probability of KL Estimates

	Variance and Consistency of the Estimate
	Variance Analysis
	Consistency of Estimates

	Experimental Results
	Two Gaussian
	Architecture and Implementation
	Data and Hyperparameters
	Computational Resources and Time

	Mutual Information Estimation
	Models, Architecture and Implementation
	Data and Hyperparameters
	Computational Resources and Time
	Existing Assets

	Adversarial Variational Bayes
	Models, Architecture and Implementation
	Data and Hyperparameters
	Computational Resources and Time
	Existing Assets

	Societal Impacts

