
RVI-SAC:
Average Reward Off-Policy Deep Reinforcement Learning

Yukinari Hisaki 1 Isao Ono 1

Abstract
In this paper, we propose an off-policy deep rein-
forcement learning (DRL) method utilizing the
average reward criterion. While most existing
DRL methods employ the discounted reward cri-
terion, this can potentially lead to a discrepancy
between the training objective and performance
metrics in continuing tasks, making the average
reward criterion a recommended alternative. We
introduce RVI-SAC, an extension of the state-
of-the-art off-policy DRL method, Soft Actor-
Critic (SAC) (Haarnoja et al., 2018a;b), to the
average reward criterion. Our proposal consists
of (1) Critic updates based on RVI Q-learning
(Abounadi et al., 2001), (2) Actor updates in-
troduced by the average reward soft policy im-
provement theorem, and (3) automatic adjust-
ment of Reset Cost enabling the average reward
reinforcement learning to be applied to tasks
with termination. We apply our method to the
Gymnasium’s Mujoco tasks, a subset of locomo-
tion tasks, and demonstrate that RVI-SAC shows
competitive performance compared to existing
methods.

1. Introduction
Model-free reinforcement learning aims to acquire optimal
policies through interaction with the environment. Partic-
ularly, Deep Reinforcement Learning (DRL), which ap-
proximates functions such as policy or value using Neu-
ral Networks, has seen rapid development in recent years.
This advancement has enabled solving tasks with high-
dimensional continuous action spaces, such as those in
OpenAI Gym’s Mujoco tasks (Todorov et al., 2012). In
the realm of DRL methods applicable to tasks with high-

1Tokyo Institute of Technology Yokohama, Kana-
gawa, Japan. Correspondence to: Yukinari Hisaki
<hiskai.y@ic.c.titech.ac.jp>, Isao Ono <isao@c.titech.ac.jp>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

dimensional continuous action spaces, methods such as
TRPO (Schulman et al., 2015), PPO (Schulman et al.,
2017), DDPG (Silver et al., 2014; Lillicrap et al., 2019),
TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al.,
2018a;b) are well-known. These methods utilize the dis-
counted reward criterion, which is applicable to a variety
of MDP-formulated tasks (Puterman, 1994). In particular,
for continuing tasks where there is no natural breakpoint
in episodes, such as in robot locomotion (Todorov et al.,
2012) or Access Control Queuing Tasks(Sutton & Barto,
2018), where the interaction between an agent and an envi-
ronment can continue indefinitely, the discount rate plays a
role in keeping the infinite horizon return bounded. How-
ever, discounting introduces an undesirable effect in con-
tinuing tasks by prioritizing rewards closer to the current
time over those in the future. An approach to mitigate this
effect is to bring the discount rate closer to 1, but it is com-
monly known that a large discount rate can lead to instabil-
ity and slower convergence(Fujimoto et al., 2018; Dewanto
& Gallagher, 2021).

In recent years, the average reward criterion has begun to
gain attention as an alternative to the discounted reward
criterion. Reinforcement learning using the average re-
ward criterion aims to maximize the time average of the
infinite horizon return in continuing tasks. In continuing
tasks, the average reward criterion is considered more nat-
ural than the discounted reward criterion. Even within the
realm of DRL with continuous action space, although few,
there have been proposals for methods that utilize the av-
erage reward criterion. Notably, ATRPO (Zhang & Ross,
2021) and APO (Ma et al., 2021), which are extensions
of the state-of-the-art on-policy DRL methods, TRPO and
PPO, to the average reward criterion, have been reported to
demonstrate performance on par with or superior to meth-
ods using the discounted reward criterion in Mujoco tasks
(Todorov et al., 2012).

Research combining the average reward criterion with off-
policy methods, generally known for their higher sam-
ple efficiency than on-policy approaches, remains limited.
There are several theoretical and tabular approaches to off-
policy methods using the average reward criterion, includ-
ing R-learning (Schwartz, 1993; Singh, 1994), RVI Q-

1



RVI-SAC

learning (Abounadi et al., 2001), Differential Q-learning
(Wan et al., 2020), and CSV Q-learning (Yang et al.,
2016). However, to our knowledge, the only off-policy
DRL method with continuous action space that employs
the average reward criterion is ARO-DDPG (Saxena et al.,
2023) which optimize determinisitic policy. In DRL re-
search using discount rate, Maximum Entropy Reinforce-
ment Learning, which optimizes stochastic policies for
entropy-augmented objectives, is known to improve sample
efficiency significantly. Off-policy DRL methods with con-
tinuous action space that have adopted this concept (Mnih
et al., 2016; Haarnoja et al., 2017; 2018a;b; Abdolmaleki
et al., 2018) have achieved success. However, to the best
of our knowledge, there are no existing DRL methods us-
ing the average reward criterion as powerful and sample-
efficient as Soft-Actor Critic.

Our goal is to propose RVI-SAC, an off-policy Actor-Critic
DRL method that employs the concept of Maximum En-
tropy Reinforcement Learning under the average reward
criterion. In our proposed method, we use a new Q-
Network update method based on RVI Q-learning to up-
date the Critic. Unlike Differential Q-learning, which was
the basis for ARO-DDPG, RVI Q-learning can uniquely de-
termine the convergence point of the Q function (Abounadi
et al., 2001; Wan et al., 2020). We identify problems that
arise when naively extending RVI Q-learning to a Neu-
ral Network update method and address these problems
by introducing a technique called Delayed f(Q) Update,
enabling the extension of RVI Q-learning to Neural Net-
works. We also provide an asymptotic convergence analy-
sis of RVI Q-learning with the Delayed f(Q) Update tech-
nique, in a tabular setting using ODE. Regarding the update
of the Actor, we construct a new policy update method that
guarantees the improvement of soft average reward by de-
riving an average reward soft policy improvement theorem,
based on soft policy improvement theorem in discounted
reward (Haarnoja et al., 2018a;b).

Our proposed approach addresses the key challenge in ap-
plying the average reward criterion to tasks that are not
purely continuing, such as in robotic locomotion tasks, for
example, Mujoco’s Ant, Hopper, Walker2d and Humanoid.
In these tasks, robots may fall, leading to the termination of
an episode, which is not permissible in average reward re-
inforcement learning that aims to optimize the time average
of the infinite horizon return. Similar to ATRPO (Zhang &
Ross, 2021), our method introduces a procedure in these
tasks that, after a fall, gives a penalty reward (Reset Cost)
and resets the environment. In ATRPO, the Reset Cost
was provided as a hyperparameter. However, the optimal
Reset Cost is non-trivial, and setting a sub-optimal Reset
Cost could lead to decreased performance. In our proposed
method, we introduce a technique for automatically adjust-
ing the Reset Cost by formulating a constrained optimiza-

tion problem where the frequency of environment resets,
which is independent of the reward scale, is constrained.

Our main contributions in this work are as follows:

• We introduce a new off-policy Actor-Critic DRL
method, RVI-SAC, utilizing the average reward cri-
terion. This method is comprised of two key compo-
nents: (1) a novel Q-Network update approach, RVI
Q-learning with the Delayed f(Q) Update technique,
and (2) a policy update method derived from the av-
erage reward soft policy improvement theorem. We
further provide an asymptotic convergence analysis of
RVI Q-learning with the Delayed f(Q) Update tech-
nique in a tabular setting using ODE.

• To adapt our proposed method for tasks that are not
purely continuing, we incorporate environment reset
and Reset Cost(Zhang & Ross, 2021). By formulating
a constrained optimization problem with a constraint
based on the frequency of environment resets, an in-
dependent measure of the reward scale, we propose a
method for automatically adjusting the Reset Cost.

• Through benchmark experiments using Mujoco, we
demonstrate that our proposed method exhibits com-
petitive performance compared to SAC(Haarnoja
et al., 2018b) with various discount rates and ARO-
DDPG (Saxena et al., 2023).

2. Preliminaries
In this section, we introduce problem setting and average
reward reinforcement learning, which is the core concept
of our proposed method. The mathematical notations em-
ployed throughout this paper are detailed in Appendix A.

2.1. Markov Decision Process

We define the interaction between the environment and
the agent as a Markov Decision Process (MDP) M =
(S,A, r, p). Here, s ∈ S represents the state space, a ∈ A
represents the action space, r : S × A → R, |r(·, ·)| ≤
∥r∥∞ is the reward function, and p : S × A × S → [0, 1]
is the state transition function. At each discrete time step
t = 0, 1, 2, . . ., the agent receives a state St ∈ S from
the MDP and selects an action At ∈ A. The environ-
ment then provides a reward Rt = r(St, At) and the next
state St+1 ∈ S, repeating this process. The state tran-
sition function is defined for all s, s′ ∈ S, a ∈ A as
p (s′ | s, a) := Pr (St+1 = s′ | St = s,At = a). Further-
more, we use a stationary Markov policy π : S×A → [0, 1]
as the criterion for action selection. This represents the
probability of selecting an action a ∈ A given a state s ∈ S
and is defined as π(a|s) := Pr (At = a | St = s).

2



RVI-SAC

2.2. Average Reward Reinforcement Learning

To simplify the discussion that follows, we make the fol-
lowing assumption for the MDPs where average reward re-
inforcement learning is applied:
Assumption 2.1. For any policy π, the MDPM is ergodic.

Under this assumption, for any policy π, a stationary state
distribution dπ(s) exists. The distribution including actions
is denoted as dπ(s, a) = dπ(s)π(s|a).

The average reward for a policy π is defined as:

ρπ := lim
T→∞

1

T
Eπ

[
T∑

t=0

Rt

]
=

∑
s∈S,a∈A

dπ(s, a)r(s, a).

(1)
The optimal policy in average reward criterion is defined
as:

π∗ = argmax
π

ρπ. (2)

The Q function for average reward reinforcement learning
is defined as:

Qπ(s, a) := Eπ

[ ∞∑
t=0

(Rt − ρπ)|S0 = s,A0 = a

]
. (3)

The optimal Bellman equation for average reward is as fol-
lows:

Q(s, a) = r(s, a)− ρ+
∑
s′∈S

p(s′|s, a)max
a′

Q(s′, a′),

∀(s, a) ∈ S ×A.
(4)

From existing research (e.g., Puterman (1994)), it is known
that this equation has the following properties:

• There exists a unique solution for ρ as ρ = ρπ
∗
.

• There exisits a unique solution only up to a constant
c ∈ R for Q(s, a) as q(s, a) = Qπ∗

(s, a) + c.

• For the solution Q to the equation, a deterministic pol-
icy µ(s) = argmaxa q(s, a) is one of the optimal
policies.

Henceforth, we denote ρπ
∗

as ρ∗.

2.3. RVI Q-learning

RVI Q-learning (Konda & Borkar, 1999; Wan et al., 2020)
is one of the average reward reinforcement learning meth-
ods for the tabular Q function, and updates the Q function
as follows:

Qt+1(St, At) = Qt(St, At)+

αt

(
Rt − f(Qt) + max

a′
Qt(St+1, a

′)−Qt(St, At)
)
.

(5)

From the convergence proof of generalized RVI Q-learning
(Wan et al., 2020), the function f can be any function that
satisfies the following assumption:

Assumption 2.2 (From Wan et al. (2020)). f : R|S×A| →
R is Lipschitz, and there exists some u > 0 such that for all
c ∈ R and x ∈ R|S×A|, f(e) = u, f(x+ ce) = f(x) + cu
and f(cx) = cf(x).

In practice, f often takes forms such as
f(Q) = Q(S,A),maxa Q(S, a) using arbi-
trary state/action pair (S,A) as the Reference
State, or the sum over all state/action pairs,
f(Q) = g

∑
(s,a)∈S×A Q(s, a), g

∑
s∈S maxa Q(s, a),

with gain ∀g > 0. This assumption plays an important
role in demonstrating the convergence of the algorithm.
Intuitively, this indicates that the function f , satisfying
this assumption, can include functions that correspond to
specific elements of the vector x or their weighted linear
sum.

This algorithm, under certain appropriate assumptions,
converges almost surely to a unique solution q∗, and it has
been shown that q∗ satisfies both the optimal Bellman equa-
tion (Equation 4) and

ρ∗ = f(q∗)

as demonstrated in Wan et al. (2020).

3. Proposed Method
We propose a new off-policy Actor-Critic DRL method
based on average reward. To this end, in Section 3.1, we
present a Critic update method based on RVI Q-learning,
and in Section 3.2, we demonstrate an Actor update method
based on SAC (Haarnoja et al., 2018a;b). Additionally, in
Section 3.3, we introduce a method to apply average reward
reinforcement learning to problems that are not purely con-
tinuing tasks, such as locomotion tasks with termination.
The overall algorithm is detailed in Appendix B.

3.1. RVI Q-learning based Q-Network update

We extend the RVI Q-learning algorithm described in
Equation 5 to an updating method for the Q function rep-
resented by a Neural Network. Following traditional ap-
proach in Neural Network-based Q-learning, we update the
parameters ϕ of the Q-Network Qϕ using the target:

Y (r, s′) = r − f(Qϕ′) + max
a′

Qϕ′(s′, a′),

and by minimizing the following loss function:

1

|B|
∑

(s,a,r,s′)∈B

(Y (r, s′)−Qϕ(s, a))
2
.

3



RVI-SAC

B is a mini-batch uniformly sampled from the Re-
play Buffer D, which accumulates experiences
(St, At, Rt, St+1) obtained during training, and ϕ′

are the parameters of the target network (Mnih et al.,
2013).

In implementing this method, we need to consider the fol-
lowing two points:

The first point is the choice of function f . As mentioned in
Section 2.3, tabular RVI Q-learning typically uses a Refer-
ence State (S,A) ∈ S × A or the sum over all state/action
pairs to calculate f(Q). Using the Reference State is easily
applicable to problems with continuous state/action spaces
in Neural Network-based methods. However, concerns
arise about performance dependency on the visitation fre-
quency to the Reference State and the accuracy of its Q-
value (Wan et al., 2020). On the other hand, calculating the
sum over all state/action pairs does not require a Reference
State but is not directly computable with Neural Networks
for f(Qϕ′). To address these issues, we substitute f(Qϕ′)
with f(Qϕ′ ;B), calculated using mini-batch B, as shown
in Equation 6:

f(Qϕ′ ;B) = 1

|B|
∑
s∈B

max
a

Qϕ′(s, a). (6)

Equation 6 serves as an unbiased estimator of f(Qϕ′) when
set as:

f(Qϕ′) = Es∼db(·)

[
max

a
Qϕ′(s, a)

]
, (7)

where b represents the behavior policy in off-policy meth-
ods, and db(·) denotes the stationary state distribution un-
der the behavior policy b. In our method, we use settings as
shown in Equations 6 and 7, but this discussion is applica-
ble to any setting that satisfies:

f(Qϕ′) = EXt
[f(Qϕ′ ;Xt)] (8)

for the random variable Xt. Thus, the target value used for
the Q-Network update becomes:

Y (r, s′;B) = r − f(Qϕ′ ;B) + max
a′

Qϕ′(s′, a′). (9)

The second point is that the variance of the sample value
f(Qϕ′ ;B) (Equation 6) can increase the variance of the tar-
get value (Equation 9), potentially leading to instability in
learning. This issue is pronounced when the variance of
the Q-values is large. A high variance in Q-values can po-
tentially lead to an increase in the variance of the target
values, creating a feedback loop that might further amplify
the variance of Q-values. To mitigate the variance of the
target value, we propose the Delayed f(Q) Update tech-
nique. Delayed f(Q) Update employs a value ξt, updated

as follows, instead of using f(Qϕ′ ;B) for calculating the
target value:

ξt+1 = ξt + βt (f(Qϕ′ ;B)− ξt) ,

βt denotes the learning rate for ξt. The new target value
using ξt is then:

Y (r, s′; ξt) = r − ξt +max
a′

Qϕ′(s′, a′).

In this case, ξt serves as a smoothed value of f(Qϕ′ ;B),
and this update method is expected to reduce the variance
of the target value.

Theoretical Analysis of Delayed f(Q) Update
We reinterpret the Q-Network update method using De-
layed f(Q) Update in the context of a tabular Q-learning
algorithm, it can be expressed as follows:

Qt+1(St, At) = Qt(St, At)+

αt

(
Rt − ξt +max

a′
Qt(St+1, a

′)−Qt(St, At)

)
,

ξt+1 = ξt + βt (f(Qt;Xt)− ξt) .
(10)

This update formula is a specialization of asynchronous
stochastic approximation (SA) on two time scales (Borkar,
1997; Konda & Borkar, 1999). By selecting appropriate
learning rates such that αt

βt
→ 0, the update of ξt in Equa-

tion 10 can be considered faster relative to the update of
Qt. Therefore, since ξt can be considered a “relative con-
stant”, it can be viewed as being equivalent to f(Qt). The
convergence of this algorithm is discussed in Appendix C
and summarized in Theorem 3.1:
Theorem 3.1 (Sketch). The algorithm expressed by the fol-
lowing equations converges almost surely to a uniquely de-
termined q∗ under appropriate assumptions (see Appendix
C):

Qt+1(St, At) = Qt(St, At)+

αt

(
Rt − ξ̂t +max

a′
Qt(St+1, a

′)−Qt(St, At)

)
,

ξt+1 = ξt + βt (f(Qt;X)− ξt) ,

where ξ̂t = clip(ξt,−∥r∥∞ − ϵ, ∥r∥∞ + ϵ), ∀ϵ > 0.

3.2. Average Reward Soft Policy Improvement
Theorem

We propose a policy update method for the average re-
ward criterion, inspired by the policy update method of the
SAC(Haarnoja et al., 2018a;b).

In the SAC, a soft-Q function defined for the discount rate
γ ∈ (0, 1) and a policy π (Haarnoja et al., 2017):

Qπ,γ(s, a) :=

Eπ

[ ∞∑
t=0

γt(Rt − log π(At+1|St+1))|S0 = s,A0 = a

]
.

(11)

4



RVI-SAC

The policy is then updated in the following manner for
∀s ∈ S:

πnew(·|s) = argmin
π∈Π

DKL

(
π(·|s)

∣∣∣∣exp (Qπold,γ(s, ·))
Zπold(s)

)
.

(12)
The partition function Zπold(s) normalizes the distribu-
tion and can be ignored in the gradient of the new pol-
icy (refer to Haarnoja et al. (2018a)). Π represents the
set of policies, such as a parametrized family like Gaus-
sian policies. According to the soft policy improvement
theorem (Haarnoja et al., 2018a;b), for the updated policy
πnew, the condition Qπnew,γ(s, a) ≥ Qπold,γ(s, a), ∀(s, a) ∈
S × A holds, indicating policy improvement. The ac-
tor’s update rule in the SAC is constructed based on this
theorem. Further, defining the entropy-augmented re-
ward Rent

t := Rt − Es′∼p(·|St,At),a′∼π(·|s′)[log π(a
′|s′)],

the Q function in Equation 11 can be reformulated as
Qπ,γ(s, a) := Eπ[

∑∞
t=0 γ

tRent
t |S0 = s,A0 = a], allow-

ing the application of the standard discounted Q-learning
framework for the critic’s update (Haarnoja et al., 2018a;b).

In the context of average reward reinforcement learning,
the soft average reward is defined as:

ρπsoft = lim
T→∞

1

T
Eπ

[
T∑

t=0

Rt − log π(At|St)

]
. (13)

Correspondingly, the average reward soft-Q function is de-
fined as:

Qπ(s, a) :=

Eπ

[ ∞∑
t=0

Rt − ρπsoft − log π(At+1|St+1)|S0 = s,A0 = a

]
.

(14)

From Equation 14, the soft Q function represents the
expected cumulative sum of rewards minus the aver-
age reward. Thus, the relationship Qπnew(s, a) ≥
Qπold(s, a), ∀(s, a) ∈ S × A in the policy improvement
theorem for the discounted SAC does not guarantee policy
improvement. We present a new average reward soft policy
improvement theorem using the soft average reward ρπsoft as
a metric.

Theorem 3.2 (Average Reward Soft Policy Improvement).
Let πold ∈ Π and let πnew be the optimizer of the minimiza-
tion problem defined in Equation 12. Then ρπnew ≥ ρπold

holds.

Proof. See Appendix D.

This result demonstrates that updating the policy in the
same manner as SAC leads to improvements in the pol-
icy under the average reward criterion. Additionally, defin-

ing the entropy-augmented reward Rent
t and the entropy-

augmented Q function Qπ,ent(s, a) as

Rent
t := Rt − log π(At|St),

Qπ,ent(s, a) := Qπ(s, a)− log π(At|St). (15)

allows the Q function in Equation 14 to be reformulated
as Qπ,ent(s, a) := Eπ[

∑∞
t=0 R

ent
t − ρπsoft|S0 = s,A0 = a].

This formulation aligns with the definition of the Q func-
tion in average reward reinforcement learning (Equation 3),
enabling the application of the average reward Q-learning
framework.

3.3. Automatic Reset Cost Adjustment

In this section, we address the challenge associated with
applying the average reward criterion to tasks that are not
purely continuing tasks, such as locomotion tasks where
episodes may end due to falls. Average reward reinforce-
ment learning assumes continuing tasks that do not have
an episode termination. This is because average rewards
are defined over the infinite horizon, and after the end of
an episode, the agent continues to receive a reward of zero,
leading to an average reward of zero. However, in many
tasks, such as locomotion tasks, episodes may end due to
events like robot falls, depending on the policy. In these
cases, the tasks are not purely continuing.

To apply average reward reinforcement learning to such
tasks, we employ the environment reset and the Reset Cost
which ATRPO (Zhang & Ross, 2021) does. The envi-
ronment reset regards a terminated episode as a continu-
ing one by initializing the environment. Reset Cost is the
penalty reward given for resetting the environment, denoted
as −rcost (where rcost > 0). This means that, even after an
episode ends in a certain terminal state St, initializing the
environment, and observing the initial state S0, the expe-
rience (St−1, At−1, r(St−1, At−1)− rcost, S0) is obtained,
and the episode is treated as continued.

In ATRPO, for experiments in the Mujoco environment, the
Reset Cost rcost is fixed at 100, but the optimal Reset Cost
is generally non-trivial. Instead of setting the rcost, we pro-
pose a method to control the frequency at which the agent
reaches termination states. Let’s consider a new MDP from
MDPs with termination, where we only introduce environ-
ment resets without adding the Reset Cost (equivalent to
the environment when rcost = 0). Let Sterm be the set of
termination states in the original MDP, and define the fre-
quency ρπreset at which the agent reaches termination states
under the policy π as follows:

ρπreset = lim
T→∞

1

T
Eπ

[
T∑

t=0

Es′∼p(·|St,At) [1 (s
′ ∈ Sterm)]

]
.

Using ρπreset, we consider the following constrained opti-

5



RVI-SAC

mization problem:

max
π

ρπ,

s.t. ρπreset ≤ ϵreset.
(16)

This problem aims to maximize the average reward ρπ with
a constraint on the frequency of reaching termination states,
where the termination frequency target ϵreset ∈ (0, 1) is a
user parameter. Note that ρπ here refers to the average re-
ward when the Reset Cost is set to zero.

To solve this constrained optimization problem, we define
the Lagrangian for the dual variable λ as follows:

L(π, λ) = ρπ − λρπreset − λϵreset.

Following prior research in constrained optimization prob-
lems, the primal problem is formulated as:

max
π

min
λ≥0
L(π, λ).

In our approach to solving this problem, similar to the ad-
justment of the temperature parameter in Maximum En-
tropy Reinforcement Learning (Haarnoja et al., 2018b; Ab-
dolmaleki et al., 2018), we alternate between outer and in-
ner optimization steps. The outer optimization step is up-
dating π to maximize ρπ − λρπreset for a fixed λ. Since
ρπ − λρπreset is equal to the average reward when rcost = λ,
this optimization step is equivalent to the policy update
step in average reward reinforcement learning with Reset
Cost. The inner optimization step is updating λ to min-
imize −λρπreset − λϵreset. To compute this objective, it is
necessary to obtain ρπreset. Hence, we estimate the value
of ρπreset by updating the Q function Qreset under the set-
ting r(s, a) = Es′∼p(·|s,a) [1 (s

′ ∈ Sterm)] using the update
method described in Section 3.1.

4. Experiment
In our benchmark experiments, we aim to verify two as-
pects: (1) A comparison of the performance between RVI-
SAC, SAC(Haarnoja et al., 2018b) with various discount
rates, and the existing off-policy average reward DRL
method, ARO-DDPG (Saxena et al., 2023). (2) How does
each component in our proposed method contribute to per-
formance?

To demonstrate these, we conducted benchmark ex-
periments using six tasks (Ant, HalfCheetah, Hopper,
Walker2d, Humanoid, and Swimmer) implemented in the
Gymnasium (Towers et al., 2023) and MuJoCo physical
simulator (Todorov et al., 2012). Note that there is no ter-
mination in the Swimmer and HalfCheetah environments,
meaning that resets do not occur.

The source code for this experiment can be found
on our GitHub repository at https://github.com/
yhisaki/average-reward-drl.

4.1. Comparative evaluation

We conducted experiments with 10 different random seed
trials for each algorithm, sampling evaluation scores every
5,000 steps. For RVI-SAC and SAC, stochastic policies are
treated as deterministic during evaluation. The maximum
episode step is limited to 1,000 during training and evalua-
tion. Figure 1 shows the learning curves of RVI-SAC, SAC
with various discount rates, and ARO-DDPG. These exper-
iments set the evaluation score as the total return over 1,000
steps. Results of experiments with the evaluation score set
as an average reward (total return / survival step) are pre-
sented in Appendix F.1.

From the results shown in Figure 1, when comparing
RVI-SAC with SAC with various discount rates, RVI-SAC
demonstrates equal or better performance than SAC with
the best discount rate in all environments except HalfChee-
tah. A notable observation is from the Swimmer environ-
ment experiments (Figure 1a). SAC’s recommended dis-
count rate of γ = 0.99 (Haarnoja et al., 2018a;b) per-
forms better than the other rates in environments other than
Swimmer. However, a larger discount rate of γ = 0.999
is required in the Swimmer environment. However, setting
a large discount rate can lead to destabilization of learn-
ing and slow convergence (Fujimoto et al., 2018; Dewanto
& Gallagher, 2021), and indeed, in the environments other
than Swimmer, a setting of γ = 0.999 shows lower per-
formance. Compared to SAC, RVI-SAC shows the same
performance as SAC (γ = 0.999) in the Swimmer environ-
ment and equal or better than SAC (γ = 0.99) in the other
environments. This result suggests that while traditional
SAC using a discount rate may be significantly impacted
by the choice of discount rate, RVI-SAC using the average
reward resolves this issue.

When comparing RVI-SAC with ARO-DDPG, RVI-SAC
shows higher performance in all environments. SAC has
improved performance over methods using deterministic
policies by introducing the concept of Maximum Entropy
Reinforcement Learning. Similarly, it can be considered
that the introduction of this concept to RVI-SAC is the
primary reason for RVI-SAC’s superior performance over
ARO-DDPG.

4.2. Design evaluation

In the previous section, we demonstrated that RVI-SAC
overall exhibits better performance compared to SAC us-
ing various discount rates and ARO-DDPG. In this section,
we show how each component of RVI-SAC contributes to
the overall performance.

Performance Comparison of RVI-SAC, SAC with au-
tomatic Reset Cost adjustment and ARO-DDPG with
automatic Reset Cost adjustment

6

https://github.com/yhisaki/average-reward-drl
https://github.com/yhisaki/average-reward-drl


RVI-SAC

(a) Swimmer (b) Ant (c) Walker2d

(d) Humanoid (e) Hopper (f) HalfCheetah

Figure 1. Learning curves for the Gymnasium’s Mujoco tasks. The horizontal axis represents Steps, and the vertical axis represents
the evaluation value (total return). Lines and shades represent the mean and standard deviation of the evaluation values over 10 trials,
respectively.

Since RVI-SAC introduces the automatic Reset Cost ad-
justment, RVI-SAC uses a different reward structures from
that used in SAC and ARO-DDPG in which the reward is
set to zero after termination. To compare the performance
of RVI-SAC, SAC and ARO-DDPG under the same re-
ward structure, we conduct comparative experiments with
RVI-SAC, SAC with the automatic Reset Cost adjustment
(SAC with Reset) and ARO-DDPG with the automatic Re-
set Cost adjustment(ARO-DDPG with Reset). Figure 2a
shows the learning curves of these experiments in the Ant
environment. (Results for other environments are shown
in Appendix F.2). Here, the discount rate of SAC is set to
γ = 0.99.

Figure 2a demonstrates that RVI-SAC outperforms SAC
with automatic Reset Cost adjustment and ARO-DDPG
with automatic Reset Cost adjustment. This result suggests
that the improved performance of RVI-SAC is not solely
due to the different reward structure but also due to the ef-
fects of using the average reward criterion.

Ablation Study of Delayed f(Q) Update

In this section, we evaluate the effectiveness of the Delayed
f(Q) Update described in Section 3.1. This method stabi-
lizes learning without depending on a specific state/action
pair for updating the Q function. To validate the effec-
tiveness of this method, we examine whether the follow-
ings are correct: (1) When the function f(Q) is f(Q) =
Q(S,A) for state/action pair (S,A) ∈ S × A, the perfor-

mance depends on the choice of (S,A). (2) When the Q
function is updated using Equation 6 directory as f(Q),
learning becomes unstable. To examine these, we con-
ducted performance comparisons with three algorithms:
(1) RVI-SAC, (2) RefState (s, a)−#1, (s, a)−#2 and
(s, a) − #3 that are RVI-SACs updating the Q functions
with f(Q) = Q(s, a), using sampled state/action pairs,
(s, a)−#1, (s, a)−#2 and (s, a)−#3, as Reference States
obtained from when agent takes random actions, respec-
tively, (3) RVI-SAC without Delay that is RVI-SAC up-
dating the Q function using Equation 6 directory as f(Q).

Figure 2b shows the learning curves for these methods in
the Ant environment. Firstly, comparing RVI-SAC with
RefState (s, a)−#1, (s, a)−#2 and (s, a)−#3, except for
RefState (s, a) − #1, the methods using Reference States
show lower performance than RVI-SAC. Furthermore,
comparing the results of RefState (s, a)−#1, (s, a)−#2
and (s, a) − #3, it suggests that performance depends on
the choice of Reference State. These results suggest the ef-
fectiveness of RVI-SAC, which shows good performance
without depending on a specific state/action pair. Next,
comparing RVI-SAC with RVI-SAC without Delay, which
directly uses Equation 6, it is observed that RVI-SAC per-
forms significantly better. This result suggests that, in
RVI-SAC, implementing the Delayed f(Q) Update con-
tributes to stabilizing the learning process, thereby achiev-
ing higher performance. It indicates the effectiveness of the
Delayed f(Q) Update, aiming at stabilizing updates of the

7



RVI-SAC

(a) Performance Comparison of RVI-SAC,
SAC with automatic Reset Cost adjustment,
and ARO-DDPG with automatic Reset Cost
adjustment

(b) Ablation Study of Delayed f(Q) Update (c) Performance Comparison of RVI-SAC
and RVI-SAC with Fixed Reset Cost
(rcost = 0, 10, 100, 250, 500)

Figure 2. Experimental results demonstrating the effectiveness of each component of RVI-SAC. All three graphs represent learning
curves on the Ant environment.

Q-function.

RVI-SAC with Fixed Reset Cost

To demonstrate the effectiveness of the Automatic Reset
Cost Adjustment, we compare the performance of RVI-
SAC and RVI-SAC with fixed Reset Costs in the Ant en-
vironment. Figure 2c shows the learning curves of RVI-
SAC and RVI-SAC with fixed Reset Costs, rcost =
0, 10, 100, 250, 500. These results show that settings
other than the optimal fixed Reset Cost of rcost = 10 for
this environment decrease performance. Moreover, the per-
formance of RVI-SAC with fixed Reset Costs is highly de-
pendent on its setting. This result suggests the effectiveness
of the automatic adjustment of Reset Cost, which does not
require specific settings.

5. Related Works
The importance of using the average reward criterion in
continuing tasks has been suggested. Blackwell (1962)
showed that a Blackwell optimal policy π∗ maximizes the
average reward exists, and that, for any discount reward
criterion satisfying γ ≥ γ∗, the optimal policy coincides
with the Blackwell optimal policy. However, Dewanto &
Gallagher (2021) demonstrated that setting a high discount
rate to satisfy γ ≥ γ∗ can slow down convergence, and a
lower discount rate may lead to a sub-optimal policy. Ad-
ditionally, they noted various benefits of directly applying
the average reward criterion to recurrent MDPs. Naik et al.
(2019) pointed out that discounted reinforcement learning
with function approximation is not an optimization prob-
lem, and the optimal policy is not well-defined.

Although there are fewer studies on tabular Q-learning
methods and theoretical analyses for the average reward
criterion compared to those for the discounted reward cri-
terion, several notable works exist (Schwartz, 1993; Singh,
1994; Abounadi et al., 2001; Wan et al., 2020; Yang et al.,

2016) . RVI Q-learning, which forms the foundational idea
of our proposed method, was proposed by Abounadi et al.
(2001) and generalized by Wan et al. (2020) with respect to
the function f . Differential Q-learning (Wan et al., 2020) is
a special case of RVI Q-learning. The asymptotic conver-
gence of these methods in weakly communicating MDPs
has been established by Wan & Sutton (2022).

Several methods focusing on function approximation for
average reward criterion have been proposed (Saxena et al.,
2023; Abbasi-Yadkori et al., 2019; Zhang & Ross, 2021;
Ma et al., 2021; Zhang et al., 2021a;b). A notable study
by Saxena et al. (2023) extended DDPG to the average
reward criterion and demonstrated performance using dm-
control’s Mujoco tasks. This work is deeply relevant to our
proposed method. This research provides asymptotic con-
vergence and finite time analysis in a linear function ap-
proximation. Another contribution is POLITEX (Abbasi-
Yadkori et al., 2019), which updates a policy using a Boltz-
mann distribution over the sum of action-value estimates
from a prior policy. POLITEX demonstrated performance
using an Atari’s Ms Pacman. ATRPO (Zhang & Ross,
2021) and APO (Ma et al., 2021) update a policy based on
policy improvement bounds to the average reward setting
within an on-policy framework. ATRPO and APO demon-
strated performance using OpenAI Gym’s Mujoco tasks.

6. Conclusion
In this paper, we proposed RVI-SAC, a novel off-policy
DRL method with the average reward criterion. RVI-SAC
is composed of three components. The first component is
the Critic update based on RVI Q-learning. We did not sim-
ply extend RVI Q-learning to the Neural Network method,
but introduced a new technique called Delayed f(Q) Up-
date, enabling stable learning without dependence on a
Reference State. Additionally, we proved the asymptotic
convergence of this method. The second component is the

8



RVI-SAC

Actor update using the Average Reward Soft Policy Im-
provement Theorem. The third component is the automatic
adjustment of the Reset Cost to apply average reward re-
inforcement learning to locomotion tasks with termination.
We applied RVI-SAC to the Gymnasium’s Mujoco tasks,
and demonstrated that RVI-SAC showed competitive per-
formance compared to existing methods.

For future work, on the theoretical side, we consider to
provide asymptotic convergence and finite-time analysis of
the proposed method using a linear function approximator.
On the experimental side, we plan to compare the perfor-
mance of RVI-SAC using benchmark tasks other than Mu-
joco tasks and compare it with average reward on-policy
methods such as APO (Ma et al., 2021).

9



RVI-SAC

Impact Statement
This paper presents work whose goal is to advance the field
of Reinforcement Learning. There are many potential so-
cietal consequences of our work, none which we feel must
be specifically highlighted here.

References
Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N.,

Szepesvari, C., and Weisz, G. POLITEX: Regret
bounds for policy iteration using expert prediction.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 3692–3702. PMLR, 09–
15 Jun 2019. URL https://proceedings.mlr.
press/v97/lazic19a.html.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R.,
Heess, N., and Riedmiller, M. A. Maximum a posteriori
policy optimisation. CoRR, abs/1806.06920, 2018. URL
http://arxiv.org/abs/1806.06920.

Abounadi, J., Bertsekas, D., and Borkar, V. S. Learn-
ing algorithms for markov decision processes with
average cost. SIAM Journal on Control and Op-
timization, 40(3):681–698, 2001. doi: 10.1137/
S0363012999361974. URL https://doi.org/
10.1137/S0363012999361974.

Blackwell, D. Discrete dynamic programming. An-
nals of Mathematical Statistics, 33:719–726, 1962.
URL https://api.semanticscholar.org/
CorpusID:120274575.

Borkar, V. S. Stochastic approximation with two
time scales. Systems & Control Letters, 29
(5):291–294, 1997. ISSN 0167-6911. doi:
https://doi.org/10.1016/S0167-6911(97)90015-3.
URL https://www.sciencedirect.com/
science/article/pii/S0167691197900153.

Borkar, V. S. Stochastic Approximation: A Dynami-
cal Systems Viewpoint. Texts and Readings in Math-
ematics. Hindustan Book Agency Gurgaon, 1 edition,
Jan 2009. ISBN 978-93-86279-38-5. doi: 10.1007/
978-93-86279-38-5. URL https://doi.org/10.
1007/978-93-86279-38-5. eBook Packages:
Mathematics and Statistics, Mathematics and Statistics
(R0).

Dewanto, V. and Gallagher, M. Examining average and
discounted reward optimality criteria in reinforcement
learning. CoRR, abs/2107.01348, 2021. URL https:
//arxiv.org/abs/2107.01348.

Fujimoto, S., van Hoof, H., and Meger, D. Address-
ing function approximation error in actor-critic methods.
CoRR, abs/1802.09477, 2018. URL http://arxiv.
org/abs/1802.09477.

Gosavi, A. Reinforcement learning for long-run average
cost. European Journal of Operational Research,
155(3):654–674, 2004. ISSN 0377-2217. doi:
https://doi.org/10.1016/S0377-2217(02)00874-3.
URL https://www.sciencedirect.com/
science/article/pii/S0377221702008743.
Traffic and Transportation Systems Analysis.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-
inforcement learning with deep energy-based policies.
CoRR, abs/1702.08165, 2017. URL http://arxiv.
org/abs/1702.08165.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor, 2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
and Levine, S. Soft actor-critic algorithms and appli-
cations. CoRR, abs/1812.05905, 2018b. URL http:
//arxiv.org/abs/1812.05905.

Konda, V. R. and Borkar, V. S. Actor-critic–type learning
algorithms for markov decision processes. SIAM Journal
on Control and Optimization, 38(1):94–123, 1999. doi:
10.1137/S036301299731669X. URL https://doi.
org/10.1137/S036301299731669X.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning, 2019.

Ma, X., Tang, X., Xia, L., Yang, J., and Zhao, Q. Average-
reward reinforcement learning with trust region meth-
ods. CoRR, abs/2106.03442, 2021. URL https:
//arxiv.org/abs/2106.03442.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A.
Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/
abs/1312.5602.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lil-
licrap, T., Harley, T., Silver, D., and Kavukcuoglu,
K. Asynchronous methods for deep reinforcement
learning. In Balcan, M. F. and Weinberger, K. Q.
(eds.), Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pp. 1928–
1937, New York, New York, USA, 20–22 Jun

10

https://proceedings.mlr.press/v97/lazic19a.html
https://proceedings.mlr.press/v97/lazic19a.html
http://arxiv.org/abs/1806.06920
https://doi.org/10.1137/S0363012999361974
https://doi.org/10.1137/S0363012999361974
https://api.semanticscholar.org/CorpusID:120274575
https://api.semanticscholar.org/CorpusID:120274575
https://www.sciencedirect.com/science/article/pii/S0167691197900153
https://www.sciencedirect.com/science/article/pii/S0167691197900153
https://doi.org/10.1007/978-93-86279-38-5
https://doi.org/10.1007/978-93-86279-38-5
https://arxiv.org/abs/2107.01348
https://arxiv.org/abs/2107.01348
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://www.sciencedirect.com/science/article/pii/S0377221702008743
https://www.sciencedirect.com/science/article/pii/S0377221702008743
http://arxiv.org/abs/1702.08165
http://arxiv.org/abs/1702.08165
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://doi.org/10.1137/S036301299731669X
https://doi.org/10.1137/S036301299731669X
https://arxiv.org/abs/2106.03442
https://arxiv.org/abs/2106.03442
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602


RVI-SAC

2016. PMLR. URL https://proceedings.mlr.
press/v48/mniha16.html.

Naik, A., Shariff, R., Yasui, N., and Sutton, R. S. Dis-
counted reinforcement learning is not an optimization
problem. CoRR, abs/1910.02140, 2019. URL http:
//arxiv.org/abs/1910.02140.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., USA, 1st edition, 1994. ISBN 0471619779.

Saxena, N., Khastigir, S., Kolathaya, S., and Bhatnagar, S.
Off-policy average reward actor-critic with deterministic
policy search, 2023.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. CoRR,
abs/1502.05477, 2015. URL http://arxiv.org/
abs/1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Schwartz, A. A reinforcement learning method for maxi-
mizing undiscounted rewards. In Utgoff, P. E. (ed.), Ma-
chine Learning, Proceedings of the Tenth International
Conference, University of Massachusetts, Amherst, MA,
USA, June 27-29, 1993, pp. 298–305. Morgan Kauf-
mann, 1993. doi: 10.1016/B978-1-55860-307-3.
50045-9. URL https://doi.org/10.1016/
b978-1-55860-307-3.50045-9.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
and Riedmiller, M. Deterministic policy gradient algo-
rithms. In Xing, E. P. and Jebara, T. (eds.), Proceed-
ings of the 31st International Conference on Machine
Learning, volume 32 of Proceedings of Machine Learn-
ing Research, pp. 387–395, Bejing, China, 22–24 Jun
2014. PMLR. URL https://proceedings.mlr.
press/v32/silver14.html.

Singh, S. Reinforcement learning algorithms for
average-payoff markovian decision processes. In
AAAI Conference on Artificial Intelligence, 1994.
URL https://api.semanticscholar.org/
CorpusID:17854729.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edi-
tion, 2018. URL http://incompleteideas.
net/book/the-book-2nd.html.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,

pp. 5026–5033, Vilamoura-Algarve, Portugal, 2012. doi:
10.1109/IROS.2012.6386109.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U.,
Cola, G. d., Deleu, T., Goulão, M., Kallinteris, A., KG,
A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schul-
hoff, S., Tai, J. J., Shen, A. T. J., and Younis, O. G. Gym-
nasium, March 2023. URL https://zenodo.org/
record/8127025.

Tsitsiklis, J. N. Asynchronous stochastic approximation
and q-learning. Machine Learning, 16(3):185–202, 9
1994. doi: 10.1023/A:1022689125041. URL https:
//doi.org/10.1023/A:1022689125041.

Wan, Y. and Sutton, R. S. On convergence of average-
reward off-policy control algorithms in weakly commu-
nicating mdps, 2022.

Wan, Y., Naik, A., and Sutton, R. S. Learning and planning
in average-reward markov decision processes. CoRR,
abs/2006.16318, 2020. URL https://arxiv.org/
abs/2006.16318.

Yang, S., Gao, Y., An, B., Wang, H., and Chen, X. Effi-
cient average reward reinforcement learning using con-
stant shifting values. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 30(1), Mar. 2016. doi: 10.
1609/aaai.v30i1.10285. URL https://ojs.aaai.
org/index.php/AAAI/article/view/10285.

Zhang, S., Wan, Y., Sutton, R. S., and Whiteson, S.
Average-reward off-policy policy evaluation with func-
tion approximation. CoRR, abs/2101.02808, 2021a.
URL https://arxiv.org/abs/2101.02808.

Zhang, S., Yao, H., and Whiteson, S. Breaking the deadly
triad with a target network. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 12621–12631. PMLR,
18–24 Jul 2021b. URL https://proceedings.
mlr.press/v139/zhang21y.html.

Zhang, Y. and Ross, K. W. On-policy deep reinforce-
ment learning for the average-reward criterion. CoRR,
abs/2106.07329, 2021. URL https://arxiv.org/
abs/2106.07329.

11

https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1910.02140
http://arxiv.org/abs/1910.02140
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/b978-1-55860-307-3.50045-9
https://doi.org/10.1016/b978-1-55860-307-3.50045-9
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v32/silver14.html
https://api.semanticscholar.org/CorpusID:17854729
https://api.semanticscholar.org/CorpusID:17854729
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://zenodo.org/record/8127025
https://zenodo.org/record/8127025
https://doi.org/10.1023/A:1022689125041
https://doi.org/10.1023/A:1022689125041
https://arxiv.org/abs/2006.16318
https://arxiv.org/abs/2006.16318
https://ojs.aaai.org/index.php/AAAI/article/view/10285
https://ojs.aaai.org/index.php/AAAI/article/view/10285
https://arxiv.org/abs/2101.02808
https://proceedings.mlr.press/v139/zhang21y.html
https://proceedings.mlr.press/v139/zhang21y.html
https://arxiv.org/abs/2106.07329
https://arxiv.org/abs/2106.07329


RVI-SAC

A. Mathematical Notations
In this paper, we utilize the following mathematical notations:

• e denotes a vector with all elements being 1.

• DKL(p|q) represents the Kullback-Leibler divergence, defined between probability distributions p and q as
DKL(p|q) =

∑
x p(x) log

p(x)
q(x) .

• Here, 1(“some condition”) is an indicator function, taking the value 1 when “some condition” is satisfied, and 0
otherwise.

• ∥ · ∥∞ denotes the sup-norm.

B. Overall RVI-SAC algorithm and implementation

Algorithm 1 RVI-SAC

1: Initialize:Q-Network parameters ϕ1, ϕ2, ϕ
′
1, ϕ

′
2, Delayed f(Q) update parameter ξ, Policy-Network parameters θ, Temperature

parameter α, Q-Network parameters for reset ϕreset, ϕ
′
reset, Delayed f(Q) update parameter ξreset for reset, and Reset Cost rcost.

2: for each iteration do
3: Sample action a ∼ π(·|s)
4: Sample next state s′ ∼ p(·|s, a) and reward r
5: if s′ /∈ Sterm then
6: Store transition (s, a, r, s′, is reset step = false) in replay buffer D
7: else if s′ ∈ Sterm then
8: Reset environment to initial state s0
9: Store transition (s, a, r, s0, is reset step = true) in replay buffer D

10: end if
11: Sample a mini-batch B from D
12: Update ϕ1, ϕ2 by minimizing Q-Network loss J(ϕi) (Eq. 17)
13: Update ξ using delayed f(Q) update method (Eq. 18)
14: Update ϕreset by minimizing Reset Q-Network loss J(ϕreset) (Eq. 22)
15: Update ξreset using delayed f(Q) update method (Eq. 23)
16: Update θ by minimizing Policy-Network loss J(θ) (Eq. 20)
17: Update α by minimizing Temperature Parameter loss J(α) (Eq. 21)
18: Update rcost by minimizing Reset Cost loss J(rcost) (Eq. 24)
19: Update ϕ′

1, ϕ
′
2, ϕ

′
reset(Eq. 25)

20: end for

In this section, based on Sections 3.1, 3.2, and 3.3, we present the overall algorithm of RVI-SAC.

The main parameters to be updated in this algorithm are:

• The parameters ϕ1, ϕ2 of the Q-Network and their corresponding target network parameters ϕ′
1, ϕ

′
2,

• The parameter ξ for the Delayed f(Q) Update,

• The parameters θ of the Policy-Network,

• Additionally, this method introduces automatic adjustment of the temperature parameter α, as introduced in SAC-
v2(Haarnoja et al., 2018b).

Note that the update of the Q-Network uses the Double Q-Value function approximator (Fujimoto et al., 2018).

In cases where environment resets are needed, the following parameters are also updated:

• The Reset Cost rcost,

• The parameters ϕreset of the Q-Network for estimating the frequency of environment resets and their corresponding
target network parameters ϕ′

reset,

12



RVI-SAC

• The parameter ξreset for the Delayed f(Q) Update.

The Q-Network used to estimate the frequency of environment resets is not directly used in policy updates, therefore the
Double Q-Value function approximator is not employed for it.

From Sections 3.1 and 3.2, the parameters ϕ1, ϕ2 of the Q-Network are updated by minimizing the following loss function:

J(ϕi) =
1

|B|
∑

(s,a,r,s′,is reset step)∈B

(Y (s, a, r, s′, is reset step)−Qϕi
(s, a))

2
, i = 1, 2, (17)

where
Y (s, a, r, s′, is reset step) = r̂ − ξ + min

j=1,2
Qϕ′

j
(s′, a′)− α log πθ(a

′|s′),

r̂ = r − rcost1 (is reset step) , a′ ∼ πθ(·|s′).

Note that r̂ is the reward penalized by the Reset Cost. ξ is updated as follows using the parameter κ, based on the Delayed
f(Q) update:

ξ ← ξ + κ
(
f(Qent

ϕ′ ;B)− ξ
)
,

Qent
ϕ′ (s, a) := Qϕ′(s, a)− α log πθ(a|s).

(18)

Qent
ϕ′ (s, a) represents the entropy augmented Q function as in Equation 15. For a function Q : S × A → R, f(Q;B) is

calculated as follows:
f(Q;B) = 1

|B|
∑

(s,a,r,s′,is reset step)∈B

Q(s′, a′),

a′ ∼ πθ(·|s′).
(19)

The parameters θ of the Policy-Network is updated to minimize the following loss function, as described in Section 3.2,
using the same method as in SAC:

J(θ) =
1

|B|
∑

(s,a,r,s′,is reset step)∈B

(
α log πθ(a

′|s)− min
j=1,2

Qϕj (s, a
′)

)
, a′ ∼ πθ(·|s). (20)

Furthermore, since the theory and update method for the temperature parameter α do not depend on the discount rate γ, it
is updated in the same way as in SAC:

J(α) =
1

|B|
∑

(s,a,r,s′,is reset step)∈B

α
(
− log πθ(a

′|s)−H
)
, a′ ∼ πθ(·|s). (21)

whereH is the entropy target.

The parameters ϕreset of the Q-Network for estimating the frequency of environment resets are updated to minimize the
following loss function,

J(ϕreset) =
1

|B|
∑

(s,a,r,s′,is reset step)∈B

(Yreset(s, a, r, s
′, is reset step)−Qϕreset(s, a))

2
,

Yreset(s, a, r, s
′, is reset step) = 1 (is reset step)− ξreset +Qϕ′

reset
(s′, a′),

a′ ∼ πθ(·|s′),

(22)

and ξreset is updated as
ξreset ← ξreset + κ

(
f(Qϕ′

reset
;B)− ξreset

)
(23)

using the calculation for f(Qϕ′
reset

;B) provided in Equation 19.

When using ξreset as an estimator for ρπreset, the Reset Cost rcost is updated to minimize the following loss function, as
described in Section 3.3:

J(rcost) = −rcost (ξreset − ϵreset) . (24)

13



RVI-SAC

The parameters of the target network ϕ′
1, ϕ

′
2, ϕ

′
reset are updated according to the parameter τ as follows:

ϕ′
1 ← τϕ1 + (1− τ)ϕ′

1

ϕ′
2 ← τϕ2 + (1− τ)ϕ′

2

ϕ′
reset ← τϕreset + (1− τ)ϕ′

reset

(25)

The pseudocode for the entire algorithm is presented in Algorithm 1.

C. Convergence Proof of RVI Q-learning with Delayed f(Q) Update
In this section, we present the asymptotic convergence of the Delayed f(Q) Update algorithm, as outlined in Equation 10.
This algorithm is a two-time-scale stochastic approximation (SA) and updates the Q-values and offsets in average reward-
based Q-learning at different time scales. This approach is similar to the algorithm proposed in Gosavi (2004). Moreover,
the convergence discussion in this section largely draws upon the discussions in Konda & Borkar (1999); Gosavi (2004).

C.1. Proposed algorithm

In this section, we reformulate the algorithm for which we aim to prove convergence.

Consider an MDP with a finite state-action space that satisfies Assumption 2.1. For all (s, a) ∈ S × A, let us define the
update equations for a scalar sequence ξk and a tabular Q function Qk as follows:

ξk+1 = ξk + a(k) (f(Qk;Xk)− ξk) , (26)

Qk+1(s, a) = Qk(s, a) + b(ν(k, s, a))
(
r(s, a)− gη(ξk) + max

a′
Qk(s

′, a′)−Qk(s, a)
)
1 ((s, a) = ϕk) . (27)

gη(·) is a clip function newly added from Equation 10 to ensure the convergence of this algorithm. For any η > 0, it is
defined as:

gη(x) =

 ∥r∥∞ + η for x ≥ ∥r∥∞ + η,
x for −∥r∥∞ − η < x < ∥r∥∞ + η,
−∥r∥∞ − η for x ≤ −∥r∥∞ − η.

(28)

At discrete time steps k, ϕk denotes the sequence of state/action pairs updated at time k, and s′ represents the next state
sampled when the agent selects action a in state s. The function ν(k, s, a) counts the number of updates to Q(s, a)

up to time k, defined as ν(k, s, a) =
∑k

m=0 1 ((s, a) = ϕm). The functions a(·) and b(·) represent the step-size. For
the random variable Xk and the function f(·; ·), we introduce the following assumption within the increasing σ-field
Fk = σ(ξn, Qn, n ≤ k,wn,1, wn,2, n < k), where wn,1, wn,2 are defined in Equation 35.

Assumption C.1. It holds that
E [f(Qk;Xk)− f(Qk) | Fk] = 0,

and for some constant K,
E
[
∥f(Qk;Xk)− f(Qk)∥2 | Fk

]
< K(1 + ∥Qk∥2).

This assumption is obviously satisfied when f is set as in Equation 7.

C.2. The ODE framework and stochastic approximation(SA)

In this section, we revisit the convergence results for SA with two update equations on different time scales, as demonstrated
in Konda & Borkar (1999); Gosavi (2004).

The sequences {xk} and {yk} are in Rn and Rl, respectively. For i = 1, . . . , n and j = 1, . . . , l, they are generated
according to the following update equations:

xi
k+1 = xi

k + a(ν1(k, i))
(
hi (xk, yk) + wi

k,1

)
1 (i = ϕk,1) , (29)

yjk+1 = yjk + b(ν2(k, j))
(
f j (xk, yk) + wj

k,2

)
1 (j = ϕk,2) , (30)

14



RVI-SAC

where the superscripts in each vector represent vector indices, and {ϕk,1} and {ϕk,2} are stochastic processes taking values
on the sets S1 = {1, 2, . . . , n} and S2 = {1, 2, . . . , l}, respectively. The functions h(·, ·) and f(·, ·) are arbitrary functions
of (xk, yk). The terms wk,1, wk,2 represent noise components, and ν1, ν2 are defined as:

ν1(k, i) =

k∑
m=0

1 (i = ϕm,1) ,

ν2(k, j) =

k∑
m=0

1 (j = ϕm,2) .

In the context of the proposed method (Equations 26 and 27), xk corresponds to ξk, and yk corresponds to Qk. This
implies that n is 1, and l is equal to the number of state/action pairs. Consequently, ν1(k, i) corresponds k due to n = 1,
and ν2(k, j) corresponds to ν(k, s, a).

We assume the following assumptions for this SA:

Assumption C.2. The functions h and f are Lipschitz continuous.

Assumption C.3. There exist ∆ > 0 such that

lim inf
k→∞

ν1(k, i)

k + 1
≥ ∆,

and

lim inf
k→∞

ν2(k, j)

k + 1
≥ ∆.

almost surely, for all i = 1, 2, . . . , n and j = 1, 2, . . . , l. Furthermore, if, for a(·), b(·) and x > 0,

N(k, x) = min

{
m > k :

m∑
i=k+1

a(i) ≥ x

}
,

N ′(k, x) = min

{
m > k :

m∑
i=k+1

b(i) ≥ x

}
,

where a(i) = a(ν1(i, ϕi,1)), b(i) = b(ν2(i, ϕi,2)) , then the limits

lim
k→∞

∑ν1(N(k,x),i′)
m=ν1(k,i′)

a(m)∑ν1(N(k,x),i)
m=ν1(k,i)

a(m)
,

lim
k→∞

∑ν2(N ′(k,x),j′)
m=ν2(k,j′)

b(m)∑ν2(N ′(n,x),j)
m=ν2(k,j)

b(m)

exist almost surely for all i, i′, j, j′ (Together, these conditions imply that the components are updated “comparably often”
in an “evenly spread” manner.)

Assumption C.4. Let c(k) be a(k) or b(k). The standard conditions for convergence that c(k) must satisfy are as follows:

•
∑

k c(k) =∞,
∑

k c
2(k) <∞

• For x ∈ (0, 1),

sup
k

c([xk])/c(k) <∞,

where [· · · ] stands for the integer part of “...”.

15



RVI-SAC

• For x ∈ (0, 1) and A(k) =
∑k

i=0 c(i),

A([yk])/A(k)→ 1,

uniformly in y ∈ [x, 1].

Assumption C.5. In addition to Assumption C.4, the following conditions must be satisfied:

lim
k→∞

sup
b(k)

a(k)
= 0

.

Assumption C.6. Let Fk = σ(xn, yn, n ≤ k,wn,1, wn,2, n < k) be a increasing σ-field. For some constants ,K1 and K2,
the following condition is satisfied:

E [wk,1 | Fk] = 0,

E
[
∥wk,1∥2 | Fk

]
≤ K1(1 + ∥xk∥2 + ∥yk∥2),

and

E [wk,2 | Fk] = 0,

E
[
∥wk,2∥2 | Fk

]
≤ K2(1 + ∥xk∥2 + ∥yk∥2).

Assumption C.7. The iterations of xk and yk are bounded.

Assumption C.8. For all y ∈ Rl, the ODE
ẋt = h(xt, y) (31)

has an asymptotically stable critical point λ(y) such that the map λ is Lipschitz continuous.

Assumption C.9. The ODE
ẏt = f(λ(yt), yt) (32)

has a global asymptotically stable critical point y∗.

Note that, t represents continuous time.

From Konda & Borkar (1999); Gosavi (2004), the following theorem holds:

Theorem C.10. Let Assumption C.2 to C.9 hold. Then, {(xk, yk)} converges almost surely to (λ (y∗) , y∗).

This theorem is slightly different from the problem setting for the convergence of two-time-scale SA as described in Konda
& Borkar (1999). In Konda & Borkar (1999), it is assumed that a projection mapping P is applied to the entire right-hand
side of the update equation for yk (Equation 30), such that P (x) = y, y ∈ G, |x − y| = infz∈G |z − x| for some closed
convex set G. Instead of this setting, we assume in Assumption C.7 that yk is bounded. With this assumption, there exists
a projection mapping P that, even if applied to the right-hand side of Equation 30, would not affect the values of yk.
Therefore, Theorem C.10 is essentially encompassed by the results in Konda & Borkar (1999).

C.3. Proof

We show the convergence of the proposed method by verifying that each of the assumptions presented in the previous
section is satisfied.

First, we prepare ODEs related to the update equations 26 and 27. The mappings H1 and H2 are defined as follows:

H1(ξ,Q) = f(Q),

H2(ξ,Q)(s, a) = r(s, a)− gη(ξ) +
∑
s′

p(s′|s, a)max
a′

Q(s′, a′).

16



RVI-SAC

We rewrite Equations 26 and 27 using the mappings H1 and H2 as follows:

ξk+1 = ξk + a(k) (H1(ξk, Qk)− ξk + wk,1) , (33)
Qk+1(s, a) = Qk(s, a) + b(ν(k, s, a)) (H2(ξk, Qk)(s, a)−Qk(s, a) + wk,2(s, a))1 ((s, a) = ϕk) . (34)

Here, the noise terms wk,1 and wk,2 are defined respectively as follows:

wk,1 = f(Qk;Xk)−H1(Qk, ξk) = f(Qk;Xk)− f(Qk),

wk,2(s, a) = r(s, a)− gη(ξk) + max
a′

Qk(s
′, a′)−H2(Qk, ξk)(s, a).

(35)

Using H1 and H2, we define the ODEs related to Equations 26 and 27 (where Equation 36 corresponds to Equation 26,
and Equation 37 corresponds to Equation 27) as follows:

ξ̇t = H1(ξt, Q)− ξt, ∀Q (36)
Q̇t = H2(λ(Qt), Qt)−Qt. (37)

C.3.1. BOUNDNESS OF THE ITERATION (ASSUMPTION C.7)

In this section, we show that Assumption C.7 holds for the iterations defined in Equations 26 and 27. To this end, we
introduce an assumption for the MDP as introduced in Gosavi (2004)

Assumption C.11. There exists a state s in the Markov chain such that for some integer m, and for all initial states and all
stationary policies, s is visited with a positive probability at least once within the first m timesteps.

Under this assumption, the mapping T defined as

T (Q)(s, a) = r(s, a) +
∑
s′

p(s′|s, a)max
a′

Q(s′, a′) (38)

is shown to be a contraction mapping with respect to a certain weighted sup-norm. (For proof, see Appendix A.5 in Gosavi
(2004)). This means that there exists a vector γ and a scalar δ ∈ (0, 1), D > 0, such that

∥T (Q)∥γ ≤ δ∥Q∥γ +D

is satisfied. Here, |v|γ is defined as a weighted sup-norm given by

∥v∥γ = max
s,a∈S×A

|v(s, a)|
γ(s, a)

.

Regarding H2, it holds that
H2(ξ,Q)(s, a) = T (Q)(s, a)− gη(ξ)

⇒ |H2(ξ,Q)(s, a)| ≤ |T (Q)(s, a)|+ |gη(ξ)|, ∀s, a.

From the definition of gη(ξ) (Equation 28), gη(ξ) is bounded. Therefore, for some D1 > 0 and for any ξ, the following is
satisfied:

∥H2(ξ,Q)∥γ ≤ ∥T (Q)∥γ +D1

⇒ ∥H2(ξ,Q)∥γ ≤ δ∥Q∥γ +D +D1.

Consequently, utilizing the results from (Tsitsiklis, 1994), the iteration expressed in Equation 34, which employs H2,
maintains the boundedness of Qk. Additionally, when Qk is bounded, f(Qk;Xk) is also bounded, thereby ensuring that
ξk remains bounded as well.

C.3.2. CONVERGENCE OF THE ODE (ASSUMPTION C.8, C.9)

We verify that Equation 36 satisfies Assumption C.8. The function H1(ξ,Q) in Equation 36 is independent of ξ, and when
Q is fixed, H1(ξ,Q) becomes a constant. Therefore, it is obvious that Assumption C.8 is satisfied, and we have

λ(Q) = f(Q).

17



RVI-SAC

Consequently, we can rewrite Equation 37 as follows:

Q̇t = H2(f(Qt), Qt)−Qt = T (Qt)− gη(f(Qt))e−Qt. (39)

Next, we verify Assumption C.9 for Equation 39. To demonstrate the convergence of Equation 39, we introduce the
following lemma from Wan et al. (2020):
Lemma C.12. The following ODE

ẇt = T (wt)− f(wt)e− wt (40)

is globally asymptotically stable and converges to wt → q∗. Here, q∗ satisfies the optimal Bellman equation (as shown in
Equation 4) and the following conditions with respect to the function f :

q∗(s, a) = r(s, a)− ρ∗ +
∑
s′∈S

p(s′|s, a)max
a′

q∗(s′, a′),

ρ∗ = f(q∗).

For Equation 39, we demonstrate that the following lemma holds:
Lemma C.13. The ODE shown in Equation 39 is globally asymptotically stable and converges to Qt → q∗. Here, q∗ is
the same as the q∗ in Lemma C.12.

Proof. First, from the definition of function gη(·) (Equation 28), it is obvious that gη(f(q∗)) = f(q∗), thus q∗ is an
equilibrium point of the ODE shown in Equation 39.

Next, we show that the ODE presented in Equation 39 satisfies Lyapunov stability. That is, we need to show that, for any
given ϵ > 0, there exists δ > 0 such that if ∥q∗−Q0∥∞ ≤ δ, then it implies ∥q∗−Qt∥∞ ≤ ϵ for all t ≥ 0. To demonstrate
this, the following lemma is presented:

Lemma C.14. Let L be the Lipschitz constant of the function f . If ∥q∗ −Q0∥∞ ≤ η
L(1+L) , then for the solution Qt of the

ODE (Equation 39) and the solution wt of the ODE (Equation 40) with Q0 = w0, it holds that Qt = wt.

Proof. From Wan et al. (2020), it is known that the following holds for the ODE in Equation 40:

|ρ∗ − f(wt)| = |f(q∗)− f(wt)|
≤ L∥q∗ − wt∥∞
≤ L(1 + L)∥q∗ − w0∥∞.

Here, we choose w0 such that ∥q∗ − w0∥∞ ≤ η
L(1+L) . Under this condition,

|ρ∗ − f(wt)| ≤ η

⇒ ρ∗ − η ≤ f(wt) ≤ ρ∗ + η

⇒ −∥r∥∞ − η ≤ f(wt) ≤ ∥r∥∞ + η.

This result implies that gη(f(wt)) = f(wt) for all t ≥ 0. Therefore, for the ODE in Equation 39 with Q0 = w0, it follows
that Qt = wt.

Given that the ODE in Equation 40 satisfies Lyapunov stability (as shown in Wan et al. (2020)), it follows from Lemma
C.14 that, for any ϵ, by choosing δ ≤ η

L(1+L) , the ODE in Equation 39 also satisfies Lyapunov stability.

To demonstrate global asymptotic stability, we need to show that, for any initial Q0, limt→∞ ∥q∗ − Qt∥∞ = 0. Setting
w0 = Q0 and defining vte = wt −Qt. Then, we have

v̇te = ẇt − Q̇t

= T (wt)− f(wt)e− wt − (T (Qt)− gη(f(Qt))e−Qt)

= T (wt)− T (wt − vte)− (f(wt)e− gη(f(wt − vte))e)− vte

= T (wt)− T (wt) + vte− (f(wt)e− gη(f(wt)− uvt)e)− vte

= −f(wt)e+ gη(f(wt)− uvt)e.

18



RVI-SAC

From the definition of gη(·), v̇t can be expressed as follows:

v̇t =

 −f(wt) + ∥r∥∞ + η for f(wt)− uvt ≥ ∥r∥∞ + η,
−uvt for −∥r∥∞ − η < f(wt)− uvt < ∥r∥∞ + η,
−f(wt)− ∥r∥∞ − η for f(wt)− uvt ≤ −∥r∥∞ − η.

Here, we consider a time Tη′ that satisfies the following condition for some 0 < η′ < η:

|ρ∗ − f(wt)| ≤ |f(q∗)− f(wt)|
≤ L∥q∗ − wt∥∞
≤ η′, ∀t ≥ Tη′ .

(Lemma C.12 ensures the existence of such Tη′ .) For t ≥ Tη′ , the following holds:

−η′ ≤ f(wt)− ρ∗ ≤ η′

⇒ −∥r∥∞ − η < ρ∗ − η′ ≤ f(wt) ≤ ρ∗ + η′ < ∥r∥∞ + η.

Therefore, for vt, the following holds:

• When f(wt)− uvt ≥ ∥r∥∞ + η ⇒ vt ≤ f(wt)−∥r∥∞−η
u < 0, we have

v̇t = −f(wt) + ∥r∥∞ + η > 0

• When −∥r∥∞ − η < f(wt)− uvt < ∥r∥∞ + η ⇒ −∥r∥∞−η
u < vt <

∥r∥∞+η
u ,

v̇t = −uvt

• When f(wt)− uvt ≤ −∥r∥∞ − η ⇒ vt ≥ f(wt)+∥r∥∞+η
u > 0, we have

v̇t = −f(wt)− ∥r∥∞ − η < 0

Setting the Lyapunov function as V (v) = 1
2v

2, V̇ (vt) = vtv̇t is such that V̇ (vt) = 0 when vt = 0, and V̇ (vt) < 0 when
vt ̸= 0. Thus, from the Lyapunov Second Method, v = 0 is a globally asymptotically stable point. Therefore, for any
initial vTη′ , we can achieve vt → 0, leading to limt→∞ ∥q∗ − Qt∥∞ = 0. Hence, the ODE in Equation 39 is globally
asymptotically stable at q∗.

C.3.3. VERIFICATION OF OTHER ASSUMPTIONS

We verify the remaining assumptions (Assumption C.2, C.3, C.4, C.5 and C.6).

First, regarding Assumption C.2, the function h corresponds to H1(ξ,Q)−ξ, and the function f corresponds to H2(ξ,Q)−
Q. It is clear that all terms constituting these functions are Lipschitz continuous. Therefore, the overall functions are also
Lipschitz continuous, satisfying Assumption C.2.

Assumption C.3 concerns the update frequency of elements in the vector being updated during the learning process, which
is commonly used in asynchronous SA (Borkar, 2009; Abounadi et al., 2001; Wan et al., 2020). Since ξk, corresponding to
xk, is a scalar, it clearly satisfies this assumption. For the updates of Qk, corresponding to yk, we introduce the following
assumption on the learning process of our proposed method.

Assumption C.15. There exists ∆ > 0 such that

lim inf
k→∞

ν(k, s, a)

k + 1
≥ ∆

almost surely, for all s ∈ S, a ∈ A. Furthermore, if, for b(·) and x > 0,

N ′(k, x) = min

{
m > k :

m∑
i=k+1

b(i) ≥ x

}
,

19



RVI-SAC

where b(i) = ν(i, ϕi) , then the limits

lim
k→∞

∑ν2(N ′(k,x),s′,a′)
m=ν2(k,s′,a′) b(m)∑ν2(N ′(n,x),s,a)
m=ν2(k,s,a)

b(m)

exist almost surely for all s, a, s′, a′

Assumption C.4 is a common assumption about step sizes in asynchronous SA, typically used in various studies (Borkar,
2009; Abounadi et al., 2001; Wan et al., 2020). Assumption C.5 is a standard assumption for two time-scale SA, as found
in the literature (Borkar, 2009; 1997; Gosavi, 2004; Konda & Borkar, 1999). In our proposed method, we assume the
selection of step sizes that satisfy these assumptions.

Assumption C.6 is about the noise term. The assumption regarding the mean of the noise is satisfied because, by the defini-
tion of noise (Equation 35), the noise is the difference between the sample and its conditional expectation. The assumption
regarding the variance of the noise can be easily verified by Assumption C.1 and applying the triangle inequality.

Based on the above discussion, for a finite MDP, when Assumptions 2.1, C.1, C.11, C.4, C.5, and C.15 are satisfied, it has
been shown that our proposed update equations 27 and 26 converge almost surely Qk → q∗ and ξk → f(q∗).

D. Proof of the Average Reward Soft Policy Improvement (Theorem 3.2)
In this section, we prove Theorem 3.2 as introduced in Section 3.2. From the definition of the average reward soft-Q
function in Equation 14, the following equation holds:

Qπ(s, a) = r(s, a)− ρπsoft + Es′∼p(·|s,a)
a′∼π(·|s′)

[Qπ(s′, a′)− log π(a′|s′)] .

Using this, we perform the following algebraic transformation with respect toρπold
soft :

ρπold
soft = r(s, a)−Qπold(s, a) + E s′∼p(·|s,a)

a′∼πold(·|s′)
[Qπold(s′, a′)− log πold(a

′|s′)]

= E(s,a)∼dπnew (·,·)

[
r(s, a)−Qπold(s, a) + E s′∼p(·|s,a)

a′∼πold(·|s′)
[Qπold(s′, a′)− log πold(a

′|s′)]

]
= ρπnew

soft − E(s,a)∼dπnew (·,·) [− log πnew(a|s)]

+ E(s,a)∼dπnew (·,·)

[
−Qπold(s, a) + E s′∼p(·|s,a)

a′∼πold(·|s′)
[Qπold(s′, a′)− log πold(a

′|s′)]

]
· · · .

Here, according to Haarnoja et al. (2018a;b), with the update in Equation 12, the following relationship holds for πold and
πnew:

Ea∼πnew(·|s) [Q
πold(s, a)− log πnew(a|s)] ≥ Ea∼πold(·|s) [Q

πold(s, a)− log πold(a|s)] , ∀s ∈ S.

Continuing the transformation with this, we get:

ρ
πold
soft = · · ·

≤ ρπnew
soft − E(s,a)∼dπnew (·,·) [− log πnew(a|s)] + E(s,a)∼dπnew (·,·)

[
−Qπold(s, a) + E s′∼p(·|s,a)

a′∼πnew(·|s′)

[
Qπold(s′, a′)− log πnew(a

′|s′)
]]

= ρπnew
soft

((((((((((((((
−E(s,a)∼dπnew (·,·) [− log πnew(a|s)]

(((((((((((((
+E(s,a)∼dπnew (·,·) [−Qπold(s, a)]

(((((((((((((
+E(s,a)∼dπnew (·,·) [−Qπold(s, a)] +

(((((((((((((
E(s,a)∼dπnew (·,·) [− log πnew(a|s)]

= ρπnew
soft .

Therefore, Theorem 3.2 has been shown.

20



RVI-SAC

E. Hyperparameter settings
We summarize the hyperparameters used in RVI-SAC and SAC in Table 1. We used the same hyperparameters for ARO-
DDPG as Saxena et al. (2023).

RVI-SAC SAC

Discount Factor γ N/A [0.97, 0.99, 0.999]
Optimizer Adam Adam
Learning Rate 3e-4 3e-4
Batch Size |B| 256 256
Replay Buffer Size |D| 1e6 1e6
Critic Network [256, 256] [256, 256]
Actor Network [256, 256] [256, 256]
Activation Function ReLU ReLU
Target Smoothing Coefficient τ 5e-3 5e-3
Entrpy TargetH - dim action - dim action
Critc Network for Reset [64, 64] N/A
Delayd f(Q) Update Parameter κ 5e-3 N/A
Termination Frequency Target ϵreset 1e-3 N/A

Table 1. Hyperparameters of RVI-SAC and SAC.

F. Additional Results
F.1. Average reward evaluation

Figure 3 shows the learning curves of RVI-SAC, SAC with various discount rates, and ARO-DDPG when the evaluation
metric is set as average reward (total return / survival step). Note that in the Swimmer and HalfCheetah environments,
where there is no termination, the results evaluated by average reward are the same as those evaluated by total return
(shown in Figure 1). These results, similar to those shown in Figure 1, demonstrate that RVI-SAC also exhibits overall
higher performance in terms of average reward.

F.2. Perfomance Comparison with SAC and ARO-DDPG with Reset

Figure 4 presents the learning curves for all environments with termination (Ant, Hopper, Walker2d and Humanoid), similar
to Figure 2a in Section 4.2, comparing RVI-SAC with SAC with automatic Reset Cost adjustment and ARO-DDPG with
automatic Reset Cost adjustment. Here, the discount rate of SAC is set to γ = 0.99. The results demonstrate that RVI-SAC
outperforms SAC with automatic Reset Cost adjustment and ARO-DDPG with automatic Reset Cost adjustment across all
environments.

21



RVI-SAC

(a) Swimmer (b) Ant (c) Walker2d

(d) Humanoid (e) Hopper (f) HalfCheetah

Figure 3. Learning curves for the Gymnasium’s Mujoco tasks. The horizontal axis represents Steps, and the vertical axis represents the
evaluation value (average reward). Lines and shades represent the mean and standard deviation of the evaluation values over 10 trials,
respectively.

(a) Ant (b) Hopper (c) Walker2d

(d) Humanoid

Figure 4. This figure represent learning curves for all environments with termination, compare RVI-SAC (red) with SAC (blue) with
automatic Reset Cost adjustment and ARO-DDPG(purple) with automatic Reset Cost adjustment.

22


