
Appendix of FINDE: Neural Differential Equations for541

Finding and Preserving Invariant Quantities542

A Hamiltonian System, Its Generalization, and First Integrals543

Preliminary In this section, we briefly introduce potential target systems and related works. See,544

for example, [27, 53] for more details.545

On an N -dimensional manifoldM, an ODE is defined using a vector field f :M→ TuM, which546

maps a point u on the manifoldM to a tangent vector f(u) on the tangent space TuM. Thus, the547

NODE defines an ODE [8]. Given a scalar-valued function H : M → R on the manifoldM, its548

differential dH :M→ T ∗uM is a cotangent vector field (a.k.a. a differential 1-form), which maps a549

point u on the manifoldM to a cotangent vector dH(u) on the cotangent space T ∗uM.550

Hamiltoanian System A Hamiltonian system is defined using a non-degenerate closed differential551

2-form ω called symplectic form, which is a skew-symmetric bilinear map ωu : TuM×TuM→ R552

at point u. A symplectic form assigned to a manifold is called the symplectic structure. The553

coordinate-free form of Hamilton’s equation is d
dtu = XH(u), ωu(XH(u),w) = 〈dH(u),w〉 for554

any w ∈ TuM, where XH is the Hamiltonian vector field. The symplectic form ω gives rise to a555

bundle map ω[u : TuM→ T ∗uM, with which Hamilton’s equation is rewritten as d
dtu = XH(u) =556

(ω[u)−1(dH(u)). The right-hand side is locally equivalent to the multiplication of a coefficient557

matrix S and the gradient ∇H of the Hamiltonian H . Then, Hamilton’s equation is obtained as558
d
dtu = S∇H(u). Hamiltonian systems are often expressed in the canonical form, in other words,559

defined on Darboux coordinates, on which the state u is the pair of generalized position q and560

generalized momentum p. The corresponding coefficient matrix is S =
(

0 In
−In 0

)
for 2n = N . The561

HNN was developed to model Hamiltonian systems in the canonical forms [26].562

An Euler–Lagrange equation with a hyperregular Lagrangian and a Lotka–Volterra equation are also563

Hamiltonian systems; however, their coordinate systems are not Darboux coordinates. A neural564

symplectic form (NSF) handles this class [9]. The KdV equation is also a Hamiltonian system not565

on Darboux coordinates. For Hamiltonian PDE systems, HNN++ was proposed [38]. According to566

Darboux’s theorem, any Hamiltonian systems on an even–dimensional manifold can be transformed567

into the canonical form.568

Noether’s theorem states that a continuous symmetry of a system leads to a conservation law. A569

Hamiltonian system is symmetric (invariant) to translation in time and conserves the Hamiltonian570

H . A two-body problem is symmetric to translation and rotation in space and conserves linear and571

angular momenta. These quantities are first integrals. LieConv and EMLP-HNN implemented such572

symmetries in their architectures [19, 21]. A pendulum is not symmetric to translation and rotation in573

space and does not conserve linear and angular momenta (but exchanges them with the base to which574

it is fixed).575

Poisson System A Poisson system is named after a Poisson bracket {·, ·}, but it is convenient to576

refer to it as a degenerate Hamiltonian system. A Poisson bracket is defined using a Poisson 2-vector577

B, which is a skew-symmetric bilinear map Bu : T ∗uM× T ∗uM → R at point u. The Poisson578

2-vector B gives rise to a bundle map B]u : T ∗uM → TuM and defines Hamilton’s equation as579
d
dtu = B](dH(u)). The Darboux–Lie theorem states that any Poisson system can be transformed580

into the canonical form d
dtu = S∇H(u) by using a matrix S =

(
0 Ik 0
−Ik 0 0

0 0 0

)
for 2k < N . The last581

N − 2k elements remain unchanged and correspond to first integrals. In this sense, a Poisson system582

is a degenerate Hamiltonian system. A Poisson 2-vector assigned to a manifold is called a Poisson583

structure. Several models of the dynamics of disease spreading and chemical reactions are Poisson584

systems, and the total population and molecular mass are typical first integrals.585

A Poisson neural network (PNN) learns to transform a given Poisson system into a canonical586

form [31].587

Constrained Hamiltonian System A constraint V (q) = 0 on the position q is called a holonomic588

constraint and appears, for example, when the position of the hand of a robot is restricted by the589
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length of the arm. Differentiating a holonomic constraint V (q) = 0 yields a constraint involving the590

velocity G(q,v) = ∂V
∂q v = 0, which is simply called a velocity constraint. Hence, each holonomic591

constraint leads to two first integrals V and G. A Hamiltonian system with holonomic constraints is592

also a Poisson system, but in particular, it is a constrained Hamiltonian system.593

A CHNN incorporates known holonomic constraints V (q) and corresponding velocity constraints594

G(q,v) for a Hamiltonian system in the canonical form [20]. The original study suggested that595

CHNN may learn holonomic constraints from data but has not tested it. For modeling a constrained596

Hamiltonian system, it is sufficient to incorporate only velocity constraints G(q,v) because a597

holonomic constraint V (q) is implicitly satisfied if the corresponding velocity constraint G(q,v) is598

satisfied. Celledoni et al. [59] used such formulation and extended HNN and CHNN to systems on599

non-Euclidean spaces. A neural projection method learns holonomic constraints (as well as inequality600

constraints, which are outside the scope of this study) [62]. This method updates the state by solving601

an optimization problem similar to Eq. (3) iteratively by gradient descent method at every training602

step, and then apply backpropagation algorithm to all the optimization iterations. Thus, it consumes603

much computational cost and memory.604

These studies focused mainly on physically-induced holonomic constraints and may not work for605

other first integrals, as shown in Section D.2 in Appendix. On the other hand, the purpose of FINDE606

is to find and preserve general first integrals, including energy and mass, not limited to constraints.607

A Noether network was proposed to model videos that do not always capture physical phenomena [58].608

A subset of the latent variable is assumed to represent image features that do not change during a609

video, such as the appearance of objects. For prediction, it is forced not to change. The Noether610

network is potentially useful to learn physical phenomena from videos, but it is more like semantic611

manipulation of latent variables [61].612

Dirac Structure A Dirac structure is named after a Dirac bracket, which is a generalization of613

the Poisson bracket [53]. A Dirac structure can be found in various systems. For a rolling disk, the614

direction in which the disk can move forward without slipping is restricted by the angle at which615

the disk is facing. This constraint is called a non-holonomic constraint. In an electric circuit, when616

elements are connected in series, the amount of current flowing through each element is always the617

same. This constraint is called Kirchhoff’s current law. One can find Dirac structures in these systems.618

The dissipative SymODEN was proposed to model a port-Hamiltonian system in the canonical619

form [57], which is a special case of Dirac structure. To our best knowledge, a neural network model620

for a general Dirac structure has not yet been proposed. FINDE is the first neural network method that621

demonstrates to learn Dirac structures better than NODE, but it is not specialized for Dirac structures.622

PDE with Mass Conservation The total mass of a PDE system is sometimes preserved [23]. The623

KdV equation is a Hamiltonian system and describes shallow water waves, in which the energy and624

total mass are preserved. The Cahn–Hilliard equation is a model of phase separation of copolymer625

melts, in which the total mass is preserved but the energy is dissipated. In general, a quantity in626

an area is preserved if its flux entering minus its flux leaving the area is zero. Deep conservation627

extracts latent dynamics of a PDE system and preserves a quantity of interest by forcing its flux628

to be zero [34]. HNN++ also ensures the mass conservation by designing a coefficient matrix that629

determines local interaction [38].630

B Details of Methods631

B.1 Derivation of Projection Method and FINDE632

Let us denote a current state and f̂ denote a vector field. After a time interval ∆t, the state transitions633

to ûs+1. A typical projection method projects the state ũs+1 onto a submanifoldM′ and obtains634

a state us+1, which preserves the first integrals V = (V1 . . . VK)>. This procedure is defined as635

solving an optimization problem636

min ||us+1 − ũs+1|| subject to Vk(us+1)− Vk(us) = 0 for k = 1, . . . ,K. (13)
One can solve the problem using, for instance but not limited to, the method of Lagrange multipliers.637

A Lagrangian function is638

F (us+1,λ) = 1
2 ||u

s+1 − ũs+1||22 + (V (us+1)− V (us))>λ′, (14)
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where λ′ is the Lagrange multiplier. The stationary point satisfies639

∂F
∂us+1 = us+1 − ũs+1 +

(
∂V
∂us+1

)>
λ′ = 0,

∂F
∂λ′ = V (us+1)− V (us) = 0.

(15)

Then, a projection method can be redefined as640

us+1 = ũs+1 −
(

∂V
∂us+1

)>
λ′,

V (us+1)− V (us) = 0.
(16)

For obtaining FINDE, we transform the above equations into641

us+1−us

∆t = ũs+1−us

∆t −
(

∂V
∂us+1

)>
λ,

V (us+1)−V (us)
∆t = 0,

(17)

where λ = λ′/∆t. Alternatively, one can define another Lagrangian function and obtain Eq. (17).642

Anyway, taking the limit ∆t→ +0, we obtain the cFINDE;643

f(us) = f̂(us)−
(
∂V
∂us

)>
λ,

d
dtV (us) = 0.

(18)

A state transition following the new vector field f preserves the first integrals V . Because of the644

above derivation, the cFINDE can be considered as a continuous-time version of a projection method.645

The dFINDE is defined as a discretization of the cFINDE, and in that sense, it is a projection646

method. At the same time, the dFINDE can be considered as a generalization of discrete gradient647

methods [6, 11, 15, 23, 25, 44].648

B.2 Discrete Gradient649

A discrete gradient is a discrete analogue to a gradient [6, 11, 15, 23, 25, 44]. Discrete gradients that650

satisfy Definition 2 are not unique, and many variations have been proposed. For a neural network,651

Matsubara et al. [38] proposed the automatic discrete differentiation algorithm (ADDA). We briefly652

introduce the algorithm in the case of finite dimensional Euclidean spaces. The differential dg of a653

function g : RN → RM is a linear operator dgu : RN → RM at point u and satisfies654

lim
||h||RN→0

||g(u+ h)− g(u) + dgu(h)||RM

||h||RN

= 0. (19)

The differential dg acting on a vector w is equivalent to the multiplication of a vector w with the655

Jacobian Jg(u) of the function g at point u, that is, dgu(w) = Jg(u)w. Similarly, according to656

the chain-rule, the differential d(h ◦ g) of a composition h ◦ g of functions g, h is equivalent to the657

multiplication with a series Jh(g(u))Jg(u) of Jacobians. In this way, the automatic differentiation658

algorithm obtains the differential of a neural network. The differential dg of a function g : RN → R659

is a horizontal vector, and the gradient∇g of the function g is a vertical vector dual to the differential.660

Therefore, the gradient∇g is obtained by transposing the differential dg. The ADDA replaces each661

Jacobian with its discrete analogue. For linear layers such as fully-connected and convolution layers,662

the discrete Jacobian is identical to the ordinary Jacobian. For element-wise nonlinear layers, such as663

activation functions, a diagonal matrix composed of the slopes between two inputs can play the role664

of the discrete Jacobian. A discrete gradient obtained by the above steps satisfies Definition 2.665

B.3 Training Procedures666

For the cFINDE, we used the 1-step error as the loss function. A state usGT is taken from the training667

dataset, and a numerical integrator solves the cFINDE d
dtu = f(u) for f defined in Eq. (6) and668

predicts the next state us+1
pred . Then, the cFINDE can be trained to minimize the difference between the669

predicted state us+1
pred and the ground truth us+1

GT taken from the training dataset. Instead of using the670

state directly, we used the finite difference normalized by the time step size ∆ts for the loss function;671 ∥∥∥∥us+1
GT −u

s
GT

∆ts − us+1
pred −u

s
GT

∆ts

∥∥∥∥2

2

.
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For the dFINDE, we have defined the state update in Eq. (11). Given a current state us, the process to672

obtain the next state us+1 is implicit. Therefore, the prediction by the dFINDE is implicit. However,673

during the training phase, the ground truth us+1
GT of the next state is known. Hence, we assigned the674

data points usGT and us+1
GT in the training dataset to both the current state us and the next state us+1.675

Then, the loss function can be the difference between the left- and right-hand sides, that is,676 ∥∥∥us+1
GT −u

s
GT

∆ts − (I − Y (us+1
GT ,usGT))ψ̂(usGT; ∆ts)

∥∥∥2

2
.

The discrete Jacobian M (and hence Y ) can be obtained explicitly, and an explicit solver can be used677

as the numerical integration ψ̂. Hence, the process to get the value of the loss function is explicit, and678

the dFINDE can be trained in an explicit way, whereas the prediction is still in an implicit way.679

Some previous studies have proposed alternative loss functions for learning long-term dynam-680

ics [10][60, 63]. For example, a loss function can be defined as the sum of the errors at multiple time681

points during a long-term prediction. The cFINDE can naturally adopt such a training algorithm, and682

the dFINDE can adopt it after a minor modification. While it is useful to pursuit the absolute perfor-683

mance, it requires additional hyperparameters such as the length of prediction time and additional684

effort to adjust them. For simplicity and fair comparisons, we used the 1-step error in the present685

study.686

C Details of Datasets687

To generate each dataset, we used scipy package and the Dormand–Prince method (dopri5) with the688

default relative tolerance of 10−9, unless otherwise stated. Experiments of the KdV dataset were689

performed with double precision, and all other experiments were performed with single precision.690

Hamiltonian System in Canonical Form: Two-Body Problem A gravitational two-body prob-691

lem on a 2-dimensional configuration space has a state u composed of the 4-dimensional posi-692

tion q = (x1 y1 x2 y2)> and the 4-dimensional velocity v = (vx1 vy1 vx2 vy2)>. This is a693

second-order ODE, indicating that d
dtq = v. The momentum px1

of x1 equals m1vx1
. The time-694

derivative d
dtv of the velocity v is called the acceleration. The acceleration of x1 is given by695

d
dtvx1 = −Gm1m2

x1−x2

((x1−x2)2+(y1−y2)2)3/2
, where G, m1, and m2 denote the constant of gravity and696

the masses of two bodies, respectively. The same process applies to for the remaining positions.697

The total energy of the two-body problem is given by698

H =
1

2
(m1(v2

x1 + v2
y1) +m2(v2

x2 + v2
y2))− Gm1m2√

(x1 − x2)2 + (y1 − y2)2
. (20)

The first and second terms denote the kinetic and potential energies, respectively. The two-body699

problem is a Hamiltonian system, and the aforementioned dynamics can be rewritten as Hamilton’s700

equation. The Hamiltonian H is a first integral; the two-body problem has other first integrals, such701

as the linear momenta in the x- and y-directions702

px =
m1vx1 +m2vx2

m1 +m2
,

py =
m1vy1 +m2vy2

m1 +m2
,

(21)

and angular momentum [27].703

We set G, m1, and m2 to 1.0. The initial distance r1 =
√
x2

1 + y2
1 of a mass m1 from the origin704

was set to r1 ∼ U(0.5, 1.0), and the initial angle θ1 = tan−1( y1x1
) was set to θ1 ∼ U(0, 2π). The705

initial speed |v1| =
√
v2
x1

+ v2
y1 was set to 1

2r2 εv, where εv ∼ N (1, 0.05). The initial angle of the706

velocity was set to θ ± 0.5π + εθπ, where εθ ∼ N (0, 0.05). The initial condition of the other mass707

m2 was set to the opposite of the mass m1. Then, the two masses trace elliptical orbits, and trace the708

exact circular orbits if εv = εθ = 0. In addition, we added a perturbation following N (0, 0.01) to the709

velocities of both masses, which corresponds to the center-of-gravity velocity.710

We set the step size ∆t to 0.01 and generated 1,000 time series of S = 500 steps for training and 10711

time series of S = 10, 000 steps for evaluation. We trained each model for 100,000 iterations.712
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Hamiltonian System in Non-Canonical Form: KdV equation The KdV equation is a model of713

shallow water waves and is known to have soliton solutions [22]. The dynamics is given by714

ut = −αux + βuxxx, (22)

where x denotes the spatial position, and the subscripts denote partial derivatives, for example715

ut = ∂u
∂t . The Hamiltonian is given by716

H(u) =

∫
−1

6
αu3 − 1

2
βu2

x dx. (23)

As Hamilton’s equation d
dtu = S∇H , the partial differential operator ∂

∂x works as the coefficient717

matrix S. This system is Liouville integrable and has infinitely many first integrals, including the718

Hamiltonian H , total mass I1 =
∫
udx, and T2 =

∫
u2dx [39]. Other first integrals are defined719

using higher-order partial derivatives.720

Following the experiments in a previous study [38], we discretized the KdV equation; it no longer721

has infinitely many first integrals. We set α = −6, β = 1, the spatial size to 10 space units, and722

the space mesh size to 0.2; the system state u had 50 elements. We generated two solitons as the723

initial condition; each soliton was expressed as − 12
α κ

2sech2(κ(x− d)), where the size κ followed724

U(0.5, 2), and the initial position d was set to be at least 2.0 away from each other. We employed the725

discrete gradient method in [22] to ensure energy conservation.726

We set the step size ∆t to 0.001 and generated 1,000 time series of S = 500 steps for training and 10727

time series of S = 10, 000 steps for evaluation. We trained each model for 30,000 iterations.728

Poisson System: Double Pendulum A double pendulum is depicted in in Fig. A1. In polar729

coordinates, it is a Hamiltonian system. The state is composed of the angles (θ1, θ2) of the two rods730

and their angular velocities (ω1, ω2). This is also a second-order ODE, indicating that d
dtθ1 = ω1731

and d
dtθ2 = ω2. Given the lengths l1, l2 of the two rods, the masses m1,m2 of the two weights, and732

the gravitational acceleration g, the acceleration is given by733

d

dt
ω1 =

m2g sin θ2 cos ∆− (l1ω
2
1 cos ∆ + l2ω

2
2)m2 sin ∆− (m1 +m2)g sin θ1

l1(m1 +m2 sin2 ∆)
,

d

dt
ω2 =

(m1 +m2)(l1ω
2
1 sin ∆− g sin θ2 + g sin θ1 cos ∆) +m2l2ω

2
2 sin ∆ cos ∆

l2(m1 +m2 sin2 ∆)
,

(24)

where ∆ = θ1 − θ2. In 2-dimensional Cartesian coordinates, the state is composed of the positions734

(x1, y1, x2, y2) of the two masses and the corresponding velocities (vx1, vy1, vx2, vy2). The position735

is transformed as x1 = l1 sin θ1, y1 = l1 cos θ1, x2 = x1 + l2 sin θ2, and y2 = y1 + l2 cos θ2, and736

the velocity is transformed accordingly. The total energy H is given by737

H =
1

2
(m1(v2

x1
+ v2

y1) +m2(v2
x2

+ v2
y2)) + g(m1y1 +m2y2). (25)
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Figure A1: Diagram
of the double pendu-
lum.

The first and second terms denote the kinetic and potential energies, respec-738

tively. The double pendulum is no longer a Hamiltonian system in Carte-739

sian coordinates. Because the lengths of the two rods are constant, the740

double pendulum has two constraints on the position: l21 = x2
1 + y2

1 and741

l22 = (x2 − x1)2 + (y2 − y1)2. These constraints are holonomic constraints,742

and they lead to constraints involving the velocity, namely 0 = x1vx1 + y1vy1743

and 0 = (x2 − x1)(vx2 − vx1) + (y2 − y1)(vy2 − vy1). When the constraints744

involving the velocity are satisfied, the holonomic constraints are implicitly745

satisfied. Therefore, the number of first integrals are five; however, three first746

integrals are sufficient to determine the dynamics. The dynamics is degenerate747

and classified as a constrained Hamiltonian system, or a Poisson system in a748

more general case.749

We set the masses of the two weights to m1 = m2 = 1.0 and the gravitational acceleration g to750

9.8. We set the lengths l1, l2 of the two rods to follow U(0.9, 1.1), the initial angles θ1, θ2 to follow751

U(−0.5, 0.5), and the initial angular velocities θ̇1, θ̇2 to follow U(−0.1, 0.1).752

We set the step size ∆t to 0.1 and generated 1,000 time series of S = 500 steps for training and 10753

time series of S = 5, 000 steps for evaluation. We trained each model for 100,000 iterations.754
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Dirac Structure: FitzHugh–Nagumo Dataset R. FitzHugh proposed a model of the electrical755

dynamics of a biological neuron, and J. Nagumo created an equivalent electric circuit. This model756

is called the FitzHugh–Nagumo model [30] and is a modified version of the van der Pol oscillator;757

the state oscillates when the magnitude of the external current source I is within an appropriate758

range. The circuit is composed of a resistor R, inductor L, capacitor C, and tunnel diode D759

connected as shown in Fig. A2. The whole circuit is connected to an external current source I .760

𝐶

𝑅

𝐿

𝐷

𝐼

𝑉

𝐸

Figure A2: Circuit diagram
of the FitzHugh–Nagumo
model [30].

Let IR denote the current through the resistor R, and VR denote the761

applied voltage. Ohm’s law and other properties of the elements give762

VR = IRR, C d
dtVC = IC , L d

dtIL = VL, and ID = D(VD), where763

we treat D as a nonlinear function. Kirchhoff’s current law (KCL)764

gives IC + ID + IR = I and IR = IL, and Kirchhoff’s voltage law765

(KVL) gives VC = VD = VR + VL + E. We denote W = IR and766

V = VC , and set L = 1/0.08, R = 0.8, C = 1.0, VE = −0.7, and767

D(V ) = V 3/3− V . Then, we obtain the FitzHugh–Nagumo model768

of the original parameters as769

d

dt
V = V − V 3/3−W + I,

d

dt
W = 0.08(V + 0.7− 0.8W ).

(26)

Due to the resister R, the FitzHugh–Nagumo model is not an energy-conserving system.770

Consider a situation where the current through and the voltage applied to stateful elements (capacitors771

and inductors) are measurable, but the connections between the elements is unknown. We treated772

IC , IL, VC , VL as the system state u. Because the state is in 4-dimensional space and the dynamics773

is intrinsically 2-dimensional, there exist two first integrals, for example, but not limited to, I =774

IC +D(VC) + IL and E = VC − ILR− VL. This type of electric circuit is an example of a Dirac775

structure because the state variables are constrained by the circuit topology and Kirchhoff’s current776

and voltage laws [53]. From the viewpoint of generalized Hamiltonian systems, (IL, VC) corresponds777

to the position, and (VL, IC) corresponds to the momentum. The electric circuit can be described778

as a port-Hamiltonian system in a non-canonical form. Because of the non-canonical form, the779

FitzHugh–Nagumo model is outside the scope of CHNN and dissipative SymODEN [20, 57].780

We set the external current source I to follow U(0.7, 1.1), set the initial values of V and W to follow781

U(−1.5, 1.5) and U(0.0, 2.0), and transformed them to the state.782

We set the step size ∆t to 0.1 and generated 1,000 time series of S = 500 steps for training and 10783

time series of S = 2, 000 steps for evaluation. We trained each model for 30,000 iterations.784

D Additional Results and Discussion785

D.1 Symbolic Regression of Learned First Integrals786

Using gplearn, we performed a symbolic regression of the first integrals V learned by the neural787

network. Gplearn is based on genetic programming. We prepared addition +, subtraction −,788

multiplication ×, and division / as candidate operations, used Pearson’s correlation coefficient as the789

evaluation criterion, set the early stopping threshold to 0.9, and set the population size to 10,000. We790

Table A1: Symbolic Regression of First Integrals Learned from Two-Body Problem
Training Data Test Data

trial V1 V2 V1 V2

0 vx1+vx2 vy1+vy2 vx1+vx2+α vy1+vy2
1 vx1+vx2 vy1+vy2 vx1+vx2 vy1+vy2
2 vy1+vy2 vx1+vx2 vy1+vy2 vx1+vx2
3 vy1+vy2 vx1+vx2 vy1+vy2 vx1+vx2
4 vx1+vx2 − vy1 − vy2 vx1+vx2+vy1+vy2 vx1+vx2 − vy1 − vy2 vx1+vx2+vy1+vy2

We removed biases and scale factors. α = 0.003(y1 + y2)(vx2 + x1 + y1(vx2 + y1 + y2) + 1.402).
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set the other hyperparameters to their default values, e.g., the maximum number of generations was791

20.792

We summarized regression results of the HNN with cFINDE for K = 2 trained using the 2-body793

dataset in Table A1. Note that Pearson’s correlation coefficient is invariant to biases and scale factors.794

FINDE is also invariant because it only uses the directions of the gradients of first integrals. Hence,795

we removed biases and scale factors from the regression results. When the focus is on the symbolic796

regression of the training data, V1, V1, V2, and V2 for trials 0, 1, 2, and 3 are identical to the linear797

momentum in the x-direction up to scale factors; recall that we set m1 = m2 = 1.0 and see Eq. (21).798

V2, V2, V1, and V1 for trials 0, 1, 2, and 3 are also identical to the linear momentum in the y-direction.799

V1 and V2 for trial 4 are weighted sums of the linear momenta in the x- and y-directions, or they can800

be regarded as the linear momenta in the (1,−1)-direction and in the (1, 1)-direction, respectively.801

When the quantities V1(u) and V2(u) are first integrals, any function only of V1(u), V2(u), and802

arbitrary constants is a first integral functionally dependent on V1(u) and V2(u). Thus, in general,803

there is no guarantee that FINDE will find first integrals in their well-known forms. However,804

recent studies have revealed that typical initialization and training procedures of neural networks805

tend to learn simple functions [3, 5]. Additionally, the symbolic regression limited the depth of the806

computation graph, biasing the results toward simple functions. This is why the learned first integrals807

were often identical to the well-known forms and were separated in the x- and y-directions in most808

cases.809

The same is true for the symbolic regression of the test data except for V1 for trial 0, which had a810

small perturbation α. Because of the limited extrapolation ability, neural networks cannot always811

accurately represent functions outside of the range of training data. Once first integrals are learned812

by FINDE and identified as equations by symbolic regression, one can use the equations instead of813

neural networks, ensuring the preservation of first integrals in the entire domain. From these results,814

we can conclude that cFINDE identified the linear momenta.815

The state of the KdV dataset has 50 elements, which is too large to apply a symbolic regression. For816

the 2-pend and FitzHugh–Nagumo datasets, we did not find consistent equations of first integrals.817

For example, the symbolic regression identified a quantity x2
1 − y1 as a first integral in the 2-pend818

dataset, which is not directly related to well-known first integrals. When the angle θ1 of the upper819

rod is small, y1 takes a value close to −1, and the quantity x2
1 − y1 is close to x2

1 + y2
1 , which is a820

well-known first integral, namely the square l21 of the upper rod length l1. It is difficult to determine821

whether this inaccuracy is because of the training of FINDE or symbolic regression. There may still822

be room for improvement in the training of FINDE or symbolic regression.823

D.2 With Known First Integrals824

The double pendulum is classified as a constrained Hamiltonian system. CHNN was proposed for825

cases when holonomic constraints are known [20]. We evaluated comparison methods under the826

assumption that the holonomic constraints were known. We summarized the results in Table A2. The827

HNN, without constraints, completely failed to learn the dynamics. This is unsurprising because828

the dynamics of the double pendulum is outside the scope of the HNN. The two known holonomic829

constraints lead to two constraints involving the velocity; the CHNN took into account all four known830

constraints and worked remarkably. The HNN with cFINDE was given all four known constraints as831

first integrals, but did not work properly. The original purpose of projection methods is to eliminate832

numerical errors of first integrals, but not to change the class to which the dynamics belong. Therefore,833

Table A2: Results with known holonomic constraints.
2-pend 2-body

Model 1-step↓ VPT↑ 1-step↓ VPT↑

NODE 0.82 ±0.020 0.110 ±0.035 144.21 ±12.65 0.134 ±0.014

HNN [26] 6220.26 ±91.57 0.002 ±0.000 5.17 ±0.570 0.362 ±0.026

CHNN [20] 0.07 ±0.000 0.928 ±0.036 (not working)

NODE+cFINDE 0.71 ±0.040 0.461 ±0.071 163.64 ±9.790 0.147 ±0.024

HNN+cFINDE 236.51 ±7.150 0.020 ±0.002 8.32 ±0.430 0.476 ±0.040

21



when a target system is not a subject of the base model, the base model with FINDE does not work.834

The NODE learns an ODE in a general way, and thus constrained Hamiltonian systems are included835

in its subjects. Given all four known constraints, the NODE with cFINDE worked better but never836

surpassed the CHNN.837

On the other hand, the CHNN works only for Hamiltonian systems in the canonical form with838

holonomic constraints. We also evaluated comparison methods using the 2-body dataset under the839

assumption that the linear momenta were known as first integrals. The CHNN attempted to get the840

inverse of a singular matrix and could not even learn the dynamics. In contrast, the cFINDE improved841

the performances of both NODE and HNN.842

When the detailed properties of target systems are known, one can choose the best models. If the843

chosen model is inappropriate, the training procedure totally fails. FINDE provides a better alternative844

when prior knowledge is limited. Moreover, a constrained Hamiltonian system can have first integrals845

other than holonomic constraints and the Hamiltonian. In this case, the CHNN with FINDE is846

potentially the best choice.847

D.3 First Integral Preservation for Hamiltonian System848
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Figure A3: Integration of a known
mass-spring system.

In Fig. 1, we examined an ODE of mass-spring system and849

FINDE using the leapfrog integrator. Here, we also examined850

the case with the Dormand–Prince integrator in Fig. A3. We851

increased the number of steps to 105 and displayed the MSEs of852

the state instead of the state itself. First, we focus on the energy853

in the bottom panel. Even using the Dormand–Prince integrator,854

which is a fourth-order method, the energy is slightly decreasing.855

The cFINDE with the Dormand–Prince integrator shows the856

same tendency. This phenomenon is due to numerical errors857

and is called energy drift. The dFINDE with the Dormand–858

Prince integrator significantly suppresses the energy error. The859

remaining error is caused by rounding errors.860

When the focus is on the MSEs of the state in the upper panel, the trend is different; The dFINDE with861

the Dormand–Prince integrator suffers from larger state errors. Although the dFINDE is designed to862

eliminate errors of the energy, it does not necessarily minimize state errors. The Dormand–Prince863

integrator, on the other hand, is designed to suppress state errors.864

Therefore, there is no guarantee that the dFINDE improves the prediction performance, which is865

defined using state errors. However, the experimental results in Table 3 demonstrate that the dFINDE866

is superior to the base model and the cFINDE in VPT. For the mass-spring system, the governing867

equation is already known as an ODE, and it is discretized by the dFINDE, leading to discretization868

errors. On the other hand, when dFINDE learns dynamics from data, the training data points are869

already sampled in discrete time, and the dFINDE predicts future states in discrete time. Therefore,870

neither the ODE nor the discretization is involved, no discretization error occurs, and we only the871

advantage of exactly preserving the first integral.872

This kind of paradox has been repeatedly discovered in previous studies. For example, the leapfrog873

integrator and the discrete gradient method are second-order methods, but they are superior to the874

Dormand-Prince integrator when being combined with neural networks and learning dynamics from875

data [38]. For learning, the preservation of specific properties of target systems is more important876

than the order of accuracy.877
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