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1. Introduction:

» In general, RL methods that are not only sample efficient but also
computational efficient (i.e., doubly efficient) are preferable.

EVERYONE 5AYS THIS RL ALGORITHM 15 SAMPLE EFFILIENT,
BUT IT'S TOO SLOW AND TOO HEAVY TO RUN ON MY LAPTOR
NOT SURE WHEN MY HYPER-PARAMETER TUNING ENDS...

» We ppose DroQ, a simple but doubly efficient RL method, by
Introducing a small ensemble of Dropout Q-functions (@@?@) to REDQ.
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2. Randomized Ensembled Double Q-Learning (REDQ):

» REDQ (Chen, 2021) is a sample-efficient RL method equipped with
high update-to-data (UTD) ratio and randomized ensemble.

» High UTD ratio: number of Q updates (—) per environment
iInteraction (—) Is high (e.g., 20 updates per interaction).
» Randomized ensemble: a randomly selected subset ( R3” ) of
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3.

DroQ, the proposed method:

» DroQ is a REDQ variant using a small ensemble of dropout Q-functions (4@@)

» Q. Why iIs dropout () needed ?

» Q. Why is layer normalization () needed ?

std of Q gradient

in which dropout () and layer normalization ( are used.
s a

DroQ agent )

Ensemble,

A. To inject Q-function uncertainty () to the target (| Min ), similarly to REDQ.

REDQ agent

Ensemble

A. To suppress (‘) the learning instability caused by dropout.
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3.5. DroQ, the proposed method (Contd.):

» Q. Why iIs a small ensemble () needed ?
(Why not use a single dropout Q-function (§) alone ?)

A. Using it (W) alone induces a large bias in Q-estimation.
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4. Experiments:

» Q. How sample-efficient is DroQ (mes)?
A. Much better than SAC (==) and almost the same as ().
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» Q. How computationally efficient is DroQ?
A. Much better than and almost the same as SAC.
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5. Conclusion:
» DroQ (REDQ + ) Is simple but doubly efficient.

Our source code Is availlable at




