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A Derivation of Directional Derivative Approximation in SODA428

In Section 3.2, given a deployed model M, the ideal objective function of training the data adaptor429

G with parameters θ in SODA is the KL divergence between the predicted probability p̂θ
i =430

M◦G(xi;θ) of the adapted data point xθ
i = G(xi;θ) and the true label yi of the original data point431

xi. Because yi is not available at test time, pseudo-label ŷi predicted by M is adopted as a substitute432

of yi. Due to the inaccurate model prediction under distribution shifts, there is a disturbance σi in433

ŷi compared to yi, i.e. ŷi = σi + yi. Hence, the KL divergence loss L(·, ·) := KL(·∥·) at test data434

point xi is435

Li = KL(ŷi∥p̂θ
i ) = ŷi log

ŷi

p̂θ
i

= (yi + σi) log
yi + σi

p̂θ
i

= (yi + σi) log(yi + σi)− yi log p̂
θ
i − σi log p̂

θ
i

= −H(yi + σi) + Lce(yi, p̂
θ
i )− σi log p̂

θ
i

(9)

where Lce(yi, p̂
θ
i ) is the cross entropy loss between yi and p̂θ

i . Because the gradient information436

is inaccessible from the deployed model, zeroth-order optimization (ZOO) is utilized to estimate437

gradients for the training of data adaptor in SODA. To do this, the objective function f(θ) in Eq. (1)438

is replaced with the training objective function Li in test-time data adaptation. Denote Lθ
i as the KL439

divergence loss computed by data adaptor with parameters θ, the directional derivative approximation440

of ZOO is441

∇̂θĽi =
1

µq

q∑
j=1

[
KL(ŷi∥p̂

θ+µuj

i )−KL(ŷi∥p̂θ
i )
]

=
1

µq

q∑
j=1

[(
Lce(y, p̂

θ+µuj

i )− σi log p̂
θ+µuj

i

)
−

(
Lce(y, p̂

θ
i )− σi log p̂

θ
i

)]
=

1

µq

q∑
j=1

[
Lce(y, p̂

θ+µuj

i )− Lce(y, p̂
θ
i )
]
+

1

µq

q∑
j=1

[
σi log p̂

θ
i − σi log p̂

θ+µuj

i

]
= ∇̂θLce +

σi

µq
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j=1

log
p̂θ
i

p̂
θ+µuj

i

,

(10)

where ∇̂θLce = 1
µq

∑q
j=1

[
Lce(yi, p̂

θ+µuj

i ) − Lce(yi, p̂
θ
i )
]

is the ideal directional derivative ap-442

proximation.443

B Implementation Details444

B.1 Implementation details of DINE and BETA445

The implementations of DINE and BETA on CIFAR-10-C and CIFAR-100-C are kept the same,446

following their original work [18] and [41]. For DINE, the momentum hyper-parameter γ = 0.6, and447

the Mixup balancing hyper-parameter β = 1. For BETA, τ = 0.8 for domain division, α = 1.0 for448

Mixup, λmse = 0, sharpening factor T = 0.5, and adversarial regularier γ = 0.1. The training strategy449

of DINE and BETA are both SGD with learning rate = 0.001 for target network backbones and 0.01450

for MLP classifiers. momentum = 0.9 and weight decay = 1e-3 are also adopted.451

B.2 Software and hardware452

In our paper, all models are implemented using PyTorch 1.13.1. The ImageNet pre-trained weights453

used in DINE and BETA is downloaded from TorchVision 0.14.1. The experiments are conducted454

using an NVIDIA A100-PCIE-40GB GPU with CUDA 11.7.455
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B.3 Network structure of data adaptor456

Figure 5 shows the network structure of data adaptor used in our experiments. The basic structure of457

the data adaptor consists of two convolutional layers and an instance normalization layer in-between.458

Multiple ResNet blocks can be inserted into the convolutional layers to form a deeper network as459

in [29]. For all methods except DA-Direct, the adapted data is generated by treating the network460

output as perturbation and adding it to the original data.461

ResNet
block n

ResNet
block 1

Figure 5: Network structure of data adaptor. The green block is convolutional layer, the blue block is
instance normalization layer and the dashed white block is dropout layer which can be removed. The
red dashed line means the network output is added to the original data to generate the adapted data.

C Additional Analysis462

C.1 Discussion about SODA and SODA-R463

Compared with SODA, SODA-R not only uses computed first-order gradients, but also adopts464

several techniques to improve the performance, i.e. deeper data adaptor with 2 ResNet blocks, Adam465

optimizer, perturbation regularization and dropout. The effect of network complexity has already466

been discussed in Section 4.3. In this subsection, we first introduce the perturbation regularization467

used in SODA-R, then evaluate the effect of perturbation regularization, different optimizers and468

dropout on SODA and SODA-R.469

C.1.1 Perturbation regularization in SODA-R470

In SODA and SODA-R, the adapted data is computed by perturbing the original data with a471

generated perturbation. To further restrict the impact of generated perturbations on data Xr =472

{xr1 ,xr2 , ...,xrlr
} and Xu = {xr1 ,xr2 , ...,xrlu

}, perturbation regularization with l1 norm is used:473

let xθ
ri and xθ

ui
be the corresponding adapted data of xri and xru ,474

R(X) = Exi∈Xr

∥∥xθ
ri − xri

∥∥
1
+ Exi∈Xu

∥∥xθ
ui
− xui

∥∥
1
. (11)

First-order gradients of the perturbation regularization is directly computed and back-propagated475

through the data adaptor. Hence, the training objective of SODA-R becomes:476

Lall(X, Ŷr) = Lim(Xu) + αLce(Xr, Ŷr) + βR(X), (12)

where β is the weight of perturbation regularization and set to be 0.005 for CIFAR-10-C and 0.01 for477

CIFAR-100-C.478

C.1.2 Evaluation of perturbation regularization in SODA and SODA-R479

We evaluate the effect of perturbation regularization in SODA and SODA-R on CIFAR-10-C and480

CIFAR-100-C. Except for perturbation regularization term in training objective, all other settings are481

kept the same as in the main experiments. The results are shown in Table 6 and Table 7. It shows that482

perturbation regularization can improve the performance of SODA-R using first-order optimization,483
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especially on CIFAR-100-C. However, it largely hinders the performance of SODA using zeroth-order484

optimization. The computed first-order gradients of perturbation regularization is more accurate than485

the estimated zeroth-order gradients of the main training objective. Thus, the data adaptor tends to486

optimize the perturbation regularization term first, resulting in perturbations with too small norms.487

The perturbations with too small norms do not have enough ability to modify the test data, which488

might be the reason of worse performance achieved by SODA with perturbation regularization. One489

possible solution to solve this problem could be treating perturbation regularization as an optimization490

constraint, and using constrained ZOO methods to train the data adaptor.491

Table 6: Comparing of SODA and SODA-R
with and without perturbation regularization on
CIFAR-10-C. β = 0.005 in experiments w/ reg-
ularization.

Methods SODA SODA-R

w/ regularization 73.40 88.28
w/o regularization 82.54 87.96

Table 7: Comparing of SODA and SODA-R
with and without perturbation regularization on
CIFAR-100-C. β = 0.01 in experiments w/
regularization.

Methods SODA SODA-R

w/ regularization 42.27 60.26
w/o regularization 52.51 58.11

C.1.3 Evaluation of optimizers in SODA and SODA-R492

We evaluate the effect of optimizers used in SODA and SODA-R on CIFAR-10-C and CIFAR-100-C.493

Except for the optimizer used to train the data adaptor, all other settings are kept the same as in the494

main experiments. The results are shown in Table 8 and Table 9. On CIFAR-10-C, SODA trained by495

SGD and Adam achieve almost the same accuracy, while SODA-R trained by Adam achieves 3.3%496

higher accuracy than SODA-R trained by SGD. On CIFAR-100-C, SODA-R trained by Adam still497

outperforms SODA-R trained by SGD, but SODA trained by Adam achieves even worse accuracy498

than SODA trained by SGD. It shows that Adam optimizer has the ability to improve the training of499

data adaptor using first-order gradients, but fails when using the estimated zeroth-order gradients.500

Table 8: Comparing of SODA and SODA-R
using SGD and Adam optimizer on CIFAR-10-
C.

Methods SODA SODA-R

SGD 82.54 84.95
Adam 82.75 88.28

Table 9: Comparing of SODA and SODA-R
using SGD and Adam optimizer on CIFAR-100-
C.

Methods SODA SODA-R

SGD 52.51 58.32
Adam 49.75 60.26

C.1.4 Evaluation of dropout in SODA and SODA-R501

We also evaluate the effect of dropout on SODA and SODA-R. As depicted in Figure 5, a dropout502

layer can be inserted into the ResNet block. We conduct experiments using data adaptor with and503

without dropout layers for SODA and SODA-R. To keep the same network structure with SODA-504

R, the data adaptor used in SODA also has 2 ResNet blocks. The dropout ratio is set to be 0.5.505

All other settings are kept the same as in the main experiments. Table 10 and Table 11 show the506

results on CIFAR-10-C and CIFAR-100-C respectively. For SODA-R, adding dropout layers can507

improve the accuracy by 0.7% on CIFAR-10-C and 2% on CIFAR-100-C. However, for SODA,508

adding dropout layers extremely hinders the performance, especially on CIFAR-100-C. This contrast509

indicates that dropout has negative effect on data adaptor optimized using estimated zeroth-order510

gradients, while having positive effect on data adaptor optimized using computed first-order gradients.511

The reason might be that the extra randomness introduced by dropout increases the difficulty of512

gradient estimation in zeroth-order optimization. Note that, the accuracy of SODA using data adaptor513

with 2 ResNet blocks on CIFAR-100-C is worse than that using data adaptor with 0 ResNet blocks,514

which is consistent with the results on CIFAR-10-C as shown in Table 3.515
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Table 10: Comparing of SODA and SODA-R
with and without dropout layers on CIFAR-10-
C.

Methods SODA SODA-R

w/ dropout 32.19 88.28
w/o dropout 80.56 87.54

Table 11: Comparing of SODA and SODA-R
with and without dropout layers on CIFAR-100-
C.

Methods SODA SODA-R

w/ dropout 43.96 60.26
w/o dropout 5.47 58.27

To sum up, compared with SODA using zeroth-order optimization, SODA-R uses first-order op-516

timization and adopts deeper network structure, perturbation regularization, Adam optimizer and517

dropout to improve the performance. However, these techniques cannot make improvement or even518

hinder the performance of SODA. This comparison shows that the common boosting strategies used519

in first-order optimization cannot be directly applied to zeroth-order optimization, leading to the520

limited performance of methods using zeroth-order optimization.521

C.2 Convergence of SODA522

In Figure 3, the convergence speeds of SODA on CIFAR-10-C and CIFAR-100-C are slower than523

SODA-FO and SODA-R, and do not achieve complete convergence after training with 150 epochs.524

We further train SODA on Gaussian noise in CIFAR-10-C and CIFAR-100-C for 300 epochs to show525

the complete convergence of SODA as depicted in Figure 6. With more training epochs, SODA526

can achieve higher accuracies on both datasets. However, training with more epochs means more527

adaptation processing time or more computing resources with parallel computation. For time and528

resource efficiency, we only report the accuracies achieved at 150 epochs in our main experiments529

which already improves the deployed model by a large margin. If computing time and resources are530

not restricted, SODA has the ability to further improve the deployed model to have higher accuracy.531
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Figure 6: Accuracy convergence on Gaussian noise in (a) CIFAR-10-C and (b) CIFAR-100-C for 300
epochs.

C.3 Hyper-parameter analysis of reliable pseudo-label selection532

We evaluate the hyper-parameters in reliable pseudo-label selection, namely the confidence threshold533

τ , the noise ratio ρ, and the balancing parameter α. τ and ρ controls the number of selected reliable534

pseudo-labels. With lower τ and lower ρ, the number of selected reliable pseudo-labels increase. We535

evaluate τ in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and ρ in {0.1, 0.3, 0.5, 0.7, 0.9}. Note that,536

when τ = 0, the number of selected pseudo-labels is not equal to (1 − ρ)n, where n is the total537

number of test data points, because the pseudo-labels are not evenly distributed across classes as538

depicted in Figure 8a. The inaccurate model prediction tends to bias towards few classes, leading to539

more pseudo-labels belonging to those classes. α controls the balance between the supervised training540
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objective Lce and the unsupervised training objective Lim. We evaluate α in {0.01, 0.001, 0.0001}.541

The results of SODA with different set of hyper-paramters on CIFAR-10-C Gaussian noise level542

5 corruption are showed in Figure 7. The performance of SODA is stable across different hyper-543

parameter settings. A common trend among different α is that accuracy tends to increase when τ and544

ρ decreases, i.e. the top-right corner of each figure. This trend shows that the performance of the data545

adaptor can be improved using more selected pseudo-labels, which further indicates the reliability of546

the selected pseudo-labels. There is a mild tendency of performance drop in the overall performance547

of SODA when unsupervised learning of test points with unreliable pseudo-labels is overwhelmed by548

supervised learning of reliable pseudo-labels with larger α, indicating that learning on test points549

with unreliable pseudo-labels also has contribution to the performance of SODA. To balancing the550

supervised leanring term and unsupervised learning term, we finally choose α = 0.0001 in our main551

experiments. Although better performance can be achieved by carefully fine-tuning τ and ρ with a552

validation set, to show the general performance of SODA and select the most reliable pseudo-labels553

for different corruptions in both CIFAR-10-C and CIFAR-100-C datasets, we set τ = 0.9 and ρ = 0.9554

in our main experiments without elaborated hyper-parameter fine-tuning.555

Figure 7: Evaluation of reliable pseudo-label selecting hyper-paramters on CIFAR-10-C Gaussian
noise corruption level 5. Numbers are prediction accuracies (%) after adaptation.

C.4 Evaluation of queue size in SODA-O556

We evaluate the effect of queue size in SODA-O. Larger queue size means more past reliable557

pseudo-labels and their corresponding test data points are stored and used in the adaptation pro-558

cess of the current mini-batch. Fixing batch size = 128, we conduct experiments on queue size559

{500, 1000, 2000, 3000}, and the results are shown in Table 12. The performance of SODA-O is560

stable with different queue sizes, especially when queue size is smaller. When queue size increases,561

the ratio of reliable pseudo-labels used to train the data adaptor for the current mini-batch also562

increases. It makes the training of the data adaptor more biased towards the supervised training with563

the reliable pseudo-labels. Thus, the mild performance drop observed along with larger queue size564

might indicate that the reliable pseudo-labels still have disturbance, and the unsupervised training565

of data points with unreliable pseudo-labels is useful to alleviate the negative effect caused by the566

remaining disturbance.567
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Table 12: Comparing of SODA-O with different queue sizes. Averaged accuracies (%) over 19
corruptions are reported.

Queue Size 500 1000 2000 3000

CIFAR-10-C 78.78 78.79 78.22 77.73
CIFAR-100-C 47.18 47.21 46.67 45.63

D Qualitative Evaluation of SODA568

D.1 T-SNE Visuailization of SODA features569

To qualitatively evaluate the performance of SODA, we use T-SNE to visualize the feature embeddings570

of SODA, i.e. the input features of the last classification layer in the deployed model before and after571

adaptation in Figure 8. According to the visualization results, the feature embeddings are much more572

separated apart between classes after adaptation, showing the effectiveness of SODA.573

(a) Before adaptation (b) After adaptation

Figure 8: T-SNE visualization of SODA feature embeddings on CIFAR-10-C pixelate corruption
level 5.

D.2 Examples of Adapted Data574

Figure 9 shows examples of test data and adapted data using SODA for 19 corruptions in CIFAR-10-575

C. Comparing original data without corruption, test data before adaptation and adapted data after576

adaptation, it is obvious that the adapted data look closer to the original data than the corresponding577

test data. This observation is consistent with the improved prediction accuracy using SODA, and578

further illustrates that the distribution shifts between the test data and the training data are alleviated579

after applying SODA to test data. It also indicates that SODA adapts the test data to the deployed580

model by modifying them to "look like" the training data. Then, the distribution shifts between the581

test data and the training data are mitigated, leading to improved prediction of the deployed model.582

E Detailed Results583

There are 19 corruptions in CIFAR-10-C and CIFAR-100-C: Gaussian noise (GN), shot noise (ShN),584

impulse noise (IN), speckle noise (SpN), defocus blur (DB), glass blur (GlB), motion blur (MB),585

zoom blur (ZB), Gaussian blur (GaB), snow (SW), frost (FR), fog (FG), brightness (BR), contrast586

(CT), elastic transform (ET), pixelate (PX), jpeg compression (JC), spatter (SP) and saturate (SA).587

We report the accuracies of each methods w.r.t. each corruption on CIFAR-10-C and CIFAR-100-C588

in Table 13 and Table 14. Except SODA-R and MA-SO using first order gradient from the deployed589

model, SODA outperforms all baselines amongst all corruptions. On CIFAR-10-C, SODA-R even590

outperforms MA-SO on all corruptions. On CIFAR-100-C, although the average accuracy of SODA-R591

is lower than the average accuracy of MA-SO, SODA-R still outperforms MA-SO on 7 corruptions.592
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Table 13: Accuracies of 19 corruptions on CIFAR-10-C. For brevity, DA-PGD, DA-ZOO-Input,
DA-PL and DA-Direct are abbreviated as D-PG, D-Z-I, D-PL and D-Di respectively.

C Deployed DINE BETA D-PG D-Z-I D-PL D-Di SODA SODA-R MA-SO

GN 51.28 56.86 62.85 28.34 56.94 52.18 48.80 72.86 85.73 84.18
ShN 56.02 58.44 64.75 29.52 53.53 56.63 54.59 74.47 86.07 85.22
IN 42.98 47.25 53.36 22.23 38.02 44.38 41.12 56.65 83.88 75.30
SpN 57.15 59.41 65.61 27.36 57.33 57.07 56.04 73.48 85.58 84.52
DB 88.16 88.14 86.94 16.39 85.91 88.67 85.94 90.95 91.46 90.92
GlB 49.21 53.31 58.38 17.48 43.70 49.75 44.68 66.29 76.99 76.48
MB 76.62 77.25 79.27 17.76 63.41 77.35 75.16 86.69 90.98 87.39
ZB 89.14 89.37 88.86 17.76 81.38 89.73 87.52 91.23 92.50 92.56
GaB 84.59 84.66 84.65 15.87 76.32 85.74 84.38 91.71 93.09 90.98
SW 78.06 78.03 77.42 36.16 77.44 78.62 75.53 83.85 89.00 86.00
FR 71.75 72.39 72.96 23.15 72.21 72.24 70.41 82.98 87.46 87.64
FG 70.58 71.84 73.60 11.56 56.65 71.56 71.71 83.06 84.49 82.78
BR 92.98 92.85 91.28 41.57 89.80 92.75 90.18 92.91 93.07 92.17
CT 86.72 86.74 84.64 15.06 87.92 87.95 87.15 92.48 93.73 91.80
ET 76.64 77.35 78.02 18.32 67.44 77.04 71.99 79.75 82.93 81.98
PX 52.12 58.46 64.50 27.95 58.65 52.35 49.55 87.24 90.23 89.18
JC 80.55 80.93 80.70 29.20 80.19 81.03 78.60 86.13 87.93 87.05
SP 77.66 77.11 77.80 30.20 75.29 77.86 75.69 82.66 88.91 85.61
SA 93.13 92.90 92.98 42.09 92.16 92.68 90.02 92.94 93.58 92.43

Table 14: Accuracies of 19 corruptions on CIFAR-100-C. For brevity, DA-PGD, DA-ZOO-Input,
DA-PL and DA-Direct are abbreviated as D-PG, D-Z-I, D-PL and D-Di respectively.

C Deployed DINE BETA D-PG D-Z-I D-PL D-Di SODA SODA-R MA-SO

GN 19.21 20.17 20.89 5.31 9.12 19.13 16.73 41.01 53.78 57.12
ShN 22.13 23.02 24.23 5.28 11.17 21.87 19.49 42.46 55.09 58.38
IN 12.26 11.50 11.78 3.70 11.76 12.38 10.32 20.70 49.19 47.81
SpN 23.37 23.84 25.02 4.69 13.81 23.27 20.39 40.33 53.05 58.40
DB 60.39 57.75 56.31 3.24 33.07 60.00 55.37 67.05 67.84 68.86
GlB 17.74 17.81 18.58 3.01 9.00 17.22 12.90 29.90 42.03 49.79
MB 45.79 43.98 43.20 3.61 29.43 46.38 43.43 59.24 67.13 63.93
ZB 61.64 59.07 57.06 3.42 34.66 61.98 57.18 65.15 66.20 70.38
GaB 54.40 51.94 49.67 3.20 30.22 55.09 51.40 68.68 70.05 69.40
SW 45.47 44.82 43.18 6.08 39.08 44.88 40.18 50.60 58.47 58.22
FR 39.77 39.65 39.52 3.49 39.62 39.77 37.11 52.21 57.81 60.88
FG 31.94 31.23 30.71 1.43 8.93 31.66 31.07 48.49 55.59 54.49
BR 71.18 69.67 65.47 6.53 55.12 70.23 64.35 70.23 70.75 70.12
CT 49.10 46.10 43.35 1.23 21.50 51.56 48.43 72.18 73.27 69.86
ET 40.45 39.86 38.89 3.29 32.48 39.66 32.71 40.16 49.54 56.44
PX 27.77 27.87 29.36 4.24 17.36 27.72 24.85 55.65 62.41 66.24
JC 49.98 49.50 48.39 5.91 42.32 50.36 45.79 56.25 59.99 63.66
SP 44.18 43.80 42.47 5.03 31.65 44.56 39.20 50.70 61.74 61.93
SA 69.97 68.25 64.69 6.24 62.99 69.64 64.36 69.56 71.03 71.59
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Figure 9: Examples of test data and adapted data using SODA for 19 corruptions in CIFAR-10-C.
The bottom-right data is the original data in CIFAR-10 test dataset without corruption.
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