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ABSTRACT

While conventional data are represented as discrete vectors, Implicit Neural Rep-
resentations (INRs) utilize neural networks to represent data points as continuous
functions. By incorporating a shared network that maps latent vectors to individ-
ual functions, one can model the distribution of functional data, which has proven
effective in many applications, such as learning 3D shapes, surface reflectance,
and operators. However, the infinite-dimensional nature of these representations
makes them prone to overfitting, necessitating sufficient regularization. Naı̈ve
regularization methods – those commonly used with discrete vector representa-
tions – may enforce smoothness to increase robustness but result in a loss of data
fidelity due to improper handling of function coordinates. To overcome these
challenges, we start by interpreting the mapping from latent variables to INRs as
a parametrization of a Riemannian manifold. We then recognize that preserving
geometric quantities – such as distances and angles – between the latent space and
the data manifold is crucial. As a result, we obtain a manifold with minimal in-
trinsic curvature, leading to robust representations while maintaining high-quality
data fitting. Our experiments on various data modalities demonstrate that our
method effectively discovers a well-structured latent space, leading to robust data
representations even for challenging datasets, such as those that are small or noisy.

1 INTRODUCTION

Figure 1: Illustrations of manifolds of
functional data.

Implicit Neural Representations (INRs), often referred to
as Neural Fields, are functional representations of data
points typically expressed as fθ : X → V with net-
work parameters θ, where X is an input space such as
spatial or temporal coordinates and V is an output vec-
tor space (Xie et al., 2022). One significant advantage
of this representation is that, since individual data points
are continuous functions, one can sample values of V at
an arbitrary resolution from X . Moreover, given multiple
instances of functions, it has recently been shown that, in-
stead of learning separate network weights for each data
instance, a shared neural network can be constructed by
conditioning on an auxiliary latent variable z:

F : X × Z → V, (1)

where, for an instance of a latent vector z ∈ Z , Fz := F (·, z) corresponds to a data point of
functional representation. This latent variable model has been widely applied to tasks such as data
compression, generation, prediction, and solving differential equations, across various data types,
including images (Sitzmann et al., 2020; Tancik et al., 2020), 3D shapes (Park et al., 2019), tex-
tures (Fan et al., 2022), and functions for differential equations (Lu et al., 2019; 2021).
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To achieve strong performance in downstream tasks such as interpolation and reconstruction, the la-
tent variable model F must satisfy two essential criteria: (i) it should accurately fit the data instances,
resulting in high-fidelity reconstructions, and (ii) the latent space Z should be well-behaved, ensur-
ing that small changes in the latent space lead to gradual and predictable changes in the output. With-
out proper regularization, particularly when the training dataset is small or noisy, simply fitting the
data instances can cause the latent space to become ill-behaved, leading to poor representations and
weaker performance in downstream tasks. Recently, Lipschitz regularization (Liu et al., 2022) pro-
poses to learn a well-behaved latent space with a continuous function by promoting smoothness in
F . However, they regularize across both input domains, X and Z , and may result in over-smoothing
of data instances in X , failing to meet the aforementioned two criteria simultaneously.

In this paper, we propose a balanced regularization method that produces a well-behaved latent space
Z without overly smoothing the data in X . Our approach begins with a geometric interpretation of
the latent variable model F as a Riemannian manifold of functional data, where the latent variable z
corresponds to the coordinates of the manifold, as depicted in Figure 1. Based on this interpretation,
we regularize F in the z component to produce a smooth and parsimonious manifold – resulting in
small intrinsic curvatures (Lee & Park, 2023) and well-behaved latent spaces – while leaving the x
component unregularized, thus preserving the fidelity of individual data instances.

Specifically, we adopt the recent isometric regularization method developed for finite-dimensional
data (Lee et al., 2022b), which preserves geometric quantities such as distances and angles between
the latent space and the manifold, and extend it to infinite-dimensional functional data. While regu-
larizing the manifold of discretized data on a grid, like images, has been widely studied (Chen et al.,
2020; Lee et al., 2021; 2022b; Jang et al., 2023; Lee et al., 2022a; Nazari et al., 2023; Lee & Park,
2023), applying these methods to latent variable INRs is challenging due to variability in sample
locations and numbers, making consistent regularization difficult across different data instances. To
address this, we propose a discretization-agnostic approach to isometric regularization for F . One
notable difference from the finite-dimensional cases is that this approach involves integrating with
respect to a positive measure in X , which requires significant computation. To make this practi-
cal, we develop an approximate yet efficient algorithm, using methods such as Hutchinson’s trace
estimator and Monte Carlo approximation.

Through extensive experiments, we validate the effectiveness of our isometric regularization for
functional data on various tasks with INRs including neural Signed Distance Functions (SDFs) (Park
et al., 2019), neural Bidirectional Reflectance Distribution Functions (BRDFs) (Fan et al., 2022),
and Deep Operator Networks (DONets) (Lu et al., 2019) showing that our method is modality-
independent. Further, we illustrate that isometric regularization guides the model F to learn an
accurate manifold with smooth latent space leading to good generalization performance and robust-
ness to noise in data.

2 RELATED WORK

Latent Variable Models for Functional Data. Recently, many works have shown that continuous
signals can be efficiently modeled as a function parameterized by a neural network, referred to as
Implicit Neural Representations (INRs). INRs directly map the input variable (i.e., spatial coordinate
or time index) into the corresponding value and efficiently represent a broad class of high-resolution
data including images (Ha, 2016), audios (Sitzmann et al., 2020), videos (Chen et al., 2022; Li et al.,
2021), 3D shapes with SDF (Park et al., 2019), occupancy (Mescheder et al., 2019), and radiance
fields (Mildenhall et al., 2020). INRs are also actively employed to represent solutions to diverse
differential equations in physics-informed machine learning (Raissi et al., 2019; Karniadakis et al.,
2021; Lu et al., 2019; 2021). Instead of representing a single function, recent INR works have shown
learning the distribution of a range of functional data by conditioning a shared neural network on a
latent variable z for each functional data (Chen & Zhang, 2019; Park et al., 2019; Mescheder et al.,
2019; He et al., 2022; Fan et al., 2022; Du et al., 2021). There are two approaches to constructing a
latent variable model. One straightforward way to condition z is to concatenate input coordinate x
with z (Park et al., 2019; Fan et al., 2022; He et al., 2022). Alternatively, novel network architectures
are used to condition the latent variable such as hypernetworks (Du et al., 2021; Gokbudak et al.,
2024; Lee et al., 2023) or attention networks (Rebain et al., 2022). We emphasize that our framework
is generic and can be applied to both architectures.
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Geometric Regularization for Manifold Learning. For finite-dimensional data, one can inter-
pret the learned latent space of generative models as an explicit parametrization of the data mani-
fold (Arvanitidis et al., 2017; Lee, 2023). It has been widely demonstrated that proper regularization
on latent space can significantly improve the performance on downstream tasks for generative mod-
els, such as clustering, interpolation, retrieval, and more (Chen et al., 2020; Lee et al., 2021; 2022b;
Jang et al., 2023; Lee et al., 2022a; Nazari et al., 2023; Lee & Park, 2023; Lim et al., 2024; Lee,
2024).

However, it is less explored to extend such manifold interpretation of latent variables beyond finite-
dimensional data. While Du et al. (2021) view the latent variable model as a manifold of INRs and
presents a local isometry loss, they require functions to be sampled from fixed points in coordinates
with a fixed resolution. However, functional data often needs different sampling strategies for each
data instance as it considerably affects the fitting quality (Park et al., 2019; Sztrajman et al., 2021).
Furthermore, it is impossible to sample from fixed points with fixed numbers for real data in cer-
tain scenarios, for example, mobile sensors such as floating buoys change their location over time
and some sensors can malfunction (Luo et al., 2024). Instead, we design geometric regularization
method specifically for functional data without fixing sampling condition.

3 RIEMANNIAN MANIFOLD OF FUNCTIONAL DATA

In this section, we introduce a geometric view that considers latent variable INRs as a Riemannian
manifold of functional data, laying the foundation for subsequent isometric regularization. We start
with a formal definition of the space of functional data f : X → V , where X = Rn and V is a
vector space with the standard inner product, such that the inner product between v, w ∈ V is vTw.
Throughout, we will consider a set of square-integrable mappings

F := {f : X → V |
∫

f(x)T f(x) dx < ∞} (2)

as a functional data space, which is an infinite dimensional vector space1.

3.1 INNER PRODUCTS ON FUNCTIONAL DATA SPACE

First, we define the inner product on the functional data space F . Let δ1, δ2 be square-integrable
functions with a countably additive measure µ (e.g., probability measure) in X . A standard way to
define an inner product between them is as follows:

⟨δ1, δ2⟩ :=
∫

δ1(x)
T δ2(x) dµ(x). (3)

This inner product does not depend on a functional data point f ∈ F . However, in some cases, we
need to consider different measures for each functional data point, as important regions in X could
be different depending on f . For example, DeepSDF (Park et al., 2019) utilizes truncated SDF
(TSDF) that clamps distance values of regions far from the surface to be constant, which means that
function values only from areas close to the surface have meaningful information. In such a case,
we would like to use a measure µ concentrated near the surface depending on f . Therefore, in this
work, we consider the inner product to depend on the function f by employing a function-dependent
measure µf ,

⟨δ1, δ2⟩f :=

∫
δ1(x)

T δ2(x) dµf (x) for f ∈ F . (4)

3.2 RIEMANNIAN MANIFOLD EMBEDDED IN FUNCTIONAL DATA SPACE

Given our definition of the functional data space F in Equation (2), we can interpret the model
F : X × Z → V as a mapping from the latent space Z to the functional data space F :

h : Z → F s.t. z 7→ h(z) := Fz, (5)

where Fz is a functional data and Fz(x) := F (x, z). Taking DeepSDF as an example, a latent
code z is mapped to a 3D shape represented by SDF Fz : R3 → R, which takes a spatial point

1F is a Banach space, a complete normed vector space, with respect to the Lebesgue measure.
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x ∈ X = R3 as input and outputs the signed distance value d ∈ V . Moving z in the latent space
leads to a continuous change in the output signed distance of Fz(x).

If Z is an m-dimensional manifold (e.g., Rm), then the image of h, denoted by h(Z) = F (·,Z), is
an m-dimensional manifold embedded in the functional data space F under some mild conditions2,
as illustrated in Figure 1. We note that, although F is infinite-dimensional, the embedded manifold
is finite-dimensional. This manifold interpretation offers a geometric understanding of the model
F , allowing us to leverage tools from differential geometry to develop regularization in a principled
manner, as we demonstrate in the subsequent section.

We conclude this section by proposing a Riemannian geometric structure for the embedded man-
ifold. Given the function-dependent inner product ⟨·, ·⟩f for the functional data space F in Equa-
tion (3), a standard way to define a Riemannian metric for the embedded manifold is via projecting
⟨·, ·⟩f to the manifold. If Z = Rm is treated as a local coordinate space, then the projected Rieman-
nian metric can be expressed in Z as follows:

ds2 =

m∑
i,j=1

∫ (
∂F (x, z)

∂zi

)T
∂F (x, z)

∂zj
dµFz

(x)dzidzj , (6)

where the integral hij(z) :=
∫ (

∂F (x,z)
∂zi

)T
∂F (x,z)

∂zj dµFz
(x) forms an m × m positive-definite

matrix H(z) = (hij)
m
i,j=1 called a Riemannian metric. We note that, with this metric, given

an infinitesimal change in the latent value z 7→ z + dz, the length of dz is computed via
dzTH(z)dz =

∫
(dF (x, z))T dF (x, z)dµFz

(x), where dF (x, z) ≈ F (x, z + dz)− F (x, z).

4 ISOMETRIC REGULARIZATION

Without proper regularization, the latent space can become ill-behaved, overfitting to the data in-
stances, which is exacerbated by the infinite dimensionality of the function space. Our goal of
finding a well-behaved latent space without compromising data fidelity can be restated in geometric
terms: the given data instances lie in the manifold h(Z) while the mapping h from Z to the manifold
h(Z) should preserve geometry as much as possible. The former condition of fitting data instances
is enforced by a task-relevant loss function, which varies depending on the application. Examples in
the experiment section include the signed distance and the reflectance fitting loss in deep generative
models and the regression loss in operator learning. The latter geometry-preserving condition can
be achieved through our proposed isometric regularization.

By ‘geometry-preserving,’ we mean that distances and angles measured in the manifold should
be preserved in the latent space. Consequently, slight changes in latent values will not result in
dramatic changes in the output data but will cause changes of a consistent magnitude, leading to
a well-behaved latent space. Formally, let the latent space Z = Rm be assigned with the identity
metric and the manifold of functional data be assigned with the projected Riemannian metric in
Equation (6). Throughout, we will denote the Jacobian of F by J(x, z) = ∂F (x,z)

∂z ∈ Rdim(V )×m

and the projected metric

H(z) =

∫
J(x, z)TJ(x, z)dµFz (x) ∈ Rm×m. (7)

A mapping h is called an isometry if I = H(z) for all z ∈ Z . If F satisfies the above condition, then
for infinitesimal changes in the latent value dz and the corresponding change in the data dF (x, z) ≈
F (x, z+dz)−F (x, z), the norm of dz in the latent space is equal to the norm of dF , i.e., dzT dz =
dzTH(z)dz =

∫
dFT dF dµFz (x), meaning that F preserves local distances and angles. If this

holds for all z, then F preserves the global geometry. As discussed in Lee et al. (2022b), we
encourage a scaled isometry of F that preserves angles and scaled distances, such that I = cH(z)
for some positive scalar c and all z.

It is important to note that enforcing this scaled isometry condition does not impose a smoothness
requirement on the x-coordinates, unlike Lipschitz regularization. For instance, consider the limiting

2The mapping h : Z → F is an embedding if it is injective immersion. In other words, (i) (injectivity) if
F (x, z1) = F (x, z2), then z1 = z2 for all x ∈ X and (ii) (immersion) if ∂F (x,z)

∂z
v = 0 for v ∈ Rm, then

v = 0 for all x, z.
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case where (i) I = cH(z) is exactly satisfied for all z and (ii) dµFz
= dµ is independent of z. In

this scenario, a trivial solution is that J(x, z) remains constant over z. Crucially, no conditions are
imposed on the x-coordinates. This is one of the key properties of our regularization, which results
in a well-behaved latent space without compromising data fidelity.

Relaxed Distortion Measure. We introduce a functional called the relaxed distortion measure to
impose isometric regularization for manifolds of functional data. It quantifies how far a mapping F
is from being a scaled isometry. To handle the continuous data space, we apply an approximation
based on efficient sampling algorithm. Here, we provide formulas for the relaxed distortion measure
with minimal details; please refer to Appendix A for more information and proofs. Throughout, we
will use a probability measure for µFz in Equation (7) and denote its density function by p(x;Fz).
Then the Riemannian metric can be written as H(z) = Ex∼p(x;Fz)[J

T (x, z)J(x, z)] ∈ Rm×m. Let
λi(z) be the eigenvalues of H(z) for i = 1, . . . ,m.

An equivalent characterization of the scaled isometry condition exists: if λi(z) = c for some posi-
tive scalar c and all i and z, then F is a scaled isometry. Enforcing this condition for all z ∈ Rm is
unnecessary since latent points only occupy a specific region. We introduce a latent probability den-
sity PZ and focus on its support. Then, a coordinate-invariant relaxed distortion measure G(F, PZ)
for F with respect to PZ can be defined as follows:

G(F, PZ) := Ez∼PZ [

m∑
i=1

( λi(z)

Ez∼PZ [
∑m

i=1 λi(z)/m]
− 1

)2
], (8)

which is minimal if and only if F meets the scaled isometric condition in support of PZ . Ignoring a
constant additive term, G(F, PZ) becomes a scalar multiple of

Ez∼PZ [Tr(
(
Ex∼p(x;Fz)[J

T (x, z)J(x, z)]
)2
)]

Ez∼PZ [Tr(Ex∼p(x;Fz)[J
T (x, z)J(x, z)])]2

. (9)

When training manifolds of functional data F , we add the term above to the original loss term
to incorporate isometric regularization for the latent mapping. The expression in Equation (9) is
similar to the one introduced in Lee et al. (2022b), but ours involves Ex∼p(x;Fz) in the traces, and the
Jacobian also depends on x. This difference makes applying existing implementations non-trivial,
motivating us to develop a new approximate and efficient distortion computation algorithm.

Algorithm 1: Efficient approximation of
Eq. (9)
Precondition: input concatenation (F : Rn+m → Rl)
Input: latent codes {z0, ..., zN} & input coordinate samples

{{x(0)
0 , ...,x

(K)
0 }, ..., {x(0)

N , ...,x
(K)
N }}

Output: Relaxed distortion measure G
1 G1,G2 ← 0
2 Augment z with the modified mix-up data-augmentation
3 forall zi in z do
4 xi ← {x(0)

i , ...,x
(K)
i }

5 Sample vector vi ∼ N (0, Im×m)
6 Expand vi by repeating K times
7 Augment vector vi by concatenating [⃗0k×n, vi]
8 Compute G = J(xi, zi)vi with Jacobian-vector

product
9 G1 ← G1 + Ez [Ex[G

TG]]

10 Compute D = GT ∂F (xi, zi)/∂(x, z) with
vector-Jacobian product

11 Slice the index of D by taking the last m-th
components

12 G2 ← G2 + Ez [Ex[D]TEx[D]]

13 end
14 G ← G2/G1
15 return G

Efficient Approximation of Eq. (9). The
computation of Equation (9) involves (i) cal-
culating the Jacobian J(x, z) and (ii) comput-
ing the expectation of JTJ with respect to
p(x;Fz). These calculations must be performed
at each training iteration, which significantly
slows down the overall process. To address
this, we introduce several practical techniques
for approximate computation. First, we esti-
mate the trace terms using Hutchinson’s stochas-
tic trace estimator (Hutchinson, 1989), Tr(A) =
Ev∼N (0,I)[v

TAv], which allows us to bypass
the need to compute the full Jacobian J(x, z)
and instead focus on Jacobian-vector and vector-
Jacobian products. Second, to compute the ex-
pectation of JTJ with respect to p(x;Fz), we
typically need to sample from p(x;Fz). How-
ever, the sampling distribution p(x;Fz) evolves
during the training of F , making the online sam-
pling infeasible. To mitigate this, we use offline
samples from p(x;F ∗i ), where F ∗i represents the
functional data for training zi.

We also apply the latent augmentation method from Chen et al. (2020); Lee et al. (2022b) to define
PZ . A pseudocode for the approximate computation of the relaxed distortion measure is provided
in Algorithm 1; more details can be found in Appendix B.
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Figure 2: Toy example of neural SDFs with five circles. (Left) Two-dimensional latent space of
auto-decoder trained with and without isometric regularization. (Right) SDFs decoded from linear
interpolants & L1 errors on SDFs.

5 EXPERIMENTS

In this section, we conduct extensive experiments to show the effect of isometric regularization on
three data modalities: neural SDFs, neural BRDFs, and neural operators.

5.1 NEURAL SDFS

SDF is a function f : Rn → R that maps a spatial point to its signed distance to the surface of the
shape. The surface points of the shape are extracted from the zero-level set of f . We train the neural
SDFs with the latent variable model, denoted by Fθ : X × Z → R, where x ∈ X represents spatial
coordinates, z ∈ Z is a shape latent vector, and Fθ(·, z) is a SDF value, following the auto-decoder
in DeepSDF (Park et al., 2019). We provide experimental details in Appendix C.1.

5.1.1 TOY EXAMPLES ON SIMILAR SHAPES

Table 1: L1 errors (×10−3) on lin-
ear interpolation.

N AD IsoAD
(Ours)

Circle
5 36.5885 2.7497

10 10.1056 2.5622
20 9.5139 1.9630

Square
5 13.1302 6.7625

10 2.2039 1.9842
20 2.7227 1.4770

Triangle
5 21.8526 4.4000

10 2.0579 1.7629
20 2.7957 1.3722

We first demonstrate the effect of isometric regularization
with simple 2D shapes. We train auto-decoders using a two-
dimensional latent space z ∈ R2 without any regularization
(AD) and with isometric regularization (IsoAD), and compare
the results. Appendix D.1 contains additional analysis on the
probability density p(x;Fz).

Dataset. We make training datasets with three kinds of sim-
ple shapes: circles, squares, and equilateral triangles. Each
dataset contains N similar shapes whose parameters change
linearly, for example, circles with radius r from 0.1 to 0.5 or
squares with side lengths from 0.1 to 0.5. Then, we train the
network with the SDF values of each shape sampled from a
32× 32 grid.

Results. Given the smallest and the biggest shapes for each model, we generate intermediate
shapes by linearly interpolating the latent space. We evaluate the decoded intermediate shapes
against reference shapes created by interpolating the shape parameters. We compute the L1 errors
at 256 × 256 grid points. Quantitative results in Table 1 show that isometric regularization signif-
icantly improves the interpolation results, especially when the number of training data N is small.
Figure 2 shows the latent space of auto-decoders trained with five circles. When we linearly increase
the circle’s radius, the most intuitive latent manifold would be a straight line with equidistant latent
codes. While auto-decoder without regularization leads to a distorted latent space resulting in unde-
sirable interpolation results even with extremely simple shapes, isometric regularization encourages
the output shape to expand with constant velocity leading to predictable interpolation results.
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Table 2: Quantitative results on surface reconstruction.

Dataset MNIST ShapeNet
N 100 500 271 542

Metrics L1 error
average

L1 error
median

L1 error
average

L1 error
median

CD
average

CD
median

CD
average

CD
median

DeepSDF 0.0366 0.0355 0.0288 0.0285 0.002202 0.001812 0.001588 0.001207
LipDeepSDF 0.0351 0.0341 0.0279 0.0255 0.001999 0.001606 0.001361 0.001054
IsoDeepSDF (ours) 0.0283 0.0265 0.0267 0.0245 0.001915 0.001472 0.001263 0.000925

5.1.2 SURFACE RECONSTRUCTION

GT DeepSDF Lip. Iso. (Ours)

𝑁
=
30
0

𝑁
=
15
00

Figure 3: Qualitative results of
surface reconstruction given zero-
level set on MNIST.

We now train neural SDFs with a variety of more complex
2D & 3D shapes from MNIST (Deng, 2012) and ShapeNet
(Chang et al., 2015). Similar to Section 5.1.1, we use auto-
decoder architecture for training 2D SDFs. For training the
autoencoder with 3D SDFs, we use an encoder from Point-
net Qi et al. (2017) and a decoder from DeepSDF, following
the experimental setup from Liu et al. (2022).

We can then reconstruct the surfaces by finding latent codes
that minimize the output SDF values at the surface points pro-
vided at the test time. Test time optimization of a latent code is
commonly used in auto-decoders and autoencoders to recon-
struct a surface from the point cloud data (Park et al., 2019;
Gurumurthy & Agrawal, 2019; Liu et al., 2022). In particu-
lar, latent code optimization is needed when a simple pass for-
ward through the autoencoder leads to unsatisfying results. We
compare our method, referred to as IsoDeepSDF, with vanilla
DeepSDF without regularization and DeepSDF with Lipschitz
regularization (LipDeepSDF) (Liu et al., 2022).

MNIST Dataset. We make two datasets with different numbers of training data N = 300, 1500.
The datasets contain 100 & 500 images randomly chosen from each of three digits [6, 8, 9]. The
images are transformed to 2D signed distance fields on a 64×64 grid, where the contour of the digit
is the zero-level set. For test time optimization, we randomly sample 256 points from zero-level
surfaces of the test dataset with 100 images from each digit [6, 8, 9].

ShapeNet Dataset. We randomly choose 5% (N = 271) and 10% (N = 542) of shapes from the
chair category of ShapeNetV2 for training datasets. As we observe that the choice of training dataset
strongly impacts the reconstruction results, we make five different datasets for each N random
choice. Quantitative results are the average of the metrics evaluated from each dataset. The test-
time optimization reconstructs the full 3D shape from partial point clouds obtained by deleting the
right half of the surface point cloud.

Results. We compute the L1 error for 2D SDFs on a 256 × 256 grid and Chamfer distance (CD)
for 3D shapes with 30,000 points on the surfaces for evaluation metrics. Quantitative results are
summarized in Table 2. IsoDeepSDF quantitatively outperforms the others for all datasets, demon-
strating that isometric regularization helps to learn a well-behaved latent space, leading to better
reconstruction results. While decreasing N severely deteriorates the reconstruction quality on the
MNIST dataset, isometric regularization significantly reduces the performance degradation, provid-
ing reliable regularization despite scarce data points. Figure 3 and Figure 4 each show the qualitative
results of surface reconstruction on the MNIST and ShapeNet datasets. Our method qualitatively
shows better reconstruction results for both cases with 2D point clouds and 3D partial point clouds.
Especially for 3D shapes, DeepSDF fails to fully reconstruct the unseen parts of the chairs, while
our method can better reconstruct the overall shape given partial observations.

7



Published as a conference paper at ICLR 2025

𝑁 = 271
GT DeepSDF Lip. Iso. (Ours)Input GT DeepSDF Lip. Iso. (Ours)
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Input

Figure 4: Qualitative results of surface reconstruction on ShapeNet chair dataset. Our method helps
to learn better latent space, leading to better reconstruction results from partial observation.

5.2 NEURAL BRDFS

The bidirectional reflectance distribution function (BRDF) is a function that takes the incoming
and outgoing directions of light as input and outputs the reflected radiance on the surface, which
is used to render the appearance of materials. Recent works have proposed generalizable BRDF
representations with latent variable models to reconstruct a BRDF of unseen materials from its
samples (Sztrajman et al., 2021; Fan et al., 2022; Gokbudak et al., 2024). We show that isometric
regularization can complement those methods to learn better latent space for BRDFs, resulting in
better reconstruction quality.

We train neural BRDFs with the auto-decoder architecture by concatenating a latent variable z with
input directions, similar to Fan et al. (2022). We then optimize the latent codes to reconstruct the en-
tire BRDF of unseen material from BRDF samples. To evaluate the results of BRDF reconstruction,
we render a simple scene with the reconstructed BRDF with Mitsuba 3 renderer (Jakob et al., 2022).
We compare the results of our method (IsoAD) with vanilla auto-decoder (AD) and auto-decoder
with Lipschitz regularization (LipAD). We provide experimental details in Appendix C.2.

Dataset. We use the MERL dataset (Matusik et al., 2003), a common BRDF dataset measured
from 100 real isotropic materials. We split the dataset into 80 materials for training and 20 materials
for the test dataset. We train the model with various numbers of training data: N = 20, 40, 60, 80.
We make five different datasets for N = 20, 40, 60 with a random choice of materials from the full
training dataset (N = 80) and compute the average metrics for evaluating BRDF reconstruction.

Results. Figure 6 shows the reconstruction accuracy measured in PSNR and SSIM (Wang et al.,
2004). Isometric regularization improves the BRDF reconstruction by a large margin for both met-
rics. The effect of regularization is prominent when the training data N is greatly reduced to 20,
maintaining robust results while the reconstruction results of AD drastically degrade. In particular,
IsoAD trained with 20 materials shows higher PSNR and SSIM than the baselines trained with the
full training dataset of 80 materials. This result demonstrates that isometric regularization enhances
the generalization performance without compromising the fidelity of reconstruction. Qualitative re-
sults on BRDF reconstruction are shown in Figure 5. The quality of reconstructed materials aligns
with what we expect from quantitative metrics.

5.3 NEURAL OPERATORS

The Deep Operator Network (DONet) (Lu et al., 2019), originally introduced for solving PDEs, is a
standard architecture for constructing neural operators that map between functions. In this work, we
demonstrate that incorporating isometric regularization can significantly improve the performance
of operator learning. The neural operator is a regression task that aims to learn a mapping G from
an input function u : X → R to an output function o : Y → R, denoted by G : u(x) 7→ o(y),
using pairs of input-output functions. Specifically, we represent the input as a vectorized function
uvec = (u(x1), . . . , u(xM )) ∈ U for a set of fixed points {xk}Mk=1. We denote the training dataset
of size N by {(uvec,i, oi(y))}Ni=1.
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Figure 5: Qualitative results on BRDF reconstruction.
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Figure 6: Average PSNR (left) and SSIM (right) on BRDF reconstruction.

Our model consists of two networks: an encoder E : U → Z and a decoder F : Z × Y → R,
where the output function is modeled as o(y) = F (E(uvec), y) for an input uvec. When uvec is
high-dimensional, E encodes it into a low-dimensional vector that captures the essential informa-
tion required to predict the output function. This structure allows F to be interpreted as a latent
variable model for functional representations, enabling the effective application of isometric regu-
larization. We train E and F by minimizing

∑
i,j ∥oi(yj) − F (E(uvec,i), yj)∥2 for a set of query

points {yj}M
′

j=1 and evaluate the regression performance on the test dataset. To assess the robustness
of the model, we introduce varying levels of noise to the output functions in the training dataset,
while keeping the input functions clean, simulating real-world uncertainties such as measurement
errors or numerical approximation inaccuracies. We compare the performance of three models:
the unregularized DONet, the model with Lipschitz regularization (LipDONet), and the one with
isometric regularization (IsoDONet).

Dataset. This study focuses on two types of PDE datasets: the reaction-diffusion equation, as
discussed in Yang et al. (2022), and the Darcy flow problem, based on Lu et al. (2022). The reaction-
diffusion equation describes how a solution u(t, x) evolves over time and space under the effects of
diffusion and reaction forces:

∂

∂t
u(t, x) = ν

∂2

∂x2
u(t, x) + ku2 + f(x), (t, x) ∈ [0, 1]× [0, 1] (10)

with some initial and boundary conditions. The operator we aim to learn is a mapping G : f(x) 7→
u(t, x), where f(x) represents the forcing term.

The Darcy flow problem models fluid flow through a porous medium, of which steady state on a unit
square is given by:

∇ · (a(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ [0, 1]2 (11)

with some boundary conditions. The operator we aim to learn is a mapping G : a(x, y) 7→ u(x, y)
where a(x, y) is the diffusion coefficient and u(x, y) is fluid density, while assuming a fixed external
force f(x, y). These datasets are generated by solving the PDEs; details regarding the datasets can
be found in Appendix C.3.
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Figure 7: Qualitative results on neural operator. In the output images of reaction-diffusion, the
horizontal axis represents t and the vertical axis represents x.
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Figure 8: Relative errors as functions of the noise levels added to the training output functions.

Results. Figure 8 shows the relative errors (or root mean square percentage errors) measured on
clean test datasets as functions of the noise levels added to the training output functions. First, it
can be observed that the errors increase for all three methods as the noise level increases. Impor-
tantly, for IsoDONet, the rate of increase is much smaller compared to the other methods, and it
consistently shows lower errors. This demonstrates that isometric regularization is a highly effective
regularization technique. Figure 7 shows some prediction results given input functions from the
trained operator models that were trained with corrupted training datasets. DONet produces highly
distorted predictions, severely overfitting to the noise in the data, and as expected, the distortion be-
comes greater as the noise increases. LipDONet, while performing much better than DONet, tends
to overly regularize the output function in the spatio-temporal domain, especially as observed in the
Darcy flow problem, when compared to the ground truth (GT) output function on the left. It can
be observed that IsoDONet produces the best qualitative results, predicting the output function with
relatively less distortion and without overfitting to the noise.

6 CONCLUSION

In this work, we have proposed the isometric regularization for manifolds on infinite-dimensional
functional data space. We define inner products of functions with probabilistic weights and adapt
Riemannian manifold learning within the formulation of latent variable models of INR. With ex-
tensive experiments on various modalities of functional data, we have confirmed that our isometric
regularization can balance data fidelity and generalization, demonstrating improved performance
on downstream tasks including interpolation and reconstruction. However, there are still arbitrary
choices in the process of mapping the infinite dimension into the latent space, such as the function-
dependent inner product p(x;Fz) in the infinite-dimensional function data or the dimension of the
latent variable Z . An interesting future direction is to design a more systematic formulation suitable
for downstream applications according to the data characteristics.
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APPENDIX

A PROOF OF RELAXED DISTORTION MEASURE

Denote J(x, z) = ∂F
∂z (x, z) ∈ R1×m for z ∈ Rm and x ∈ X . In this section, we show that F (x, z)

is a scaled isometric function generative model in the support of PZ , i.e., for some positive scalar c,

H(z) :=

∫
JT (x, z)J(x, z)p(x;Fz) dx = cI for all z ∈ supp(PZ) (12)

if and only if F is any minimizer of

Ez∼PZ [Tr(H
2(z))]

Ez∼PZ [Tr(H(z))]2
. (13)

This proof is based on the Proposition 2 in Lee et al. (2022b). Denoting the eigenvalues of H(z) by
λi(z), i = 1, . . . ,m, we can re-write the above equation as follows:

Ez∼PZ [Tr(H
2(z))]

Ez∼PZ [Tr(H(z))]2
=

Ez∼PZ [
∑m

i=1 λ
2
i (z)]

Ez∼PZ [
∑m

i=1 λi(z)]2

= Ez∼PZ [

m∑
i=1

( λi(z)

Ez∼PZ [
∑m

i=1 λi(z)]

)2

]

= Ez∼PZ [

m∑
i=1

(( λi(z)

Ez∼PZ [
∑m

i=1 λi(z)]

)2 − 2

m

( λi(z)

Ez∼PZ [
∑m

i=1 λi(z)]

)
+

1

m2

)
] +

2

m
− m

m2

= Ez∼PZ [

m∑
i=1

( λi(z)

Ez∼PZ [
∑m

i=1 λi(z)]
− 1

m

)2
] +

1

m
. (14)

Therefore, Equation (13) is minimal if and only if

λi(z)

Ez∼PZ [
∑m

i=1 λi(z)]
− 1

m
= 0 for all z ∈ supp(PZ). (15)

Now, we prove both directions. ( =⇒ ) suppose H(z) = cI at all z ∈ supp(PZ) for some positive
scalar c, then λi(z) = c for all z ∈ supp(PZ) and i. Thus Equation (15) holds true and Equation
(13) is minimal. ( ⇐= ) suppose Equation (15) holds true, then λi(z) =

1
mEz∼PZ [

∑m
i=1 λi(z)] that

is some positive constant c for all z ∈ supp(PZ), which ends the proof.

B APPROXIMATE COMPUTATION OF RELAXED DISTORTION MEASURE

In this section, we explain details for approximately computing Equation (13) during the training of
F (x, z). To further elaborate on the computation of Jacobian-vector and vector-Jacobian products,
first consider the Tr(Ex[H(z)]) = Tr(Ex[J

TJ ]) term in the denominator. Using the Hutchinson’s
estimator, this trace term can be approximated with 1

N

∑N
k=1(v

T
k Ex[J

TJ ]vk) for vk ∼ N (0, Im) –
where Im is an m×m identity matrix. Since vTk Ex[J

TJ ]vk = Ex(v
T
k J

TJvk), we need to compute
J(x, z)vk = ∂F

∂z vk.

Removing the averaging term of trace estimator for simplicity, the denominator becomes

Ez∼PZ [Tr(H(z))]2 = Ez∼PZ ,x∼p(x;Fz)[v
T
k J

TJvk]
2

= Ez∼PZ ,x∼p(x;Fz)[∥Jvk∥
2]2. (16)

Since F is a function of (x, z), the conventional Jacobian-vector product implemented via automatic
differentiation operates on a vector of size (x, z). Therefore, to compute Jvk, we augment the vector
v with zero vector of size x, denoted by 0⃗, and compute the J(x, z)vk as ∂F

∂(x,z) (⃗0, v). Similarly, if
we examine the numerator,

Ez∼PZ [Tr(H
2(z))] = Ez∼PZ ,x∼p(x;Fz)[v

T
k J

TJJTJvk]

= Ez∼PZ ,x∼p(x;Fz)[∥J
TJvk∥2]. (17)
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Let the output of Jacobian-vector product Jvk = w ∈ V , we need to compute JTw = ∂F
∂z

T
w.

We compute this by taking the last m-th components from the conventional vector-Jacobian product
wT ∂F

∂(x,z) ∈ Rdim(X )+m.

We note that if F has certain specialized architectures, such as a neural network where parameters
are not shared between z and x, more efficient implementations of these products may be feasible
without the need for zero vector padding.

C EXPERIMENTAL DETAILS

C.1 NEURAL SDFS

C.1.1 TOY EXAMPLES ON SIMILAR SHAPES

Training. We train a multi-layer perceptron (MLP) with fully connected layers with a sequence
of nodes (4, 128, 128, 128, 128, 1) with ReLU activation functions. The input is the 2-dimensional
latent code concatenated with 2D spatial point and the output is the signed distance value of the
corresponding shape. We initialize the latent codes z ∼ N (0, 0.12) and optimize the network pa-
rameters and the latent codes jointly with MSE loss between the output of the network and the
ground truth SDF samples. We use Adam (Kingma, 2014) with a learning rate of 1e-4 for network
parameters and 1e-3 for the latent codes. We uniformly sample 512 points on the unit square for in-
put coordinate samples for isometric regularization. We perform parameter sweeping for the weight
of isometric regularization on a log scale and report the best case for each model regarding test
accuracy on linear interpolation in Table 3.

Table 3: Weights of isometric regularization on toy examples.

N Circle Square Triangle

5 0.001 0.001 0.0001
10 0.001 1e-5 0.0001
20 0.001 1e-5 0.0001

C.1.2 2D SURFACE RECONSTRUCTION

Training. We train neural SDFs with the MNIST dataset for 2D surface reconstruction, sim-
ilar to Appendix C.1.1. We use fully connected neural network with a sequence of nodes
(4, 256, 256, 256, 256, 256, 1) with ReLU activation functions. The input is the concatenation of the
8-dimensional latent code and the 2D spatial point. We initialize the latent codes z ∼ N (0, 0.12)
and optimize the network parameters and the latent codes jointly with MSE loss between the output
of the network and the ground truth SDF samples. We use Adam with a learning rate of 1e-4 for
network parameters and 1e-3 for the latent codes. We uniformly sample 4096 points on the unit
square for input coordinate samples for isometric regularization. We perform parameter sweeping
for the weight of each regularization (Lipschitz and ours) on a log scale and report the best case for
each model regarding the accuracy of test time optimization in Table 4.

Table 4: Weights of regularization terms on 2D surface reconstruction.

N Lipschitz Isometric (Ours)

100 1e-7 0.01
500 1e-7 0.001

Reconstruction. We reconstruct the 2D surface given 256 points randomly sampled from the zero-
level set of digits from the test dataset by optimizing the latent code during test time. The test dataset
consists of 100 images for each digit. We randomly initialize the latent code z ∼ N (0, 12) and
optimize the latent code minimizing the L1 norm of the output, as the SDF values of the input points
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should be zero. We use Adam with a learning rate of 1e-4 and iterate until the loss converges. As
the initialization fairly affects the reconstruction results, we repeat the optimization process twice
with different initializations for each test data and report the result with a lower loss convergence.

C.1.3 3D SURFACE RECONSTRUCTION

Training. We train autoencoder for 3D surface reconstruction, following Liu et al. (2022). The
encoder is a Pointnet (Qi et al., 2017), which gets 3D spatial points for input. The encoder con-
sists of two blocks of MLP with fully connected layers. The first block has a sequence of nodes
(3, 256, 512). After the hidden layer of 256 neurons, the input passes through the layer normaliza-
tion and tanh activation before the 512-dimensional output feature vector. As the input points are
n×3 matrix, the output of the first block is the n×512 feature matrix. Then, we obtain a global fea-
ture vector zglobal ∈ R512 by max-pooling the feature matrix. We expand the global feature vector by
repeating n times and concatenate it with the feature matrix (output of the first block). The second
block has the sequence of nodes (1024, 512, 256). Same as the first block, we pass through the layer
normalization and tanh activation after the hidden layer. We then perform another max-pooling to
get the final global feature vector. We apply the sigmoid function to the final global feature vector
to get the latent code lying between 0 and 1.

The decoder follows the architecture of DeepSDF (Park et al., 2019). The input of the decoder is
the latent code concatenated with the spatial query point. The decoder is a fully connected neural
network with a sequence of nodes (259, 1024, 1024, 1024, 512, 256, 128, 1), each hidden layer fol-
lowed by layer normalization and leaky ReLU activation. Also, we perform dropout with probability
0.2 for each hidden layer and skip connection by concatenating the input latent vector to the output
of the fourth hidden layer.

For the training dataset, we sample SDF samples following Park et al. (2019). For input point clouds
to the encoder, we randomly sample points on the surface. We use L1 loss between the predicted
SDF from the decoder and the ground truth SDF. We optimize the network parameters with Adam
with a learning rate of 5e-3 for 2000 epochs. We adjust the learning rate by half per 500 epochs.

As we train the truncated SDF (TSDF) with a clamping distance of 0.1, we sample spatial points
near the surface for isometric regularization. Please refer to Appendix D.1 for the choice of sampling
strategy for p(x;Fz). Specifically, we randomly sample 4096 points with a distance smaller than
0.1. We perform parameter sweeping for the weight of each regularization (Lipschitz and ours) on a
log scale and report the best case for each model regarding the accuracy of test time optimization in
Table 7.

Table 5: Weights of regularization terms on 3D reconstruction

Lipschitz Isometric (Ours)
Dataset 1 2 3 4 5 1 2 3 4 5

N = 5 1e-9 1e-10 1e-11 1e-9 1e-11 0.0001 1e-5 0.0001 0.0001 0.0001
N = 10 1e-11 1e-9 1e-11 1e-11 1e-11 0.0001 0.001 0.001 0.001 1e-5

Reconstruction. We reconstruct the full 3D surface given partial observations of a zero-level set
by optimizing the latent code during test time. The latent code is initialized by passing forward
through the encoder. Then we optimize the latent code parameters (parameter before applying the
sigmoid function) by minimizing the loss function. Our loss function for the test time optimization
is as follows: L = L1 + λeikonalLeikonal, where L1 is the L1 norm of the output of the network,
Leikonal is the eikonal term, and λeikonal is the weight for eikonal term. Leikonal is the regularization
term to force the norm of the gradient of the output to be 1 (Gropp et al., 2020). We use Adam with
a learning rate of 1e-4 and iterate until the loss L converges. We set λeikonal = 0.01.

C.2 NEURAL BRDFS

Training. We train neural BRDFs with the auto-decoder architecture similar to Fan et al. (2022).
However, we simplify the network architecture to MLP with fully connected layers, as we use a
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BRDF dataset from simple isotropic materials instead of complex materials with multiple layers.
The network consists of 8 hidden layers of 256 neurons with GELU activation (Hendrycks & Gim-
pel, 2016). We add a final exponential layer to the MLP’s output as BRDF values have a high
dynamic range. The network input is a 12 dimension latent vector z and 6 dimension input direction
vectors. The network output is a 1-dimensional scalar, the BRDF value of each RGB color channel.
Thus, each BRDF is represented by three latent vectors optimized for each RGB channel.

Following Sztrajman et al. (2021), we parametrize the input directions as the Cartesian vector h and
d in the Rusinkiewicz parametrization (Rusinkiewicz, 1998). As BRDF values have a high dynamic
range, we use logarithmic loss L = | log(1+f gt

r )− log(1+f pred
r )| for training, similar to Sztrajman

et al. (2021).

We randomly initialize the latent vectors z ∼ N (0, 0.12). Then, we jointly optimize the latent
vectors and network parameters with Adam by minimizing the training loss L. The learning rate is
5e-4 for the network parameters and 1e-4 for the latent codes. We trained the models for 200 epochs.
We decreased the learning rates by half after 100 epoch.

For input coordinate samples for isometric regularization, we uniformly sample from the angle space
of input directions (θh, ϕh, and ϕd). We perform parameter sweeping for the weight of each regu-
larization (Lipschitz and ours) on a log scale and report the best case for each model regarding the
accuracy of test time optimization in Table 6.

Table 6: Weights of regularization terms on BRDF reconstruction.

Lipschitz Isometric (Ours)
Dataset 1 2 3 4 5 1 2 3 4 5

N = 20 1e-8 1e-9 1e-8 1e-8 1e-8 0.0001 0.001 1e-5 1e-5 1e-5
N = 40 1e-10 1e-8 1e-9 1e-10 1e-10 1e-5 1e-5 0.0001 0.001 0.001
N = 60 1e-11 1e-11 1e-10 1e-10 1e-9 0.001 0.001 0.0001 1e-5 0.0001
N = 80 1e-9 N/A N/A N/A N/A 1e-5 N/A N/A N/A N/A

Reconstruction. We reconstruct the BRDF from samples by optimizing the latent codes during
test time. We randomly initialize the latent codes z ∼ N (0, 0.12). Then we optimize the latent
codes by minimizing the logarithmic loss between the network output and the BRDF samples. We
use Adam and set the learning rate as 1e-4. As the initialization fairly affects the reconstruction
results, we repeat the optimization 3 times with different initializations and report the best regarding
the convergence loss.

C.3 NEURAL OPERATORS

Datasets. First, we consider the reaction-diffusion equation covered in Yang et al. (2022). The
reaction-diffusion equation is written as

∂

∂t
u(t, x) = ν

∂2

∂x2
u(t, x) + ku2 + f(x), (t, x) ∈ [0, 1]× [0, 1],

u(t = 0, x) = 0, x ∈ [0, 1],

u(t, x = 0) = u(t, x = 1) = 0, t ∈ [0, 1],

(18)

where ν is the diffusion coefficient and k is the reaction rate. We set ν = 0.01 and k = 0.01. We
then consider the operator G : f(x) 7→ u(t, x) where f(x) is generated from a Gaussian process
prior with an exponential quadratic kernel using a length scale parameter l = 0.2. For the projection
of input and output functions, the time domain t ∈ [0, 1] and spatial domain x ∈ [0, 1] are uniformly
discretized into 100 points each. Standard Gaussian noise with varying standard deviations is added
to the training output function to generate corrupted datasets.

For Darcy flow, we regenerated the data using the same procedure as in Lu et al. (2022). This
problem involves a diffusion equation with an external force, modeling fluid flow through a porous
medium. The steady state on a unit square is given by:{

∇ · (a(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ [0, 1]2

u(x, y) = 0, (x, y) ∈ ∂(0, 1)2,
(19)
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where u(x, y) is the fluid density, a(x, y) is the diffusion coefficient, and f(x, y) is the external force.
Our goal is to learn the mapping G : a(x, y) 7→ u(x, y) with a fixed external force f(x, y) = 1. The
input a(x, y) and the output u(x, y) are uniformly discretized to a resolution of 20 × 20. Standard
Gaussian noise with varying standard deviations is added to the training output function to generate
corrupted datasets.

Training. We train neural operators consisting of E : U → Z and F : Z × Y → R, where F is
further composed of branch and trunk networks, as adopted from Lu et al. (2019):

F (z, y) :=

Nb∑
b=1

Bb(y)Tb(z), (20)

where Bb : Y → R and Tb : Z → R for b = 1, . . . , Nb. The vectors B = (B1, . . . , BNb
) and

T = (T1, . . . , TNb
) are referred to as the branch and trunk networks, respectively. For the Reaction-

Diffusion problem, E is set as the identity map, i.e., z = uvec. The map B is a fully connected neural
network with a sequence of nodes (100, 256, 256, 256, 256, 100) and GELU activation functions,
while T is a fully connected neural network with a sequence of nodes (2, 256, 256, 256, 256, 100)
and GELU activation functions, where Nb = 100. For Darcy Flow, E is set as the resnet18 followed
by the linear layer that maps 512-dimensional vector to 32-dimensional vector z. The map B is
a fully connected neural network with a sequence of nodes (32, 1024, 1024, 1024, 1024, 100) and
GELU activation functions, while T is a fully connected neural network with a sequence of nodes
(2, 256, 256, 256, 256, 100) and GELU activation functions, where Nb = 100.

The learning rate is set to 1e-4. We trained the models for 200,000 epochs with a batch size of 1,000
for the reaction-diffusion datasets and for 55,000 epochs with a batch size of 200 for the Darcy flow
datasets. We perform a parameter sweep for the weight of each regularization (Lipschitz and ours)
for each corrupted dataset separately and report the best case for each model based on the test set
error.

Table 7: Weights of regularization terms on Neural Operator leraning.

Lipschitz Isometric (Ours)
Noise level 0.01 0.1 0.2 0.5 1.0 0.01 0.1 0.2 0.5 1.0

Reaction Diffusion 0.0001 0.0001 0.0001 0.0001 0.001 1 1 10 30 100
Darcy Flow 0.0001 0.0001 0.0001 0.001 N/A 0.1 10 30 100 N/A

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION ON p(x;Fz)

In this section, we perform an ablation study on the probability density p(x;Fz) with neural SDFs.
We compare two sampling strategies for p(x;Fz): uniform sampling and near-surface sampling.
We train the models with SDF samples from the toy example on five similar circles with radius
0.1 to 0.5. To consider various data characteristics, we also train TSDF samples by clamping the
distance of SDF samples with ±0.1. We follow the experimental details of toy examples on similar
shapes described in Appendix C.1.1. We visually analyze the effect of p(x;Fz) on the latent space
according to the training data (SDF & TSDF).

Figure 9 shows the latent space of neural SDFs trained with SDF and TSDF samples from five
circles. We show decoded SDFs&TSDFs and L1 errors of linear interpolants in Figure 10 and
Figure 11. While other cases show nearly the same results expected with isometric regularization,
showing straight equidistant latent space, isometric regularization with uniform sampling for TSDF
straightens the latent space with “non-equidistant” latent codes. Specifically, the distance between
the optimized latent codes increases as the radius increases. These results are due to the differences
in data characteristics between SDF and TSDF. TSDF values from the points far from the surface
than 0.1 are constant with the change of the latent code. As samples from those points do not
affect the computation of Equation (12), shapes with small surface areas should be closer on the

19



Published as a conference paper at ICLR 2025

IsoAD (Near-surface)IsoAD (Uniform)AD

TS
D
F

SD
F

Figure 9: Latent space trained with SDF & TSDF from 5 circles.
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Figure 10: Linear interpolation on latent space trained with SDF.

G
T

AD
Is

oA
D

(u
ni
fo
rm
)

Is
oA

D
(N
ea
r-s
ur
fa
ce
)

Linear Interpolation L1 error

N/A

𝑟 = 0.1 𝑟 = 0.5
0.12

0.08

0.04

0.00

-0.04

-0.08

-0.12

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Figure 11: Linear interpolation on latent space trained with TSDF.

latent manifold than those with larger surface areas when uniform sampling is used for training
TSDF. Therefore, concentrating the samples near the surface for isometric regularization achieves
the same expected results for both cases trained with SDF and TSDF. We note that there could
be numerous choices of p(x;Fz) depending on the nature of the data and the expected effect of
isometric regularization.
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D.2 REGULARIZATION WEIGHT ANALYSIS

In this section, we provide an analysis on weights of regularization terms. The scale of the relaxed
distortion measure varies across datasets, necessitating weighting factor tuning for each dataset.
Empirically, we start by setting the weighting factor to match the scale of the isometric regularization
term similar to the original training loss term and then change the weighting factor with parameter
sweeping. Tables 8, 9, and 10 show the results with various weighting factors on the toy dataset,
MNIST dataset, and MERL dataset, respectively. The results of N = 20, 40 and 60 in Table 10
are the average PSNR and SSIM over five datasets with the same weights on regularization term.
When the weights on the isometric regularization are too large, the network may struggle to fit the
training data, resulting in reduced performance compared to results without regularization. However,
our method consistently outperforms those without isometric regularization across most weighting
settings, demonstrating sufficient robustness to the choice of the weighting factor.

Table 8: Results of regularization weight analysis on toy dataset (N = 5).

AD IsoAD (Ours)

weight N.A. 0.1 0.01 0.001 0.0001 1e-5

L1 error 36.5885 4.3318 2.6013 2.7497 9.7079 20.5224

Table 9: Results of regularization weight analysis on MNIST dataset (N = 100).

DeepSDF LipDeepSDF IsoDeepSDF (Ours)

weight N.A. 1e-06 1e-07 1e-08 0.01 0.001 0.0001

Average L1 error 0.03656 0.03511 0.03507 0.03854 0.02829 0.03302 0.03032
Median L1 error 0.03551 0.03401 0.03413 0.03755 0.02654 0.03133 0.02933

Table 10: Results of regularization weight analysis on MERL dataset.

AD LipAD IsoAD (Ours)

weight N.A. 1e-8 1e-9 1e-10 1e-11 0.001 0.0001 1e-5

N = 80
PSNR 35.9776 35.5008 36.6982 33.9015 35.4429 32.7568 39.0047 40.6211
SSIM 0.9544 0.9402 0.9720 0.9582 0.9326 0.9426 0.9767 0.9882

N = 60
PSNR 33.5426 32.5683 32.6521 33.2074 34.0972 35.8485 37.4657 35.3189
SSIM 0.9466 0.9483 0.9504 0.9459 0.9561 0.9585 0.9691 0.9557

N = 40
PSNR 33.3672 34.4997 31.8454 33.8662 31.4173 36.4007 34.2912 35.9980
SSIM 0.9383 0.9613 0.9381 0.9591 0.9237 0.9635 0.9502 0.9590

N = 20
PSNR 31.0048 33.0056 31.9782 31.0097 29.4476 33.7202 34.9357 34.6490
SSIM 0.9286 0.9450 0.9336 0.9253 0.9155 0.9429 0.9550 0.9557

D.3 COMPUTATIONAL TIME

In this section, we provide the per-epoch runtime of AD, LipAD, and IsoAD during the training of
neural SDFs with toy examples and the MNIST dataset. We use N = 5 circles for toy examples and
N = 100 for the MNIST dataset with the same experimental settings in Appendix C.1. We use a
single NVIDIA GeForce RTX 2080 Ti GPU for training. Table 11 shows the per-epoch runtime.

D.4 REGULARIZATION INTERVAL ANALYSIS

While our Algorithm 1 avoids costly Jacobian computations, our method still requires considerable
additional computation regarding training batch size and number of samples on X . One simple yet
effective way to accelerate training is to add the isometric regularization term at specific intervals
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Table 11: Averages and standard deviations of the per-epoch runtimes (s) during training for each
dataset.

Dataset Toy Example MNIST
Models AD IsoAD (Ours) DeepSDF LipDeepSDF IsoDeepSDF (Ours)

per-epoch runtime (s) 0.0049 (± 0.002) 0.0152 (± 0.0064) 0.8793 (± 0.0543) 0.9256 (± 0.042) 2.0819 (± 0.0735)

rather than every epoch. To show the robustness of our regularization method to the regularization
interval, we conduct additional experiments on neural SDFs and neural BRDFs. We use the toy
example dataset with circles (N = 5), MNIST dataset (N = 100), and MERL dataset (N = 20).
We use the same experimental settings in Appendix C.1 for neural SDFs and Appendix C.2 for
neural BRDFs. Tables 12, 13, and 14 show the results of regularization interval analysis on the toy
example dataset, MNIST dataset, and MERL dataset, respectively.

Table 12: Results of regularization interval analysis on toy example dataset (circles: N = 5). We
show average L1 errors (×10−3) on linear interpolation.

AD IsoAD (Ours)

interval N.A. 1 2 5 10
weight N.A. 0.01 0.01 0.01 0.01

L1 error 36.5885 2.6014 1.8571 3.2573 3.1487

Table 13: Results of regularization interval analysis on MNIST dataset (N = 100). We show
average and median L1 errors on reconstruction from zero-level sets.

DeepSDF LipDeepSDF IsoDeepSDF (Ours)

interval N.A. 1 1 2 5 10
weight N.A. 1.00E-07 0.01 0.01 0.05 0.05

Average L1 error 0.0366 0.0351 0.0283 0.0330 0.0335 0.0359
Median L1 error 0.0355 0.0341 0.0265 0.0321 0.0322 0.0338

Table 14: Results of regularization interval analysis on MERL dataset (N = 20). We show average
PSNR and SSIM over five datasets of N = 20 on BRDF reconstruction.

AD LipAD IsoAD (Ours)

interval N.A. 1 1 2 5 10

PSNR 31.0048 33.9142 37.3545 36.4126 36.3188 36.0928
SSIM 0.9286 0.9568 0.9731 0.9498 0.9514 0.9471

D.5 ADDITIONAL RESULTS

D.5.1 TOY EXAMPLES ON SIMILAR SHAPES

We show additional results of neural SDFs trained with simple 2D shapes. Figure 12 shows the latent
space of AD and IsoAD each trained with five squares and five triangles. Figure 13 and Figure 14
show generated intermediate shapes by linearly interpolating the latent space given the smallest and
the biggest shapes of each model.
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Figure 12: Latent space trained with five squares & triangles.
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Figure 13: Linear interpolation on latent space trained with five squares.
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Figure 14: Linear interpolation on latent space trained with five triangles.

D.6 SURFACE RECONSTRUCTION

We show additional qualitative results of surface reconstruction on MNIST and ShapeNet datasets.
Figure 15 shows the reconstruction results of 2D shapes given zero-level set input. Figure 16 shows
the reconstruction results of 3D shapes given partial observations.

D.6.1 NEURAL BRDFS

We show additional qualitative results of BRDF reconstruction in Figure 17. Ours reconstructs
correct BRDFs while other baselines fail to reconstruct correct BRDFs resulting in severe color
differences in the rendered images. The details are more discernible when the figure is zoomed in.
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Figure 15: Qualitative results of surface reconstruction given zero-level set on MNIST.
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Figure 16: Qualitative results of surface reconstruction on ShapeNet chair dataset.

D.6.2 NEURAL OPERATORS

We show additional qualitative results of neural operator with reaction-diffusion and Darcy problem
datasets in Figure 18 and Figure 19.
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Noise Level 𝜎
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Figure 18: Qualitative results on neural operator with reaction-diffusion dataset.
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Figure 19: Qualitative results on neural operator with Darcy problem dataset.
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