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Focus, Distinguish, and Prompt: Unleashing CLIP for Efficient
and Flexible Scene Text Retrieval

Anonymous Authors

ABSTRACT
Scene text retrieval aims to find all images containing the query text
from an image gallery. Current efforts tend to adopt an Optical Char-
acter Recognition (OCR) pipeline, which requires complicated text
detection and/or recognition processes, resulting in inefficient and
inflexible retrieval. Different from them, in this work we propose
to explore the intrinsic potential of Contrastive Language-Image
Pre-training (CLIP) for OCR-free scene text retrieval. Through em-
pirical analysis, we observe that the main challenges of CLIP as a
text retriever are: 1) limited text perceptual scale, and 2) entangled
visual-semantic concepts. To this end, a novel model termed FDP
(Focus, Distinguish, and Prompt) is developed. FDP first focuses on
scene text via shifting the attention to text area and probing the
hidden text knowledge, and then divides the query text into content
word and function word for processing, in which a semantic-aware
prompting scheme and a distracted queries assistance module are
utilized. Extensive experiments show that FDP significantly en-
hances the inference speed while achieving better or competitive
retrieval accuracy. Notably, on the IIIT-STR benchmark, FDP sur-
passes the state-of-the-art method by 4.37% with a 4 times faster
speed. Furthermore, additional experiments under phrase-level and
attribute-aware scene text retrieval settings validate FDP’s particu-
lar advantages in handling diverse forms of query text.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.
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1 INTRODUCTION
Since text is ubiquitous in natural scenes and conveys rich semantic
information, scene text understanding has received a lot of attention
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Figure 1: Illustration of the trade-off between retrieval accu-
racy (mAP scores) and inference speed (FPS) on the IIIT-STR
benchmark. Our proposed FDP method achieves better bal-
ance than previous methods.

for decades. Different from common scene text understanding tasks
such as text detection, text recognition, and end-to-end text spotting,
Scene Text Retrieval (STR) is an emerging topic that only focuses
on text of interest, i.e., searching images containing a given query
text from an image gallery. As such, STR is beneficial for many
applications like product image search, program recommendation,
and electronic book archives management [6, 7, 31].

With the aid of Optical Character Recognition (OCR) techniques,
STR has made remarkable progress in recent years [9, 13, 16]. Nev-
ertheless, existing methods still suffer from two critical limitations.
First, as illustrated in Fig.1, there is a dilemma of how to balance
retrieval accuracy (mAP scores) and inference speed (FPS). Specifi-
cally, most STR models follow the two-stage pipeline that first de-
tects text regions and then compares these regions with the query
text for retrieval. In this pipeline, either an exact text detection or
recognition process is required, which significantly slows down the
inference speed. Comparatively, Gomez et al. [8] achieve fast text
retrieval using a single-shot CNN architecture, but it is limited by
relatively low retrieval accuracy. Second, in real life, the query text
that people expect to retrieve is often in various forms. However,
current efforts rely on the local retrieval mechanism that treats
word instances as query units, leading to inherent inflexibility in
phrase-level or attribute-aware scene text retrieval (see Fig.2).

Recently, Contrastive Language-Image Pre-training (CLIP) [23]
has become a powerful foundation model for learning cross-modal
representations and enabling zero-shot transfer to downstream
tasks. More remarkably, several works [14, 24] have demonstrated
CLIP also implies OCR capabilities via pre-training on massive
image-text pairs. It gives us a new insight: can we explore the
intrinsic potential of CLIP for efficient and flexible STR? To this

https://doi.org/XXXXXXX.XXXXXXX
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Query: 

“pink lady apple juice”

Conventional STR Models Our Proposed FDP Model

(a) Phrase-level scene text retrieval

Query: 

“welcome in red”

Conventional STR Models Our Proposed FDP Model

(b) Attribute-aware scene text retrieval

Figure 2: Illustration of the scene text retrieval in (a) phrase-
level and (b) attribute-aware settings. Unlike conventional
STR models that rely on the local retrieval mechanism, FDP
is more flexible in handling diverse forms of query text.

end, we investigate the advantages and deficiencies of CLIP in the
STR task through an empirical study. A surprising finding is that
simply applying the frozen CLIP can even achieve better accuracy
than some dedicated STRmodels. Moreover, thanks to CLIP’s simple
network design, the retrieval speed is also superior. Despite these
impressive results, there are still two challenges that hinder CLIP
from being an ideal retrieval engine: 1) Limited text perceptual
scale. As the image resolution input into CLIP is very limited (e.g.,
224×224), and scene text usually occupies only a small part of the
scene image, a lot of text may be ignored or misrecognized by CLIP.
2) Entangled visual-semantic concepts. Due to the prevalence
of text in natural images, there is confusion between visual text and
semantic concepts in CLIP’s cognition [20]. Its specific impact on
STR is that the CLIP-based retrieval model performs much better
on content words (e.g., “coffee”, “hotel”) than on function words
(e.g., “and”, “with”) because only content words represent exact
semantics. Besides, the model may have difficulty distinguishing
similar words (e.g., “advice” and “advise”) because their semantics
are close in the embedding space.

In this paper, we propose amodel named FDP (Focus, Distinguish,
and Prompt) to tackle the above challenges. Concretely, for each
image in the gallery, we firstly force CLIP to focus on scene text by
1) applying the rough text localization results to refine the model
attention on images, and 2) leveraging CLIP’s well-aligned vision-
language representations to prob text knowledge. Then, given a
query text, we distinguish whether it is a content word or a func-
tion word via unsupervised clustering and determine the retrieval
solution accordingly. Finally, a semantic-aware prompting scheme
is developed, which converts the query text into a learnable prompt
and ranks images by computing their similarity scores with each
image. In addition, a distracted query assistance strategy is involved
during training to resist the negative effects of similar words. Exten-
sive experiments on three benchmarks show that FDP can achieve
better or competitive accuracy compared to existing models with

a faster inference speed. To further evaluate the effectiveness of
STR methods over arbitrary-length query text, we introduce a new
benchmark of phrase-level scene text retrieval (PSTR). Meanwhile,
qualitative experiments regarding attribute-aware scene text re-
trieval are conducted. These experimental results demonstrate the
generalization and flexibility of FDP.

Overall, the main contributions of this work are three-fold:
1) To the best of our knowledge, it is the first work to directly

extend CLIP for scene text retrieval. We summarize both the ad-
vantages and deficiencies of CLIP in dealing with the STR task and
propose a novel FDP (Focus, Distinguish, and Prompt) method.

2) In contrast to previous works, FDP steers the prior knowledge
fromCLIP and eliminates the complicated text detection/recognition
process, thus achieving a better trade-off between retrieval accuracy
and inference speed. Notably, FDP outperforms the state-of-the-art
method [30] by 4.37% mAP score with a 4 times faster speed on the
IIIT-STR benchmark.

3)We evaluate existing STRmethods in phrase-level and attribute-
aware scene text retrieval settings, further verifying the superiority
of FDP in handling diverse forms of query text.

2 RELATEDWORK
2.1 Scene Text Retrieval
Most of the early STR approaches tend to follow the OCR pipeline
[1, 26, 33]. They first take two separate steps of text detection and
recognition to extract words in each image, and then match these
words with the query word for retrieval. For instance, Mishra et
al. [21] first investigate the STR task, proposing to rank all im-
ages based on the ordering and positioning of localized characters.
Jaderberg et al. [11] perform text spotting with a CNN network
and evaluate the occurrences of the query word within the spot-
ted words. However, those straightforward attempts could not ob-
tain satisfactory performance and are also not efficient. To solve
this problem, Gomez et al. [8] leverage a compact representation
named Pyramidal Histogram of Character (PHOC) [2] and propose
a single-shot CNN architecture that simultaneously predicts text
proposals and corresponding PHOCs. In this way, the STR task can
be completed by a simple nearest neighbor search. Considering
current handcraft representations (including PHOC) still cannot
well reflect the distance between text and image modalities, recent
methods are dedicated to mining better similarity measures. TDSL
[27] establishes an end-to-end network that jointly optimizes text
detection and cross-modal similarity learning. To mitigate the gap
across different modalities, Wen et al. [30] propose to cast STR as
an image-to-image matching problem. Although better retrieval
accuracy is achieved, it comes at the cost of inference speed.

2.2 Exploring CLIP’s OCR Capabilities
Vision-language models pre-trained on web-scale data have been
demonstrated to exhibit certain OCR capabilities [10, 17, 18, 32, 35].
As reported in [23], the CLIP model shows favorable OCR perfor-
mance in rendered text images. To further mine the underlying
rationales, [14] thoroughly inspects different versions of CLIP. This
work uncovers that CLIP suffers from severe text spotting bias be-
cause many captions in CLIP’s training dataset tend to parrot the
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Figure 3: The architecture of the proposed FDP model. It consists of three main parts: 1) Focus: Two main modules of dynamic
attention shift and text knowledge probing are presented to highlight scene text information. 2) Distinguish: The query text is
categorized into content words and function words via unsupervised clustering. 3) Prompt: The retrieval process is finally
achieved by a semantic-aware prompting scheme, and meanwhile distracted queries are generated during training to assist in
identifying similar words.

visual text embedded within images. Through orthogonal projec-
tions of the learned representation space into “learn to spell” and
“forget to spell” parts, [20] disentangles such bias to some extent.
Besides, LoGoPrompt [24] finds that synthetic text images are good
visual prompts for vision-language models, which can be used to
improve image classification performance.

Inspired by these observations, several works aim to enhance
OCR tasks by transferring the knowledge from CLIP. In the field of
scene text recognition, CLIP4STR [36] designs a two-branch frame-
work in which the recognition results are predicted by the visual
branch and then refined by the cross-modal branch. CLIP-OCR
[29] resorts to the knowledge distillation technique and guides the
recognition with both visual and linguistic knowledge from CLIP.
In the field of scene text detection, TCM [34] integrates CLIP with
existing text detectors, leading to obvious performance improve-
ments in domain adaptation and few-shot capabilities. However,
CLIP merely acts as an auxiliary module in these works. Whether
it is possible to turn CLIP directly into a scene text reader (spotter
or retriever) remains an unexplored problem.

3 FDP METHOD
The overview of the proposed FDP framework is illustrated in Fig.3.
Given a query text (𝑄 = “house”), FDP fulfills the STR task with a
pipeline of “Focus, Distinguish, and Prompt”.

3.1 Focus
Considering CLIP is pre-trained on conventional image-text pairs
and thus lacks fine-grained awareness of visual text information,
the first step of FDP is directing CLIP to focus on scene text. To be
specific, for each image from the gallery, we first square it to obtain
the input image 𝐼𝑖𝑛𝑝𝑢𝑡 ∈ R𝐿×𝐿 (𝐿 is the image length), i.e., perform
zero-padding to make the shorter side match the longer side. The
goal is to avoid the loss of image content caused by the center
cropping operation during CLIP’s preprocessing. Then, the frozen
ResNet-based vision encoder of CLIP is employed to extract the
global feature 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 ∈ R𝐶×𝐻×𝑊 of 𝐼𝑖𝑛𝑝𝑢𝑡 , where𝐶 ,𝐻 and𝑊 stand
for the channel, height and width dimensions respectively. Based on
this global feature, two modules including dynamic attention shift
and text knowledge probing are proposed to highlight scene text
information and address the limited text perceptual scale problem.
Dynamic Attention Shift. The limitation of input resolution is
an intractable problem encountered by pre-trained vision-language
models. It greatly impairs scene text understanding performance
because text often occupies a very small part of the image. Existing
efforts resolve this problem by subdividing into image patches [12],
retraining a vision encoder [3], or processing in the frequency
domain [5], which are not efficient. Instead, in this work we find
that it may be enough to give the model a glimpse of the rough
area where text is clustered. To this end, we employ text detection
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Figure 4: Details of the dynamic attention shift module.

supervision to train a lightweight text localization network, and
then utilize the normalized probability map to reweigh the features
in the average pooling layer. Specifically, as themulti-head attention
layer in CLIP’s vision encoder loses the 2D image information, we
first introduce a reformulated head following [37] to recover the
2D convolutional image feature 𝑓𝑐𝑜𝑛𝑣 ∈ R𝐸×𝐻×𝑊 , where 𝐸 is the
embedding dimension in CLIP. Then, the localization probability
map 𝐼𝑙𝑜𝑐 ∈ R𝐻×𝑊 is obtained via a learnable convolutional layer.
We train the text localization network via a class-balanced cross-
entropy loss, given by:

L𝑙𝑜𝑐 = −𝛽𝑌𝑙𝑜𝑔(𝐼𝑙𝑜𝑐 ) − (1 − 𝛽) (1 − 𝑌 )𝑙𝑜𝑔(1 − 𝐼𝑙𝑜𝑐 ) (1)

where 𝑌 is the ground-truth localization map generated by the text
detection annotation, and 𝛽 is a balancing factor which is defined
as:

𝛽 = 1 −
∑
𝑦∈𝑌 𝑦

|𝑌 | (2)

After that, the predicted localization probability map is adopted
as a new attention mask to dynamically refine the attention applied
to the global feature. The details of the dynamic attention shift mod-
ule are illustrated in Fig.4. CLIP uses Transformer-style multi-head
attention to perform average pooling, where the 2D global feature
is first flattened into a 1D sequence and then generates a key-value
pair to interact with the globally average-pooled feature (query).
Consequently, the localization probability map is also flattened into
a 1D sequence and then weights the global feature at each spatial
location. The derived attention feature 𝑓𝑎𝑡𝑡𝑛 ∈ R𝐸 can shift the
model attention to the scene text area.
Text Knowledge Probing. Empirically, we find that when we
query CLIP with the word “house”, it is possible to return the corre-
sponding object (an image of a house) instead of the scene text (an
image says “house”). This is because the neurons in CLIP’s vision
encoder tend to activate on the whole image rather than specific
text information. Therefore, we consider whether we could design
a simple strategy to probe the text-related knowledge hidden in
CLIP. Drawing inspiration from previous work [23] that conducts
zero-shot image classification using a predefined template “a photo
of [CLS]”, we propose to utilize the plain text “scene text” as a probe
and obtain its language embedding as the probe feature 𝑓𝑝𝑟𝑜𝑏𝑒 ∈ R𝐸 ,
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Figure 5: Illustration of the effect caused by visual-semantic
entanglement. (a) The t-SNE visualization of high-frequency
scene text’s CLIP language embeddings. (b) The comparison
of the retrieval accuracy of three frozen CLIP models on
content words and function words.

which is then interacted with 𝑓𝑎𝑡𝑡𝑛 . Since the representations of
vision and language are well-aligned in the embedding space of
CLIP, this probe will naturally turn CLIP into a model that is more
sensitive to scene text. Subsequently, the interacted feature is fused
with the attention feature 𝑓𝑎𝑡𝑡𝑛 as the image feature 𝑓𝑖𝑚𝑔 to com-
prehensively encode the image for retrieval. The text knowledge
probing process is formulated as:

𝑓𝑖𝑚𝑔 = MHCA(Q = 𝑓𝑎𝑡𝑡𝑛,K = 𝑓𝑝𝑟𝑜𝑏𝑒 ,V = 𝑓𝑝𝑟𝑜𝑏𝑒 ) + 𝑓𝑎𝑡𝑡𝑛 (3)

whereMHCA means the multi-head cross-attention mechanism.

3.2 Distinguish
Several works [14, 24] have revealed that the CLIP model exhibits
inherent bias towards visual text, e.g., an image of “dog” may be
recognized as “cat” by placing the text that says “cat”. The reason
is that the captions CLIP pre-trained with are often simple repeti-
tions of text embedded in images. In this work, we further observe
that this bias is essentially the entanglement between visual and
semantic concepts. To be specific, we select 500 words with the
highest frequency from the MLT [22] training set, and then group
their CLIP language embeddings into two clusters via K-Means. The
t-SNE visualization result is depicted in Fig.5 (a). As can be seen,
these words naturally fall into two clusters, namely, the content
words and the function words. Between them, the content words
have explicit semantics, usually appearing next to the thing they
represent, so they exhibit strong visual-semantic entanglement. In
contrast, the function words generally appear in the captions as
conjunctions, which do not correspond to specific concepts. To
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investigate this effect on STR, we evaluate the retrieval accuracy
of content words and function words respectively by applying the
frozen CLIP models on SVT [28] dataset, as shown in Fig.5 (b). It is
obvious that for the three CLIP models with different capacities, the
mAP scores on function words are significantly lower than those
on content words. This inspires us that different retrieval solutions
should be taken on these two clusters. Thus, before each retrieval
process, we pre-distinguish whether the given query is a content
word or a function word. Without the need for specialized tools,
this can be easily achieved via unsupervised clustering, namely
predicting which K-Means cluster the query text belongs to.

3.3 Prompt
Prompt tuning is a promising paradigm that aims to adapt the
knowledge from a pre-trained model to a target domain [15]. Mir-
roring the success of prompt tuning in natural language processing
and cross-modal learning, we leverage it to facilitate CLIP for effi-
cient text retrieval.
Semantic-aware Prompting. To improve retrieval performance
on both content words and function words, we develop a semantic-
aware prompting scheme. Inspired by CoOp [38], we introduce two
sets of learnable context vectors to serve the retrieval of content
words and function words respectively. Formally, the text prompts
fed to the frozen CLIP language encoder are organized as:

𝑃𝑐 = [𝑝1𝑐 , 𝑝2𝑐 , ..., 𝑝𝑀𝑐 , 𝑄] (4)

𝑃𝑓 = [𝑝1
𝑓
, 𝑝2
𝑓
, ..., 𝑝𝑁

𝑓
, 𝑄] (5)

where 𝑃𝑐 and 𝑃𝑓 denote the prompts for content words and function
words respectively. 𝑀 and 𝑁 are the length of learnable context
vectors, and 𝑄 represents the query text.

Then, the CLIP language encoder outputs the prompt feature
𝑓𝑝𝑟𝑜𝑚𝑝𝑡 .We calculate the cosine similarity between 𝑓𝑖𝑚𝑔 and 𝑓𝑝𝑟𝑜𝑚𝑝𝑡
to measure the pairwise similarity score between the input im-
age and query text, i.e., 𝑆 (𝐼 ,𝑄). The symmetric cross-entropy loss
L𝑎𝑙𝑖𝑔𝑛 over a batch is applied to contrastively align the matched
(𝐼 ,𝑄) pairs.
Distracted Queries Assistance. Due to the limited input resolu-
tion and the visual-semantic entanglement, CLIP can perceive text
to some extent, but it indeed lacks the ability of fine-grained char-
acter discrimination. To address this problem, a distracted queries
assistance module is proposed, which teaches the FDP model to
better recognize text during training. In particular, for a query text
𝑄 , we utilize a dictionary to generate 𝐾 (set to 5) distracted queries
𝑄1, 𝑄2, ...𝑄𝐾 that have the smallest edit distances with 𝑄 . These
distracted queries are taken as hard negative samples which are also
converted to text prompts and fed into the CLIP language encoder,
predicting similarities scores 𝑆 (𝐼 ,𝑄𝑘 ), 𝑘 = 1, ..., 𝐾 . Meanwhile, the
edit distance of each distracted query from the ground-truth query
𝐷 (𝑄,𝑄𝑘 ) is calculated. Subsequently, we convert these 𝐾 sets of
similarity scores and edit distances into probability distributions
and compute the KL divergence between them as the training loss
L𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡 . The objective is to maximize the similarity scores of the
distracted queries that are close to the ground-truth while minimiz-
ing the similarity scores of the distracted queries that are far from
the ground-truth.

Table 1: The setting of FDP models.

Model Base
model

Original
input size

Expanded
input size

𝐸

FDP-S CLIP-RN50 224 640 1024
FDP-B CLIP-RN50x4 288 720 640
FDP-L CLIP-RN50x16 384 960 768

3.4 Optimization
The proposed FDP is trained with the following loss functions:

L = 𝜆1L𝑙𝑜𝑐 + 𝜆2L𝑎𝑙𝑖𝑔𝑛 + 𝜆3L𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡 (6)

where 𝜆1, 𝜆2, and 𝜆3 are used to balance these losses, which are all
set to 1 in our implementation.

During inference, the distracted queries assistance module is
removed. Given a query text 𝑄 , images in the gallery are ranked
according to the predicted similarity score 𝑆 (𝐼 ,𝑄). When extend-
ing our FDP model to phrase-level or attribute-aware scene text
retrieval settings, 𝑄 is directly assigned the corresponding form of
query, and the inference process remains unchanged.

4 EXPERIMENTS
4.1 Datasets
IIIT Scene Text Retrieval (IIIT-STR) [21] is a popular benchmark
that contains 10000 images and 50 predefined queries. The images
are collected using Google image search, so this dataset has a large
variability in text fonts, styles, and viewpoints.
Street View Text (SVT) dataset [28] is a collection of natural street
scenes. It consists of 100 training images and 249 testing images.
All annotated words (427 words) in the test set are employed as the
query text.
TotalText [4] is a scene text dataset consisting of 1255 training
and 300 testing images. The 60 words that occur most frequently
in the test set are selected as queries.
Multi-lingual Scene Text (MLT)-Eng is the English subset of
MLT [22], which includes about 5000 images of natural scenes.

In our experiments, MLT-Eng is only used for training the pro-
posed model. IIIT-STR, SVT, and TotalText are the testing datasets.
It should be noted that as CLIP’s potential is fully explored, 900k
synthetic training images used in [27, 30] can be saved in FDP.

The query terms in existing datasets are all single words. To
validate whether the STR models can be generalized to arbitrary-
length query text, we introduce a new Phrase-level Scene Text
Retrieval (PSTR) dataset. To build it, we select 36 phrases that
occur frequently in life as queries, each containing 2 to 4 words, e.g.,
“school bus”, “handle with care”. For each query, we collect 15 images
from TextOCR dataset [25] and Google image search respectively.
In total, PSTR includes 1080 images and 36 query text.

4.2 Implementation Details
Based on CLIP with different capacities, we build several versions
of FDP models, as summarized in Tab.1. As the input image size
supported by CLIP is very limited, we expand the image size in
FDP. However, directly expanding the image size makes the posi-
tion embedding inherited from CLIP incompatible. To tackle it, we
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Table 2: Comparison with existing methods on IIIT-STR, SVT, and TotalText benchmarks. * means the result with subdivision
enhancement. Bold indicates the best performance, and underline indicates the second-best performance.

Method IIIT-STR SVT TotalText FPS
Mishra et al. [21] 42.70 56.24 - 0.10
He et al. [9] 46.34 57.61 - 2.35
Jaderberg et al. [11] 66.50 86.30 - 0.30
ABCNet [16] 67.25 82.43 69.30 17.50
Gomez et al. [8] 69.83 83.74 - 43.50
Mafla et al. [19] 71.67 85.74 - 42.20
Mask TextSpotter v3 [13] 74.48 84.54 72.42 2.40
TDSL [27] 77.09 89.38 74.75 12.00
Wen et al. [30] 77.40 90.95 80.09 11.00
CLIP-RN50 52.93 65.07 38.46 76.32
CLIP-RN50x4 52.60 70.54 41.65 57.91
CLIP-RN50x16 53.03 76.55 43.51 29.02
FDP-S (Ours) 81.77 82.56 65.26 45.11
FDP-B (Ours) 86.65 86.64 73.63 31.43
FDP-L (Ours) 89.46 89.63 79.18 11.82
FDP-L* (Ours) 91.49 91.18 82.02 3.04

Table 3: Ablation experiments on IIIT-STR and SVT datasets.

#
Focus

Distinguish
Prompt

IIIT-STR SVTDynamic Attention
Shift

Text Knowledge
Probing

Semantic-aware
Prompting

Distracted Queries
Assistance

1 % % % % % 75.74 79.97
2 ✓ % % % % 78.38 80.21
3 ✓ ✓ % % % 78.93 80.27
4 ✓ ✓ % vanilla % 80.07 81.03
5 ✓ ✓ ✓ ✓ % 81.27 81.94
6 ✓ ✓ ✓ ✓ ✓ 81.77 82.56

propose a new learnable position embedding whose parameters are
initialized with the nearest interpolation of original parameters.

We optimize FDP using Adam optimizer with an initial learning
rate of 2e-3. The batch size is 48, and the number of training epochs
is about 8. For fair comparisons, our experiments are implemented
with Pytorch. All FDP models are trained on an NVIDIA A6000
GPU and tested on an NVIDIA 1080 GPU.

4.3 Comparison with Existing Methods
In this section, we compare FDP with existing methods on three
STR benchmarks, i.e., IIIT-STR, SVT, and TotalText. As a task to
pursue practical applications, the inference speed of STR is un-
doubtedly very important, while previous methods are subject to
the balance of retrieval accuracy and inference speed. In this pa-
per, we first investigate employing the frozen CLIP model directly
as the retrieval engine. As reported in Tab.2, it is surprising that
CLIP already exhibits some retrieval capabilities even though it has
not been specially trained on STR tasks. In particular, CLIP-RN50
obtains 52.93% and 65.07% mAP scores on the IIIT-STR and SVT
datasets respectively, which even exceeds several dedicated STR
models [9, 21] at a much faster speed (76.32 FPS).

Based on this observation, FDP is proposed to better unleash
CLIP’s potential for the STR task. On the IIIT-STR benchmark, we
can notice that FDP-S initialized with the CLIP-RN50 base model
boosts the mAP score by 28.84% (52.93%->81.77%), achieving an
appealing result of 81.77%. Meanwhile, the inference speed is also
superior (45.11 FPS), even faster than PHOC-based methods [8, 19].
When upgrading the model to a large size, FDP-L significantly out-
performs the competitive model [30] by 12.06% (77.40%->89.46%) at
a comparable speed. Compared with IIIT-STR, the query terms of
SVT and TotalText contain many function words and often occupy
small areas in images, which are more challenging for STR mod-
els. Nevertheless, even without complicated network design, FDP
also reaches competitive performance on these datasets. To further
boost the retrieval accuracy, we attempt to integrate the subdivision
enhancement strategy here, i.e., subdividing the input image into 4
equal patches and combing the outputs of these patches. The mAP
scores are improved by 2.03%, 1.55% and 2.84% on IIIT-STR, SVT
and TotalText, outperforming existing STR methods.

To provide intuitive analyses of FDP in comparisonwith previous
methods, a typical example is visualized in Fig.6 (a). Given the
query word “adobe”, TDSL relies entirely on character composition
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Table 4: Analysis of the predefined probe on IIIT-STR bench-
mark.

Predefined probe mAP
without predefined probe 79.58
“text” 80.79
“word” 80.84
“a set of text instances” 80.41
“scene text” 81.77

Table 5: Analysis of the context length on SVT benchmark.

𝑀

𝑁 2 4 8

2 81.80 81.71 80.65
4 82.56 82.11 81.68
8 82.01 81.44 80.86

for retrieval. If the scene text is blurry or small, it can easily be
misrecognized. Besides, text-like patterns tend to interfere with
model decisions. Instead, our FDP model takes full advantage of
visual context information, returning the desired images from an
image gallery. From the rank@7 and rank@10 images retrieved
by FDP-S, we notice that the proposed method can recall images
where the query text is not so salient.

4.4 Ablation Study
Overall results. In Tab.3, a detailed ablation experiment is con-
ducted to verify the effectiveness of each module. We start by train-
ing a model that only utilizes the new learnable position embedding,
whose mAP scores on IIIT-STR and SVT are 75.74% and 79.97% re-
spectively. It reveals that enlarging the image size (i.e., enhancing
the text perceptual scale) is of critical importance for STR. Based
on this, we gradually add the proposed modules and observe that
each module brings noticeable improvements. In the “Focus” step,
the dynamic attention shift and text knowledge probing modules
can be considered to highlight scene text information from visual
space and semantic space respectively. They bring 2.64% and 0.55%
gains on the IIIT-STR dataset, which are proved to be effective. In
particular, as IIIT-STR contains a large number of images without
any text, the “Focus” step has a more significant effect on the IIIT-
STR dataset than on the SVT dataset. Then, we study the effect
of different prompt strategies. When simply adopting the learn-
able prompt method in [38] (#4), the mAP scores reach 80.07% and
81.03% on these two datasets. In contrast, we claim that content
words and function words should be distinguished and exploit dif-
ferent customized prompts. Following this idea, our semantic-aware
prompting scheme improves the performance to 81.27% and 81.94%.
Further, by adding the training strategy of distracted queries assis-
tance, 81.77% and 82.56% mAP scores are finally obtained.
Analysis of the predefined probe. The goal of the predefined
probe is to stimulate the text-related knowledge hidden in CLIP.
In Tab.4, we conduct an ablation study of the predefined probe on
the IIIT-STR benchmark. The results show that if the predefined
probe is removed, the mAP score decreases from 81.77% to 79.58%.

Table 6: Analysis of the number of distracted queries on IIIT-
STR benchmark.

𝐾 3 5 7 10
mAP 81.51 81.77 81.75 81.61

Table 7: Comparison with existing methods on PSTR dataset.

Method mAP FPS
Gomez et al. [8] 68.01 42.45
TDSL [27] 89.40 11.34
FDP-S (Ours) 92.28 45.11

Furthermore, different strings are utilized to generate language
embeddings that interact with the image attention feature. Com-
pared to the “without predefined probe” baseline, these text-related
probes can enhance the performance. Among them, “scene text”
contributes to the best accuracy, implying that in CLIP’s training
data, the plain text “scene text” may appear frequently with the
scene text content from images.
Analysis of the context length. In the semantic-aware prompt-
ing module, the hyperparameters𝑀 and 𝑁 determine the context
length for content words and function words respectively. In Tab.5,
we evaluate the model performance on the SVT dataset to analyze
the effect of these hyperparameters. According to the results, FDP
reaches the best performance when𝑀 = 4 and 𝑁 = 2. It may sug-
gest that function words contain less semantics than content words,
so they do not require complicated descriptions of context.
Analysis of the number of distracted queries. In the distracted
queries assistance module, 𝐾 distracted queries are generated to
help the model identify similar words. The ablation results of 𝐾
are reported in Tab.6. From them, we can see that a smaller 𝐾 may
weaken the discrimination ability of FDP, while a larger 𝐾 will
introduce many negative samples that are far from the query. Thus,
𝐾 is set to 5 in our experiments.

4.5 Extending to More Retrieval Settings
Phrase-level scene text retrieval. In reality, the scene text that
people expect to retrieve is often of arbitrary length, such as “ice
cream”, “do it yourself ”. To validate the generality of our method
over arbitrary-length query text, we evaluate FDP and several STR
models on PSTR. For the comparison models [8, 27], since they
can only accept word instances, we split each phrase into words,
search them separately, and then average the corresponding simi-
larity scores. As shown in Tab.7, FDP is more flexible than existing
STR models in phrase-level retrieval. Specifically, the PHOC-based
method [8] only achieves 68.01% mAP score on PSTR. We speculate
this is because many split words are too short (e.g., “do” in “do it
yourself ”) to be accurately retrieved by the PHOC-based search algo-
rithm. Although TDSL [27] can get 89.40% with the simple splitting
operation, it is inherently flawed due to the local retrieval mecha-
nism. From Fig.6 (b), we can see that for the query text “no smoking”,
TDSL may return images containing “no engine” (rank@3) or “no
softener” (rank@5), which do not meet retrieval expectations. In ad-
dition, due to the dense text distribution in the PSTR dataset, these
OCR-based comparison models run slower than on IIIT-STR. In
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“no smoking”

TDSL

FDP-S
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“adobe”IIIT-STR
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(a)

(b)

TDSL

FDP-S

#

Figure 6: Visualization of retrieval results. (a) An example on IIIT-STR benchmark, in which rank@6-10 retrieval results
are provided. (b) An example on PSTR benchmark, in which rank@1-5 retrieval results are provided. The correct results are
highlighted in green while the incorrect ones are highlighted in red. Best viewed in zoom.

contrast, the FDP-S model reaches 92.28% mAP score on PSTR, out-
performing existing methods by great margins. More importantly,
as FDP does not rely on text detection or recognition processes, the
retrieval speed will not be affected.
Attribute-aware scene text retrieval. Considering that people of-
ten query scene text with fine-grained attributes for more accurate
search results, we further explore extending FDP to the attribute-
aware scene text retrieval setting. We design some attribute-related
queries and search corresponding images from the IIIT-STR dataset.
Several typical retrieval examples are illustrated in Fig.7. These re-
sults manifest that the CLIP-based FDP model is naturally suitable
for attribute-aware scene text retrieval because it takes advantage
of CLIP’s prior knowledge. FDP can well deal with attribute-related
information such as color, font, and even position of scene text,
returning images that users want. Admittedly, this is not available
for conventional OCR-based STR models.

5 CONCLUSION
In this paper, we explore CLIP’s intrinsic potential for efficient and
flexible scene text retrieval. An OCR-free retrieval model named
FDP (Focus, Distinguish, and Prompt) is proposed, in which the
“Focus” design highlights scene text information hidden in CLIP
while “Distinguish” and “Prompt” designs further overcome the
negative effects caused by visual-semantic entanglement. Experi-
mental results on three datasets demonstrate the effectiveness of
our proposed modules and show that FDP achieves a better trade-
off between retrieval accuracy and inference speed. In addition,

Query Retrieval Results

“dairy in white”

“galaxy in red background”

“coffee in italic font”

“school written on the wall”

Figure 7: Qualitative examples of attribute-aware scene text
retrieval. Best viewed in zoom.

FDP can easily generalize to other settings like phrase-level and
attribute-aware scene text retrieval, which are more practical for
requirements in real scenarios.
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