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Introduction V

I In general, doubly efficient RL methods that are not only
sample efficient but also computational efficient are preferable.

EVERYONE SAYS THIS RL ALGORITHM 15 SAMPLE EFFILIENT,
BUT 1T'S TOO SLOW AND TOO HEAVY TO RUN ON MY LAPTOR
NOT SURE WHEN MY HYPER-PARAMETER TUNING ENDS...
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Introduction (Contd.)
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| We propose DroQ, a simple but doubly efficient RL method,
by introducing dropout Q-functions (@@) to REDQ.
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REDQ: Randomized Ensembled Double Q V

| REDQ (Chen, 2021) is a sample-efficient RL method equipped with

eHigh update-to-data (UTD) ratio: number of Q updates (—) per environment
interaction (—) is high (e.g., 20 updates per interaction).

eRandomized ensemble: a randomly selected subset ( CA,%* )

of ensemble ( ...1]) is used at the target (| Min |) in the Q update (—).
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DroQ, the proposed method
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| DroQ is a REDQ variant using a small ensemble of dropout

ﬁ) in which dropout (| Dropout| ) and

Q-functions (
layer normalization (|LayerNorm|) are used.
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How sample-efficient is DroQ (msm=)?
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Better than SAC (mmm) and almost the same as

().
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Q. How computationally efficient is DroQ? V

|A. Much better than and almost the same as SAC.
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Conclusion V
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| DroQ (REDQ + [ §| ) is simple but doubly efficient.
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| Are you interested in our work?
Or feel that all we did was just randomly changing modules
of the existing RL method?
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Q. Why is dropout ([Dropout|) needed? V
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| A. To inject Q-function uncertainty () to the target ( Min ),
similarly to REDQ.
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Q. Why is layer normalization ((LayerNorm|) needed?y# ...
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| A. To suppress (‘) the learning instability caused by dropout.
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The standard deviation of the gradient of Q-loss w.r.t. parameters
wesm DroQ === w/0 Dropout ===w/0 LayerNorm === w/0 Dropout nor LayerNorm
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Q. Why is a small ensemble () needed? V
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| A. Using a single dropout Q-function (‘@) alone induces a large
bias in Q-estimation.
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Dropout Q-Functions for Doubly Efficient Reinforcement Learning
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1. Introduction:

» In general, RL methods that are not only sample efficient but also
computational efficient (i.e., doubly efficient) are preferable.

EVERYONE SAYS THIS RL ALGORITHM 15 SAMPLE EFFICIENT,
BUT IT'S TOO SLOW AND TOO HEAVY TO RUN ON MY LAPTOR
NOT SURE WHEN MY HYPER-PARAMETER TUNING ENDS...

We propose DroQ, a simple but doubly efficient RL method, by
introducing a small ensemble of Dropout Q-functions (&) to REDQ.
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2. Randomized Ensemble Double Q-Learning (REDQ):

» REDQ (Chen, 2021) is a sample-efficient RL method equipped with
high update-to-data (UTD) ratio and randomized ensemble.

v

High UTD ratio: number of Q updates () per environment

interaction () is high (e.g., 20 updates per interaction).

Randomized ensemble: a randomly selected subset ( “A%P ) of

ensemble (II') is used at the target ( Min ) in the Q update (—).
s a

REDQ agent

v

reward r, state s

Environment

action a

Ensemble ,#

Update Q-functions in ensemble (E ) to precisely predict:

r +min(Q;(s, a), Q;(s, ) AP
Min

Thank you for watching this video
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3. DroQ, the proposed method:
» DroQ is a REDQ variant using a small ensemble of dropout Q-functions (% )

in which dropout () and layer normalization () are used.
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» Q. Why is dropout (L= A

A. To inject Q-function uncertainty (i) to the target ( Min ), similarly to REDQ.
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» Q. Why is layer normalization ( ) needed ?

A. To suppress (‘) the learning instability caused by dropout.
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» Q. Why is a small ensemble ( needed ?
(Why not use a single dropout Q-function (%) alone ?)
A. Using it (%) alone induces a large bias in Q-estimation.
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4. Experiments:
» Q. How sample-efficient is DroQ (s==)?

A. Much better than SAC (==) and almost the same as ().

» Q. How computationally efficient is DroQ?
A. Much better than and almost the same as SAC.

Better

Times per 20 x — + - (inmsec) | Number of parameters (/1e4)

5. Conclusion:
» DroQ (REDQ +

) is simple but doubly efficient.

Our source code is available at
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