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1. Introduction:

 In general, RL methods that are not only sample efficient but also 

computational efficient (i.e., doubly efficient) are preferable. 

 We propose DroQ, a simple but doubly efficient RL method, by 

introducing a small ensemble of Dropout Q-functions (     ) to REDQ. 

3. DroQ, the proposed method:

 DroQ is a REDQ variant using a small ensemble of dropout Q-functions (     ) 

in which dropout (                ) and layer normalization (                     ) are used. 

 Q. Why is dropout (                 ) needed ?

A. To inject Q-function uncertainty (    ) to the target (        ), similarly to REDQ.

 Q. Why is layer normalization (                      ) needed ? 

A. To suppress (    ) the learning instability caused by dropout.

3.5. DroQ, the proposed method (Contd.):

 Q. Why is a small ensemble (           ) needed ? 

(Why not use a single dropout Q-function (    ) alone ?) 

A. Using it (    ) alone induces a large bias in Q-estimation. 

2. Randomized Ensembled Double Q-Learning (REDQ):

 REDQ (Chen, 2021) is a sample-efficient RL method equipped with 

high update-to-data (UTD) ratio and randomized ensemble. 

 High UTD ratio: number of Q updates (→) per environment 

interaction (→) is high (e.g., 20 updates per interaction). 

 Randomized ensemble: a randomly selected subset (            ) of 

ensemble (             ) is used at the target (         ) in the Q update (→). Min⋯
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4. Experiments:

 Q. How sample-efficient is DroQ (     )? 

A. Much better than SAC (     ) and almost the same as REDQ (     ). 

 Q. How computationally efficient is DroQ? 

A. Much better than REDQ and almost the same as SAC. 
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5. Conclusion:

 DroQ (REDQ +             ) is simple but doubly efficient. 

Our source code is available at  DroQ w/o Dropout w/o LayerNorm w/o Dropout nor LayerNorm

Dropout LayerNorm

Average bias: 
| 𝐓𝐫𝐮𝐞 𝐐 −𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐝 𝐐 |

𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭

Everyone says this RL algorithm is sample efficient, 
but it's too slow and too heavy to run on my laptop.

Not sure when my hyper-parameter tuning ends... 

Update Q-functions in ensemble (              ) to precisely predict: 

𝑟 + min(𝑄𝑖 𝑠, 𝑎 , 𝑄𝑗 𝑠, 𝑎 )
⋯
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