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Abstract

In multiclass classification over n outcomes, we typically optimize some surrogate1

loss L : Rd × Y → R assigning real-valued error to predictions in Rd. In this2

paradigm, outcomes must be embedded into the reals with dimension d ≈ n in3

order to design a consistent surrogate loss. Consistent losses are well-motivated4

theoretically, yet for large n, such as in information retrieval and structured pre-5

diction tasks, their optimization may be computationally infeasible. In practice,6

outcomes are typically embedded into some Rd for d≪ n, with little known about7

their suitability for multiclass classification. We investigate two approaches for8

trading off consistency and dimensionality in multiclass classification while using9

a convex surrogate loss. We first formalize partial consistency when the optimized10

surrogate has dimension d≪ n. We then check if partial consistency holds under11

a given embedding and low-noise assumption, providing insight into when to use a12

particular embedding into Rd. Finally, we present a new method to construct (fully)13

consistent losses with d ≪ n out of multiple problem instances. Our practical14

approach leverages parallelism to sidestep lower bounds on d.15

1 Introduction16

Multiclass classification, due to its combinatorial and discontinuous nature, is intractable to optimize17

directly, which drives machine learners to optimize some nicer surrogate loss. To ensure these18

surrogates properly “correspond” to the discrete classification task, we seek to design consistent19

surrogates. If one uses a consistent surrogate loss, in the limit of infinite data and model expressivity,20

one ends up with the same classifications as if one had solved the original intractable problem directly21

with probability 1.22

Surrogate losses form the backbone of gradient-based optimization for classification tasks. Optimizing23

a surrogate is easier than direct optimization, but a large dimension d of the surrogate loss L :24

Rd × Y → R can make gradient-based optimization intractable. Therefore, previous literature has25

operated under the premise that the prediction dimension d should be as low as possible, subject to26

consistency for the classification task [Ramaswamy and Agarwal, 2016, Finocchiaro et al., 2024,27

2020]. For multi-class classification, the lower bound on d is n − 1 [Ramaswamy and Agarwal,28

2016].29

These previous works implicitly focus on a binary approach to consistency: a surrogate is either30

consistent for every possible label distribution, or it is not consistent. But there is a way out: lower31

bounds on the surrogate dimension d rely on edge-cases that rarely show up in reality [Ramaswamy32

and Agarwal, 2016]. As a result, practitioners are often willing to trade-off the guarantee of con-33

sistency in order to improve the computational tractability of optimization. However, we currently34

lack rigorous analysis tools to analyze many of the partially-consistent surrogates commonly used in35

practice. Thus, unlike previous works, our work focuses on this more realistic paradigm of partial36
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consistency. We apply our unique approach to rigorously analyze a popular surrogate construction37

that encompasses methods such as one-hot and binary encoding. Our approach allows for fine-grained38

control of the trade-off between consistency and dimension.39

Prior works have informally brushed upon the proposed partial-consistency paradigm, without40

rigorous study. For example, Agarwal and Agarwal [2015] impose a low-noise assumption to41

construct a surrogate for classification with d = log(n). However, their work does not provide any42

way to control the consistency-dimension trade-off. Similarly, Struminsky et al. [2018] characterize43

the excess risk bounds of inconsistent surrogates, which teaches us about the learning rates for44

inconsistent surrogates, but not under which distributional assumptions we can recover consistency45

guarantees.46

Using different techniques than both of these approaches, we seek to understand the tradeoffs of47

consistency, surrogate prediction dimension, and number of problem instances through the use of48

polytope embeddings which are common in the literature [Wainwright et al., 2008, Blondel et al.,49

2020]. When embedding outcomes into d ≪ n dimensions, we first show there always exists a50

set of distributions where hallucinations occur: where the report minimizing the surrogate leads51

to a prediction ŷ such that the underlying true distribution has no weight on the prediction; that is,52

Pr[Y = ŷ] = 0 (Theorem 3). Following this, we show that every polytope embedding is partially53

consistent under strong enough low-noise assumptions (Theorem 5). Finally, we demonstrate through54

leveraging the embedding structure and multiple problem instances that the mode (in particular, a55

full rank ordering) over n outcomes embedded into a n
2 dimensional surrogate space is elicitable56

over all distributions via O(n2) problem instances (Theorem 10). This alternative approach to57

recovering consistency is parallelizable, detangling the complexity of gradient computation of one58

high-dimensional surrogate.59

2 Background and Notation60

Let Y be a finite label space, and throughout let n = |Y|. Define RY
+ to be the nonnegative orthant.61

Let ∆Y = {p ∈ RY
+ | ∥p∥1 = 1} be the set of probability distributions on Y , represented as vectors.62

We denote the point mass distribution of an outcome y ∈ Y by δy ∈ ∆Y . Let [d] := {1, . . . , d}.63

In general, we denote a discrete loss by ℓ : Y × Y → R+ with outcomes denoted by y ∈ Y and a64

surrogate loss by L : Rd×Y → R with surrogate reports u ∈ Rd and outcomes y ∈ Y . The surrogate65

must be accompanied by a link ψ : Rd → Y mapping the convex surrogate model’s predictions back66

into the discrete target space, and we discuss consistency of a pair (L,ψ) with respect to the target ℓ.67

For ϵ > 0, we define an epsilon ball via Bϵ(u) = {u ∈ Rd | ∥u − x∥2 < ϵ} and Bϵ := Bϵ(⃗0).68

Given a closed convex set C ⊂ Rd, we define a projection operation onto C via ProjC(u) :=69

argminx∈C ∥u− x∥2. Full tables of notation are found in Appendix A.70

2.1 Property Elicitation, Consistency, and Prediction Dimension71

Discrete label prediction requires optimization of a target loss function, ℓ, e.g. multi-class classifica-72

tion and 0-1 loss. When designing surrogate losses, consistency is the key notion of correspondence73

between surrogate and target loss. Intuitively, consistency implies that minimizing surrogate risk cor-74

responds to solving the target problem. Finocchiaro et al. [2021] show that surrogate loss consistency75

is a necessary precursor to excess risk bounds and convergence rates.76

Consistency is generally a difficult condition to work with directly. Hence, we will use the notion77

of calibration, which is equivalent to consistency in our setting with finite outcomes. Our approach78

follows from the property elicitation literature, which allows us to abstract away from the feature space79

X and focus on the conditional distributions over the labels, p = Pr[Y | X = x] ∈ ∆Y [Bartlett80

et al., 2006, Zhang, 2004, Ramaswamy and Agarwal, 2016, Steinwart, 2007]. In this approach, the81

central object of study is a property which maps label distributions to reports that minimize the loss.82

Definition 1 (Property, Elicits, Level Set). LetR be an arbitrary report set. For P ⊆ ∆Y , a property
is a set-valued function Γ : P → 2R \ {∅}, which we denote Γ : P ⇒ Y . A loss L : Y × Y → R
elicits the property Γ on P if

∀ p ∈ P, Γ(p) = argmin
u∈R

EY∼p[L(u, Y )] .
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If L elicits a property, it is unique and we denote it prop[L]. The level set of Γ for report r is the set83

Γr := {p ∈ P | r = Γ(p)}. If prop[L] = Γ and |Γ(p)| = 1 for all p ∈ P , we say that L is strictly84

proper for Γ.85

Once a model is optimized wrt. a surrogate L, it predicts reports in the surrogate space, Rd. Then, to86

map surrogate reports to discrete labels, the surrogate loss must be paired with a link, ψ : Rd → Y .87

Intuitively, a surrogate and link pair (L,ψ) are calibrated with respect to a target loss ℓ, if the optimal88

expected surrogate loss when making the incorrect classification (by ψ) is strictly greater than the89

optimal surrogate loss.90

Definition 2 (ℓ-Calibrated Loss). Given discrete loss ℓ : Y ×Y → R+, surrogate loss L : Rd×Y →
R, and link function ψ : Rd → Y . We say that (L,ψ) is ℓ-calibrated over P ⊆ ∆Y if, for all p ∈ P ,

inf
u∈Rd:ψ(u)/∈prop[ℓ](p)

EY∼p[L(u, Y )] > inf
u∈Rd

EY∼p[L(u, Y )] .

If P is not specified, then we are discussing calibration over ∆Y .91

Our analysis crucially relies on the ability to specify P when invoking the definition of calibration.92

This is because the surrogates we analyze break the d = n− 1 lower bound on the dimension of any93

consistent surrogate loss. So the surrogates will not be calibrated over the whole simplex ∆Y . To aid94

in our analysis, we use a condition that shows that converging to a property value implies calibration95

for the target loss itself [Agarwal and Agarwal, 2015].96

Definition 3 (ℓ-Calibrated Property). Let P ⊆ ∆Y , Γ : P ⇒ Rd, discrete loss ℓ : Y ×Y → R+, and
ψ : Rd → Y . We will say (Γ, ψ) is ℓ-calibrated for all p ∈ P and all sequences in {um} in Rd if,

um → Γ(p)⇒ EY∼p[ℓ(ψ(um), Y )]→ min
r∈Y

EY∼p[ℓ(r, Y )] .

Theorem 1 ([Agarwal and Agarwal, 2015, Theorem 3]). Let ℓ : Y × Y → R+ and P ⊆ ∆Y . Let97

Γ : P ⇒ Rd and ψ : Rd → Y be such that Γ is elicitable and (Γ, ψ) is an ℓ-calibrated property over98

P . Let L : Rd×Y → R be a convex function for all y ∈ Y and strictly proper for Γ i.e. prop[L] = Γ99

and |Γ(p)| = 1 for all p ∈ P . Then, (L,ψ) is ℓ-calibrated over P .100

Finally, we present the 0-1 loss that we analyze, which is the target loss for multiclass classification.101

Definition 4 (0-1 Loss). We denote the 0-1 loss by ℓ0−1 : Y × Y → {0, 1} such that ℓ0−1(y, ŷ) :=102

1y ̸=ŷ . Observe γmode(p) := prop[ℓ0−1](p) = {y ∈ Y|y ∈ argmaxy py}.103

3 Polytope Embedding and Existence of Calibrated Regions104

Often, discrete outcomes are embedded in continuous space onto the vertices of the simplex via105

one-hot encoding, or the vertices of the unit cube via binary encoding [Seger, 2018]. Generalizing,106

we introduce an approach to surrogate construction inspired by Wainwright et al. [2008] and Blondel107

et al. [2020] that encompasses the aforementioned embedding methods. This construction utilizes108

embeddings onto arbitrary low-dimensional polytopes φ : Y → Rd. Then, an embedding scheme109

naturally induces a large class of loss functions LGφ defined by the embedding, any G-Bregman110

Divergence, and a link function ψφ.111

Our analysis begins by defining a condition stronger than inconsistency that arises when embedding112

into d < n − 1 dimensions for multiclass classification. To this end, we introduce the notion of113

hallucination as a means to characterize the “worst case” behavior of a surrogate pair (§ 3.2). In a114

positive manner, we characterize the calibration regions of various embeddings (§ 3.3), which are115

sets P ⊆ ∆Y such that our surrogate and link pair (LGφ , ψ
φ) are ℓ-calibrated over P . We refer the116

reader to the Appendix B for omitted full proofs.117

3.1 Polytope Embedding Construction118

A Convex Polytope P ⊂ Rd, or simply a polytope, is the convex hull of a finite number of points119

u1, . . . , un ∈ Rd. An extreme point of a convex setA, is a point u ∈ A such that if u = λy+(1−λ)z120

with y, z ∈ A and λ ∈ [0, 1], then y = u and/or z = u. We shall denote by vert(P ) a polytope’s121

set of extreme points. A polytope can be expressed by the convex hull of its extreme points, i.e.122

P = conv (vert(P )) [Brondsted, 2012, Theorem 7.2]. Additional definitions pertaining to polytopes123

are used for proofs that are omitted to the appendix, we refer the reader to (§ B.1) for said definitions.124
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We propose the following embedding procedure that allows one to construct surrogate losses with125

almost any polytope, and any Bregman divergence.126

Construction 1 (Polytope Embedding). Given Y outcomes, |Y| = n, choose a polytope P ⊂ Rd127

such that |vert(P )| = n. Choose a bijection between Y and vert(P ). According to this bijection,128

assign each vertex a unique outcome so that {vy|y ∈ Y} = vert(P ). Then the polytope embedding129

φ : ∆Y → P is φ(p) :=
∑
y∈Y pyvy , which is the sum of p-scaled vectors130

Following the work of Blondel [2019] and their proposed Projection-based losses, we use the131

extremely general class of Bregman divergences (Definition 5) and a polytope embedding φ to define132

an induced loss LGφ (Definition 6).133

Definition 5 (Bregman Divergence). Given a strictly convex function G : Rd → R, DG(u, v) :=134

G(v)− [G(u) + ⟨dGv, u− v⟩] is a Bregman divergence where dGv denotes a subgradient of G at v.135

For this work, we shall always assume that dom(G) = Rd.136

Definition 6 ((DG, φ) Induced Loss). Given a Bregman divergence DG and a polytope embedding137

φ, we say (DG, φ) induces a loss LGφ : Rd × Y → R defined as LGφ (u, y) := DG(u, vy) =138

G(vy)− [G(u) + ⟨dGvy , u− vy⟩].139

We show that for any p ∈ ∆Y , the report that uniquely minimizes the expectation of the loss LGφ is140

φ(p), the embedding point of p. Furthermore, the polytope P contains all of, and only the minimizing141

reports in expectation under LGφ .142

Proposition 2. For a given induced loss LGφ , the unique report which minimizes the expected loss143

is u∗ := argminu∈Rd EY∼p[L
G
φ (u, Y )] = φ(p) such that u∗ ∈ P . Furthermore, every û ∈ P is a144

minimizer of EY∼p̂[L
G
φ (u, Y )] for some p̂ ∈ ∆Y .145

We now define the maximum a posteriori (MAP) link, which will be used in conjunction with146

an induced loss LGφ to form a surrogate pair for the 0-1 loss. The MAP link projects surrogate147

predictions onto the polytope P , then links to the nearest vertex of P , and is commonly used in the148

literature [Tsochantaridis et al., 2005, Blondel, 2019, Xue et al., 2016].149

Definition 7 (MAP Link). Let φ be a polytope embedding. The MAP link ψφ : Rd → Y is defined as150

ψφ(u) = argminy∈Y ||ProjP (u)−vy||2 The level set of the link for y is ψφy = {u ∈ Rd|y = ψφ(u)}.151

We break ties arbitrarily but deterministically.152

3.2 Hallucination Regions153

Since our polytope embedding violates surrogate dimension bounds, calibration for 0-1 loss will not154

hold for all distributions. In particular, we show there always exists some distribution p such that155

py = 0 yet EY∼pL
G
φ (u, Y ) is minimized at some u such that ψP (u) = y. This implies a “worst case”156

inconsistency where the reported outcome could never actually occur with respect to our embedding157

of n events via φ into vert(P ).158

Definition 8 (Hallucination). Given (L,ψ) such that L : Rd × Y → R+, |Y| = n, d < n, and159

ψ : Rd → Y , we say that a hallucination occurs at a surrogate report u ∈ Rd if, for some p,160

u ∈ argminû∈Rd EY∼p[L(û, Y )] and ψ(u) := y but py = 0. We denote by H ⊆ P ⊂ Rd as the161

hallucination region as the elements of P at which hallucinations can occur.162

We express the subspace of the surrogate space where hallucinations can occur as the hallucination163

region denoted by H. In Theorem 3, we characterize the hallucination region for any polytope164

embedding while using the surrogate pair (LGφ , ψ
φ) and show thatH is never empty.165

Theorem 3. For any given pair (LGφ , ψ
φ) and ℓ0−1 with embedding dimension d < n− 1; it holds166

thatH = ∪y∈Yconv (vert(P ) \ {vy}) ∩ ψφy and furthermoreH ̸= ∅.167

Sketch. Fix y ∈ Y . We abuse notation and write vert(P−y) := vert(P ) \ {vy}. Observe168

conv (vert(P−y)) ∩ ψφy ⊆ H since any point in this set can be expressed as a convex combina-169

tion without needing vertex vy implying there is a distribution embedded by φ to said point which170

has no weight on y. To show that H ⊆ ∪y∈Yconv (vert(P−y)) ∩ ψφy . Assume there exists a point171

u /∈ conv (vert(P ) \ vy) ∩ ψφy such that there exists some p ∈ ∆Y where φ(p) = u, py = 0,172

and ψφ(u) = y. Since ψφ(u) = y and u /∈ conv (vert(P−y)) ∩ ψφy , it must be the case that173
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Figure 1: (Left) Mode level sets of ∆Y where Y = {a, b, c, d} embedded into a two dimensional unit
cube. The center red point denotes the origin (0, 0) which is the hallucination region. (Right) An
embedding of ∆Y where Y = {a, b, c, d, e, f} into a three-dimensional permutahedron: the beige
region expresses strict calibration regions, the light pink regions expresses regions with inconsistency,
and the auburn region expresses regions with hallucinations. For example, consider the report u = 0⃗.
Since losses are convex, if p = (0, 12 , 0, 0,

1
2 , 0), then conv ({b, e}) (dashed grey) is optimal, which

includes u. However, 0⃗ is also contained in conv ({a, d}) which is optimal for the distribution
p′ = ( 12 , 0, 0,

1
2 , 0, 0). Therefore, we cannot distinguish the optimal reports for a hallucination at 0⃗.

u /∈ conv (vert(P−y)). However, that implies that u is strictly in the vertex figure and thus must174

have weight on the coefficient for y. Thus, forming a contradiction that py = 0 which implies that175

H ⊆ ∪y∈Yconv (vert(P−y)) ∩ ψφy . Finally, using Helly’s Theorem [Rockafellar, 1997, Corollary176

21.3.2], we are able to show the non-emptiness ofH.177

Theorem 3 suggests that using machine learning in high-risk settings such as medical and legal178

applications while violating the known n− 1 dimensional bound for surrogate losses in multiclass179

classification is inherently ill-advised without human intervention given the possibility for hallucina-180

tions. Furthermore, hallucinations may be forced by the target loss, as in the case of Hamming loss181

(see Appendix C). In these cases practitioners should carefully consider the choice of target loss. We182

conjecture that hallucinations are common for many structured prediction losses. However this is not183

a concern in our primary loss of study of multi-class classification.184

3.3 Calibration Regions185

Ideally, we would like calibration to hold over the entire simplex since that would imply minimizing186

surrogate risk would always correspond to solving the target problem regardless of the true underlying187

distribution. We observe that the mode’s embedded level sets in the polytope overlap (see Figure 1L),188

which is unsurprising given that we are violating the lower bounds on surrogate prediction for the189

mode and hence calibration does not hold over the entire simplex. Since |2Y \ {∅}| is a finite set, we190

know that the number of unique mode level sets is finite. Although every point in the polytope is a191

minimizing report for some distribution, if multiple distributions with non-intersecting mode sets192

are embedded to the same point, there is no way to define a link function that is correct in all cases.193

However, if the union of mode sets for the p’s mapped to any u ∈ P is a singleton, regardless of the194

underlying distribution*, a link ψ would be calibrated over the union if it mapped u to the mentioned195

singleton. Given (L,ψ), φ, and a target loss ℓ, we define strict calibrated regions as the points for196

which calibration holds regardless of the actual distribution realized, which are possible at said points.197

Definition 9 (Strict Calibrated Region). Suppose we are given (L,ψ), φ, and a target loss ℓ. We198

say R ⊆ P is a strict calibrated region via (L,ψ) with respect to ℓ if (L,ψ) is ℓ-calibrated for all199

p ∈ φ−1(R) := {p : φ(p) ∈ R}.200

For any y ∈ Y , we define Ry := R ∩ ψy . We let RY := ∪y∈YRy .201

By violating lower bounds, we are in a partially consistent paradigm where surrogate reports do not202

necessarily correspond to a unique distribution p. However, strict calibration regions allow us to203

*We leave the more general case of linking u when
⋂

p∈φ−1(u) γ(p) ̸= ∅ to future work.
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check whether or not the loss is calibrated for the distribution p generating the data — even without204

explicit access to p. One simply has to check whether the report u is in RY .205

In Theorem 4, regardless of one’s chosen P , we show that there always exists a non-zero Lebesgue206

measurable strict calibration region and that (LGφ , ψ
φ) is calibrated for the 0-1 loss overall distri-207

butions embedded into the strict calibration region. This result shows that our surrogate and link208

construction for any d, always yields calibration regions in a robust sense — lending support to the209

practical use and study of these surrogates.210

Theorem 4. Let DG be a Bregman divergence, φ be any polytope embedding, ψφ be the MAP link,211

and LGφ be the loss induced by (DG, φ). There exists a P ⊆ ∆Y with non-zero Lebesgue measure212

and φ(P) ⊆ RY via (LGφ , ψ
φ) with respect to ℓ0−1.213

Although strict calibration regions Ry exist for each outcome y ∈ Y via the polytope embedding,214

tightly characterizing strict calibration regions is non-trivial. Since the level sets of elicitable215

properties are convex within the underlying simplex, characterizing the strict calibration regions216

becomes a collision detection problem, which is often computationally hard.217

4 Restoring Inconsistent Surrogates via Low-Noise Assumptions218

Looking towards application, we refine our results on the existence of strict calibration regions by219

examining a low-noise assumption, which provides an interpretable calibration region (§ 4.1). We220

show which low-noise assumptions imply calibration when embedding 2d outcomes into d dimensions221

and d! outcomes into d dimensions (§ 4.2). We refer the reader to Appendix B for omitted proofs.222

4.1 Calibration via Low Noise Assumptions223

We demonstrate that every polytope embedding leads to calibration under some low-noise assumption.224

Our results enable practictioners to choose the dimension d, unlike in previous works. Following225

previous work [Agarwal and Agarwal, 2015], we define a low noise assumption to be a subset226

of the probability simplex with low noise on the label distribution parameterized by α̂: Θα̂ =227

{p ∈ ∆Y | maxy∈Y py ≥ 1 − α̂} where α̂ ∈ [0, 1]. Given α ∈ (0, 1] and y ∈ Y , we define228

the set Ψyα = {(1 − α)δy + αδŷ | ŷ ∈ Y}. With an embedding φ onto P , we define the set229

P yα := φ(conv (Ψyα)), a scaled version of P anchored at vy, that moves vertices (1− α) towards y,230

(Figure 2R).231

Theorem 5. Let DG be a Bregman divergence, φ be any polytope embedding, and LGφ be the loss232

induced by (DG, φ). There exists an α ∈ [0, .5) such that for the link ψφα(u) = argminy∈Y ∥u −233

P yα∥2, (LGφ , ψφα) is ℓ0−1-calibrated over the distributions Θα := {p ∈ ∆Y | maxy∈Y py ≥ 1− α}.234

Proof. Part 1 (Choosing α ∈ [0, .5)): By Theorem 4, there exists an ϵ > 0 such that Bϵ(vy) ∩ P ⊆235

Ry for all y ∈ Y . Given that vert(P ) are unique points, there exists a sufficiently small ϵ′ > 0 such236

that Bϵ′(v) ∩Bϵ′(v̂) = ∅ for all v, v̂ ∈ vert(P ) where v ̸= v̂. Let ϵ′′ = min (ϵ, ϵ′). For any y ∈ Y ,237

observe the set conv (Ψyα), defined using any α ∈ [0, .5), is a scaled-down translated unit simplex238

and that for all p ∈ conv (Ψyα) ⊂ ∆Y it holds that y = mode(p).239

We shall show that for some sufficiently small α ∈ [0, .5), P yα is a scaled down version of P240

positioned at the respective vertex vy . Furthermore, we shall show that P yα ⊂ Bϵ′′(vy) ∩ P ⊆ Ry for241

all y ∈ Y . Observe that by linearity of φ,242

P yα := φ(conv (Ψyα)) = conv (φ({(1− α)δy + αδŷ|ŷ ∈ Y})) = conv ({(1− α)vy + αvŷ|ŷ ∈ Y})

and hence, P yα is a scaled version of P positioned at vy. Hence for some sufficiently small α,243

(1− α)vy + αvŷ ∈ Bϵ′′(vy) for all ŷ and hence P yα ⊆ Bϵ′′(vy) ⊆ Ry. With said sufficiently small244

α, define ψPα and the respective sets conv (Ψyα) for each y ∈ Y . Using the previous α, define the set245

Θα as well.246

247

Part 2 (Showing Calibration): Recall, by Proposition 2, for any p ∈ ∆Y , u = φ(p) minimizes the248

expected surrogate loss EY∼p[L
G
φ (u, Y )]. For any fixed y ∈ Y , observe that conv {(1−α)δy+αδŷ |249
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ŷ ∈ Y} = {p : py ≥ 1 − α} ⊂ ∆Y and hence, by Proposition 2, ∪y∈YP
y
α contains all of the250

minimizing surrogate reports with respect to Θα. By our choice of α and the construction of ψPα ,251

every u ∈ ∪y∈YP
y
α is linked to the proper unique mode outcome since ∪y∈YP

y
α ⊆ RY . Assuming a252

low-noise condition where p ∈ Θα, any u /∈ ∪y∈YP
y
α is never optimal for any low-noise distribution.253

In such cases, we project the point to the nearest P yα as a matter of convention. Given that calibration254

is a result pertaining to minimizing reports, this design choice is non-influential. Finally, since every255

∪y∈YP
y
α ⊆ RY , by the definition of strict calibration region, it holds that (LGφ , ψ

φ
α) is ℓ0−1-calibrated256

for Θα.257

4.2 Embedding into the Unit Cube and Permutahedron under Low-Noise258

In this section, we demonstrate embedding onto the unit cube and the permutahedron [Blondel et al.,259

2020, Seger, 2018]. We show that by embedding 2d outcomes into a d dimensional unit cube P□,260

(LGφ , ψ
P□

α ) is calibrated over Θα for all α ∈ [0, 12 ). Furthermore, we found that by embedding d!261

outcomes into a d dimensional permutahedron Pw, (LGφ , ψ
Pw

α ) is calibrated for Θα for α ∈ (0, 1d ).262

Theorem 6 enables us to simultaneously study the aforementioned embeddings.263

Theorem 6. Let DG be a Bregman divergence, φ be any polytope embedding, and LGφ be the loss264

induced by (DG, φ). Fix α ∈ [0, .5) and with it define Θα. If for all y, ŷ ∈ Y such that y ̸= ŷ it holds265

that P yα∩P ŷα = ∅, then (LGφ , ψ
φ
α) is ℓ0−1-calibrated for Θα where ψφα(u) = argminy∈Y ∥u−P yα∥2.266

Proof. Pick an α such that for all y, ŷ ∈ Y , P yα ∩ P ŷα = ∅. Define Θα and ψPα accordingly. For267

p ∈ Θα and some y ∈ Y , say a sequence {um} converges to prop[LGφ ](p) = φ(p) ∈ P yα , where the268

equality follows from Proposition 2. Given that each P yα is closed and pairwise disjoint, there exists269

some ϵ̂ > 0 such that for all y, ŷ ∈ Y where y ̸= ŷ, it also holds that (P yα +Bϵ̂) ∩ (P ŷα +Bϵ̂) = ∅270

where + denotes the Minkowski sum. Since {um} converges to φ(p), there exists some N ∈ N271

such that for all n ≥ N , ∥un − φ(p)∥2 < ϵ̂. By the definition of ψφα , any un where n ≥ N will272

be mapped to y, the correct unique report given that prop[LGφ ](p) ∈ P yα . Hence, (prop[LGφ ], ψ
φ
α) is273

ℓ0−1-calibrated property with respect to Θα. Finally, since LGφ is strictly proper for prop[LGφ ], by274

Theorem 1, we have that (LGφ , ψ
φ
α) is ℓ0−1-calibrated for Θα.275

Unit Cube Define a unit cube in d-dimensions by P□ := conv ({−1, 1}d). Binary encoding276

outcomes into the elements of {−1, 1}d (the vertices of a unit cube) is a commonly used method in277

practice (e.g., [Seger, 2018, Yu and Blaschko, 2018]). We show that calibration holds under a low278

noise assumption of Θα when α < .5.279

Corollary 7. Let φ be an embedding from 2d outcomes into the vertices of P□ in d-dimensions and280

define an induced loss LGφ . Fix α ∈ [0, .5) and define Θα. (LGφ , ψ
P□

α ) is ℓ0−1-calibrated for Θα.281

Corollary 7 suggests that binary encoding is an appropriate methodology when one has a prior over282

the data that the mode of the label distribution Pr[Y | X = x] is greater than half for all x ∈ X .283

Interestingly, the bound of α is not dependent on the dimension of d. We now present a result for284

embedding outcomes into a factorially lower dimension via the permutahedron. Intuitively, ranking285

can be recast as a multiclass classification problem, in which case the outcomes are orderings of the d286

possible labels.287

Permutahedron Let Sd express the set of permutations on [d]. The permutahedron associated288

with a vector w ∈ Rd is defined to be the convex hull of the permutations of the indices of w, i.e.,289

Pw := conv {π(w) | π ∈ Sd} ⊂ Rd. The permutahedron may serve as an embedding from d!290

outcomes into d-dimensions; it is a natural choice for embedding full rankings over d items.291

Corollary 8. Let φ be an embedding from d! outcomes into the vertices of Pw in d dimensions292

such that w = (0, 1
βd ,

2
βd , . . . ,

d−1
βd ) ∈ Rd where β = d−1

2 . Fix α ∈ (0, 1d ). Then (LGφ , ψ
Pw

α ) is293

ℓ0−1-calibrated over Θα.294

The calibration region in Corollary 8 show that consistency in Θα shrinks exponentially in d. Unless295

one has a prior that the data follows some form of a power distribution, Corollary 8 suggests not to296

factorially embed outcomes.297
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Figure 2: (Left) Corners represent the strict calibration regions for Θα where Y = {a, b, c, d} is
embedded into a two dimensional unit cube such that α = .25. (Right) Auburn regions show that
strict calibration holds for Θα where Y = {a, b, c, d, e, f} is embedded into a three-dimensional
permutahedron such that α = 1

3 − ϵ.

5 Elicitation in Low Dimensions with Multiple Problem Instances298

The tools developed in previous sections now enable us to address the setting in which we require full299

consistency, P = ∆Y , but also desire surrogate prediction dimension d≪ n− 1. We side-step the300

n− 1 lower bound by utilizing multiple problem instances and aggregation of the outputs. Although301

cumulatively we have a larger surrogate prediction dimension than n− 1, each individual problem302

instance has a less than n− 1 surrogate prediction dimension. This approach is well-motivated since303

it allows for distributed computing of separate, smaller models which leads to faster convergence304

overall since in general optimization is at least poly(d).305

Definition 10. Extending Definition 1, we say a loss and link pair (L,ψ), where L : Rd × Y → R306

and ψ : Rd → Y , elicits a property Γ : P ⇒ Y on P ⊆ ∆Y if ∀ p ∈ P, Γ(p) =307

ψ(argminu∈Rd EY∼p[L(u, Y )]).308

Definition 11 ((n, d,m)-Polytope Elicitable). Suppose we are given a property γ : P ⇒ Y such that309

P ⊆ ∆Y and |Y| = n finite outcomes. Say we have m unique polytope embeddings {φj : ∆Y →310

Rd}mj=1 where d < n − 1, and a set of induced losses {LGφj
}mj=1 and links ψj : Rd → Bj defined311

wrt. φj , where Bj is an arbitrary report set. For each j ∈ [m], assume the pair (LGφj
, ψj) elicits the312

property Γj : P ⇒ Bj . If there exists a function Υ : B1 × · · · × Bm ⇒ Y such that for any p ∈ ∆Y313

it holds that Υ(Γ1(p), . . . ,Γm(p)) = γ(p), we say that γ is (n, d,m)-Polytope Elicitable over P .314

Equivalently, we will also say that the pair ({(LGφj
, ψj)}mj=1,Υ) (n, d,m)-Polytope elicits the prop-315

erty γ with respect to P .316

We shall express a d-cross polytope by P⊕ := conv ({π((±1, 0, . . . , 0)) | π ∈ Sd}) where317

(±1, 0, . . . , 0) ∈ Rd. Observe that a d-cross polytope has 2d vertices. For any vertex of a d-cross318

polytope v ∈ vert(P⊕), we shall say that (v,−v) forms a diagonal vertex pair.319

Lemma 9. Say we are given a cross-polytope embedding φ : ∆2d → P⊕ and induced loss LGφ .
Let (vai , vbi), be the ith diagonal pair (i.e. φ(δai) = vai). Define the property Γφ : ∆2d → B
element-wise by

Γφ(p)i :=

{
(<, ai, bi) if pai < pbi
(>, ai, bi) if pai > pbi
(=, ai, bi) if pai = pbi .

Furthermore define the link ψP
⊕
: Rd → B with respect to each diagonal pair as320

ψ(u; vai , vbi)
P⊕

i :=

{
(<, ai, bi) if ||u− vai ||2 > ||u− vbi ||2
(>, ai, bi) if ||u− vai ||2 < ||u− vbi ||2
(=, ai, bi) o.w.

Then (LGφ , ψ
P⊕

) elicits Γφ.321

The following theorem states that by using multiple problem instances, based on Lemma 9, we can322

Polytope-elicit the mode. Algorithm 1 outlines how to aggregate the individual solutions to infer the323

mode. We defer the proof to Appendix B.324
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Figure 3: Four outcomes embedded in R2 in two different ways, with the minimizing reports • for a
distribution p." (Left) Configuration φ1 with • at (−.5, .3) implying pa > pd and pb > pc. (Right)
Configuration φ2 with • at (0, 0) implying pa = pb and pc = pd. This implies the true distribution is
p = (0.4, 0.4, 0.1, 0.1)."

Theorem 10. Let d ≥ 2. The mode is (2d, d,m)-Polytope Elicitable for somem ∈ [2d−1, d(2d−1)].325

Algorithm 1 Elicit mode via comparisons and the d-Cross Polytopes

Require: M = {(LGφj
, ψP

⊕

j )}mj=1

Learn a model hj : X → Rd for each instance (LGφj
, ψP

⊕

j ) ∈M
For some fixed x ∈ X , collect all Bj ← ψP

⊕

j (hj(x)) where Bj ∈ Bj
Report R← FindMaxes†(B1, . . . , Bm)

Although Theorem 10 states that the mode is (2d, d,m)-Polytope Elicitable for some m ∈ [2d −326

1, d(2d− 1)], it does not state how we select said {(LGφj
, ψP

⊕

j )}mj=1 problem instances in an optimal327

manner. Unfortunately, selecting the min number of problem instances reduces to a a minimum set328

cover problem which is computationally hard. Even so, through a greedy approach, one can choose329

problem instances that are log approximate optimal relative to the true best configuration. In practice330

using real data, given that these are asymptotic results, we may have conflicting logic for the provided331

individual reports. In Appendix D, we discuss an approach of how to address this in practice.332

6 Discussion and Conclusion333

This work examines various tradeoffs between surrogate loss dimension, restricting the region of334

consistency in the simplex when using the 0-1 loss, and number of problem instances. Since our335

analysis is based on an embedding approach commonly used in practice, our work provides theoretical336

guidance for practitioners choosing an embedding. We see several possible future directions. The337

first is a deeper investigation into hallucinations. Future work could investigate the size of the338

hallucination region in theory, and the frequency of reports in the hallucination region in practice.339

Another direction would be to construct a method that efficiently identifies the strict calibration340

regions and the distributions embedded into them. This would provide better guidance on whether or341

not a particular polytope embedding aligns with one’s prior over the data. Finally, another direction342

is to identify other properties that can be elicited via multiple problem instances while also reducing343

the dimension of any one instance.344

Broader Impacts: Our work broadly informs the selection of loss functions for machine learning.345

Thus our work may influence practitioners’ choice of loss function. Of course, such loss functions346

can be used for ethical or unethical purposes. We do not know of particular risks of negative impacts347

of this work beyond risks of machine learning in general.348

†Given all comparisons, a sorting algorithm can be used to compute the set of r ∈ Y such that pr is
maximum.
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A Notation tables393

Notation Explanation
r ∈ Y Prediction space
y ∈ Y Label space
∆Y Simplex over Y
[d] := {1, . . . , d} Index set
1S ∈ {0, 1}d s.t. (1S)i = 1⇔ i ∈ S 0-1 Indicator on set S ⊆ [d]
C ⊂ Rd Closed convex set
u ∈ Rd Surrogate prediction space
ProjC(u) := argminx∈C ||u− x||2 Projection onto closed convex set
π ∈ Sd Permutations of [d]
ℓ : Y × Y → R+ Discrete loss
L : Rd × Y → R Surrogate loss
EY∼p[ℓ(r, Y )] Expected discrete loss
EY∼p[L(u, Y )] Expected surrogate loss

Table 1: Table of general notation

Notation Explanation

P ⊂ Rd Polytope
P□ := conv ({−1, 1}d) Unit cube
Pw := conv {π · w | π ∈ Sd} ⊂ Rd s.t. w ∈ Rd Permutahedron
P⊕ := conv ({π((±1, 0, . . . , 0)) | π ∈ Sd}) Cross polytope

Table 2: Table of polytope notation
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B Polytopes, Omitted Proofs, and Results394

B.1 Polytopes395

A Convex Polytope P ⊂ Rd, or simply a polytope, is the convex hull of a finite number of points396

u1, . . . , un ∈ Rd. An extreme point of a convex setA, is a point u ∈ A such that if u = λy+(1−λ)z397

with y, z ∈ A and λ ∈ [0, 1], then y = u and/or z = u. We shall denote by vert(P ) a polytope’s398

set of extreme points. A polytope can be expressed by the convex hull of its extreme points, i.e.399

P = conv (vert(P )) [Brondsted, 2012, Theorem 7.2].400

We define the dimension of P via dim(P ) := dim(affhull(P )) where affhull(P ) denotes the smallest401

affine set containing P . A set F ⊆ P is a face of P is there exists a hyperplane H(y, α) := {u ∈402

Rd | ⟨u, y⟩ = α} such that F = P ∩H and P ⊆ H+ such that H+(y, α) := {u ∈ Rd | ⟨u, y⟩ ≤ α}.403

Let Fi(P ) where i ∈ [d − 1] denote set of faces of dim i of a polytope P . A face of dimension404

zero is called a vertex and a face of dimension one is called an edge. We define the edge set of a405

polytope P by E(P ) := {conv ((vi, vj)) | (vi, vj) ⊆
(vert(P )

2

)
, conv ((vi, vj)) ∈ F1(P )}. We define406

the neighbors of a vertex v by ne(v;P ) := {v̂ ∈ vert(P ) | conv ((v, v̂)) ∈ E(P )}. We will denote407

conv ((v, v̂)) ∈ E(P ) by as ev,v̂ and ne(v;P ) by ne(v) when clear from context.408

B.2 Omitted Proofs from § 3409

Proposition 11. For a given induced loss LGφ , the unique report which minimizes the expected loss410

is u∗ := argminu∈Rd EY∼p[L
G
φ (u, Y )] = φ(p) such that u∗ ∈ P . Furthermore, every û ∈ P is a411

minimizer of EY∼p̂[L
G
φ (u, Y )] for some p̂ ∈ ∆Y .412

Proof. By [Banerjee et al., 2005, Theorem 1], the minimizer of EY∼p[L
G
φ (u, Y )] is

∑
y∈Y pyvy =413

φ(p). Thus, by the construction of the polytope embedding, it holds that u∗ = φ(p). Since414

Bregman divergences are defined with respect to strictly convex functions, u∗ uniquely minimizes415

EY∼p[L
G
φ (u, Y )].416

Conversely, every û ∈ P is expressible as a convex combination of vertices; hence, by the definition417

of φ, for some distribution, say p̂ ∈ ∆Y , it holds û = φ(p̂). Therefore, it holds that û minimizes418

EY∼p̂[L
G
φ (u, Y )].419

Theorem 12. For any given pair (LGφ , ψ
φ) and ℓ0−1 with embedding dimension d < n− 1; it holds420

thatH = ∪y∈Yconv (vert(P ) \ {vy}) ∩ ψφy and furthermoreH ̸= ∅.421

Proof. Choose a y ∈ Y . We abuse notation and write vert(P ) \ vy := vert(P ) \ {vy}. Observe all422

u ∈ conv (vert(P ) \ vy) ∩ ψφy can be expressed as a convex combination of vertices without needing423

vertex vy . The coefficients of said convex combination express a p ∈ ∆Y that is embedded to the point424

u ∈ P where py = 0. Yet, by Proposition 2, said u is an expected minimizer of LGφ with respect to p.425

Given the intersection with ψφy and by Definition 8, it holds that ∪y∈Yconv (vert(P ) \ vy)∩ψφy ⊆ H.426

We now shall show that H ⊆ ∪y∈Yconv (vert(P ) \ vy) ∩ ψφy . Fix y ∈ Y . Assume there exists a427

point u /∈ conv (vert(P ) \ vy) ∩ ψφy such that there exists some p ∈ ∆Y where φ(p) = u, py = 0,428

and ψφ(u) = y. Since ψφ(u) = y and u /∈ conv (vert(P ) \ vy)) ∩ ψφy , it must be the case that429

u /∈ conv (vert(P ) \ vy). However, that implies that u is strictly in the vertex figure and thus must430

have weight on the coefficient for y. Thus, forming a contradiction that py = 0 which implies that431

H = ∪y∈Yconv (vert(P ) \ vy) ∩ ψφy .432

To show non-emptiness ofH, we shall use Helly’s Theorem (Rockafellar [1997], Corollary 21.3.2).433

W.l.o.g, assign an index such that Y = {y1, . . . , yd, yd+1, . . . , yn}. Observe the elements of the set434

{Y \ yi}ni=1 each differ by one element. W.l.o.g, pick the first d + 1 elements of the previous set.435

Observe | ∩d+1
i=1 Y \ yi| = |Y \ {y1, . . . , yd, yd+1}| = n− (d+ 1) > 0. Hence, by Helly’s theorem436

and uniqueness of yi’s, ∩y∈Yconv (vert(P ) \ vy) ̸= ∅.437

Pick a point u′ ∈ ∩y∈Yconv (vert(P ) \ vy). Since ψφ is well-defined, u′ will be linked to some438

outcome y′ ∈ Y and thus u′ ∈ conv (vert(P ) \ vy′) ∩ ψφy′ ⊂ H. Yet, u′ can be expressed as a439
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convex combination which does not use vy′ since it lies in ∩y∈Yconv (vert(P ) \ vy). Thus, by using440

Proposition 2 and by the definition of Hallucination (Def. 8), we have thatH ̸= ∅.441

Lemma 1 (Proposition 1.2.4). [Hiriart-Urruty and Lemaréchal, 2004] If φ is an affine transformation442

of Rn and A ⊂ Rn is convex, then then the image φ(A) is also convex. In particular, if the set A is a443

convex polytope, the image is also a convex polytope.444

Lemma 2. Let DG be a Bregman divergence, φ be any polytope embedding, ψ be the MAP link,445

and LGφ be the loss induced by (DG, φ). Assume the target loss is ℓ0−1. If a point is in a strict446

calibrated region such that u ∈ Ry for some y ∈ Y , it is necessary that u ∈ conv ({vy} ∪ ne(vy)) \447

conv (ne(vy)).448

Proof. If u ∈ Ry and u ∈ P \
(
conv ({vy} ∪ ne(vy)) \ conv (ne(vy))

)
, then u can be expressed as449

a convex combination which has no weight on the coefficient for vy . Hence, there exists a distribution450

embedded into u where y would not be the mode, thus violating the initial claim that u ∈ Ry .451

Lemma 3. Let DG be a Bregman divergence, φ be any polytope embedding, ψ be the MAP link, and452

LGφ be the loss induced by (DG, φ). For any u ∈ e(vi,vj) ∈ E(P ), it holds that |φ−1(u)| = 1.453

Proof. Observe, the two vertices of an edge define the convex hull making up the edge and hence,454

by (Gruber [2007] ,Theorem 2.3) the two vertices are affinely independent. Therefore, all elements455

of the edge have a unique convex combination which are expressed by the convex combinations456

of the edge’s vertices. Given the relation of the embedding φ and convex combinations of vertices457

expressing distributions, it holds that |φ−1(u)| = 1.458

Lemma 4. Let DG be a bregman divergence, φ be a polytope embedding, and LGφ be the induced459

loss by (DG, φ). For all y ∈ Y , it holds that dim(φ(modey)) = dim(P ) ≥ 2.460

Proof. By the construction of φ, we know that dim(P ) ≥ 2. Fix y ∈ Y . By Lemma 3, we know461

that any edge connected from vy and v̂ ∈ ne(vy), the distributions embedded into the half of the line462

segment closer to vy, y is in the mode. By Lemma 1, we know that φ(γmode
y ) is a convex set. Thus,463

the convex hull of the half line segments is part of φ(γmode
y ). Since each vertex has at least dim(P )464

neighbors, it holds that dim(φ(γmode
y )) = dim(P ).465

Theorem 13. Let DG be a Bregman divergence, φ be any polytope embedding, ψφ be the MAP link,466

and LGφ be the loss induced by (DG, φ). There exists a P ⊆ ∆Y with non-zero Lebesgue measure467

and φ(P) ⊆ RY via (LGφ , ψ
φ) with respect to ℓ0−1.468

Proof. Recall that γmode(p) := prop[ℓ0−1](p) = mode(p). Fix y ∈ Y . For contradiction, assume469

for any ŷ ∈ Y where y ̸= ŷ, it holds that Bϵ(vy) ∩ φ(γmode
ŷ ) ̸= ∅ for all ϵ > 0. By Lemma 3,470

it holds that conv ({vy} ∪mvy,α) ⊆ φ(γmode
y ) where mvy,α := {(1 − α)vy + αv | v ∈ ne(vy)}471

defined by any α ∈ (0, .5). Furthermore, the elements of ∪m∈mvy,α
conv ({vy} ∪ {m}) have one472

distribution embedded onto it where y is the only valid mode thus, we know that φ(modeŷ) ∩473

∪m∈mvy,α
conv ({vy} ∪ {m}) = ∅. Since φ(γmode

ŷ ) ⊂ P is closed and convex, there must exist474

some non-negative min distance between φ(γmode
ŷ ) and vy which we shall denote by dv. For any475

ϵ ∈ (0, dvy ), we can define Bϵ(vy) such that Bϵ(vy) ∩ φ(γmode
ŷ ) = ∅, forming a contradiction.476

For each vy ∈ vert(P ) define a dvy and let ϵ′ ∈ ∩vy∈vert(P )(0, dvy ). By the construction of P and477

the definition of ψφ, there exists a ϵ′′ > 0 such that for all u ∈ Bϵ′′(vy) it holds that ψ(u) = y and478

Bϵ′′(vy) ⊂ ψφy . For any y ∈ Y , we know that Bmin{ϵ′,ϵ′′}(vy)) ∩ P ⊆ Ry by the construction of479

our epsilon ball. We claim φ−1(Bmin{ϵ′,ϵ′′}(vy) ∩ P ) is a set of distributions for which calibration480

holds.481

For p ∈ ∆Y such that φ(p) ∈ Bmin{ϵ′,ϵ′′}(vy)∩P for some vy ∈ vert(P ), suppose a sequence {um}482

converges to prop[LGφ ](p) = φ(p) (equality by Proposition 2). By construction ofBmin{ϵ′,ϵ′′}(vy)∩P ,483

ψφ(φ(p)) = y ∈ mode(p) and hence, a minimizing report for ℓ0−1(y; p). Furthermore, since484

Bmin{ϵ′,ϵ′′}(vy) ⊂ ψφφ−1(vy)
, all elements within Bmin{ϵ′,ϵ′′}(vy) link to y. Since {um} converges485

to prop[LGφ ](p), there exists some N ∈ N and n ≥ N , such that ∥un − φ(p)∥2 < min{ϵ′, ϵ′′},486
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meaning that EY∼p[ℓ0−1(ψ
φ(um), Y )]→ miny∈Y EY∼p[ℓ0−1(y, Y )]. Hence, for any vy ∈ vert(P ),487

(prop[LGφ ], ψ
φ) is ℓ0−1-calibrated property with respect to φ−1(Bmin{ϵ′,ϵ′′}(vy) ∩ P ). Further-488

more, by the construction of Bmin ϵ′,ϵ′′(vy) for each vy ∈ vert(P ), we have that LGφ is strictly489

for prop[LGφ ]. Thus, by Theorem 1, (LGφ , ψ
φ) is ℓ0−1-calibrated for at least the distributions490

P = ∪vy∈vert(P )φ
−1(Bmin{ϵ′,ϵ′′}(vy) ∩ P ) as well as φ(P) ⊆ RY . Furthermore, since Bmin{ϵ′,ϵ′′}491

for each vy ∈ vert(P ) is non-empty, we have that P ≠ ∅.492

B.3 Omitted Proofs from § 4493

Corollary 14. Let φ be an embedding from 2d outcomes into the vertices of P□ in d-dimensions and494

define an induced loss LGφ . Fix α ∈ [0, .5) and define Θα. (LGφ , ψ
P□

α ) is ℓ0−1-calibrated for Θα.495

Proof. W.l.o.g, say the outcome y1 ∈ Y is embedded into 1[d] ∈ vert(P□). Say α = .5. Observe496

that497

Ψy1α =




1
0
...
0
0

 ,


1− α
α
...
0
0

 ,


1− α
0
α
...
0

 , . . . ,


1− α
0
...
α
0

 ,


1− α
0
...
0
α




and that 1 ≥ (1 − α) ± α ≥ 0 for any α ∈ (0, .5). Hence, for any α ∈ (0, .5) it holds that498

P y10.5 = conv ({0, 1}d) and furthermore P y1α ⊂ P y10.5 ⊂ Rd>0. By symmetry of P□ and the linearity499

of φ, for any α ∈ (0, .5) and y ∈ Y , we have that P yα is a strict subset of the orthant that contains vy .500

Hence, for all y, ŷ ∈ Y such that y ̸= ŷ, it holds that P yα ∩ P ŷα = ∅. Thus by Theorem 6, (LGφ , ψ
P□

α )501

is ℓ0−1-calibrated for Θα where α ∈ (0, .5).502

Corollary 15. Let φ be an embedding from d! outcomes into the vertices of Pw in d dimensions503

such that w = (0, 1
βd ,

2
βd , . . . ,

d−1
βd ) ∈ Rd where β = d−1

2 . Fix α ∈ (0, 1d ). Then (LGφ , ψ
Pw

α ) is504

ℓ0−1-calibrated over Θα.505

Proof. Let ∆d := conv ({1i ∈ Rd | i ∈ [d]}) and observe Pw ⊂ ∆d since for all π, ∥π · w∥1 =
∥w∥1 = 1. Observe that Pw can be symmetrically partitioned into d! regions with disjoint interiors,
one for each permutation π ∈ Sd via ∆π

d := {u ∈ ∆d | u1 ≤ · · · ≤ ud}. Fix π ∈ Sd and
w.l.o.g assume π is associated with the constraints ∆π

w := {u ∈ ∆w | u1 ≤ · · · ≤ ud} implying that
π(w) = ( 0

βd ,
1
βd , . . . ,

d−1
βd ). Let α = 1

d and define Θα. With respect to Θα, let y := φ−1(π(w)) ∈ Y
and ŷ := φ−1(π̂(w)) ∈ Y such that π̂ ∈ Sd. Thus the set Ψyα := {(1− 1

d )δy + ( 1d )δŷ | y, ŷ ∈ Y} is
mapped via φ to the following points

φ(Ψyα) = {(1−
1

d
)(π(w)) + (

1

d
)(π̂(w)) | π̂ ∈ Sd}

within the permutahedron.506

We shall show that P yα ⊆ ∆π
d . If this were not true, there would exists an element of wπ,π̂ ∈ φ(Ψyα)507

such such that for some pair of adjacent indices, say i, i+ 1 ∈ [d− 1], wπ,π̂i > wπ,π̂i+1. For sake of508

contradiction, fix i ∈ [d− 1] and assume there exists a π̂ ∈ Sd such that wπ,π̂i > wπ,π̂i+1. Observe that509
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any element of π̂(w) can be expressed by j
βd using some j ∈ {0, 1, . . . , d− 1}. Thus,510

wπ,π̂i > wπ,π̂i+1

⇔ (1− 1

d
)(
i− 1

βd
) + (

1

d
)(π̂(w))j > (1− 1

d
)(
i

βd
) + (

1

d
)(π̂(w))ĵ

⇒ (1− 1

d
)(
i− 1

βd
) + (

1

d
)(
j

βd
) > (1− 1

d
)(
i

βd
) + (

1

d
)(
ĵ

βd
) Multiply by βd

⇒ (i− 1)(1− 1

d
) + j(

1

d
) > i(1− 1

d
) + ĵ(

1

d
)

⇒ 1− d > ĵ − j

for some j, ĵ ∈ {0, 1, . . . , d− 1} where j ̸= ĵ.511

512

Case 1: (j < ĵ): The smallest value possible for ĵ − j is 0− (d− 1) however, 1− d ≯ 1− d.513

514

Case 2:(j > ĵ): The smallest value possible for ĵ − j is 1 however, 1− d ≯ 1.515

516

Hence, P yα ⊆ ∆π
d and specifically, there can exists an extreme point of P yα that lies on the boundary517

of ∆π
d as shown in Case 1. However, if α ∈ (0, 1d ), every extreme point of P yα moves closer to518

π(w) (besides the extreme point itself already on π(w)) and therefore P yα lies strictly within ∆π
d . By519

symmetry of Pw and the linearity of φ, this would imply that for all y′, y′′ ∈ Y such that y′ ̸= y′′520

it holds that P y
′

α ∩ P y
′′

α = ∅. Thus by Corollary 6, (LGφ , ψ
Pw

α ) is ℓ0−1-calibrated for Θα where521

α ∈ (0, 1d ).522

B.4 Omitted Proofs from § 5523

Lemma 16. Say we are given a cross-polytope embedding φ : ∆2d → P⊕ and induced loss LGφ .
Let (vai , vbi), be the ith diagonal pair (i.e. φ(δai) = vai). Define the property Γφ : ∆2d → B
element-wise by

Γφ(p)i :=

{
(<, ai, bi) if pai < pbi
(>, ai, bi) if pai > pbi
(=, ai, bi) if pai = pbi .

Furthermore define the link ψP
⊕
: Rd → B with respect to each diagonal pair as524

ψ(u; vai , vbi)
P⊕

i :=

{
(<, ai, bi) if ||u− vai ||2 > ||u− vbi ||2
(>, ai, bi) if ||u− vai ||2 < ||u− vbi ||2
(=, ai, bi) o.w.

Then (LGφ , ψ
P⊕

) elicits Γφ.525

Proof. W.l.o.g, fix a diagonal pair (va, vb) and let va := 11 and vb := −11. Define the embedding φ526

accordingly. We will show that the following is true for all distributions mapped via φ to u ∈ P⊕.527

||u− va||2 > ||u− vb||2 ⇐⇒ pa < pb
OR ||u− va||2 < ||u− vb||2 ⇐⇒ pa > pb
OR ||u− va||2 = ||u− vb||2 ⇐⇒ pa = pb.

First, fix p ∈ ∆2d. Recall, by Proposition 2, the minimizing report for LGφ in expectation is528

u = φ(p) ∈ P ⊂ Rd. We will prove the forward direction of the first and second lines. Then the529

reverse directions follow from the contrapositives.530

531
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Case 1, =⇒ : Assume for contradiction that pa < pb and ||φ(p)− va||2 < ||φ(p)− vb||2. Then532

⟨φ(p)− 11, φ(p)− 11⟩ <⟨φ(p) + 11, φ(p) + 11⟩

(u1 − 1)2 +
∑
i=1

u2i <(u1 + 1)2 +
∑
i=1

u2i

−u1 <u1 .
By the definition of a d-cross polytope P⊕ := conv ({π((±1, 0, . . . , 0)) | π ∈ Sd}) and the533

orthogonal relation between vertices, to express a u ∈ P⊕ as a convex combination of vertices, each534

diagonal pair of vertices coefficients solely influence the position along a single unit basis vector.535

Hence, due to the definition of φ, we have u1 = 11 · pa − 11 · pb < 0 since we have assumed that536

pa < pb. Hence −u1 < u1 < 0, a contradiction.537

538

Case 2, =⇒ : Assume pa > pb and ||φ(p)− va||2 < ||φ(p)− vb||2. By symmetry with case 1, all539

the inequalities are reversed, leading to the contradiction that −u1 > u1 > 0.540

541

Case 3: (pa = pb): Follows from the if and only ifs of cases 1 and 2.542

Hence (LGφ , ψφ) elicits Γφ.543

544

Theorem 10. Let d ≥ 2. The mode is (2d, d,m)-Polytope Elicitable for somem ∈ [2d−1, d(2d−1)].545

Proof. We will elicit the mode via the intermediate properties, Γφj , defined in Lemma 9. First we546

construct a set of embeddings so that we guarantee that all the φj’s allow comparison between any547

pair of outcome probabilities. For example, for each unique pair (a, b)j ∈
(Y
2

)
define an embedding:548

φj(δa) = 11 and φj(δb) = −11, and embed every other remaining report r ∈ Y \ {a, b} arbitrarily.549

Since (LGφ , ψ
P⊕

) elicits Γφ, minimizing each LGφj
with a separate model yields us comparisons550

via the link ψP
⊕

. To find the set r ∈ Y such that pr is maximum, we use a sorting algorithm551

that uses pairwise comparisons, such as bubble sort. Hence with Υ as Algorithm 1, we have that552

Υ({LGφj
, ψP

⊕}) = mode(p).553

Assuming there exist φjs such that there is no redundancy in comparison pairs between each Γφj , we554

would need only d(2d−1)
d = 2d− 1 problem instances. Hence, we establish our lower bound on the555

needed number of problem instances.556

C Hamming Loss Hallucination Example557

Hamming loss ℓ : Y × Y → R+ is defined by ℓ(y, ŷ) =
∑d
i=1 1yi ̸=ŷi where Y = {−1, 1, }d.558

Suppose d = 3 and we have the following indexing over outcomes559

Y := {y1 ≡ (1, 1, 1), y2 ≡ (1, 1,−1), y3 ≡ (1,−1, 1), y4 ≡ (−1, 1, 1),
y5 ≡ (−1,−1, 1), y6 ≡ (1,−1,−1), y7 ≡ (−1, 1,−1), y8 ≡ (−1,−1,−1)} .

Let us define the following distribution

pϵ = (0,
1

3
− ϵ, 1

3
− ϵ, 1

3
− ϵ, 0, 0, 0, 3ϵ) ∈ ∆Y

such that ϵ > 0.560

• EY∼pϵ [ℓ(y1, Y )] = 1 + 6ϵ561

• EY∼pϵ [ℓ(y2, Y )] = EY∼pϵ [ℓ(y3, Y )] = EY∼pϵ [ℓ(y4, Y )] = 4
3 + 2ϵ562

• EY∼pϵ [ℓ(y5, Y )] = EY∼pϵ [ℓ(y6, Y )] = EY∼pϵ [ℓ(y7, Y )] = 7
3 − 4ϵ563

• EY∼pϵ [ℓ(y8, Y )] = 2− 6ϵ564

For all ϵ ∈ [0, 1
12 ), the minimizing report in expectation is y1 = (1, 1, 1). However, pϵ,1 = 0 and565

thus, a hallucination would occur under a calibrated surrogate and link pair.566
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D Linking under Multiple Problem Instances567

As stated in § 5, when using real data, given that these are asymptotic results, we may have conflicting568

logic for the provided individual reports. In this section, we provide an approach such that the569

algorithm still reports information in the aforementioned scenario and will reduce to Algorithm 1570

asymptotically. We build a binary relation table M ∈ {0, 1}n×n with the provided reports. Based571

on M , we select a largest subset of S ⊆ Y such that when M is restricted to rows and columns572

corresponding to the elements of S, denoted by MS , we have that MS is reflexive, antisymmetric,573

transitive, and strongly connected implying MS has a total-order relation defined over its elements.574

Having a total-order relation infers the mode can be found via comparisons. The algorithm returns575

(R,S), where R is the mode set with respect to the elements of S.576

Algorithm 2 Elicit mode via comparisons and the d-Cross Polytopes over well-defined partial
orderings

Require: M = {(LGφj
, ψP

⊕

j )}mj=1

Learn a model hj : X → Rd for each instance (LGφj
, ψP

⊕

j ) ∈M
For some fixed x ∈ X , collect all Bj ← ψP

⊕

j (hj(x)) where Bj ∈ Bj
Build M ∈ {0, 1}n×n binary relation table with provided {Bj}mj=1 as such

• Label rows top to bottom by y1, . . . , yn and columns left to right by y1, . . . , yn.
• For all (·, pyi , pyk) ∈ Bj , if pyi ≤ pyk set M [i, k] = 1 and 0 otherwise.

Select largest subset S ⊆ Y such that MS is reflexive, antisymmetric, transitive, and strongly
connected.
Report (R,S)← FindMaxElements-of-S(M ;S)
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NeurIPS Paper Checklist577

The checklist is designed to encourage best practices for responsible machine learning research,578

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove579

the checklist: The papers not including the checklist will be desk rejected. The checklist should580

follow the references and precede the (optional) supplemental material. The checklist does NOT581

count towards the page limit.582

Please read the checklist guidelines carefully for information on how to answer these questions. For583

each question in the checklist:584

• You should answer [Yes] , [No] , or [NA] .585

• [NA] means either that the question is Not Applicable for that particular paper or the586

relevant information is Not Available.587

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).588

The checklist answers are an integral part of your paper submission. They are visible to the589

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it590

(after eventual revisions) with the final version of your paper, and its final version will be published591

with the paper.592

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.593

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a594

proper justification is given (e.g., "error bars are not reported because it would be too computationally595

expensive" or "we were unable to find the license for the dataset we used"). In general, answering596

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we597

acknowledge that the true answer is often more nuanced, so please just use your best judgment and598

write a justification to elaborate. All supporting evidence can appear either in the main paper or the599

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification600

please point to the section(s) where related material for the question can be found.601

IMPORTANT, please:602

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",603

• Keep the checklist subsection headings, questions/answers and guidelines below.604

• Do not modify the questions and only use the provided macros for your answers.605

1. Claims606

Question: Do the main claims made in the abstract and introduction accurately reflect the607

paper’s contributions and scope?608

Answer: [Yes]609

Justification: Any claimed result in the abstract is proved within this work.610

Guidelines:611

• The answer NA means that the abstract and introduction do not include the claims612

made in the paper.613

• The abstract and/or introduction should clearly state the claims made, including the614

contributions made in the paper and important assumptions and limitations. A No or615

NA answer to this question will not be perceived well by the reviewers.616

• The claims made should match theoretical and experimental results, and reflect how617

much the results can be expected to generalize to other settings.618

• It is fine to include aspirational goals as motivation as long as it is clear that these goals619

are not attained by the paper.620

2. Limitations621

Question: Does the paper discuss the limitations of the work performed by the authors?622

Answer: [Yes]623

Justification: Yes, our paper discuss how these results are asymptotic.624
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Guidelines:625

• The answer NA means that the paper has no limitation while the answer No means that626

the paper has limitations, but those are not discussed in the paper.627

• The authors are encouraged to create a separate "Limitations" section in their paper.628

• The paper should point out any strong assumptions and how robust the results are to629

violations of these assumptions (e.g., independence assumptions, noiseless settings,630

model well-specification, asymptotic approximations only holding locally). The authors631

should reflect on how these assumptions might be violated in practice and what the632

implications would be.633

• The authors should reflect on the scope of the claims made, e.g., if the approach was634

only tested on a few datasets or with a few runs. In general, empirical results often635

depend on implicit assumptions, which should be articulated.636

• The authors should reflect on the factors that influence the performance of the approach.637

For example, a facial recognition algorithm may perform poorly when image resolution638

is low or images are taken in low lighting. Or a speech-to-text system might not be639

used reliably to provide closed captions for online lectures because it fails to handle640

technical jargon.641

• The authors should discuss the computational efficiency of the proposed algorithms642

and how they scale with dataset size.643

• If applicable, the authors should discuss possible limitations of their approach to644

address problems of privacy and fairness.645

• While the authors might fear that complete honesty about limitations might be used by646

reviewers as grounds for rejection, a worse outcome might be that reviewers discover647

limitations that aren’t acknowledged in the paper. The authors should use their best648

judgment and recognize that individual actions in favor of transparency play an impor-649

tant role in developing norms that preserve the integrity of the community. Reviewers650

will be specifically instructed to not penalize honesty concerning limitations.651

3. Theory Assumptions and Proofs652

Question: For each theoretical result, does the paper provide the full set of assumptions and653

a complete (and correct) proof?654

Answer: [Yes]655

Justification: Yes, we thoroughly introduce every necessary definition and past result656

necessary to understand the assumptions that hold under our results.657

Guidelines:658

• The answer NA means that the paper does not include theoretical results.659

• All the theorems, formulas, and proofs in the paper should be numbered and cross-660

referenced.661

• All assumptions should be clearly stated or referenced in the statement of any theorems.662

• The proofs can either appear in the main paper or the supplemental material, but if663

they appear in the supplemental material, the authors are encouraged to provide a short664

proof sketch to provide intuition.665

• Inversely, any informal proof provided in the core of the paper should be complemented666

by formal proofs provided in appendix or supplemental material.667

• Theorems and Lemmas that the proof relies upon should be properly referenced.668

4. Experimental Result Reproducibility669

Question: Does the paper fully disclose all the information needed to reproduce the main ex-670

perimental results of the paper to the extent that it affects the main claims and/or conclusions671

of the paper (regardless of whether the code and data are provided or not)?672

Answer: [Yes]673

Justification: The results of this work have rigorous proofs presented next to the results or674

referenced clearly in the appendix.675

Guidelines:676

• The answer NA means that the paper does not include experiments.677
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• If the paper includes experiments, a No answer to this question will not be perceived678

well by the reviewers: Making the paper reproducible is important, regardless of679

whether the code and data are provided or not.680

• If the contribution is a dataset and/or model, the authors should describe the steps taken681

to make their results reproducible or verifiable.682

• Depending on the contribution, reproducibility can be accomplished in various ways.683

For example, if the contribution is a novel architecture, describing the architecture fully684

might suffice, or if the contribution is a specific model and empirical evaluation, it may685

be necessary to either make it possible for others to replicate the model with the same686

dataset, or provide access to the model. In general. releasing code and data is often687

one good way to accomplish this, but reproducibility can also be provided via detailed688

instructions for how to replicate the results, access to a hosted model (e.g., in the case689

of a large language model), releasing of a model checkpoint, or other means that are690

appropriate to the research performed.691

• While NeurIPS does not require releasing code, the conference does require all submis-692

sions to provide some reasonable avenue for reproducibility, which may depend on the693

nature of the contribution. For example694

(a) If the contribution is primarily a new algorithm, the paper should make it clear how695

to reproduce that algorithm.696

(b) If the contribution is primarily a new model architecture, the paper should describe697

the architecture clearly and fully.698

(c) If the contribution is a new model (e.g., a large language model), then there should699

either be a way to access this model for reproducing the results or a way to reproduce700

the model (e.g., with an open-source dataset or instructions for how to construct701

the dataset).702

(d) We recognize that reproducibility may be tricky in some cases, in which case703

authors are welcome to describe the particular way they provide for reproducibility.704

In the case of closed-source models, it may be that access to the model is limited in705

some way (e.g., to registered users), but it should be possible for other researchers706

to have some path to reproducing or verifying the results.707

5. Open access to data and code708

Question: Does the paper provide open access to the data and code, with sufficient instruc-709

tions to faithfully reproduce the main experimental results, as described in supplemental710

material?711

Answer: [NA]712

Justification:This paper does not include experiments requiring code.713

Guidelines:714

• The answer NA means that paper does not include experiments requiring code.715

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/716

public/guides/CodeSubmissionPolicy) for more details.717

• While we encourage the release of code and data, we understand that this might not be718

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not719

including code, unless this is central to the contribution (e.g., for a new open-source720

benchmark).721

• The instructions should contain the exact command and environment needed to run to722

reproduce the results. See the NeurIPS code and data submission guidelines (https:723

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.724

• The authors should provide instructions on data access and preparation, including how725

to access the raw data, preprocessed data, intermediate data, and generated data, etc.726

• The authors should provide scripts to reproduce all experimental results for the new727

proposed method and baselines. If only a subset of experiments are reproducible, they728

should state which ones are omitted from the script and why.729

• At submission time, to preserve anonymity, the authors should release anonymized730

versions (if applicable).731
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• Providing as much information as possible in supplemental material (appended to the732

paper) is recommended, but including URLs to data and code is permitted.733

6. Experimental Setting/Details734

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-735

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the736

results?737

Answer: [NA]738

Justification: The paper does not include experiments739

Guidelines:740

• The answer NA means that the paper does not include experiments.741

• The experimental setting should be presented in the core of the paper to a level of detail742

that is necessary to appreciate the results and make sense of them.743

• The full details can be provided either with the code, in appendix, or as supplemental744

material.745

7. Experiment Statistical Significance746

Question: Does the paper report error bars suitably and correctly defined or other appropriate747

information about the statistical significance of the experiments?748

Answer: [NA]749

Justification: The paper does not include experiments.750

Guidelines:751

• The answer NA means that the paper does not include experiments.752

• The authors should answer "Yes" if the results are accompanied by error bars, confi-753

dence intervals, or statistical significance tests, at least for the experiments that support754

the main claims of the paper.755

• The factors of variability that the error bars are capturing should be clearly stated (for756

example, train/test split, initialization, random drawing of some parameter, or overall757

run with given experimental conditions).758

• The method for calculating the error bars should be explained (closed form formula,759

call to a library function, bootstrap, etc.)760

• The assumptions made should be given (e.g., Normally distributed errors).761

• It should be clear whether the error bar is the standard deviation or the standard error762

of the mean.763

• It is OK to report 1-sigma error bars, but one should state it. The authors should764

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis765

of Normality of errors is not verified.766

• For asymmetric distributions, the authors should be careful not to show in tables or767

figures symmetric error bars that would yield results that are out of range (e.g. negative768

error rates).769

• If error bars are reported in tables or plots, The authors should explain in the text how770

they were calculated and reference the corresponding figures or tables in the text.771

8. Experiments Compute Resources772

Question: For each experiment, does the paper provide sufficient information on the com-773

puter resources (type of compute workers, memory, time of execution) needed to reproduce774

the experiments?775

Answer: [NA]776

Justification: The paper does not include experiments.777

Guidelines:778

• The answer NA means that the paper does not include experiments.779

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,780

or cloud provider, including relevant memory and storage.781
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• The paper should provide the amount of compute required for each of the individual782

experimental runs as well as estimate the total compute.783

• The paper should disclose whether the full research project required more compute784

than the experiments reported in the paper (e.g., preliminary or failed experiments that785

didn’t make it into the paper).786

9. Code Of Ethics787

Question: Does the research conducted in the paper conform, in every respect, with the788

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?789

Answer: [Yes]790

Justification: None of our conducted work for this paper violates the code of ethics presented.791

Guidelines:792

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.793

• If the authors answer No, they should explain the special circumstances that require a794

deviation from the Code of Ethics.795

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-796

eration due to laws or regulations in their jurisdiction).797

10. Broader Impacts798

Question: Does the paper discuss both potential positive societal impacts and negative799

societal impacts of the work performed?800

Answer: [Yes]801

Justification: In the body of our paper, we provide a broader impace section.802

Guidelines:803

• The answer NA means that there is no societal impact of the work performed.804

• If the authors answer NA or No, they should explain why their work has no societal805

impact or why the paper does not address societal impact.806

• Examples of negative societal impacts include potential malicious or unintended uses807

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations808

(e.g., deployment of technologies that could make decisions that unfairly impact specific809

groups), privacy considerations, and security considerations.810

• The conference expects that many papers will be foundational research and not tied811

to particular applications, let alone deployments. However, if there is a direct path to812

any negative applications, the authors should point it out. For example, it is legitimate813

to point out that an improvement in the quality of generative models could be used to814

generate deepfakes for disinformation. On the other hand, it is not needed to point out815

that a generic algorithm for optimizing neural networks could enable people to train816

models that generate Deepfakes faster.817

• The authors should consider possible harms that could arise when the technology is818

being used as intended and functioning correctly, harms that could arise when the819

technology is being used as intended but gives incorrect results, and harms following820

from (intentional or unintentional) misuse of the technology.821

• If there are negative societal impacts, the authors could also discuss possible mitigation822

strategies (e.g., gated release of models, providing defenses in addition to attacks,823

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from824

feedback over time, improving the efficiency and accessibility of ML).825

11. Safeguards826

Question: Does the paper describe safeguards that have been put in place for responsible827

release of data or models that have a high risk for misuse (e.g., pretrained language models,828

image generators, or scraped datasets)?829

Answer: [NA]830

Justification: The answer NA means that the paper poses no such risks.831

Guidelines:832

• The answer NA means that the paper poses no such risks.833
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• Released models that have a high risk for misuse or dual-use should be released with834

necessary safeguards to allow for controlled use of the model, for example by requiring835

that users adhere to usage guidelines or restrictions to access the model or implementing836

safety filters.837

• Datasets that have been scraped from the Internet could pose safety risks. The authors838

should describe how they avoided releasing unsafe images.839

• We recognize that providing effective safeguards is challenging, and many papers do840

not require this, but we encourage authors to take this into account and make a best841

faith effort.842

12. Licenses for existing assets843

Question: Are the creators or original owners of assets (e.g., code, data, models), used in844

the paper, properly credited and are the license and terms of use explicitly mentioned and845

properly respected?846

Answer: [NA]847

Justification: The paper does not use existing assets.848

Guidelines:849

• The answer NA means that the paper does not use existing assets.850

• The authors should cite the original paper that produced the code package or dataset.851

• The authors should state which version of the asset is used and, if possible, include a852

URL.853

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.854

• For scraped data from a particular source (e.g., website), the copyright and terms of855

service of that source should be provided.856

• If assets are released, the license, copyright information, and terms of use in the package857

should be provided. For popular datasets, paperswithcode.com/datasets has858

curated licenses for some datasets. Their licensing guide can help determine the license859

of a dataset.860

• For existing datasets that are re-packaged, both the original license and the license of861

the derived asset (if it has changed) should be provided.862

• If this information is not available online, the authors are encouraged to reach out to863

the asset’s creators.864

13. New Assets865

Question: Are new assets introduced in the paper well documented and is the documentation866

provided alongside the assets?867

Answer: [NA]868

Justification: The paper does not release new assets.869

Guidelines:870

• The answer NA means that the paper does not release new assets.871

• Researchers should communicate the details of the dataset/code/model as part of their872

submissions via structured templates. This includes details about training, license,873

limitations, etc.874

• The paper should discuss whether and how consent was obtained from people whose875

asset is used.876

• At submission time, remember to anonymize your assets (if applicable). You can either877

create an anonymized URL or include an anonymized zip file.878

14. Crowdsourcing and Research with Human Subjects879

Question: For crowdsourcing experiments and research with human subjects, does the paper880

include the full text of instructions given to participants and screenshots, if applicable, as881

well as details about compensation (if any)?882

Answer: [NA]883

Justification: The paper does not involve crowdsourcing nor research with human subjects.884
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Guidelines:885

• The answer NA means that the paper does not involve crowdsourcing nor research with886

human subjects.887

• Including this information in the supplemental material is fine, but if the main contribu-888

tion of the paper involves human subjects, then as much detail as possible should be889

included in the main paper.890

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,891

or other labor should be paid at least the minimum wage in the country of the data892

collector.893

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human894

Subjects895

Question: Does the paper describe potential risks incurred by study participants, whether896

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)897

approvals (or an equivalent approval/review based on the requirements of your country or898

institution) were obtained?899

Answer: [NA]900

Justification: the paper does not involve crowdsourcing nor research with human subjects.901

Guidelines:902

• The answer NA means that the paper does not involve crowdsourcing nor research with903

human subjects.904

• Depending on the country in which research is conducted, IRB approval (or equivalent)905

may be required for any human subjects research. If you obtained IRB approval, you906

should clearly state this in the paper.907

• We recognize that the procedures for this may vary significantly between institutions908

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the909

guidelines for their institution.910

• For initial submissions, do not include any information that would break anonymity (if911

applicable), such as the institution conducting the review.912
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