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A Error Analysis

For notation simplicity, we use S ≥ D, |S| = ¸ to denote a random subsampling of a dataset D of size ¸.

Theorem 4 (Expected Error Bound for „z1(UDval)). If both UP and UDval have bounded range, then we
have

ED≥PN ,Dval≥Pk [|„z1(UDval ; D) ≠ „z1(UP ; D)|] Æ O
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Proof. Since both UP and UDval have bounded range, and since UDval = PerfDval(A(S)) =q
zœDval

Perf{z}(A(S)), and Ez≥P [Perf{z}(A(S))] = UP , we have

EDval≥Pk [|UDval(S) ≠ UP(S)|] Æ CÔ
k

for some constant C due to the standard sample error bound.
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where the first inequality is due to triangle inequality.

Theorem 5 (Expected Error Bound for „z1(ULOOCV)). If both UP and ULOOCV are average absolute prediction
error and have a bounded range, then for linear regression models1 , we have

ED≥PN [|„z1(ULOOCV; D) ≠ „z1(UP ; D)|] Æ O

3
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4

Proof. WLOG, assume the range of UP and ULOOCV are both Æ 1. By Tian et al. (2007), we know that for
linear regression models we have

ES≥Pm [|ULOOCV(S) ≠ UP(S)|] Æ CÔ
m

for some constant C.
1Here, for the linear regression model f(x) = —x, the parameter — is fit by solving the equation 1

n

qn

i=1 Xi(Yi ≠ —T Xi) = 0.
This equation has unique roots under mild assumptions outlined in Section 2 of Tian et al. (2007). While it is not clear how
to extend the analysis to the least square training loss, several empirical studies have confirmed the moderate variance of
generalization performance estimation of LOOCV (Tian et al., 2007; Zhang & Yang, 2015).
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B Experiment settings and additional Experiment Details

B.1 Experiment Settings for Table 1 and Table 2

Datasets: The evaluation deals with 9 datasets carefully picked from a wide variety of tasks such as image
classification, speech recognition, value-based classification, etc. The selected datasets are popularly used
for benchmarking in Data Valuation Literature. The datasets and their sources are mentioned in Table 4.
Considering the computational bottleneck that accompanies Shapley-based subset sampling algorithms, we
subsample a smaller dataset from the original training set. This subsampling is standard for all Shapley-based
data valuation tasks. For CIFAR10 and MNIST, we consider a 2000-sized balanced subset for valuation tasks.
For classification tasks Census and ApsFail Truck usage dataset, and speech recognition dataset Phoneme,
we use a 1000-sized dataset. Finally, for OpenML datasets CPU, Fraud, Pol, and Vehicle we use a 200-sized
subset. The selection of subset size is also a�ected by the complexity of the underlying problem. For instance,
we find that Fraud dataset is easily separable with just 200 points (model achieves high accuracy).

Models : For our evaluation, LOOCV and baselines Self-Eval use a regularized least squares model (kernel
regression) with a Gaussian Kernel (“ = 1) and regularization parameter ( ⁄ = 0.1). Our LOOCV implemen-
tation was helped a lot by the RL-score library on github (Pahikkala & Airola, 2016). For the validation-set
based baseline, we use a logistic regression model since it achieves high accuracy on the standard classifi-
cation task on the subsampled datasets. For CIFAR10 and MNIST, we additionally use a feature extractor
(following the implementation in Ghorbani & Zou (2019), Jia et al. (2019a), etc.). For MNIST, we use the
popular 2-layer CNN - LeNet (LeCun et al., 1998) as the feature extractor and use Adam as the learning
algorithm (batch size is 32 and learning rate is 0.01). Similarly, for CIFAR10 we use a ResNet-18 architecture
as the feature extractor with Adam as the learning algorithm (batch size is 200 and learning rate is 0.0006).

For the downstream task of weighted accuracy, we chose an independent model - Binary MLP with 2 Dense
Layers for the non-image datasets. We use Adam as the learning algorithm with a batch size equal to the
data size, and the learning rate is kept at 0.05. For CIFAR10 and MNIST, we keep the same model as the
feature extractor mentioned above to compute the weighted accuracy. The only change is that here we set
the batch size to be equal to 1000. Each result has been averaged over 50 times to eliminate stochasticity
from Neural Network training.

Data Valuation Settings : In our evaluation we discuss two Shapley-based valuation frameworks namely
Data Shapley (Ghorbani & Zou, 2019) and Data Banzhaf (Wang & Jia, 2023a). For Data Banzhaf, we use
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Dataset Source
CIFAR10 Krizhevsky et al. (2009)
MNIST LeCun et al. (1989)
Census Dua & Gra� (2017)

Phoneme https://www.openml.org/d/1489
Apsfail https://www.openml.org/d/41138
CPU https://www.openml.org/d/761
Fraud Dal Pozzolo et al. (2015)

Pol https://www.openml.org/d/722
Vehicle Duarte & Hu (2004)

Table 4: Datasets used in Table 1 and 2

the uniform sampling algorithm as used in the original paper. The valuation for size 200 (CPU, Fraud, Pol,
Vehicle) and size 1000 datasets (Census, Phoneme, Apsfail) are computed with a total of 10,000 samples (total
subsets), meanwhile the Banzhaf values for size 2000 datasets (MNIST and CIFAR10) are computed using
a total of 30,000 samples. For Data Shapley, we use a permutation sampling (Monte-Carlo based) approach
(Ghorbani & Zou, 2019). The total number of samples for size 200 datasets was 30,000. The number of
samples for size 1000 datasets was 50,000 and for size 2000 datasets was 100,000 samples. In Table 5, for
Beta Shapley we only deal with 200-sized (sub-sampled) datasets following the original implementation
(Kwon & Zou, 2021).

Data Valuation Frameworks Used: We discuss the Data Valuation Frameworks used in context of
our work. Data Shapley (Ghorbani & Zou, 2019) and Data Banzhaf (Wang & Jia, 2023a) were used in our
Evaluation section, meanwhile Data Shapley and KNN-Shapley (Jia et al., 2019a) were used in the Motivation
Section. We do not continue with KNN Shapley in the Evaluation section as it is not possible to extend it to
validation-free setting. However, it is the state-of-the-art and hence we include it in the motivation section.
Data Shapley was carefully defined in the main paper, and we define the others for better understanding
here.

KNN-Shapley. Calculating the exact Shapley value can be computationally intensive, given that in general
it necessitates computing U(S) for every potential subset S ™ D. Yet, studies by (Jia et al., 2019a; Wang
& Jia, 2023b) showed that for KNN, the exact Data Shapley score can be computed e�ciently. Since its
introduction, KNN-Shapley has quickly attracted research interest, inspiring many studies across various
machine learning domains (Ghorbani et al., 2022; Liang et al., 2020; 2021; Courtnage & Smirnov, 2021).
Typically, the utility of an unweighted KNN classifier is gauged by its validation accuracy. Given a validation
set Dval = {z

(val)
i }Nval

i=1 , the utility function of KNN, U
KNN
Dval

, for a non-empty training subset S, is represented
as U

KNN
Dval
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q
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captures the probability of a (soft-label) KNN-classifier accurately predicting the label for a validation data
point z

(val) = (x(val)
, y

(val)) œ Dval. fi
(S)(i; x

(val)) denotes the index of the ith nearest data point in S relative
to x

(val), using appropriate distance measures such as ¸2 distance.

Theorem 7 (Jia et al. (2019a)). Consider the utility function in (4). Given a validation data point z
(val) =

(x(val)
, y

(val)) and a distance metric d(·, ·), if we sort the training set D = {zi = (xi, yi)}N
i=1 according to

d(xi, x
(val)) in ascending order, then the Shapley value of each data point „

KNN
zi

corresponding to utility
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Figure 8: Box plots depict the data values(using Data Shapley) for 20 points randomly sampled from the
Fraud (Fig (a)) and Phoneme (Fig (b)) Datasets over 5 di�erent validation sets of equal size using Data
Shapley. Fig c shows similar setup for Census Dataset using KNN Shapley framework. The mislabeled points
are in red.

Figure 9: AUROC scores for mislabeled detection using (a) Data Shapley framework on Credit Card Dataset
and (b) KNN Shapley framework on Census Dataset. Validation sizes were increased from 1% to 60% of the
size of the training set.

function U
KNN
z(val) can be computed recursively as follows:

„
KNN
zN

= 1[yN = yval]
max(K, N)

„
KNN
zi

= „
KNN
zi+1 + 1[yi = yval] ≠ 1[yi+1 = yval]

K

min(K, i)
i

As we can see, the exact („KNN
zi

)N
i=1 can be computed in O(N log N) runtime.

B.2 Additional Motivation Experiments

In Figure 8, we provide additional experiments on the importance of choice of validation set. In Section 3,
we observed that multiple same-sized validation sets drawn from the same distribution can cause variance
in data values and therefore a�ect the ranking obtained in the Census Dataset. We show in this Figure that
the same is true for Fraud and Phoneme Datasets (Fig 8 (a)-(b), with values for both clean and mislabeled
points fluctuating between positive and negative values, and often taking on a high variance across the 5
di�erent validation sets. The setup is identical to the one discussed in Section 3, and Data Shapley is the
choice of valuation framework . In Fig 8 (c) we show that other valuation frameworks that rely on validation
data may also su�er from the similar concern- by using KNN Shapley as the choice of valuation Framework
on the Census Dataset- and we observe similar observations.

In Section 3, we also observed the e�ect of size of validation set on values obtained from validation-based
data valuation frameworks (using KNN Shapley framework on Credit Card dataset (Yeh & Lien, 2009)).
This dataset was chosen because noisy label detection on this dataset usually returns low AUROC scores
(lower than possible on other datasets). We observed that as size of the validation set increased, the AUROC
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Dataset LOOCV
Beta (16,1)

LOOCV
Beta (4,1)

Self-Eval
Beta (16,1)

Self-Eval
Beta (4,1)

Val Set
Beta (16,1)

Val Set
Beta (4,1) Robust Volume

Phoneme 0.8094 0.7831 0.7731 0.8550 0.5336 0.5692 0.4713
Apsfail 0.8189 0.7994 0.9155 0.9747 0.7325 0.8169 –

Cpu 0.8572 0.8886 0.8008 0.8392 0.7278 0.7397 0.6172
Fraud 0.8705 0.9139 0.9711 0.9786 0.6755 0.7753 0.5564

Pol 0.8133 0.8243 0.1738 0.2013 0.6925 0.83083 0.615
Vehicle 0.6599 0.6321 0.2739 0.3027 0.7178 0.7792 –

Table 5: Mislabled points detection: AUCs of noisy label detection rate are reported. This table studies
application of the LOOCV paradigm to Beta Shapley and comparison with Self-Eval and Validation-based
computation of Beta Shapley. All data sizes are 200. We highlight the best results of validation-free ap-
proaches.

scores of noisy label detection tasks increased - followed by a discussion on feasibility and availability of
such a validation set. Rather, access to a limited validation set might imply compromising on quality of data
values. We note in Fig 9 in two cases- Fig 9(a) shows similar e�ect on the Credit Card dataset using Data
Shapley as well and Fig 9(b) attests similar observations on the Census Dataset using Data Shapley as our
valuation framework. Our method (LOOCV) circumvents the requirement of a validation set and provides
competitive AUROC scores, often superior to the validation-based counterparts.

Settings for Fig 2 and Fig 8: We sort the data points by their median. SP denotes the average Spearman’s
rank correlation over obtained data values.

B.3 Comparison with Beta Shapley

Beta Shapley. By removing the e�ciency axiom for the Shapley value, Kwon & Zou (2021) propose Beta
Shapley as an alternative data valuation framework that enjoys an elegant mathematical formulation. For-
mally, given a utility function U(·) and a dataset D = {zi}N

i=1, the Beta Shapley value with hyperparameter
(–, —) of a data point zi œ D is defined as

„
beta
zi

(U) :=
nÿ

k=1

w(k)
n

ÿ

S™N\{i},
|S|=k≠1

[U(S fi i) ≠ U(S)]

where w(k) := nB(k+—≠1,n≠k+—)
B(–,—) and B(·, ·) is the Beta function.

In order to demonstrate LOOCV as a general paradigm applicable to Shapley-based methods, we also
implement LOOCV for Beta Shapley (Kwon & Zou, 2021). We consider Beta (16,1) and Beta (4,1) which
as shown by the authors shows better valuation performance than Beta (1,1) (which is essentially Data
Shapley) for small data sizes. The reasoning behind this observation is that marginal contribution based on
small data sizes have a large signal-to-noise ratio and such a distribution enables small marginal-contributions
to have larger weight during valuation. Table 5 shows the application of Beta Shapley-based values to a noisy
labeled detection task. We keep the validation size equal to the valuation dataset size which is 200. Note
that Phoneme and Apsfail were 1000-sized in previous experiments but are 200-sized for this experiment

We find that LOOCV can perform well on the detection task and the quality of Beta Shapley values obtained
is comparable to ones obtained with a validation set (superior for Phoneme and CPU datasets). We note
that Self-Eval also performs really well and in fact gives the best performance for Apsfail and Fraud datasets.
However we see a really poor performance for Pol and Vehicle datasets. We made the argument in Section 5.2
that self-eval values can be sporadic, even for some small datasets, and it is reinforced by the observations
in Table 5. LOOCV does perform well for Pol and Vehicle datasets and hence is a more reliable option to
obtain a validation-free data value, even for small data sizes.

B.4 Comparison with Volume

We identify Volume (Xu et al., 2021) as another validation-free alternative to compute data values. However,
volume is designed primarily for dataset valuation and not data-point valuation. We modify their implemen-
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Figure 10: Data Removal Experiment- Test Accuracies of Logistic Regression models when data is removed.
Data points are removed from the highest-valued according to data values from LOOCV, Data-OOB and a
Random Baseline

tation to handle data valuation for small datasets (size 200). We test if Robust Volume can handle noisy
labels to some extent. We attempt to see if a label-agnostic method can indeed detect 10 % noisy labels using
AUC of detection rate. We see from Table 5 that Robust Volume is unable to perform well in the detection
task, giving near-random performance in the detection task. This behavior is not unexpected since Volume
has no label information. Volume-based valuation may not be ideal when the training data is not guaranteed
to be clean. We note that volume-based values for Vehicle and Apsfail datasets are not added to the table
because we ran into numerical computation issues (determinant exploded).

Additionally, we perform a dataset valuation experiment (Section 5.2) to compare if LOOCV can also perform
reliable dataset valuation. We compare it to Robust Volume as a baseline. We chose the Phoneme, Census
and Fraud Datasets for this experiment (Figure 5). The downstream task that we choose is data addition
experiment - we add the highest valued dataset first and expect to see better or comparable performance to
Volume since we are dealing with clean data. Each dataset was divided into 8 datasets each of size 50 each,
and we use LOOCV and Volume to value these datasets. . Both methods use permutation sampling over
200 permutations to compute values. A validation set of 1000 points is used to determine performance and
a Binary MLP with a learning rate of 0.05 is used as the model. We average over the validation accuracies
over 10 runs. Our batch size was 32. The main observation is that our method can be comparable or even
superior to Volume for dataset valuation.

B.5 Comparison with Data-OOB

We compare our LOOCV valuation framework with Data-OOB (Kwon & Zou (2023)). While both methods
provide a validation-free data valuation framework, they di�er in their approach and applicability. LOOCV is
a versatile framework, transforming conventional game-theoretic data valuation frameworks into validation-
free alternatives. Data-OOB is a valuation strategy that relies on out-of-bag error from random forests to
compute the marginal contribution of each data point.

In Section 5.3, we showed the respective strengths of Data-OOB and LOOCV. Data-OOB performed better
on noisy label detection tasks, while LOOCV exhibited higher weighted accuracies when applied to value
noisy datasets. In order to further compare the two label-free valuation strategies, we performed a Data
Removal experiment on 6 datasets with 20 % mislabeled points. We observed that for each dataset, the
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Figure 11: Ablation study experiment by varying regularization parameter ⁄ and observing the change in
AUROC of mislabeled detection task. We observe that ⁄ of 0.1 is a safe choice since it results in high AUROC
scores in both datasets.

accuracies reduced after removing data points with highest values for LOOCV, while the performance of
Data-OOB was slightly better than random. We used Data Banzhaf as the choice of valuation framework
for LOOCV in this study.

Furthermore, we perform another Data Removal experiment on the 6 datasets with the no mislabeled points
(i.e. clean datasets). The objective behind this experiment is to further demonstrate that LOOCV is able
to better assign pivotal points higher values. In Figure 10, we observe a similar trend of LOOCV reducing
the accuracy after removing higher valued points (except on the Fraud dataset, where interestingly the
peformance of both LOOCV and Data-OOB is near or worse than random removal of points). This study
helped compare and highlight the di�erences between LOOCV and Data-OOB in their respective e�ciencies
and applicability.

B.6 Ablation Study

The first ablation experiment performed is studying the e�ect of regularization parameter ⁄ and how to
select it. We designed an experiment to observe the AUROC scores of noisy label detection performed
by our LOOCV method using Data Banzhaf valuation framework. We chose two datasets for this setup-
Phoneme(size 1000) and Fraud (size 200) (Table 4). We also include the best- AUC scores obtained using a
Validation set as the baseline, to compare if the changes (if any) are better or worse than the baseline. We do
this since the observation maintained in this paper remains that LOOCV is comparable or often superior to
validation-based methods in noisy label detection task. We observe the results (Fig 11) in both cases (more
noticable in case of Phoneme dataset) that for low values of ⁄ the AUROC scores drop below the AUROC
scores achieved at higher values. We find that ⁄ of around 0.1 provides high AUROC scores in this task
across both datasets. This is the value we use in our Evaluation section. We also note that despite the drop
in AUROC scores, they remain above validation-based methods in case of both datasets.

The second ablation study compared the e�ect of varying the ratio of mislabeled examples present in the
training set. The aim of this experiment is to observe if a high percentage of noisy labels in the training set
a�ects the performance of our method. Since our method relies on training data for valuation, it is possible
that higher noisy examples may reduce the utility of our method for this task. We choose Phoneme(size
1000) and Fraud datasets (size 200) for this ablation study and vary the mislabeled ratio from 1% - 20% (of
the size of the training set). For a baseline, we provide the AUROC results from data values from validation-
based valuation frameworks. We choose Data Banzhaf as the framework of choice. From Figure12 (a)-(b)
- we observe that LOOCV values decrease as percentage of mislabeled points in Training set increase, as
expected. We note that despite this behavior, our values stay consistently above the values from validation-
based baseline. Self-eval seems to work well for size 200 Fraud Dataset but fails to perform well in case of
size 1000 Phoneme dataset, reinforcing the points made in Figure 4 (a) that values obtained from Self-eval
are not consistent as size of training dataset is increased. We conclude that LOOCV can provide quality
values in the absence of a validation set despite change in noisy label ratio.
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Figure 12: Ablation study experiment by varying noisy label ratio in Training Set of Phoneme and Fraud
datasets and observing behavior across LOOCV, Self-Eval and validation-based data values using Data
Banzhaf.

Method Runtime
LOOCV without retraining (our method) 1.4276 sec
LOOCV via Kernel Regression Retraining 12.885 sec
LOOCV via NN Retraining 42.4590 sec

Table 6: Comparison of runtimes of obtaining the LOOCV scores once using 1. Our Method 2. LOOCV with
Kernel Regression retraining and 3. LOOCV with Neural Network (NN) retraining

Note on noisy label detection performance : We observed in Table 1 that LOOCV has achieved a
superior performance in mislabeled detection task as can be observed by the AUC of mislabeled detection
rate. The results for validation-based Data Banzhaf or Data Shapley may improve with a more appropriate
choice of validation data or more number of sampled subsets (i.e. more permutations). However, it is di�cult
to determine what the best possible validation set might be and often it may not be feasible to achieve one
either. Additionally, more permutations will imply added computational cost which is also not desirable.
Therefore we want to note that the values obtained here are relative to the number of permutations used
to compute the data value. We have used a fixed number of permutations for every same-sized dataset
but performance may improve for certain datasets with increase in the number of permutations. But it is
expected that LOOCV’s performance will increase too.

It is worth mentioning that Self-Eval can also perform well for smaller sized (200) datasets (Table 2) .
However, this performance was found to be sporadic - unlike LOOCV which performs well for each dataset.

B.7 Computational E�ciency Experimental Study

FLOPS Analysis. In this analysis, we attempt to support the argument for computational e�ciency ben-
efit of our method- LOOCV with fast solution for Kernel Regression. For linear regression where n is the
number of training points and p is the feature dimension, the naive approach to compute LOOCV requires
retraining the model n times, each time leaving out one data point, resulting in an overall complexity of
O(max(n2

p
2
, np

3)). This is because each training iteration requires O(max(np
2
, p

3)) operations, and this
process is repeated for all n data points. In contrast, the hat matrix technique in LOOCV leverages precom-
puted values to avoid repeated model fitting. The hat matrix can be computed in O(np

2 +p
3). Subsequently,

adjustments for each left-out point can be made in O(np) time. Thus, the total complexity of our approach
is O(np

2 + p
3), making it considerably more e�cient than the naive method.

Clock Time Results. Besides the FLOPS analysis, we also provide a clock time comparison (Table 6
for the computation of LOOCV once on the Adult Census Dataset with size n = 1000 which has 102
dimensions, i.e., p = 102. We average runtimes over 5 di�erent runs. We compare our method (LOOCV
computation with proxy solution for Kernel Regression) with LOOCV computed via retraining using two
methods, Kernel Regression retraining and Neural Network retraining (Binary MLP with a single layer). As
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we can see from the table, our method is substantially faster than the naive retraining-based approaches for
computing LOOCV.

Note: Relationship between our method and Monte Carlo techniques. We stress that our con-
tribution here is to make a single utility function evaluation more e�cient. We still rely on Monte Carlo
estimators to estimate the Shapley value, and the overall runtime depends on the choice of estimators. The
MC estimators’ e�ciency is orthogonal to our contribution, and we emphasize that our approach can be
integrated with any MC estimators to achieve e�cient Shapley value estimation.
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