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A ADDITIONAL RESULTS ABOUT PREDICTOR-BASED EVALUATORS
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Figure 1: The overview of predictor-based neural architecture search (NAS). The underlined de-
scriptions between the parenthesis denote different methods.

A.1 PREDICTOR PERFORMANCES RESULTS: SINGLE AND MULTIPLE STAGES

Table 1: The Kendall’s Tau of different predictors on 3 different randomly sampled training dataset
of size 78

Training Loss Ranking Regression

Dataset 1 2 3 1 2 3

MLP 0.1330±0.074 0.1560±0.0078 0.2481±0.0069 0.0111±0.0000 0.0548±0.0276 0.0467±0.0130
LSTM 0.5631±0.0060 0.6028±0.0457 0.5487±0.0150 0.6024±0.0039 0.5784±0.0180 0.4656±0.0176

GATES (Ning et al., 2020) 0.7597±0.0079 0.7750±0.0106 0.7645±0.0054 0.2067±0.0000 0.7240±0.0074 0.7135±0.0055
RF (Sun et al., 2019) - - - 0.4329±0.0077 0.4123±0.0104 0.4218±0.0119

Table 2: The performance distribution, BR@K, Kendall’s Tau of 5 training stages. In each stage,
K = 78 architectures are chosen, evaluated, and used to train the predictor along with previous
architecture data. Note that in this table, K in BR@K is the absolute architecture number without
normalization

GATES

Stage 0 1 2 3 4

Perf. Range [0.560, 0.938] [0.921, 0.944] [0.935, 0.944] [0.933, 0.944] [0.933, 0.944]
Perf. Std 6.43e-2 4.59e-3 2.16e-3 2.18e-3 2.30e-3

BR@11/BR@7/BR@1 1/2/306 1/1/3 1/1/2 1/1/3 1/1/3
Kendall’s Tau 0.769 0.759 0.752 0.742 0.725

LSTM

Stage 0 1 2 3 4

Perf. Range [0.560, 0.938] [0.922, 0.944] [0.922, 0.944] [0.932, 0.944] [0.934, 0.944]
Perf. Std 6.43e-2 4.52e-3 2.63e-3 2.42e-3 1.98e-3

BR@11/BR@7/BR@1 99/268/393 2/2/9 1/1/6 1/2/5 1/1/3
Kendall’s Tau 0.562 0.556 0.571 0.739 0.724
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Figure 2: (a)(b)(c) Kendall-tau in different FLOPs groups, the training set size is 39, 78 and 390,
respectively. (d)(e)(f) Average rank difference in different FLOPs groups, the training set size is 39,
78 and 390, respectively.

A.2 OVER- AND UNDER-ESTIMATION OF ARCHITECTURES

Fig. 2(d)(e)(f) illustrates the relationship between the FLOPs of architectures and how it is likely
to be over-estimated. It seems that MLP and RF are more likely to overestimate the smaller archi-
tectures and underestimate the larger ones, while LSTM and GATES show no obvious preference
on the architectures’ FLOPs. Fig. 2(a)(b)(c) shows that GATES can give more accurate rankings on
smaller architectures than larger architectures, which indicates that GATES might still have trouble
in comparing larger architectures that usually have good performances.

A.3 ONE-SHOT ORACLE EVALUATOR

Luo et al. (2018) made an attempt to use a parameter-sharing evaluator as the oracle evaluator in
Fig. 1. That is to say, they use the noisy signals provided by the parameter sharing evaluator to train
the predictor. This will significantly accelerate the NAS process, compared with using an expensive
traditional evaluator. However, it is found to cause the NAS algorithm to fail to discover good
architectures. Also, predictors have been used to accelerate parameter-sharing NAS methods (Li
et al., 2020; Wang et al., 2020), since one predictor forward pass is faster than testing on the whole
validation queue, even if no separate training phase is needed. In this section, we explore whether
a predictor can recover from the noisy training signals provided by the parameter-sharing evaluator.
Since GATES achieves consistently better results than other predictors, it is used in the following
experiments. Specifically, we want to answer two questions:

1. Can sampling only a subset during supernet training help achieve better one-shot Kendall’s
Tau on these architectures?

2. Can predictor training help recover from the noisy training signals provided by the one-shot
evaluator?

We randomly sample 78 architectures from the search space. Two differently trained parameter-
sharing evaluators are used to provide the one-shot instruction signal of these 78 architectures: 1)
Uniformly sampling from the whole search space, 2) Uniformly sampling from the 78 architectures.
We find that strategy 1 (sampling from the whole search space) can get a higher evaluation Kendall’s
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Tau, no matter whether the evaluation is on the 78 architectures (0.657 V.S. 0.628) or the whole
search space (0.701 V.S. 0.670). Thus the answer to Question 1 is “No”.

Then, to answer the second question, we utilize the one-shot instruction signal provided by the
supernet trained with 15625 architectures to train the predictor1. The Kendall’s Tau between the
architecture scores given by the resulting predictor and the ground-truth performances is 0.718 on
all the 15625 architectures, which is slightly worse than the one-shot instruction signals (0.719).
More importantly, BR@1% degrades from 2.5% to 12.1%, thus the answer to Question 2 is “No’.

Thus, we conclude that although training a predictor using one-shot signals can bring acceleration,
since no extra inference is needed during the search, it is not beneficial in the sense of evaluation
quality (especially of good architectures). Perhaps, incorporating more manual prior knowledge and
regularizations can increase the denoising effect, which might be worth future research.
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