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ABSTRACT

Diffusion models have risen to prominence in time series forecasting, showcas-
ing their robust capability to model complex data distributions. However, their
effectiveness in deterministic predictions is often constrained by instability aris-
ing from their inherent stochasticity. In this paper, we revisit time series diffusion
models and present a comprehensive framework that encompasses most existing
diffusion-based methods. Building on this theoretical foundation, we propose a
novel diffusion-based time series forecasting model, the Series-to-Series Diffu-
sion Bridge Model (S2DBM), which leverages the Brownian Bridge process to
reduce randomness in reverse estimations and improves accuracy by incorporating
informative priors and conditions derived from historical time series data. Exper-
imental results demonstrate that S2DBM delivers superior performance in point-
to-point forecasting and competes effectively with other diffusion-based models
in probabilistic forecasting.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020) have emerged as powerful tools for time series
forecasting, offering the capability to model complex data distributions. Building on their success
in other domains, such as computer vision (Saharia et al., 2022; Rombach et al., 2022) and natural
language processing (Reid et al., 2022; Ye et al., 2023), researchers have increasingly applied dif-
fusion models to time series prediction. This approach has shown promise in capturing the intricate
temporal dependencies and uncertainty in time series data, leading to significant advancements in
forecasting accuracy and reliability (Rasul et al., 2021; Tashiro et al., 2021; Alcaraz & Strodthoff,
2022; Li et al., 2024).

However, the inherent stochasticity of diffusion models makes multivariate time series forecasting
challenging. Specifically, most of these methods employ a standard forward diffusion process that
gradually corrupts future time series data until it converges to a standard normal distribution. Conse-
quently, their predictions originate from pure noise, lacking temporal structure, with historical time
series data merely conditioning the reverse diffusion process and offering limited improvement. This
approach often results in forecasting instability and the generation of low-fidelity samples (as shown
in Figure 1). While diffusion-based methods perform adequately in probabilistic forecasting, their
point-to-point prediction accuracy lags behind that of deterministic models, e.g., Autoformer (Wu
et al., 2021), PatchTST (Nie et al., 2022), and DLinear (Zeng et al., 2023).

To improve the deterministic estimation performance of diffusion models on time series, we first
revisit and consolidate existing non-autoregressive diffusion-based time series forecasting models
under a unified framework, demonstrating that these models are fundamentally equivalent, differing
primarily in their choice of parameters and network architecture. Based on this framework, we
propose a novel diffusion-based time series forecasting model, Series-to-Series Diffusion Bridge
Model (S2DBM). S2DBM employs the diffusion bridge as its foundational architecture, which
proves effective for multivariate time series forecasting. Specifically, S2DBM uses the Brownian
Bridge to pin down the diffusion process at both ends, reducing the instability caused by noisy input
and enabling the accurate generation of future time step features from historical time series. By
adjusting the posterior variance, S2DBM behaves as a deterministic generative model without any
Gaussian noise, thereby ensuring stability and precise point-to-point forecasting results.

In our experiments, we employ seven real-world datasets as benchmarks, including Weather,
Influenza-like Illness (ILI), Exchange Rate (Lai et al., 2018), and Electricity Transformer Tempera-
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Figure 1: Examples of time series forecasting for the ETTh1 dataset. The length of forecast windows
is 96. The purple line shows the ground truth. For CSDI and TMDM, median values of probabilistic
forecasting are shown as the line and 5% and 95% quantiles are shown as the shade. The point-to-
point forecasting results of our S2DBM are shown as the orange line.

ture datasets (ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al., 2022). We conduct experiments across
various time series forecasting scenarios, covering both point-to-point and probabilistic forecast-
ing. Through extensive testing across these scenarios, our proposed method, S2DBM, demonstrates
superior performance over both standard conditional diffusion-based models and a wide range of
advanced time series prediction models.

Our main contributions are summarized as follows:

• In this paper, we propose a comprehensive framework for non-autoregressive time series
diffusion models, into which most existing diffusion-based methods can be integrated. This
framework clarifies the interrelationships between these methods and highlights practical
implications for diffusion models aimed at point-to-point time series forecasting.

• Based on this framework, we introduce the Series-to-Series Diffusion Bridge Model
(S2DBM), which utilizes the Brownian Bridge diffusion process to reduce the randomness
in reverse process of diffusion estimations. The proposed model uses linear approaches
to create informative priors and conditions, thereby improving forecast accuracy by effec-
tively using historical information for multivariate time series.

• Extensive experimental results validate the effectiveness of S2DBM, which outperforms
state-of-the-art time series diffusion models in point-to-point forecasting tasks. Moreover,
S2DBM achieves forecasting performance on par with probabilistic models.

2 RELATED WORKS

Diffusion-based Time Series Forecasting. Recently, a range of diffusion-based methods are pro-
posed for time series forecasting. These methods generally adhere to the framework of the standard
diffusion model, with their primary distinctions stemming from variations in the denoising network
and conditional mechanisms.

TimeGrad (Rasul et al., 2021) is the pioneer of these diffusion-based methods, integrating diffusion
models with an RNN-based encoder to handle historical time series. However, its reliance on autore-
gressive decoding can lead to error accumulation and slow inference times. To tackle this problem,
CSDI (Tashiro et al., 2021) employs an entire time series as the target for diffusion and combines it
with a binary mask (which denotes missing values) as conditional inputs into two transformers. This
masking-based conditional mechanism enables CSDI to generate future time series data in a non-
autoregressive fashion. SSSD (Alcaraz & Strodthoff, 2022) uses the same conditional mechanism
as CSDI, but replaces the transformers in CSDI with a Structured State Space Model (S4) to reduce
the computational complexity and is more suited to handling long-term dependencies. TMDM (Li
et al., 2024) integrates transformers with a conditional diffusion process to improve probabilistic
multivariate time series forecasting by effectively capturing covariate dependencies in both the for-
ward and Reverse diffusion processes. TimeDiff (Shen & Kwok, 2023) introduces two innovative
conditioning mechanisms specifically designed for time series analysis: future mixup and autore-
gressive initialization, which construct effective conditional embeddings. To reduce the predictive
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instability arising from the stochastic nature of the diffusion models, MG-TSD (Fan et al., 2024)
leverages the inherent granularity levels within the data as given targets at intermediate diffusion
steps to guide the learning process of diffusion models. Most of the above diffusion-based meth-
ods emphasize their probabilistic forecasting ability; however, their performance in point-to-point
forecasting is suboptimal.

Diffusion Bridge. Diffusion bridges (Liu et al., 2023a; Zhou et al., 2023; Li et al., 2023a) repre-
sent a specific class of diffusion models designed to simulate the trajectory of a stochastic process
between predetermined initial and final states. They are regarded as conditioned diffusion models
subject to particular boundary constraints. These models, stemming from classical stochastic pro-
cesses like Brownian motion or Ornstein-Uhlenbeck process, have a predetermined terminal value
rather than being free.

DDBMs (Zhou et al., 2023) introduce diffusion bridges, stochastically interpolating between paired
distributions to provide smoother transitions and more flexible input handling compared to tradi-
tional noise-based diffusion models. Liu et al. (2023a) propose I2SB, which constructs nonlin-
ear diffusion bridges between two domains, making it suitable for tasks like image restoration.
BBDM (Li et al., 2023a) models image-to-image translation as a bidirectional diffusion process
using a Brownian bridge, directly learning domain translation and achieving competitive benchmark
results. GOUB (Yue et al., 2023) combines the generalized OU process with Doob’s h-transform to
create precise diffusion mappings that transform low-quality images into high-quality ones. These
diffusion bridge models excel in image restoration by using degraded images as informative priors
to facilitate clean image reconstruction. Bridge-TTS (Chen et al., 2023) successfully incorporates
Schrödinger Bridge diffusion models into text-to-speech (TTS) synthesis task. It leverages the la-
tent representation obtained from text input as a prior and builds a fully tractable Schrödinger bridge
between it and the ground-truth mel-spectrogram. For time series data, Park et al. (2024) introduces
TimeBridge, a framework that utilizes diffusion bridges to model transitions between selected prior
and data distributions. This framework supports both data- and time-dependent priors, achieving
state-of-the-art performance in unconditional and conditional time series generation tasks. However,
the TimeBridge uses linear spline interpolation (De Boor, 1978) to generate priors for imputation
tasks, which is unsuitable for time series forecasting.

3 METHODOLOGY

3.1 PRELIMINARIES

Most diffusion-based methods for time series forecasting are designed around conditional Denoising
Diffusion Probabilistic Models (DDPMs). The forward process, defined by a fixed Markov chain,
progressively transforms the future time series y ∈ RL×d into a Gaussian noise vector yT according
to a predetermined variance schedule {βt}Tt=1:

q (yt | yt−1) = N
(
yt;
√

1− βtyt−1, βtI
)
,

where L denotes the length of the forecast window, and d represents the number of distinct features.

With the notation αs = 1− βs and ᾱt :=
∏t

s=1 αs, the forward process can be rewritten as:

yt =
√
ᾱty0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) .

During inference, the model reverses the forward process by considering the following distribution:

pθ (y0:T | x) = pθ (yT )

T∏
t=1

pθ (yt−1 | yt,x) ,

where yT is initially sampled from a standard normal distribution N (0, I), the subscripts from 0
to T denote the diffusion steps. x ∈ RH×d is the historical data, H represents the length of the
lookback window.

Correspondingly, the conditional reverse process at step t is described by:

pθ (yt−1 | yt,x) := N (µθ (yt,x, t) ,Σθ (yt, t)) , Σθ (yt, t) = β̃t =
1− ᾱt−1

1− ᾱt
βt.
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Table 1: Comparison between different instances of generalized conditional diffusion framework.

Model α̂t β̂t γ̂t σ̂2
t Estimated Target E(·)

CSDI (Tashiro et al., 2021)
√
ᾱt

√
1− ᾱt 0

1−ᾱt−1

1−ᾱt
βt ϵ Transfomer in µθ

SSSD (Alcaraz & Strodthoff, 2022)
√
ᾱt

√
1− ᾱt 0

1−ᾱt−1

1−ᾱt
βt ϵ S4 in µθ

TimeDiff (Shen & Kwok, 2023)
√
ᾱt

√
1− ᾱt 0

1−ᾱt−1

1−ᾱt
βt y0 Future mixup + AR model

TMDM (Li et al., 2024)
√
ᾱt

√
1− ᾱt 1−

√
ᾱt

1−ᾱt−1

1−ᾱt
βt ϵ Transformer

Ours T−t
T

√
2t(T−t)

T2
t
T

2(t−1)
Tt

or 0 y∗
0 Liner Model + Transfomer in µθ

Following the formulation proposed by Saharia et al. (2022), we can parameterize µθ (yt,x, t) as
a neural network for either noise or data prediction. For noise prediction Tashiro et al. (2021), µθ is
parameterized as:

µθ(yt,x, t) :=
1
√
αt

(
yt −

1− αt√
1− ᾱt

ϵθ(yt, c, t)

)
.

where ϵθ is a noise prediction model used to predict the noise ϵ in the forward diffusion process,
c = E (x) represents the condition derived from the historical data x, and E(·) is a conditioning
module. Alternatively, for data prediction (Shen & Kwok, 2023), µθ is parameterized as:

µθ(yt,x, t) :=

√
αt (1− ᾱt−1)

1− ᾱt
yt +

√
ᾱt−1βt

1− ᾱt
yθ(yt, c, t),

where yθ is a data prediction model used to predict the ground truth y0.

3.2 REVISITING GENERALIZED DIFFUSION MODEL FOR TIME SERIES

Most existing diffusion-based time series forecasting methods emphasize their probabilistic fore-
casting capabilities; however, their performance in point-to-point forecasting remains suboptimal.
To develop a specialized diffusion-based model tailored for point-to-point time series forecasting, a
deeper understanding of existing approaches is crucial. Therefore, we revisit and consolidate cur-
rent non-autoregressive diffusion-based time series forecasting models into a unified framework,
demonstrating their fundamental equivalence. The primary differences among these models lie in
their choice of diffusion-related coefficients and the design of network architectures.

Recognizing components in existing models, diffusion processes can be viewed in a flexible and
adaptable manner. As shown in Eq. (1), the diffusion process incorporates historical data and endows
the designed models with distinct properties by adjusting the coefficients α̂t, β̂t, γ̂t, and σ̂2

t .
Theorem 1. The non-autoregressive diffusion processes in time series can be formalized as follows:

yt = α̂ty0 + β̂tϵ+ γ̂th, ϵ ∼ N (0, I). (1)

The reverse diffusion process corresponding to β̂t ̸= 0 can be formulated as:

pθ(y0:T | x) := pθ(yT )
∏T

t=1pθ(yt−1 | yt,x), (2)

pθ(yt−1 | yt,x) := N (yt−1;µθ (yt,h, c, t) , σ̂
2
t I), (3)

where α̂t, β̂t, and γ̂t are time-dependent scaling factors, these parameters are designed to ensure
that xt remains pristine at t = 0 and undergoes maximal degradation at t = T . The vector h =
F (x) acts as the conditional representation incorporating prior knowledge, with F (·) serving as
the prior predictor that maps historical time series into a latent space. The initial distribution is
given by pθ(yT ) = N (γ̂Th, β̂

2
T I). The conditioning variable c = E(x) guides the reverse process,

where E(·) denotes the conditioning module. The function µθ predicts the mean of yt−1 given inputs
yt, h, and c, while σ̂2

t represents the reverse variance schedule.

Most existing diffusion-based time series forecasting models, including CSDI (Tashiro et al., 2021),
SSSD (Alcaraz & Strodthoff, 2022), TimeDiff (Shen & Kwok, 2023), and TMDM (Li et al., 2024),
can be interpreted within our proposed framework, as summarized in Table 1. The key differences
lie in the choice of forward variance schedule γ̂t, the learning objectives of their denoising networks,
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Figure 2: An illustration of the proposed S2DBM

the architectures of their conditional networks E(·), and their respective conditioning mechanisms.
Specifically, CSDI, SSSD, and TimeDiff utilize identical diffusion coefficients with γt = 0, aligning
with the standard diffusion process. In contrast, TMDM sets γt = 1 −

√
ᾱt, introducing a distinct

variance schedule. Regarding the estimation targets, CSDI, SSSD, and TMDM focus on predicting
the noise component ϵ, whereas TimeDiff directly estimates the data y. The conditioning strategies
also differ notably: CSDI and SSSD employ masking with zero-padding to directly condition the
denoising network, implemented via Transformer and S4 blocks, respectively. TimeDiff leverages
future mixup techniques and incorporates autoregressive models, while TMDM integrates a well-
designed Transformer to enhance its conditioning mechanism.

3.3 SERIES-TO-SERIES DIFFUSION BRIDGE MODEL

As shown in Table 1, existing diffusion-based time series forecasting methods have been extensively
studied using various diffusion paradigms and conditional approaches in the formulation of The-
orem 1 and achieve promising predictive ability. However, most of these methods focus on the
uncertainty estimation ability and typically rely on a data-to-noise diffusion process due to current
conditioning mechanisms. As a result, they are often constrained by the intrinsic stochastic nature
and are limited in capturing the inherent complexity and dynamic nature of real-world time series
data, leading to suboptimal performance in point-to-point forecasting. To address this gap, we pro-
pose the Series-to-Series Diffusion Bridge Model (S2DBM), which uses the Brownian Bridge to pin
down the diffusion process at both ends, reducing the instability caused by noisy input and enabling
the accurate generation of future time step features from historical time series. By adjusting the
posterior variance in Theorem 1, S2DBM behaves as a deterministic generative model without any
Gaussian noise, thereby ensuring stability and precise point-to-point forecasting results.

As shown in Figure 2, S2DBM employs the diffusion bridge as the foundational architecture by
adjusting the coefficient schedules. The diffusion bridge pins down the diffusion process at both
ends, enabling the accurate generation of future time step features from historical time series data
through a data-to-data process.
Corollary 1 (Brownian Bridge between Historical and Predicted Time Series). Let the coefficient
α̂t, constrained to be non-negative and decrease monotonically over time t, satisfy the boundary
conditions α̂0 = 1 and α̂T = 0. Additionally, define γ̂t = 1 − α̂t and β̂t =

√
2α̂t(1− α̂t) The

forward process defined in Eq. (1) can be rewritten in closed form:

q(yt | y0,h) = N (yt; α̂ty0 + (1− α̂t)h, 2α̂t(1− α̂t)I). (4)

Then, the reverse process transition defined in Eq. (3) turns into:

pθ(yt−1 | yt,x) = N (yt;κtyt + λtyθ(yt,h, c, t) + ζth, σ̂
2
t I), (5)

5
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here, κt, λt, and ζt are scaling factors defined as

κt =

√
2α̂t−1(1− α̂t−1)− σ̂2

t

2α̂t(1− α̂t)
, λt = α̂t−1 − α̂tκt, ζt = 1− α̂t−1 − κt(1− α̂t). (6)

Based on the Corollary 1, S2DBM constructs a Brownian bridge between the initial state y and the
destination state h, eliminating the need to sample from a noisy Gaussian prior during the sampling
process, allowing for the direct assignment of yT = h. This approach captures more structural
information about the target time series.

In the reverse process of S2DBM, the diffusion process starts directly from yT = h. According
to Eq. (5), the mean of the reverse transition is determined by both the posterior variance σ̂2

t and
the coefficient α̂t. Given α̂t, the coefficients κt, λt, and ζt for the reverse process are analytically
derived as functions of σ̂2

t . To control the contributions of ŷ, yt, and h to the predicted mean of pθ,
following BBDM (Li et al., 2023a) and I3SB Wang et al. (2024), we parameterize σ̂2

t as follows:

σ̂2
t = s · (1− α̂t−1)(α̂t−1 − α̂t)

1− α̂t
,

where s is a hyperparameter that scales the variance, and the selection of its numerical value is
discussed in the following remark.

Remark 1 (The reverse process of S2DBM). For a given trained yθ, ŷ = yθ(yt,h, c, t),

• if s = 0, then σ̂2
t = 0, κt =

√
α̂t−1(1−α̂t−1)

α̂t(1−α̂t)
, and the reverse process is

pθ(yt−1 | yt,x) = N (yt;κtyt+(α̂t−1− α̂tκt)ŷ+(1− α̂t−1− (1− α̂t)κt)h, 0).

In this case, the reverse process is a linear combination of yt, ŷ, and h.
• else if s ̸= 0, the reverse process transition is calculated according to Eq. (5) and

Eq. (6). In particular, if s = 2, then σ̂2
t = 2(1−α̂t−1)(α̂t−1−α̂t)

1−α̂t
, which exhibits

a form consistent with β̃t of DDPM; subsequently, the transition in the reverse
process is

pθ(yt−1 | yt,x) = N (yt;
1− α̂t−1

1− α̂t
yt +

α̂t−1 − α̂t

1− α̂t
ŷ, σ̂2

t I).

In this case, the mean of pθ depends only on yt and ŷ.

As a consequence of Remark 1, we discuss two instances of the reverse process in S2DBM, both of
which employ the same training procedure but are specifically applied to probabilistic and point-to-
point forecasting, respectively.

Example 1 (Point-to-point forecasting). When we set α̂t = 1− t
T and s = 0, the posterior variance

σ̂2
t becomes 0, making the sampling process deterministic, akin to the DDIM approach. The reverse

process of S2DBM can be rewritten as:

yt−1 =

√
(T − t+ 1)(t− 1)

(T − t)t
yt +

(
T − t+ 1

T
−
√

(T − t)(T − t+ 1)(t− 1)

T 2t

)
ŷ

+

(
t− 1

T
−

√
t(T − t+ 1)(t− 1)

T 2(T − t)

)
h.

Example 2 (Probabilistic forecasting). When we set α̂t = 1− t
T and s = 1, the posterior variance

σ̂2
t is defined as 2(t−1)

Tt . Consequently, the reverse process of S2DBM is formulated as:

yt−1 =

(
1− 1

t

)
yt +

1

t
ŷ +

√
2(t− 1)

Tt
z, z ∼ N (0, I).
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Algorithm 1 Training of S2DBM

Input: dataset D
repeat

Sample y∗,x ∼ D and t ∼ U [1, T ]
Sample ϵ ∼ N (0, I)
c = E (x), h = F (x)

y∗
t = α̂ty

∗
0+(1−α̂t)h+

√
2α̂t(1− α̂t)ϵ

Take gradient descent step on
∇θ ∥y∗

0 − yθ (y
∗
t ,h, c, t)∥

2
2

until converged

Algorithm 2 Sampling of S2DBM

Input: y∗
T = h = F (x), c = E (x), trained

F , E and yθ

for t = T to 1 do
Predict ŷ using yθ(yt,h, c, t)

σ̂2
t = s · (1−α̂t−1)(α̂t−1−α̂t)

1−α̂t

Sample z ∼ N (0, I) if t > 1,else z = 0
y∗
t−1 = κty

∗
t + λtŷ + ζth+ σ̂tz

end for
y0 ← y∗

0
return y0

Linear Model based Conditioning Method. The condition c defined in Eq. (3) represents the
useful information extracted from historical data x, guiding the reverse process toward y0. Since the
design of the conditioning module E(·) significantly impacts the predictive quality of the denoising
network, it is a crucial aspect of time series diffusion models. In our S2DBM model, we treat E(·)
as independent of the denoising network, allowing E(x) to preprocess historical data to provide an
initial estimate of the future time series. This estimate is then used as the conditional input for the
denoising network µθ, thereby simplifying the forecasting task.

The S2DBM model captures conditional information from historical data not only through the con-
ditioning module E(·), but also via the prior predictor F (·). In time series forecasting, the lookback
and forecast windows often differ, and historical sequences cannot directly provide structurally in-
formative priors for prediction targets as damaged images do in image restoration. Therefore, we
cannot directly construct a diffusion bridge between historical time series x and future time series
y. Instead, we use the prior predictor F (·) to transform historical time series into a deterministic
conditional representation h, which serves as the endpoint of the diffusion process and provides
guidance at the beginning of the reverse process. Both the conditional encoder network E and the
prior predictor F (·) in S2DBM employ a simple one-layer linear model, chosen for its simplicity,
explainability, and efficiency (Toner & Darlow, 2024).

Label-Guided Data Estimation. The learnable transfer probability pθ(yt−1 | yt,x) is an ap-
proximation of the posterior distribution q(yt−1 | yt,y0,x) := N (yt−1;µ(yt,y0,x), σ̂

2
t I). In

our S2DBM, the denoising network µθ is designed to estimate the data rather than the noise, as we
found that estimating the noise introduces more oscillations in the prediction results. Thus, µθ can
be expressed as:

µθ(yt,h, c, t) = κtyt + λtyθ(yt,h, c, t) + ζth. (7)

In practice, we do not directly estimate the future time series y. Instead, we utilize the labeling strat-
egy employed in some transformer-based time series forecasting models, such as the Informer (Zhou
et al., 2022). Specifically, we treat the terminal portion of the historical data, x, as the label and in-
tegrate it with the future time series y along the time dimension, denoted as y∗. Consequently,
the denoising network µθ is tasked not only with predicting future time steps but also with recon-
structing the known sequence within the label length. This methodology enables the model to more
effectively capture underlying patterns in the data. The training loss for S2DBM is defined as fol-
lows:

L =

T∑
t=1

E
q(y∗

t |y∗
0 ,h)
∥y∗

0 − yθ(y
∗
t ,h, c, t)∥

2
.

The denoising network of S2DBM adopts the same architecture as CSDI but removes modules
related to its original conditioning mechanism. The training and sampling procedures of S2DBM
are detailed in Algorithm 1 and Algorithm 2, respectively.
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Table 2: Multivariate time series forecasting results in terms of MSE and MAE, lower values mean
better performance. The 1st count indicates the numbers of best results.

Diffusion-based Methods Transformer-based Methods Linear Model

Methods Ours CSDI TMDM Autoformer Informer iTransformer NLinear DLinear RLinear

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 96 0.366 0.383 0.744 0.623 0.711 0.605 0.429 0.444 0.925 0.761 0.387 0.405 0.374 0.394 0.384 0.405 0.366 0.391
192 0.405 0.407 0.952 0.715 0.922 0.720 0.440 0.451 0.995 0.778 0.441 0.436 0.408 0.415 0.443 0.450 0.403 0.412
336 0.442 0.430 1.192 0.837 0.990 0.737 0.511 0.488 1.036 0.782 0.491 0.462 0.429 0.428 0.447 0.448 0.420 0.423
720 0.469 0.478 1.822 1.005 1.152 0.836 0.499 0.501 1.175 0.858 0.509 0.494 0.441 0.454 0.504 0.515 0.442 0.456

ETTh2 96 0.274 0.331 1.017 0.729 0.496 0.510 0.418 0.445 3.017 1.369 0.301 0.350 0.283 0.343 0.290 0.353 0.262 0.331
192 0.354 0.388 3.417 1.356 0.578 0.535 0.435 0.439 6.348 2.105 0.380 0.399 0.356 0.385 0.388 0.422 0.320 0.374
336 0.433 0.454 2.642 1.216 0.715 0.598 0.480 0.481 5.628 1.998 0.424 0.432 0.362 0.403 0.463 0.473 0.326 0.388
720 0.592 0.568 3.396 1.431 0.758 0.658 0.478 0.487 4.110 1.692 0.430 0.447 0.398 0.437 0.733 0.606 0.425 0.449

ETTm1 96 0.293 0.333 0.556 0.509 0.547 0.512 0.471 0.463 0.621 0.557 0.342 0.377 0.306 0.348 0.301 0.345 0.301 0.343
192 0.333 0.355 0.608 0.532 0.689 0.592 0.592 0.521 0.723 0.618 0.383 0.396 0.349 0.375 0.336 0.366 0.341 0.367
336 0.367 0.377 0.764 0.622 0.722 0.602 0.503 0.486 1.001 0.746 0.418 0.418 0.375 0.388 0.372 0.389 0.374 0.386
720 0.442 0.422 1.071 0.792 1.072 0.785 0.751 0.582 0.980 0.747 0.487 0.457 0.433 0.422 0.427 0.423 0.430 0.418

ETTm2 96 0.164 0.249 0.859 0.587 0.328 0.400 0.233 0.313 0.407 0.482 0.186 0.272 0.167 0.255 0.172 0.267 0.164 0.253
192 0.219 0.292 0.907 0.614 0.415 0.423 0.278 0.336 0.807 0.706 0.254 0.314 0.221 0.293 0.237 0.314 0.219 0.290
336 0.274 0.328 1.584 0.862 0.871 0.611 0.379 0.394 1.453 0.926 0.316 0.351 0.274 0.327 0.295 0.359 0.273 0.326
720 0.361 0.389 2.692 1.202 1.101 0.739 0.584 0.473 3.930 1.469 0.414 0.407 0.369 0.385 0.427 0.439 0.366 0.385

ILI 24 2.241 0.983 3.942 1.293 4.005 1.183 3.405 1.290 5.104 1.544 2.405 0.987 2.022 0.925 2.280 1.061 2.036 0.969
36 2.811 1.060 4.982 1.497 3.456 1.300 3.522 1.291 5.158 1.571 2.328 0.984 1.974 0.932 2.235 1.059 1.928 0.940
48 3.024 1.084 4.164 1.331 3.059 1.124 3.478 1.294 5.101 1.565 2.330 0.990 1.979 0.955 2.298 1.079 1.880 0.931
60 3.758 1.229 5.725 1.651 2.771 1.163 2.880 1.154 5.319 1.596 2.413 1.015 1.954 0.949 2.573 1.157 2.016 0.976

Weather 96 0.172 0.210 0.251 0.235 1.048 0.300 0.269 0.339 0.335 0.406 0.176 0.216 0.181 0.232 0.174 0.233 0.175 0.225
192 0.213 0.249 0.330 0.294 2.246 0.372 0.338 0.395 0.693 0.599 0.225 0.257 0.225 0.268 0.218 0.278 0.217 0.259
336 0.257 0.287 0.420 0.357 3.636 0.470 0.339 0.381 0.564 0.527 0.281 0.299 0.271 0.301 0.263 0.314 0.265 0.294
720 0.343 0.353 0.538 0.423 0.795 0.541 0.429 0.433 1.105 0.771 0.358 0.350 0.339 0.349 0.332 0.374 0.329 0.339

Exchange 96 0.096 0.229 0.902 0.647 0.202 0.334 0.143 0.274 0.943 0.772 0.086 0.206 0.089 0.208 0.085 0.209 0.089 0.209
192 0.196 0.334 1.084 0.744 0.371 0.466 0.266 0.377 1.244 0.882 0.181 0.304 0.181 0.300 0.162 0.296 0.191 0.309
336 0.886 0.733 0.775 0.678 1.122 0.852 0.465 0.509 1.790 1.070 0.338 0.422 0.330 0.415 0.333 0.441 0.363 0.434
720 2.479 1.179 1.306 0.879 1.206 0.792 1.088 0.812 2.905 1.406 0.853 0.696 0.925 0.722 0.898 0.725 0.963 0.731

1st Count 10 11 0 0 0 0 0 0 0 0 1 2 4 6 3 1 12 9

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. In this experiment, the time series forecasting benchmark datasets employed encompass
several real-world datasets: Weather, Influenza-like Illness (ILI), Exchange-Rate (Lai et al., 2018),
and four Electricity Transformer Temperature datasets (Zhou et al., 2022) (ETTh1, ETTh2, ETTm1,
ETTm2). These datasets are extensively utilized for testing multivariate time-series forecasting
models due to their diverse and representative nature, offering insights into the model’s performance
across different domains and conditions. Each dataset is normalized using the mean and standard
deviation of the training part.

Baselines. We compared our method with several state-of-the-art and representative baseline mod-
els. These include Transformer-based methods: Autoformer (Wu et al., 2021), Informer (Zhou et al.,
2022), and iTransformer (Liu et al., 2023b); linear models: DLinear, NLinear (Zeng et al., 2023), and
RLinear (Li et al., 2023b); as well as diffusion-based time series prediction methods: CSDI (Tashiro
et al., 2021), TMDM (Li et al., 2024), and TimeDiff (Shen & Kwok, 2023).

Evaluation metrics. To assess point-to-point forecasting performance, we employ mean squared
error (MSE) and mean absolute error (MAE) as primary metrics to quantify discrepancies between
forecasted and actual time series values. For evaluating the quality of probabilistic forecasts, we use
the continuous ranked probability score (CRPS) (Matheson & Winkler, 1976) across individual time
series dimensions and CRPSsum for the aggregate of all dimensions.

Implementation details. We trained our model using the ADAM optimizer, setting the initial
learning rate at 0.0001 and parameters β1 = 0.9 and β2 = 0.999. We configured the number of
time steps for the S2DBM to be T=50 during the training and inference stages. The computational
environment comprised a server with an NVIDIA GeForce RTX 3090 24GB GPU.

4.2 MAIN RESULTS

Point-to-point forecasting. Table 2 provides a detailed summary of the point-to-point time series
forecasting results for Example 1 of our S2DBM model, compared to other models. For diffusion-
based methods, we evaluate results obtained from one-shot prediction. The first and second best
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Figure 3: Visualizations on ETTh1 by CSDI, TMDM and the proposed S2DBM.

Table 4: Probabilistic forecasting performance comparisons on ETTh1 and ETTm1 datasets in
terms of CRPS and CRPSsum. The best results are boldfaced. The prediction horizon set to 96.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Weather

Metric CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum

CSDI 0.512±0.107 2.077±0.003 0.579±0.096 2,985±0.004 0.428±0.106 2.093±0.002 0.490±0.104 2.972±0.002 0.190±0.026 1.747±0.002
TMDM 0.385±0.098 1.672±0.003 0.333±0.094 1.546±0.003 0.338±0.087 1.674±0.002 0.241±0.070 1.213±0.001 0.203±0.027 1.623±0.002

Ours 0.382±0.093 1.782±0.003 0.328±0.092 1.554±0.003 0.333±0.087 1.553±0.001 0.247±0.069 1.219±0.001 0.209±0.028 1.845±0.002

results are in bold and underlined, respectively. The smaller the value of MSE and MAE, the more
accurate the prediction result is. The performance of our S2DBM surpasses that of other diffusion-
based methods in most cases. Compared with the Transformer-based and Linear model-based SOTA
methods, our S2DBM achieves the best performance on most seetings, with the 21 first and 6 second
places out of 56 benchmarks in total.

Table 3: Comparison of multivariate prediction
MSE between TimeDiff and S2DBM.

ETTh1 ETTm1 Exchange

TimeDiff 0.407 0.336 0.018

Ours 0.397 0.333 0.018

Table 3 presents the Mean Squared Error
(MSE) results for the diffusion-based method
TimeDiff, which employed unique settings
for prediction length that differ from other
methods. In response, we retrain our model
according to these settings and conduct the
following comparisons. Experimental results
indicate that our method outperforms TimeD-
iff in terms of MSE. To complement the quantitative results of diffusion-based methods, Figure 3
provides visualizations of the predictions obtained by CSDI, TMDM, and the proposed S2DBM
on a randomly selected test example from the ETTh1 dataset. As illustrated, while CSDI deliv-
ers accurate short-term predictions (from steps 96-110), its long-term forecasts deviate significantly
from the ground truth. TMDM captures the overall trend of the future time series, but its point-wise
prediction accuracy shows significant oscillations, likely influenced by the noise inherent in the dif-
fusion process, leading to fluctuating results. In contrast, S2DBM effectively captures the trend and
seasonality of time series.

Probabilistic forecasting. Table 4 summarizes the probabilistic forecasting results for Example 2
of our S2DBM model, compared with other diffusion-based models. We utilized 100 samples to
approximate the probability distribution. The results show that our S2DBM performs competi-
tively against CSDI and TMDM in terms of CRPS and CRPSsum, illustrating the capabilities of our
S2DBM in probabilistic forecasting.

4.3 ABLATION STUDIES

To validate each component of our proposed S2DBM model, we performed a comparative analysis
of prediction results using five different models on the ETTh1 and ETTm1 datasets. The results are
presented in Table 5. The notation cDDPM indicates that it employs the standard diffusion process
instead of the Brownian bridge process used in S2DBM. The notation w/ CSDI E refers to an opera-
tion that utilizes the conditioning mechanism of CSDI. Similarly, w/ CSDI µθ indicates the adoption
of the denoising network architecture from CSDI. Additionally, the notation label len = 0 signi-
fies that S2DBM no longer reconstructs known data, focusing solely on predicting the future time

9
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Figure 4: Visualizations on ETTh1 by Conditional DDPM and the proposed S2DBM.

Table 5: Model ablation.We present the MSE and
MAE of different variants of the S2DBM model,
with the prediction horizon set to 96.

Dataset ETTh1 ETTm1

Metric MSE MAE MSE MAE

cDDPM 0.379 0.392 0.304 0.345
w/ CSDI E 0.755 0.545 0.416 0.406
w/ CSDI µθ 0.578 0.520 0.489 0.457
label len=0 0.450 0.461 0.378 0.396

Ours 0.366 0.383 0.293 0.333

series. When comparing our proposed model
S2DBM with cDDPM, we observe notable
improvements in both MSE and MAE. Fig-
ure 4 visualizes the predictions obtained from
both cDDPM and the proposed S2DBM for
a randomly selected test example from the
ETTh1 dataset. As illustrated, S2DBM sig-
nificantly reduces oscillations in the predic-
tions. Additionally, comparing w/ CSDI
E and w/ CSDI µθ with S2DBM demon-
strates the advantages of the linear model-
based conditioning method and the network
architecture of S2DBM. Finally, comparing
S2DBM with label len = 0, we reveal an average reduction of 21% in MSE and 16% in MAE,
indicating the contribution of the labeling strategy.

5 CONCLUSION

In this paper, we revisit non-autoregressive time series diffusion models and present a comprehen-
sive framework that integrates most existing diffusion-based methods. Building on this theoretical
framework, we propose the Series-to-Series Diffusion Bridge Model (S2DBM). Our S2DBM uti-
lizes the Brownian Bridge diffusion process to reduce randomness in diffusion estimations, improv-
ing forecast accuracy by effectively leveraging historical information through informative priors and
conditions. Extensive experimental results demonstrate that S2DBM achieves superior performance
in point-to-point forecasting and performs competitively against other diffusion-based models in
probabilistic forecasting.
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A APPENDIX

A.1 PROOFS OF THEOREM 1

The non-autoregressive diffusion processes in time series can be formalized as follows:

yt = α̂ty0 + β̂tϵt + γ̂th, ϵt ∼ N (0, I). (8)

Here, α̂t, β̂t, and γ̂t are time-dependent scaling factors, and h = F (x) serves as the conditional
representation acting as prior knowledge.

Similarly, the previous state yt−1 can be expressed as:

yt−1 = α̂t−1y0 + β̂t−1ϵt−1 + γ̂t−1h, ϵt−1 ∼ N (0, I). (9)

We are interested in the posterior distribution q (yt−1 | yt,y0,h). According to the properties of
Gaussian distributions, this posterior is also Gaussian and can be written as:

q (yt−1 | yt,y0,h) = N
(
yt−1;κtyt + λty0 + ζth, σ̂

2
t I
)
, (10)

where κt, λt, and ζt are coefficients to be determined, and σ̂2
t is the variance.

By substituting Eq. (8) into the expression for yt−1, we obtain:

yt−1 = κtyt + λty0 + ζth+ σ̂tϵ
′

= κt(α̂ty0 + β̂tϵt + γ̂th) + λty0 + ζth+ σ̂tϵ
′

= (κtα̂t + λt)y0 + (κtγ̂t + ζt)h+ (κtβ̂tϵt + σ̂tϵ
′),

(11)

where ϵ′ ∼ N (0, I) is independent of ϵt.

Since the sum of two independent Gaussian noises is another Gaussian noise, we have:

κtβ̂tϵt + σ̂tϵ
′ =

√
κ2
t β̂

2
t + σ̂2

t , ϵt−1, (12)

where ϵt−1 ∼ N (0, I).

Comparing this with Eq. (9), we can equate the coefficients:

α̂t−1 = κtα̂t + λt, γ̂t−1 = κtγ̂t + ζt, β̂t−1 =

√
κ2
t β̂

2
t + σ̂2

t . (13)

Solving for κt, λt, and ζt, we get:

κt =

√
β̂2
t−1 − σ̂2

t

β̂t

λt = α̂t−1 −
α̂t

√
β̂2
t−1 − σ̂2

t

β̂t

= α̂t−1 − α̂tκt

ζ̂t = γ̂t−1 −
γ̂t

√
β̂2
t−1 − σ̂2

t

β̂t

= γ̂t−1 − γ̂tκt

(14)

Since h is completely determined by x, the posterior distribution becomes:

q (yt−1 | yt,y0,x) = N
(
yt−1;κtyt + λty0 + ζth, σ̂

2
t I
)
. (15)

However, this posterior depends on the unknown data distribution q(y0), making it impractical for
direct use. Therefore, we introduce a learnable transition probability pθ(yt−1 | yt,x) to approxi-
mate q (yt−1 | yt,y0,x) for all t. The reverse process is defined as:

pθ(y0:T | x) := pθ(yT )
∏T

t=1pθ(yt−1 | yt,x), (16)

pθ(yt−1 | yt,x) := N (yt−1;µθ (yt,h, c, t) , σ̂
2
t I) (17)
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(d) L = 720

Figure 5: The predicted samples by our S2DBM model for different forecast window lengths on the
ETTh1 dataset.

Here, c = E(x) represents the condition guiding the reverse process, where E(·) is a conditioning
network taking historical data x as input, and θ includes all trainable parameters of the model. The
mean µθ is trained to predict yt−1 given yt, h, and c, with the reverse variance schedule σ̂2

t fixed.

When we use yθ as the data prediction model to estimate the ground truth y0, the mean µθ can be
expressed as:

µθ(yt,h, c, t) = κtyt + λtyθ(yt,h, c, t) + ζth. (18)

In this formulation, yθ(yt,h, c, t) is a neural network that predicts y0 from yt, conditioned on h, c,
and time t.

A.2 MORE FORECASTING RESULTS VISUALIZATION

To enhance the comprehensive understanding of our forecasting methods, we present additional
visualizations of our predictive results in the following sections. These supplemental images delve
deeper into the performance variations of our models under different conditions. By exploring these
extra results, readers can obtain a more detailed appreciation of the effectiveness and applicability
of our forecasting approaches. Figures 5 and 6 and Figure 7respectively display partial predictive
results of our S2DBM model on the ETTh1, ETTm1, and Weather datasets.

A.3 EXPERIMENTAL DETAILS

A.3.1 DATASET INFORMATION

We adopt seven real-world benchmarks in the experiments to evaluate the accuracy of multivari-
ate time series forecasting, Table 6 summarizes the statistics of these datasets. We adopted the
experimental settings from recent studies (Liu et al., 2023b; Zeng et al., 2023; Li et al., 2023b).
Specifically, following the recommendations of Dlinear (Zeng et al., 2023), we set the input length
H = 336. We assessed the prediction accuracy for lengths L = {96, 192, 336, 720} across the
Weather, Exchange, ETTh1, ETTh2, ETTm1, and ETTm2 datasets, and L = {24, 36, 48, 60} for
the ILI dataset.
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(d) L = 720

Figure 6: The predicted samples by our S2DBM model for different forecast window lengths on the
ETTm1 dataset.
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Figure 7: The predicted samples by our S2DBM model for different forecast window lengths on the
Weather dataset.
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Table 6: Brief statistics of the datasets.

Datasets Channels Granularity Timesteps

Weather 21 10 min 59696
ILI 7 1 week 966
Exchange 8 1 day 7588
ETTh1&ETTh2 7 1 hour 17420
ETTm1&ETTm2 7 5 min 69680

Table 7: S2DBM hyperparameters.
Hyperparameter Value
Residual layers 4
Residual channels 8
Diffusion embedding dim 8
Schedule Linear
Diffusion steps T 50
Self-attention layers time dim 1
Self-attention heads time dim 8
Self-attention layers feature dim 1
Self-attention layers time dim 8
EMA decay 0.995
EMA update interval 8
Optimizer Adam
Loss function MAE
Max learning rate 1× 10−4

Min learning rate 5× 10−7

Individual channels False

A.3.2 IMPLEMENTATION DETAILS

As mentioned in Section 3.3, the denoising network of S2DBM adopts the same architecture as
CSDI Tashiro et al. (2021) but removes modules related to its original conditioning mechanism.Both
the conditional encoder network E and the prior predictor F (·) in S2DBM employ a simple one-
layer linear model (Zeng et al., 2023). Table 7 contains the hyperparameters that for S2DBM training
and architecture.

A.4 ADDITIONAL RESULTS AND EXPERIMENTS

A.4.1 PROBABILISTIC FORECASTING PERFORMANCE

This section summarizes the probabilistic forecasting results for prediction horizons of 192 and 336,
as presented in Table 8 and Table 9. The results demonstrate that our S2DBM competes effectively
with CSDI and TMDM, showcasing competitive performance in terms of CRPS and CRPSsum for
longer horizon settings.

Table 8: Probabilistic forecasting performance comparisons in terms of CRPS and CRPSsum. The
best results are boldfaced. The prediction horizon set to 192.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Weather

Metric CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum

CSDI 0.544±0.101 1.789±0.002 1.002±0.126 4.827±0.004 0.426±0.104 1.761±0.001 0.465±0.105 2.620±0.001 0.180±0.024 1.604±0.001
TMDM 0.471±0.087 1.729±0.002 0.383±0.121 1.800±0.003 0.369±0.097 1.757±0.001 0.292±0.105 1.375±0.001 0.239±0.031 1.895±0.001

Ours 0.406±0.097 1.871±0.002 0.384±0.102 1.816±0.003 0.355±0.092 1.675±0.001 0.288±0.080 1.417±0.001 0.247±0.031 2.171± 0.001
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Table 9: Probabilistic forecasting performance comparisons in terms of CRPS and CRPSsum. The
best results are boldfaced. The prediction horizon set to 336.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Weather

Metric CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum

CSDI 0.616±0.108 2.349±0.002 0.928±0.101 5.039±0.003 0.454±0.095 1.808±0.001 0.626±0.092 2.702±0.001 0.358±0.044 3.229±0.002
TMDM 0.524±0.095 1.901±0.002 0.395±0.099 1.769±0.002 0.380±0.099 1.889±0.001 0.464±0.147 2.260±0.001 0.280±0.035 2.307±0.001

Ours 0.418±0.102 1.851±0.002 0.422±0.101 2.019±0.002 0.373±0.095 1.764±0.001 0.320±0.090 1.561± 0.001 0.247±0.031 2.171±0.001

A.4.2 THE IMPACT OF THE NUMBER OF DIFFUSION STEPS

This section explores the effect of the number of diffusion steps on model performance. Models were
trained on the ETTh1 dataset with varying diffusion step counts and evaluated using a prediction
length of 96. The results are presented in Table 10. The results indicate strong robustness across
different diffusion steps, confirming the model’s adaptability to changes in this parameter.

Table 10: The impact of the number of diffusion steps on model performance.
Model Diffusion Steps Training time Sampling time MSE |MAE

S2DBM 50 88 mins 852 seconds 0.3660 | 0.3836
S2DBM 200 97 mins 3413 seconds 0.3659 | 0.3835
S2DBM 1000 125 mins 16935 seconds 0.3656 | 0.3834

A.4.3 THE IMPACT OF THE DIFFERENT CHOICES OF PRIOR PREDICTOR

To validate the impact of different implementations of prior predictor F (·), we conduct an abla-
tion study on the ETTh1 dataset. Specifically, F (·) was varied among a Linear model, NLinear
model, DLinear model, and Transformer model for point forecasting with a prediction horizon of
96. The results, summarized in Table 11, highlight consistent performance across these variations,
reinforcing our choice of the Linear model for its simplicity, efficiency, and effectiveness.

Table 11: The impact of the different choices of F (·) on model performance and parameter numbers.
Linear NLinear DLinear Transformer

MSE 0.366 0.335 0.366 0.365

Num of parameter 0.05M 0.05M 0.10M 10.54M

A.4.4 INFERENCE EFFICIENCY

To offer a clear perspective on the performance of S2DBM, particularly for larger datasets and
real-time forecasting applications, we conducted targeted tests on the ETTh1 and Weather datasets.
The prediction horizon L was varied to evaluate the inference efficiency of the proposed S2DBM.
Table 12 summarizes the inference time for multivariate forecasting with different prediction lengths
L on the ETTh1 and Weather datasets.

Table 12: Inference time (ms) on the multivariate forecasting with different prediction horizon L.
L=96 L=192 L=336 L=720

ETTh1 433.7 456.9 409.5 627.6
Weather 738.8 814.0 834.4 894.1

A.4.5 ROBUSTNESS TESTING

To evaluate the resilience of our S2DBM model under adverse conditions with noisy inputs, we
introduce noise to the known time series y as follows:

ynoisy = y + a · ϵ, ϵ ∼ N (0, I).
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The noisy data ynoisy is then used as input for the S2DBM model, and its predictive performance is
monitored across various noise levels by adjusting the coefficient a. Experimental results in Table 13
indicate that the S2DBM model exhibits robust performance against input noise.

Table 13: The robustness testing on ETTh2 dataset.
L=96 L=192 L=336 L=720

a MSE|MAE MSE|MAE MSE|MAE MSE|MAE
0 0.274|0.331 0.354|0.388 0.433|0.454 0.592|0.568

5% 0.275|0.332 0.355|0.389 0.427|0.453 0.591|0.568
10% 0.276|0.334 0.356|0.390 0.429|0.454 0.592|0.569
25% 0.284|0.348 0.362|0.399 0.434|0.459 0.600|0.572
50% 0.312|0.384 0.385|0.426 0.452|0.476 0.625|0.585
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