
Published as a conference paper at ICLR 2025

LEARNING TO DISCRETIZE
DENOISING DIFFUSION ODES

Vinh Tong1,2, Trung-Dung Hoang4, Anji Liu1,3, Guy Van den Broeck3, Mathias Niepert1,2

1University of Stuttgart, 2IMPRS-IS, 3UCLA, 4University of Bern
vinh.tong@ki.uni-stuttgart.de

ABSTRACT

Diffusion Probabilistic Models (DPMs) are generative models showing competitive
performance in various domains, including image synthesis and 3D point cloud
generation. Sampling from pre-trained DPMs involves multiple neural function
evaluations (NFEs) to transform Gaussian noise samples into images, resulting
in higher computational costs compared to single-step generative models such
as GANs or VAEs. Therefore, reducing the number of NFEs while preserving
generation quality is crucial. To address this, we propose LD3, a lightweight
framework designed to learn the optimal time discretization for sampling. LD3 can
be combined with various samplers and consistently improves generation quality
without having to retrain resource-intensive neural networks. We demonstrate
analytically and empirically that LD3 improves sampling efficiency with much
less computational overhead. We evaluate our method with extensive experiments
on 7 pre-trained models, covering unconditional and conditional sampling in both
pixel-space and latent-space DPMs. We achieve FIDs of 2.38 (10 NFE), and 2.27
(10 NFE) on unconditional CIFAR10 and AFHQv2 in 5-10 minutes of training.
LD3 offers an efficient approach to sampling from pre-trained diffusion models.
Code is available at https://github.com/vinhsuhi/LD3.

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) have emerged as a popular class of generative models,
demonstrating competitive performance across various tasks, including image synthesis (Ho et al.,
2020; Song et al., 2020b; Dhariwal & Nichol, 2021), text-to-image generation (Nichol et al., 2021;
Rombach et al., 2022; Gu et al., 2022), 3D point cloud generation (Luo & Hu, 2021), and molecular
generation (Hoogeboom et al., 2022). DPMs learn a multi-step transformation from random (e.g.,
multivariate Gaussian) noise to the data distribution. While they achieve improved sample quality and
diversity compared to single-step generative models like GANs (Goodfellow et al., 2014) or VAEs
(Kingma et al., 2021), their multi-step nature incurs significant computational overhead.

Distillation-based methods are one category of approaches for accelerating DPMs (Meng et al., 2023;
Liu et al., 2022b; Salimans & Ho, 2022; Song et al., 2023). These methods refine the denoising
network to improve generation quality while reducing the number of sampling steps. Although
these approaches can significantly enhance quality, they require costly re-training or fine-tuning of
the entire network. Moreover, distillation-based methods often face challenges such as information
loss (Zheng et al., 2024) and difficulties with conditional sampling (Meng et al., 2023).

The second set of approaches capitalizes on the ability to sample from DPMs by solving a corre-
sponding diffusion Ordinary Differential Equation (ODE) (Song et al., 2020a; Lu et al., 2022a; Zhang
& Chen, 2022; Liu et al., 2022a; Song et al., 2020a; Lu et al., 2022b; Zhao et al., 2023; Zheng et al.,
2024). These methods use more sophisticated numerical solvers for diffusion ODEs and require no
neural network retraining. Solving diffusion ODEs involves a mandatory step of selecting discretiza-
tion time steps, and the choice of discretization points greatly influences sample quality. However,
there does not exist a time discretization strategy that works well for all dataset-model-ODE solver
combinations. Here, we propose an effective yet lightweight approach to learn good discretization
time steps for any pre-trained DPM.

1

https://github.com/vinhsuhi/LD3

Published as a conference paper at ICLR 2025

Assuming the ODE solving pipeline is differentiable, which holds for most ODE solvers currently
in use, our idea is to directly minimize the global truncation error to optimize the time steps, which
are input to the solver and hence can be treated as trainable parameters. Specifically, we employ a
teacher ODE solver that takes small step sizes to approximate the gold standard solution of the ODE.
The student with learnable discretized time steps is then tasked to mimic the teacher’s final output
given the same input (i.e., the initial condition of the ODE).

One problem with this learning framework is the limited capacity of the student model, which can
only optimize a few parameters to mimic a stronger teacher, sometimes leading to “underfitting” and
suboptimal performance. To address this, we propose a surrogate objective that is easier for the
student to optimize. We validate this objective by theoretically proving its “closeness” to the original
distillation objective, upper bounding the KL divergence between the distributions induced by the
teacher and the student solvers. The resulting algorithm, termed Learning to Discretize Denoising
Diffusion ODEs (LD3), efficiently learns the time discretization by backpropagating through the
ODE-solving procedure using the proposed surrogate loss. LD3 can be viewed as an additional step
to further improve the sample quality of DPMs after making other design choices such as distilling
the denoising model and choosing an ODE solver. Additionally, LD3 is efficient and only requires a
small set of random samples from a tractable noise distribution. Table 1 summarizes the benefits that
LD3 brings compared to related approaches.

Empirically, we test LD3 on both pixel space (Karras et al., 2022) and latent space DPMs (Rombach
et al., 2022) across various resolutions, including 32×32 (e.g., CIFAR10 (Krizhevsky & Hinton,
2009)), 256×256 (e.g., LSUN-Bedroom (Yu et al., 2015), ImageNet (Russakovsky et al., 2015)), and
512×512 text-to-image generation (Rombach et al., 2022; Liu et al., 2023) as well as various types
of conditions (e.g., class, text prompt) (Rombach et al., 2022). LD3 performs significantly better than
existing time discretization heuristics, especially with small NFE (below 10). Additionally, LD3 can
be trained in 5 to 40 minutes on a single GPU.

2 RELATED WORK

Table 1: Comparison of LD3 with existing methods, including Watson et al. (2022), AYS (Sabour
et al., 2024), GITS (Chen et al., 2024), and DMN (Xue et al., 2024), based on several criteria. The
first criterion is training speed: methods that optimize time discretizations in less than one hour are
classified as "Fast", while others are considered "Slow". Training stability is true for methods not
requiring variance reduction techniques or early stopping to exhibit stable training. A method is,
respectively, solver-adaptable and network-adaptable if it considers information about the solver and
trained neural networks when optimizing the time steps. Finally, we examine whether a model can
directly optimize the global truncation error.

Criterion Watson et al. (2022) AYS GITS DMN LD3 (ours)
Training speed Slow Slow Fast Fast Fast
Training stability ✗ ✗ ✓ ✓ ✓
Solver adaptability ✓ ✓ ✗ ✗ ✓
Network adaptability ✓ ✓ ✓ ✗ ✓
Global error optimization ✗ ✗ ✗ ✗ ✓

A well-established approach to accelerating DPMs involves distilling high-quality denoising networks,
which typically require many function evaluations, into models that perform the task in fewer steps
with minimal performance loss (Meng et al., 2023; Salimans & Ho, 2022; Fan & Lee, 2023). However,
this method requires expensive training (Liu et al., 2022b; Luhman & Luhman, 2021; Meng et al.,
2023; Song et al., 2023) before the models can be used for sampling. In comparison, distillation-based
methods are significantly slower than our approach—by several orders of magnitude—and lack the
flexibility to be used in a plug-and-play manner.

In addition to fine-tuning the denoising network, many methods focus on developing more effective
ODE solvers (Lu et al., 2022a; Zhang & Chen, 2022; Liu et al., 2022a; Song et al., 2020a; Lu et al.,
2022b; Zhao et al., 2023). The key insight is that truncation errors accumulating during the backward
sampling process can significantly degrade the quality of generated images, especially when NFE is
reduced. To mitigate this, advanced ODE solvers are required. However, since these solvers still rely

2

Published as a conference paper at ICLR 2025

on multi-step sampling, selecting an appropriate strategy is crucial. Current approaches often rely on
handcrafted schedules, which may not be optimal.

Recent work has focused on optimizing time schedules. Xue et al. (2024) formulate an optimization
problem aimed at identifying the optimal time discretization. They derive an upper bound for the
global truncation error under the assumption that the score prediction error of the pretrained model is
uniformly bounded by a small constant. However, this assumption is quite strong, as it leads to an
optimization problem that depends solely on the noise schedule parameters, ignoring the influence
of both the solver and the neural network. While this allows for a fast solution, typically found in a
matter of seconds, it overlooks critical information about the pretrained model (trained dataset) and
solver design. Furthermore, minimizing the upper bound does not necessarily equate to minimizing
the actual global error.

Recent work by Sabour et al. (2024) empirically observe this problem when they derive a bound to the
divergence between the analytical ODE solution distribution and the numerical solution distribution.
Their objective is challenging to optimize that they need to simulate many sampling trajectories
and use a large batch size when performing optimization to reduce the variance and early stopping
to prevent divergence. Consequently, their proposed approach is slow and hard to use. Instead
of optimizing the global truncation error, Chen et al. (2024) optimizes the local truncation errors.
However, their method ignores the information about the solver being used to solve the ODE and
it is not guarantee to optimize the global truncation error. Watson et al. (2022; 2021) propose
the Differentiable Diffusion Sampler Search (DDSS) method, which aims to improve the Kernel
Inception Score by optimizing time discretization. By leveraging Kernel Inception Score (KID) to
guide the optimization process, DDSS aims to enhance the quality of generated samples. However,
their method requires a large amount of training samples and needs over 50k iterations with batch
size 512 to converge. We summarize some key differences between LD3 and similar approaches
in Table 1.

3 BACKGROUND

Diffusion Probabilistic Models (DPMs) (Ho et al., 2020; Song et al., 2020b) involve a forward
diffusion process that gradually converts samples following a data distribution into samples from
a pre-specified noise distribution. Specifically, given a sample x0 from the data distribution q, the
forward process gradually perturbs it by adding Gaussian noise, which is chosen such that the
distribution at time step T is a Gaussian distribution: xT ∼ N (0, σ2

T I). For any t ∈ [0, T], the
Gaussian transition kernel is defined as

q(xt|x0) = N (αtx0, σ
2
t I), (1)

where αt and σt are two noise schedule hyperparameters designed so that the signal-to-noise ratio
(SNR) α2

t /σ
2
t is strictly decreasing when increasing t. This ensures that more information about x0

is discarded as t increases.

To learn the data distribution q(x0), DPMs are tasked to recover information discarded by the
forward process. This results in a so-called backward process that starts from the noise distribution
xT ∼ q(xT) and moves backward through time to reconstruct x0. Specifically, a neural network
ϵθ(xt, t) is trained to predict the noise added by the forward pass given xt and t by minimizing

Ex0,ϵ,t

[
ω(t)∥ϵθ(xt, t)− ϵ∥22

]
, (2)

where xt := αtx0 + σtϵ with ϵ ∼ N (0, I) is the noisy sample at time t, t∼U [0, T] is the time step,
and ω(t) ∈ R+ is a time-dependent weight for time step t. ϵθ(xt, t) is a learnable deterministic
function parameterized by θ that predicts the noise added to xt.

One way to sample from a trained DPM is to first draw xT randomly and then use it as the initial
condition to solve the following diffusion ODE, whose solution is proven to match the data distribution
q(x0) if ϵθ(xt, t) is optimal (Song et al., 2020b; Lu et al., 2022a; Zhang & Chen, 2022; Liu et al.,
2022a; Song et al., 2020a; Lu et al., 2022b; Zhao et al., 2023; Zheng et al., 2024):

∂xt

∂t
= f(t)xt +

g2(t)

2σt
ϵθ(xt, t), where f(t)=

∂logαt

∂t
, g2(t)=

∂σ2
t

∂t
− 2f(t)σ2

t . (3)

3

Published as a conference paper at ICLR 2025

Figure 1: Motivation and elaboration of LD3. (a) Directly optimizing the global truncation error
loss Lhard by minimizing the teacher and student outputs improves sample quality. (b) The surrogate
objective Lsoft that allows discrepancies in the initial condition (i.e., xT) between the teacher solver
and the student solver is easier to optimize. (c) By optimizing the surrogate objective, LD3 learns
better discretization strategies.

4 LEARNING TO DISCRETIZE DENOISING DIFFUSION ODES

Our main goal is to reduce the computational burden of DPMs while maintaining their generation
quality. In particular, we focus on the small number of neural function evaluation (NFE) regimes
with at most 10 evaluations of the denoising network to generate a sample.

The ODE view of DPMs allows us to treat the problem of DPM sampling as solving a class of ODEs,
where choosing discretization points is critical. Although one may hope that a universal discretization
strategy exists for various DPMs, we find that both the structure of the DPM and the training data
influence the optimal time discretization, with no single strategy working well for all cases. Instead,
we propose a general yet efficient algorithm to learn discretization strategies for DPMs.

In the following, we first approach this problem under the framework of global truncation error
optimization (Sec. 4.1). We then elaborate on a potential underfitting problem of this optimization
problem and propose a surrogate objective to improve sampling performance (Sec. 4.2). Finally, we
provide details of the algorithm and the training process (Sec. 4.3).

4.1 LEARNING TO DISCRETIZE BY OPTIMIZING THE GLOBAL TRUNCATION ERROR

Given a pre-trained denoising network ϵθ(·, ·) and an initial state xT ∼N (0, σ2
T I) at time step T , we

solve the diffusion ODE stated in Equation (3), typically by applying a numerical method such as
Euler or Heun’s method. This process is carried out over a sequence of decreasing time steps {ti}Ni=0,
where T = t0 > t1 > · · · > tN = 0. At each time step, the state is updated according to the ODE
dynamics, guided by the denoising network. The final solution, computed at time tN = 0 is denoted
as Ψ(xT , {ti}Ni=0, ϵθ). Recall that our goal is to learn the set of time steps {ti}Ni=0. To ensure these
time steps remain monotonic (i.e., non-increasing), we encode the time steps by a monotonic function
τξ parameterized by ξ such that for each i ∈ N, 0 ≤ i ≤ N , we have τξ(i) = ti.1 For simplicity in
notation, we now express Ψ(xT , {τξ(i)}Ni=0, ϵθ) as Ψξ(xT). Additionally, we denote the distribution
induced by the transformed state Ψξ(xT) as pξ(x0), which is obtained by first sampling xT and then
passing it through the network Ψξ(·).
Define Ψ∗(xT , ϵθ) as a teacher ODE solver that accurately solves the diffusion ODE and the
distribution induced by Ψ∗ as q(x0). We aim to minimize the KL divergence between the teacher
distribution q(x0) and the student distribution pξ(x0):

min
ξ

DKL(q(x0) ∥ pξ(x0)) = min
ξ

Ex0∼q(·)

[
log

(
q(x0)

pξ(x0)

)]
. (4)

To minimize the objective mentioned above, we focus on reducing the global truncation error, which
entails training the student ODE solver Ψξ to closely mimic the behavior of the teacher ODE solver
Ψ∗. We refer to this as hard teacher forcing. Formally, this gives rise to the following optimization

1More details about τξ will be discussed in Section 4.3.

4

Published as a conference paper at ICLR 2025

problem we propose:

min
ξ

Lhard(ξ) := min
ξ

ExT∼N (0,σ2
T I)[d(Ψξ(xT),Ψ∗(xT))] , (5)

where d(·, ·) is a differentiable function that satisfies ∀x,y : d(x,y) ≥ 0 and d(x,y) = 0 if and only
if x = y. Some examples are squared l2 distance d(x,y) = ∥x−y∥22 and Learned Perceptual Image
Patch Similarity (LPIPS) (Zhang et al., 2018).

For any valid loss in the form of Equation (5), its global optimal solutions are also global optimal
solutions to Equation (4). Our proposed objective improves upon previous works by directly opti-
mizing the global truncation error and, consequently, the Kullback-Leibler (KL) divergence between
the student and teacher distributions. Unlike existing approaches that focus on minimizing local
truncation error (Chen et al., 2024) or optimizing an derived upper bound (Sabour et al., 2024;
Xue et al., 2024), our method addresses the fundamental error more effectively. Additionally, our
approach leverages information from both the student solver and the trained neural network, which are
often overlooked in similar studies (Chen et al., 2024; Xue et al., 2024). This holistic consideration
enhances the accuracy and performance of our solution.

4.2 OPTIMIZING DISCRETIZATION POINTS BY SOFT TEACHER FORCING

Despite having the same global optimum as the KL divergence between the teacher-induced and the
student-induced distribution, directly optimizing Lhard(ξ) could lead to underfitting — to minimize
the objective, we need to ensure Ψ∗(xT) = Ψξ(xT) for any xT , which is hard as we are only allowed
to optimize ξ, which typically contains no more than 20 parameters for student ODE solvers with low
NFE. This issue is illustrated by the 1D ODE shown in Figure 1(a), where the green curves are the
ground truth integral curves, and the red trajectories are from the teacher. The teacher matches the
ground truth closely, as it can take fine-grained steps to solve the ODE. However, given the restriction
that the student solver can only evaluate the ODE at three time steps before generating the output, an
inevitable truncation error exists between the teacher and the student.

One way around this problem is to optimize the parameters of the student denoising network ϵθ
in addition to ξ. However, this will significantly increase the sample complexity and the training
time, limiting the method’s efficiency and portability. Instead, we propose to relax the “hard” teacher
forcing criterion. Specifically, for any xT and the corresponding output of the teacher x0 := Ψ∗(xT),
we only require the existence of an input x′

T that is “close” to xT , such that the student’s output given
x′
T (i.e., Ψξ(x

′
T)) matches x0. We define B(x, rσT) := {x′ | ∥x− x′∥2 ≤ rσT } as the L2 ball of

radius rσT around x. Take the 1D ODE in Figure 1(a) as an example. Although it may be impossible
to force the student solvers to map the same point xT to the teacher’s output, we can instead find a
nearby input x′

T that does map to the teacher’s output Ψ∗(xT) (i.e., Ψξ(x
′
T)). The goal is that, by

finding such x′
T points close to xT , as illustrated in Figure 1(c), the student solver’s distribution at

t = 0 will still closely match the teacher’s distribution. Note that x′
T is only used during training to

find the optimal discretization points. Formally, we relax the objective defined in Equation (5) into
the following for an r > 0:

min
ξ

Lsoft(ξ) := min
ξ

ExT∼N (0,σ2
T I)

[
min

x′
T∈B(xT ,rσT)

d(Ψξ(x
′
T),Ψ∗(xT))

]
. (6)

soft()

r=0.0 0.1 0.2 0.5 1.0

0.08

0.10

0.12

0.14

0.16

1.0

Figure 2: Lsoft(ξ) drops signifi-
cantly as we increase r.

The effectiveness of this relaxed objective depends on two ques-
tions: (i) compared to Lhard(ξ), how much easier is it to optimize
Lsoft(ξ) given the fact that we only have a handful of learnable
parameters (i.e., ξ); (ii) whether minimizing Lsoft(ξ) leads to stu-
dent distributions that have small KL divergence with the teacher
distribution (i.e., the ground-truth objective in Eq. (4)).

We start by showing positive evidence to the first question — em-
pirically, a small r suffices to ensure Lsoft(ξ) being much smaller
than Lhard(ξ) after training. We experiment on a pre-trained
DPM (Karras et al., 2022) on AFHQv2 (Choi et al., 2020). We
optimize the discretization points (i.e., ξ) with respect to Lsoft(ξ)
using different r and plot the training loss. We use the LPIPS distance (Zhang et al., 2018) for
d(·, ·). As shown in Figure 2, compared to r = 0.0, where Lsoft and Lhard are identical, the loss is
significantly reduced as we relax the optimization problem by increasing r.

5

Published as a conference paper at ICLR 2025

We now move on to the second question: if we can effectively minimize Lsoft(ξ), can we establish
some form of guarantee of the student in terms of its KL divergence with the teacher distribution?
We confirm this with the following theoretical result.

Theorem 1. Let Ψ∗ and Ψξ be a teacher and student ODE solver each with noise distribution
N (0, σ2

T I) ∈ Rd, and with, respectively, distributions q and pξ. Assume both Ψ∗ and Ψξ are
invertible. Let r > 0, if the objective from Equation (6) has an optimal solution ξ∗ for r with
objective value 0, we have

DKL(q(x) ∥ pξ∗(x)) ≤ r2

2
+ r

√
d+ 1 + Ex∼q(x) [|C(Ψ∗(x))− C(Ψξ∗(x))|] ,

where C(Ψξ∗(x)) = log |det JΨξ∗ (Ψ
−1
ξ∗ (x))|.

The proof is provided in Appendix A.1. Intuitively, the theorem states that, if we can find an optimal
solution ξ∗ that minimizes Lsoft, then the KL divergence between the teacher (i.e., q(x)) and the
student (i.e., pξ∗(x)) can be upper bounded. The first two terms depend mainly on r and the square
root of the dimensionality:

√
d+ 1. Since r is chosen to be quite small (e.g., 0.19 for CIFAR10, 4

NFE), the first two terms are effectively tight in practice. While it is hard to establish an analytic
bound for the third term, we conduct numerical evaluations to estimate its magnitude in practice and
observe that it reduces with r. See Appendix A.2 for more details.

4.3 PRACTICAL IMPLEMENTATION

Algorithm 1 LD3
Require: Student solver Ψξ, teacher solver Ψ∗, and r
1: D ← {(x′

T ,xT ,Ψ∗(xT)) |xT ∼ N (0, σ2
T),x

′
T = xT } ▷ Generate data D

2: while not converged do
3: (x′

T ,xT ,Ψ∗(xT)) ∼ D
4: L(ξ, ξc,x′

T) = LPIPS(Ψξ,ξc(x′
T),Ψ∗(xT)) subject to x′

T ∈ B(xT , rσT)
5: Update ξ, ξc, and x′

T using the corresponding gradients∇L(ξ, ξc,x′
T)

6: x′
T ← xT + 1 [∥x′

T − xT ∥2 > r] · r x′
T−xT

∥x′
T
−xT ∥2

▷ Projected SGD

7: Update D with the new x′
T

8: end while

Now that we have justified the effectiveness of Lsoft(ξ), we are left with the question of how to
optimize it in practice. This is achieved by treating Lsoft(ξ) as jointly optimizing ξ and x′

T with the
constraint that x′

T is within the r-ball of xT :

L(ξ,x′
T) := ExT∼N (0,σ2

T I)[LPIPS(Ψξ(x
′
T),Ψ∗(xT))] , subject to x′

T ∈ B(xT , rσT). (7)

Note that we choose d := LPIPS (Zhang et al., 2018) as the distance metric in our setting. LPIPS is
also a common choice in many distillation-based models (Song et al., 2023; Salimans & Ho, 2022).
As illustrated in Figure 1(b), given an input-output pair (xT ,Ψ∗(xT)) from the teacher, we forward
through the student ODE solver steps with learnable parameters ξ and x′

T . Backpropagation is then
performed to get the gradients w.r.t. LPIPS(Ψξ(x

′
T),Ψ∗(xT)). Finally, we use projected SGD to

enforce the constraint on x′
T and use SGD to update ξ. Specifically, let xT be the center of a r-sphere

and x′
T a point. Then the projection of x′

T , which is the intersection of the line between xT and x′
T

with the sphere’s surface, can be computed as xp := xT + r
x′
T−xT

∥x′
T−xT ∥2

.

Parameterization. Starting from a trainable vector ξ ∈ RN+1, we model τξ(i) as a strictly mono-
tonically decreasing function using a cumulative softmax function, followed by renormalization to
the range [tmin, T]:

τξ(i) :=
τ ′ξ(i)− τ ′ξmin

τ ′ξmax
− τ ′ξmin

(T − tmin) + tmin , where τ ′ξ(i) =

N∑
n=i

softmax(ξ)[n].

Here, tmin is often utilized in training and sampling as a substitute for 0 in the diffusion model to
mitigate numerical instability problems (Karras et al., 2022; Song et al., 2023).

6

Published as a conference paper at ICLR 2025

During training, DPMs denoise images from real data, while during inference, they use predictions
from previous steps, leading to discrepancies and errors (Ning et al., 2023; Li et al., 2023). As
suggested by (Li et al., 2023), we learn decoupled time steps tci as input to the denoising model, while
ti determines the solver’s step size. We parameterize tci as τ cξ(i) := τξ(i) + ξci . For simplicity, we
still use Ψξ to refer to the student solver with decoupled time step variables.

Training. The final LD3 algorithm is shown in Algorithm 1. In line 1, we first generate training
samples by first sample xT ∼ N (0, σT I) and then compute the corresponding teacher outputs
Ψ∗(xT). Initially, the same starting samples are used for both the student and the teacher (i.e.,
x′
T = xT), resulting in a dataset D = {(x′

T ,xT ,Ψ∗(xT))}. In every iteration, we first compute the
objective shown in Equation (7) (line 4), and then apply gradient-based updates to ξ and x′

T (line 5).
An additional projected SGD step is applied to x′

T to bound the distance between x′
T and xT (line 6).

The algorithm terminates after convergence.

Since computing Ψξ(x
′
T) involves evoking the denoising network ϵθ multiple times, naively storing

all intermediate outputs for efficient backpropagation would lead to memory overhead that scales
linearly w.r.t. NFE. To reduce the memory overhead, we use the rematerialization technique proposed
in (Watson et al., 2022) to only cache the intermediate xt. This leads to an almost constant memory
overhead w.r.t. NFE. Please refer to Appendix D.3 for details.

5 EXPERIMENTS

Experiment setup. We evaluate 7 pre-trained diffusion models across different domains. For pixel
space models, we include CIFAR10 (32×32) (Krizhevsky & Hinton, 2009), FFHQ (64×64) (Karras
et al., 2019), and AFHQv2 (64×64) (Choi et al., 2020). For latent space models, we assess LSUN-
Bedroom (256×256) (Yu et al., 2015) and class-conditional ImageNet (256×256) (Russakovsky et al.,
2015) with a guidance scale of 2.0. Additionally, we consider text-to-image generation models,
including Stable Diffusion v1.5 (Rombach et al., 2022) at 512×512 pixels with a guidance scale of
7.5, and InstaFlow Liu et al. (2023).

We primarily assess LD3 using advanced diffusion ODE solvers, including DPM_solver++ (Lu et al.,
2022b), Uni_PC (Zhao et al., 2023), and iPNDM (Zhang & Chen, 2022). Additionally, we test LD3
with Euler, a standard black-box ODE solver. To evaluate the performance of our learned discretization
method, we compare it against 8 existing discretization methods. For commonly used discretization
choices, we include time uniform (Lu et al., 2022b; Ho et al., 2020), time quadratic (Song et al.,
2020a), time EDM (Karras et al., 2022), and time logSNR (uniform in λ) (Zhang & Chen, 2022), with
details provided in Appendix D.2. For more recent advanced discretization methods, we compare
LD3 to DMN (Xue et al., 2024), GITS (Chen et al., 2024), AYS (Sabour et al., 2024), and Watson
et al. (2022). Since AYS (Sabour et al., 2024) and Watson et al. (2022) do not have published code,
we adhere to their settings and compare our results with their reported metrics in Appendix E.

For CIFAR10, FFHQ, and AFHQv2, we use 100 samples for both training and validation and train
LD3 for 7 epochs with a batch size of 2. We set r proportional to the dimensionality d and inversely
proportional to the squared NFE: r = γ × d

NFE2 , where γ = 0.001 in all experiments. For Latent
Diffusion (Rombach et al., 2022) on ImageNet and LSUN-Bedroom, we use 100 samples for both
training and validation, with the training conducted over 5 epochs. Unless stated otherwise, we
draw 50k samples for the evaluation using the FID score (Heusel et al., 2017) against a reference
data set, where lower scores indicate better quality. For text-to-image generation, we train Stable
Diffusion (Rombach et al., 2022) and InstaFlow Liu et al. (2023) by randomly selecting 5 prompts
from the MSCOCO dataset (Lin et al., 2015) and generate 10 training pairs for each prompt. We train
them for 5 epochs. Details of experiment settings can be found in Appendix D.

DMN GITSLD3

"A red apple on a white table."

DMN GITSLD3

"A medieval knight standing in a castle courtyard."

Figure 3: Side-by-side comparison of selected images generated with Stable Diffusion [iPNDM].
Left: NFE=6, Right: NFE=5.

7

Published as a conference paper at ICLR 2025

Main results. LD3 consistently improves generation quality across all solvers (Table 2), particularly
in low NFE settings. For instance, on the AFHQv2 dataset with NFE=4, iPNDM [LD3] achieves an
FID score of 9.96, outperforming other approaches, which achieve a best score of 12.89. At NFE=10,
LD3 delivers the best performance across all datasets, with FID scores of 2.38 on CIFAR10, 2.27
on AFHQv2, and 3.25 on FFHQ. Additional results, including for the pixel space LSUN-Bedroom
(256x256) dataset and various NFE settings, are available in Appendix F.1 and Appendix F.4. Table 3
compares LD3’s optimized time steps with common time discretization methods, demonstrating a
clear advantage of the optimized steps over standard choices.

Table 2: FID comparison on CIFAR10, AFHQv2,
and FFHQ and the two solvers Uni_PC and iP-
NDM. We compare LD3 and two different time
discretization optimization methods, DMN and
GITS. FID scores are computed with 50k samples
using the reference data set.

Method NFE=4 NFE=6 NFE=8 NFE=10

CIFAR10
Uni_PC (3M) 43.92 13.12 4.41 3.16
Uni_PC [GITS] 25.32 11.19 5.67 3.70
Uni_PC [DMN] 26.35 8.09 5.90 2.45
Uni_PC [LD3] 13.72 5.92 3.42 2.87
iPNDM (3M) 35.04 11.80 5.67 3.69
iPNDM [GITS] 15.63 6.82 4.29 2.78
iPNDM [DMN] 28.09 9.24 7.68 3.31
iPNDM [LD3] 9.31 3.35 2.81 2.38
Teacher 2.08

AFHQv2
Uni_PC (3M) 33.78 8.27 4.60 3.81
Uni_PC [GITS] 12.20 7.26 3.86 2.88
Uni_PC [DMN] 30.32 14.46 6.85 2.94
Uni_PC [LD3] 12.99 3.81 2.90 2.84
iPNDM (3M) 23.20 9.55 4.49 3.19
iPNDM [GITS] 12.89 6.10 4.03 3.26
iPNDM [DMN] 33.15 16.01 10.12 3.22
iPNDM [LD3] 9.96 3.63 2.63 2.27
Teacher 2.11

FFHQ
Uni_PC (3M) 53.25 11.24 5.59 3.90
Uni_PC [GITS] 21.38 12.21 7.84 4.46
Uni_PC [DMN] 25.82 9.47 6.85 3.54
Uni_PC [LD3] 21.00 5.97 3.50 3.27
iPNDM (3M) 36.54 16.44 8.11 5.39
iPNDM [GITS] 18.05 9.38 5.72 3.96
iPNDM [DMN] 31.30 12.12 11.00 5.24
iPNDM [LD3] 17.96 6.47 3.97 3.25
Teacher 2.54

Table 3: Comparison of FID scores on CIFAR10
using iPNDM solver. We compare LD3’s dis-
cretization with commonly selected heuristics.

Discretization type NFE=4 NFE=6 NFE=8 NFE=10

Time LogSNR 35.04 11.80 5.67 3.69
Time Uniform 266.26 229.39 205.24 185.28
Time Quadratic 139.72 68.82 37.82 23.40
Time EDM 29.78 9.95 5.41 3.80
LD3 9.31 3.35 2.81 2.38

Table 4: FID score at small NFE regimes on latent
diffusion models. We investigate LSUN-Bedroom
and ImageNet datasets. FID scores are computed
based on 50k samples using the reference data set.
Additional results can be found in Appendix F.4.

Method NFE=4 NFE=5 NFE=6 NFE=7

LSUN-Bedroom-256 (latent space)
Uni_PC (3M) 39.78 13.88 6.57 4.56
Uni_PC [GITS] 70.93 47.37 22.33 17.27
Uni_PC [DMN] 29.22 8.21 4.40 4.55
Uni_PC [LD3] 20.15 9.09 4.98 4.18
iPNDM (3M) 11.93 6.38 5.08 4.39
iPNDM [GITS] 76.86 59.17 28.09 19.54
iPNDM [DMN] 11.82 6.15 4.71 5.16
iPNDM [LD3] 8.48 5.93 4.52 4.31
Teacher 3.06

Imagenet-256 (latent space)
Uni_PC (3M) 20.01 8.51 5.92 5.20
Uni_PC [GITS] 54.88 34.91 14.62 9.04
Uni_PC [DMN] 16.72 7.96 7.54 7.81
Uni_PC [LD3] 9.89 5.03 4.46 4.32
iPNDM (3M) 13.86 7.80 6.03 5.35
iPNDM [GITS] 56.00 43.56 19.33 10.33
iPNDM [DMN] 10.15 7.33 7.25 7.40
iPNDM [LD3] 9.19 6.03 5.09 4.68
Teacher 4.17

Table 5: FID scores on Stable Diffusion v1.5.
We follow the standard FID evaluation with 30k
captions from MS-COCO (Lin et al., 2015).

Method NFE=4 NFE=5 NFE=6 NFE=7

iPNDM (2M) 17.76 14.41 13.86 13.76
iPNDM [GITS] 18.05 14.11 12.10 11.80
iPNDM [DMN] 21.70 17.30 13.68 11.88
iPNDM [LD3] 17.32 13.07 12.40 11.83

Table 6: LD3 improves InstaFlow, a few-step
text-to-image generation model. We compare the
FID score with 10k captions sampled from MS-
COCO (Lin et al., 2015).

Method NFE=2 NFE=4 NFE=6

InstaFlow 22.56 16.04 14.78
InstaFlow [LD3] 15.49 14.33 14.12
Teacher (NFE = 8, Uniform) 14.25

For latent space diffusion models, we compare our method to the best discretization approaches
using Latent Diffusion models (Rombach et al., 2022) trained on LSUN-Bedroom and ImageNet, as
shown in Table 4. Our model consistently matches or outperforms baseline methods, particularly

8

Published as a conference paper at ICLR 2025

in low NFE scenarios. For example, at NFE=4, Uni_PC [LD3] achieves an FID score of 20.15 on
LSUN-Bedroom, around 9 points better than the next best model, Uni_PC [DMN].

We also test the performance of LD3 on text-to-image generation. Table 5 shows performance of LD3
on Stable Diffusion. Generally, LD3 outperforms the default Time Uniform discretization while GITS
and DMN only improve the performance given enough number of steps. InstaFlow (Liu et al., 2023)
is a few-step text-to-image generation, it can generate high-quality images in just a few steps using
a simple Euler solver. We further show that LD3 can significantly boost the generation quality by
optimizing the time step (Table 6). For example, LD3 improves FID score from 22.56 to 15.49 with
only 2 NFE. One might question how different training prompts affect the final results. Interestingly,
when we train our model using different sets of prompts, we achieve similar FID scores with small
variance. Please refer to Appendix F.3 for more details. For qualitative comparisons, please refer
to Figures 3 and 4 and Appendix F.5.

Figure 4: Side-by-side comparison of random images generated by different pre-trained models
across four datasets: AFHQv2, ImageNet, FFHQ, and LSUM-Bedroom. We compare LD3 with
DMN (Xue et al., 2024), GITS (Chen et al., 2024), and Time Uniform discretization. For each dataset,
samples from each column are created using the same initial noise, solver, and the number of NFE.
We provide more side-by-side comparisons in Appendix F.5

Ablation study. We investigate the importance of different components in our model as shown
in Table 7. Initially, we compare variants with and without training ξc (cf. the decoupling technique
described in Section 4.3) and then examine the effects of other factors on performance. This is
particularly important because the variant without ξc is easily integrated into any ODE samplers,
making a detailed study of its behavior beneficial to the community. We observe that ξc significantly
contributes to the performance of LD3, which is expected as it effectively doubles the number of
trainable parameters. For both versions, optimizing Lhard results in worse performance compared
to optimizing Lsoft. For instance, on CIFAR10, with NFE=6, using Lsoft improves the FID score
by 44% (from 13.46 to 7.51). The effect of Lsoft is less pronounced without ξc; with the same NFE,
Lsoft boosts the FID by 15% (from 14.20 to 12.03).

Table 8 highlights the importance of learning a time discretization tailored to the ODE solver type. In
particular, we train LD3 using DPM_Solver++, utilizing the optimized time steps for testing on both
DPM_Solver++ and Euler. If the choice of solver were irrelevant, the optimized time steps would
perform well on both solvers. However, this is not the case. Optimized time steps for DPM_Solver++
perform poorly for Euler and vice versa. For instance, the optimized time steps for DPM_Solver++

9

Published as a conference paper at ICLR 2025

yield an FID score of 42.44 on Euler, whereas those optimized for Euler achieve a score of 25.28 on
the same solver.

Table 7: Ablation study on CIFAR10 and FFHQ. We
conduct the experiment with DPM_Solver++(3M).

Setting NFE=4 NFE=5 NFE=6

CIFAR10

w/ ξc
Full setting 19.39 9.08 7.51
w/ Lhard 19.62 10.17 13.46
w/ L2 33.25 15.13 11.78

w/o ξc
Full setting 33.34 19.39 12.03
w/ Lhard 33.75 19.50 14.20
w/ L2 56.49 21.65 15.36

FFHQ

w/ ξc
Full setting 27.99 13.32 7.53
w/ Lhard 30.52 14.20 9.12
w/ L2 26.01 16.33 13.47

w/o ξc
Full setting 30.94 16.76 11.05
w/ Lhard 31.04 17.64 12.58
w/ L2 38.73 21.97 16.57

Table 8: We examine the importance of tailor-
ing the time discretization to ODE solvers. We
use Euler and DPM_Solver++ with LD3 on the
AFHQv2 dataset for this experiment. Each row
shows the FID scores when LD3 is trained with
a specific solver, while each column presents
the FID scores when sampled with a specific
solver.

Solver name DPM_Solver++ Euler_Solver

NFE=4 DPM_Solver++ 13.86 42.44
Euler_Solver 231.00 25.28

NFE=6 DPM_Solver++ 5.47 14.16
Euler_Solver 46.63 11.08

Efficiency and performance. LD3 demonstrates significantly faster training times compared to
AYS (Sabour et al., 2024). As shown in Figure 5 (a), LD3 can be optimized in less than an hour on a
single GPU, while AYS typically requires several hours on multiple GPUs. For instance, at 10 NFE,
our model needs approximately 36 minutes on a single NVIDIA A100 GPU, whereas AYS requires 3
to 4 hours on 8 NVIDIA RTX6000s.

We generally only need 100 teacher noise-sample pairs for training and validation. Figure 5 (b)
demonstrates that increasing the training size reduces the FID score. Since the performance plateaus
at around 100 samples, we use ∼100 samples in practice to balance performance and efficiency.

10 20 30 50 100 500 1K
Data Sizeb)

0

10

20

30

40

FID
CIFAR10
AFHQv2

NFE=4 5 6 7 8 9 10
Number of Function Evaluationsa)

0

50

100

150

200

mins

1 hour

LD3 CIFAR10-32 (1 A100)
LD3 AFHQv2-64 (1 A100)
LD3 ImageNet-256 (1 A100)

AYS CIFAR10-32 (4 RTX6000s)
AYS AFHQv2-64 (4 RTX6000s)
AYS ImageNet-256 (8 RTX6000s)

LD3 Stable-diff-512 (1 A100)

Figure 5: (a) Training time for LD3 and AYS (Sabour
et al., 2024) on various NFE; (b) The effect of data size
on model performance (FID is evaluated with 5K samples,
DPM_Solver++(3M), NFE=4).

NFE=4 NFE=6 NFE=8 NFE=10
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

RM
SD

DPM_Solver++ (3M)
DPM_Solver++ [DMN]
DPM_Solver++ [GITS]
DPM_Solver++ [LD3]

Figure 6: Comparison of global
truncation error across time dis-
cretization methods. RMSD is com-
puted between student and goal
samples using 100-step DDIM.

6 CONCLUSION AND LIMITATIONS

We introduced LD3, a lightweight framework designed to reduce computational costs when sampling
from pre-trained DPMs. LD3 learns time discretization for ODE sampling, significantly lowering the
NFE needed to generate high-quality images with minimal training overhead. Our experiments across
various datasets demonstrate that LD3 consistently improves sampling quality. For instance, LD3
reduced the FID score on CIFAR10 (4 NFE) from 35.04 to 9.31 with 5 minutes of training on a GPU.
These results indicate that LD3 provides a more efficient approach to sampling from pre-trained
diffusion models, with promising applications in image synthesis and beyond.

Limitations and broader impact. Despite significant performance improvements for a few NFE,
LD3 still falls short of distillation-based methods regarding sample quality. A limitation of LD3
is that it needs to be trained separately for each given number of NFEs. Additionally, our model
necessitates a differentiable solver, which may not always be feasible. Using LD3 with advanced
diffusion ODE solvers to generate fake content could also exacerbate the potential risks of LD3 being
used for malicious purposes.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work was funded in part by Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy - EXC 2075 – 390740016, the DARPA ANSR program
under award FA8750-23-2-0004, the DARPA CODORD program under award HR00112590089,
the NSF grant #IIS-1943641, and gifts from Adobe Research, Cisco Research, and Amazon. We
acknowledge the support of the Stuttgart Center for Simulation Science (SimTech). VT and MN
thank IMPRS-IS (International Max Planck Research School for Intelligent Systems) for the support.
This work also received partial support from the Diabetes Center Berne.

11

Published as a conference paper at ICLR 2025

REFERENCES

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Defang Chen, Zhenyu Zhou, Can Wang, Chunhua Shen, and Siwei Lyu. On the trajectory regularity
of ode-based diffusion sampling. arXiv preprint arXiv:2405.11326, 2024.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Jiyu Fan, Ailing Fu, and Le Zhang. Progress in molecular docking. Quantitative Biology, 7:83–89,
2019.

Ying Fan and Kangwook Lee. Optimizing ddpm sampling with shortcut fine-tuning. arXiv preprint
arXiv:2301.13362, 2023.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. arXiv preprint arXiv:2406.14548, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10696–10706, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. Efficient rematerialization
for deep networks. Advances in Neural Information Processing Systems, 32, 2019.

12

Published as a conference paper at ICLR 2025

Mingxiao Li, Tingyu Qu, Wei Sun, and Marie-Francine Moens. Alleviating exposure bias in diffusion
models through sampling with shifted time steps. arXiv preprint arXiv:2305.15583, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778, 2022a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference on
Learning Representations, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2837–2845, 2021.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Mang Ning, Enver Sangineto, Angelo Porrello, Simone Calderara, and Rita Cucchiara. Input
perturbation reduces exposure bias in diffusion models. arXiv preprint arXiv:2301.11706, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
schedules in diffusion models. arXiv preprint arXiv:2404.14507, 2024.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

13

Published as a conference paper at ICLR 2025

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to efficiently sample
from diffusion probabilistic models. arXiv preprint arXiv:2106.03802, 2021.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers for
diffusion models by differentiating through sample quality. arXiv preprint arXiv:2202.05830,
2022.

Shuchen Xue, Zhaoqiang Liu, Fei Chen, Shifeng Zhang, Tianyang Hu, Enze Xie, and Zhenguo Li.
Accelerating diffusion sampling with optimized time steps. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8292–8301, 2024.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. arXiv preprint arXiv:2302.04867,
2023.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode solver
with empirical model statistics. Advances in Neural Information Processing Systems, 36, 2024.

14

Published as a conference paper at ICLR 2025

LEARNING TO DISCRETIZE DIFFUSION ODES
ADDITIONAL MATERIAL

A Analytical proofs 16

A.1 Proof of theorem . 16

A.2 Empirical measurement of the bound. 17

B Applying LD3 to different domains 18

B.1 Point cloud generation . 18

B.2 Molecular Docking . 20

C Comparison with few-step generation methods 21

C.1 Comparison with Consistency Distillation . 21

C.2 Comparison with Rectified Flows . 21

C.3 Comparison with Progressive Distillation . 22

D Experiment Details 22

D.1 Practical Implement Details . 22

D.2 Baseline discretization heuristics . 25

D.3 The Rematerialization Trick . 26

E More comparison with time discretization optimization methods 26

E.1 Compare to AYS on CIFAR10 and FFHQ . 26

E.2 Compare to AYS and GGDM+PRED+TIME on ImageNet-64 27

F Additional Results 27

F.1 LD3 on pixel space LSUN-Bedroom-256 trained with iDDPM 27

F.2 FID Progression during training . 28

F.3 Stable diffusion trained with different prompt sets 28

F.4 Full result tables . 29

F.5 Additional Samples . 30

15

Published as a conference paper at ICLR 2025

A ANALYTICAL PROOFS

A.1 PROOF OF THEOREM

Theorem 1. Let Ψ∗ and Ψξ be a teacher and student ODE solver each with noise distribution
N (0, σ2

T I), 0 ∈ Rd, and with, respectively, distributions q and pξ. Assume both Ψ∗ and Ψξ

are invertible. Let r > 0, if the objective from Equation (6) has an optimal solution ξ∗ for r
with objective value 0, we have

DKL(q(x) ∥ pξ∗(x)) ≤ r2

2
+ r

√
d+ 1 + Ex∼q(x) [|C(Ψ∗(x))− C(Ψξ∗(x))|] ,

where C(Ψξ∗(x)) = log |det JΨξ∗ (Ψ
−1
ξ∗ (x))|.

Proof. By assuming the invertibility of the solvers and the loss of Equation (6) having an optimal
(zero loss and satisfying all rσT -ball constraints) solution ξ∗, we have for every x ∼ q(x) exactly
one b with Ψ−1

∗ (x) = b and exactly one corresponding a with Ψ−1
ξ∗ (x) = a. Moreover, by definition

of the loss objective and the fact that a is an optimal and, therefore, also feasible solution, we have
a ∈ B(b, rσT) and thus ∥a− b∥2 ≤ rσT .

Using the density function of the normal distribution, we can now write

Ex∼q(x)

[
log

(
q(x)

pξ(x)

)]

= Ex∼q(x)

log
 N (b)

∣∣∣det dΨ∗(b)
db

∣∣∣−1

N (a)
∣∣∣det dΨξ∗ (a)

da

∣∣∣−1




= Ex∼q(x)

[
log(N (b)) + log

(∣∣∣∣det dΨ∗(b)

db

∣∣∣∣−1
)

− log(N (a))− log

(∣∣∣∣det dΨξ∗(a)

da

∣∣∣∣−1
)]

= Ex∼q(x) [log(N (b))− log(N (a))] + Ex∼q(x)

[
log

(∣∣∣∣det dΨ∗(b)

db

∣∣∣∣−1
)

− log

(∣∣∣∣det dΨξ∗(a)

da

∣∣∣∣−1
)]

= Ex∼q(x)

log
∏d

i=1
1

σT

√
2π

exp
(
− 1

2
b2i
σ2
T

)
∏d

i=1
1

σT

√
2π

exp
(
− 1

2

a2
i

σ2
T

)
+ Ex∼q(x)

[
log

(∣∣∣∣det dΨξ∗(a)

da

∣∣∣∣)− log

(∣∣∣∣det dΨ∗(b)

db

∣∣∣∣)]
(8)

with Ψ−1
ξ∗ (x) = a and Ψ−1

∗ (x) = b.

Now, simplifying the left expression from above, we obtain

Ex∼q(x)

log
∏d

i=1
1

σT

√
2π

exp
(
− 1

2
b2i
σ2
T

)
∏d

i=1
1

σT

√
2π

exp
(
− 1

2

a2
i

σ2
T

)
 = Ex∼q(x)

[
1

2σ2
T

d∑
i=1

(
a2i − b2i

)]
.

Rewriting ai = bi + ϵi for ϵi ∈ R we have

Ex∼q(x)

[
1

2σ2
T

d∑
i=1

(
2ϵibi + ϵ2i

)]
=

1

σ2
T

Ex∼q(x)

[
d∑

i=1

ϵibi

]
+

1

2σ2
T

Ex∼q(x)

[
d∑

i=1

ϵ2i

]
.

Since ∥a− b∥2 ≤ rσT , we have that
∑d

i=1(ai − bi)
2 ≤ r2σ2

T and again with ai = bi + ϵi we have
that

∑d
i=1 ϵ

2
i ≤ r2σ2

T .

Hence, we have that

1

2σ2
T

Ex∼q(x)

[
d∑

i=1

ϵ2i

]
≤ 1

2σ2
T

Ex∼q(x)

[
r2σ2

T

]
=

r2

2
,

16

Published as a conference paper at ICLR 2025

where the last equality follows from the independence of the random variables in the multivariate
distribution. Moreover, applying the Cauchy-Schwarz inequality, we have:

1

σ2
T

Ex∼q(x)

[
d∑

i=1

ϵibi

]
≤ 1

σ2
T

Ex∼q(x)

(d∑
i=1

ϵ2i

)1/2(d∑
i=1

b2i

)1/2


≤ 1

σ2
T

Ex∼q(x)

rσT

(
d∑

i=1

b2i

)1/2


=
r

σT
Eb∼N (0,σ2

T I)

(d∑
i=1

b2i

)1/2
 ,

(9)

where the second inequality follows from the definition of r. Since bi
i.i.d∼ N (0, σ2

T), the sum of
squares follows a Chi-squared distribution scaled by σ2

T (i.e.,
∑d

i=1 b
2
i ∼ σ2

Tχ
2
d). Thus:

r

σT
E

(d∑
i=1

b2i

)1/2
 =

r

σT
E
[√

σ2
Tχ

2
d

]
=

r

σT
σTE

[√
χ2
d

]
= r

√
2
Γ
(
d+1
2

)
Γ
(
d
2

) .

To this end, applying Gautschi’s inequality, we have:

Γ
(
d+1
2

)
Γ
(
d
2

) ≤
√

d+ 1

2
,

which gives:

r
√
2
Γ
(
d+1
2

)
Γ
(
d
2

) ≤ r
√
2

√
d+ 1

2
= r

√
d+ 1.

Thus, the first term of Equation (8) is upper bounded by:

DKL(q(x) ∥ pξ∗(x)) ≤ r2

2
+ r

√
2
Γ
(
d+1
2

)
Γ
(
d
2

) <
r2

2
+ r

√
d+ 1.

Combining with the second term of Equation (8), we get the final bound:

DKL(q(x) ∥ pξ∗(x)) ≤ r2

2
+ r

√
d+ 1 + Ex∼q(x) [|C(Ψ∗(x))− C(Ψξ∗(x))|] ,

where C(Ψξ∗(x)) = log |det JΨξ∗ (Ψ
−1
ξ∗ (x))|.

A.2 EMPIRICAL MEASUREMENT OF THE BOUND.

Figure 7: Estimation of |C(Ψ∗(x))− C(Ψξ∗(x))| across various r values.

17

Published as a conference paper at ICLR 2025

We can compute the first two terms of the KD bound in Theorem 1 since we know r and d. Although
it would be hard to establish a tight analytic bound for the third term, we can still empirically estimate
its magnitude in practical situations.

We test the empirical effect of r on the AFHQv2 (Choi et al., 2020) and FFHQ (Karras et al., 2019)
datasets. We change r from 10.0 down to 0.0 and approximate |C(Ψ∗(x))− C(Ψξ∗(x))| by first
sampling b ∼ N (0, σ2

T I). We then approximate

C(Ψ∗(x)) ≈ − log

(∣∣∣∣det dΨ∗(b)

db

∣∣∣∣)
using a teacher solver Ψ∗(.), here the Uni_PC solver with 20 NFE. Next we randomly sample an
a ∈ B(b, rσT), to approximate

C(Ψξ∗(x)) ≈ − log

(∣∣∣∣det dΨξ∗(a)

da

∣∣∣∣)
with the student solver Ψξ∗(.), here the Uni_PC solver with 7 NFE. Finally, we take the absolute
difference

H(x) := |C(Ψ∗(x))− C(Ψξ∗(x))| =
∣∣∣∣log(∣∣∣∣det dΨξ∗(a)

da

∣∣∣∣)− log

(∣∣∣∣det dΨ∗(b)

db

∣∣∣∣)∣∣∣∣ .
Since the computation of the Jacobian is very slow, we repeat this for 100 samples and take the average
to approximate Ex∼q(x)[H(x)], which is the third term of the bound in Theorem 1. Figure 7 shows
how Ex∼q(x)[H(x)] evolves as r changes. We observe that as r decreases so does Ex∼q(x)[H(x)].
Hence, we empirically verified that the overall bound in Theorem 1 tightens with smaller r as desired.
However, we also observe that Ex∼q(x)[H(x)] does not converge to 0 for r → 0. We hypothesize
that this is related to the fact that we only compute an approximation of Ex∼q(x)[H(x)] for randomly
sampled a and b with a maximum L2 distance of r and not for a and b for which we have that
Ψξ∗(a) = Ψ∗(b) as assumed by the theorem.

B APPLYING LD3 TO DIFFERENT DOMAINS

LD3 is applicable not only to image synthesis but also to various generation tasks. We demonstrate that
LD3 can be seamlessly integrated into diverse applications, including Point Cloud Generation (Luo
& Hu, 2021) and Molecular Docking (Corso et al., 2022). It is important to note that our goal is not
to compete with state-of-the-art models for each task. Instead, we select one representative method
per task to showcase how LD3 significantly enhances performance while using a limited number of
sampling steps.

B.1 POINT CLOUD GENERATION

Point cloud generation is the process of creating 3D representations of objects or scenes using discrete
points in space. This task is crucial for a wide range of applications, including 3D modeling, virtual
and augmented reality, robotics, and autonomous systems. We test LD3 on a diffusion model named
DMPG (Luo & Hu, 2021) trained on the airplain category of the ShapeNet dataset (Chang et al.,
2015).

We use codebase from (Luo & Hu, 2021) to train LD3, generate samples, and evaluate the quality of
these samples which allow us to evaluate the reconstruction quality of the point clouds using Chamfer
Distance (CD). The generation quality is measured with minimum matching distance (MMD), the
coverage score (COV), and the Jenson-Shannon divergence (JSD). We use the same reference set
following the original paper.

We generate 32 noise-sample pairs to train LD3 using 100 uniform ODE steps (teacher). We train
three LD3 students with NFE={4, 6, 8} using MSE loss function.

Table 9 shows that LD3 consistently improves point cloud generation performance when the number
of steps is limited. Interestingly, when NFE=8, LD3 even surpasses DMPG teacher in CD-COV
metric.

1∗ Code for DMPG is available at https://github.com/luost26/diffusion-point-cloud.

18

https://github.com/luost26/diffusion-point-cloud

Published as a conference paper at ICLR 2025

DMPG DMPG [LD3]
a) NFE=4

DMPG DMPG [LD3]
b) NFE=6

DMPG DMPG [LD3]
c) NFE=8

Figure 8: Selected point cloud generation examples. From top to bottom, we visualize student
models with NFE values of 4, 6, and 8. The left column shows DMPG with the default time
discretization, while the right column displays DMPG with LD3-optimized steps.

19

Published as a conference paper at ICLR 2025

Table 9: Comparison of point cloud generation performance. We use the public code∗ provided by
(Luo & Hu, 2021) for sampling and evaluation. CD is multiplied by 103, and JSD is multiplied by
103.

Model DMPG CD-MMD(↓) CD-COV (%, ↑) JSD (↓)

NFE=4

w/ Uniform 3.82 34.93 4.08
w/ EDM 3.50 42.83 4.38

w/ Quadratic 3.42 46.62 2.68
w/ DMN 3.44 45.30 3.04
w/ LD3 3.42 47.28 2.66

NFE=6

w/ Uniform 3.49 43.66 2.31
w/ EDM 3.37 47.28 2.51

w/ Quadratic 3.34 45.80 1.82
w/ DMN 3.51 43.16 2.42
w/ LD3 3.34 46.62 1.79

NFE=8

w/ Uniform 3.39 46.63 1.71
w/ EDM 3.35 45.96 2.02

w/ Quadratic 3.34 46.95 1.63
w/ DMN 3.37 46.62 1.61
w/ LD3 3.34 47.12 1.61

NFE=100 Teacher 3.27 47.12 1.03

B.2 MOLECULAR DOCKING

Molecular docking predicts how small molecules (ligands) bind to proteins, a critical process in
drug discovery for identifying potential therapeutics by understanding atomic-level interactions (Fan
et al., 2019). We evaluate LD3 using DiffDock (Corso et al., 2022), an advanced diffusion model
that surpasses traditional docking methods. DiffDock’s sampling process involves 18 steps (NFEs)
of a reverse SDE. We adapt this process by converting the SDE to an ODE and by generating 10
noise-sample pairs with 18 ODE steps (NFE) to train LD3. Our student model uses 6 NFE, and we
compare the performance of LD3 with that of the default uniform discretization method.

Green - Ground truth

Red - DiffDock[LD3]

Blue - DiffDock[Uniform]

Figure 9: Selected molecular docking example. Comparison of predicted structures from Diff-
Dock[LD3] (red) and DiffDock[Uniform] (blue) with the ground truth crystal structure (green).
The structures are generated using 6 NFE. Left: Both models correctly predict the binding site.
Right: DiffDock[LD3] (red) shows better alignment with the ground truth conformer (green) than
DiffDock[Uniform] (blue). The RMSD values for DiffDock[LD3] and DiffDock[Uniform] are 1.70
and 3.53, respectively.

We follow the evaluation protocol of prior work Corso et al. (2022). For each protein-ligand pair, we
sample 40 candidates and rank them using a pre-trained confidence model. The primary evaluation
metric is the RMSD between the predicted ligand coordinates and the ground truth ligand from the
PDB set. A prediction is considered accurate if its RMSD is less than 2Å (Corso et al., 2022).

As shown in Table 10, LD3 significantly narrows the gap between a 6-step student and an 18-step
teacher.

20

Published as a conference paper at ICLR 2025

Table 10: Comparison of molecular docking performance. We train LD3 and evaluate sample quality
using the public code provided by (Corso et al., 2022).

DiffDock Top-1 RMSD: %<2Å (↑) Top-5 RMSD: %<2Å (↑)

w/ DMN, NFE=6 33.62 40.40
w/ EDM, NFE=6 33.43 39.66
w/ Quadratic, NFE=6 33.43 39.94
w/ Uniform, NFE=6 32.77 39.55
w/ LD3, NFE=6 35.31 40.68
Teacher, NFE=18 38.46 46.15

C COMPARISON WITH FEW-STEP GENERATION METHODS

While LD3 significantly improves generation performance in few-step regimes, it still falls short of
1-step distillation-based methods regarding generation efficiency. However, for users with access to a
pre-trained diffusion model and limited computational resources, LD3 provides a practical solution
for efficiently optimizing sampling performance, without having to retrain the diffusion model. LD3 is
especially beneficial when a slightly slower sampling process (compared to distillation) is acceptable,
as it requires only a single GPU, drastically reduces training time by hundreds of times, and maintains
high efficiency.

We compare LD3 against Consistency Distillation (Song et al., 2023), Rectified Flow (Liu et al.,
2022b), and Progressive Distillation (Salimans & Ho, 2022) on the CIFAR-10 dataset. Our experiment
aims to answer the following question:

"How many sampling steps, with optimized discretization, are needed to match the performance of
existing few-step generation methods, and how much training effort can we save?"

C.1 COMPARISON WITH CONSISTENCY DISTILLATION

Table 11: Comparison with Consistency Distillation: We take the estimated training time and the
number of GPUs required to train the model from (Geng et al., 2024). Both diffusion models use the
NCSN++ architecture (Song et al., 2020b). The reported results for Consistency Distillation are the
best-performing numbers on CIFAR-10, achieved at NFE=2. For LD3, we use the iPNDM solver.

Architecture Training time #GPUs FID/NFE

CD NCSN++ 1 day 8 A100s 2.93 / NFE=2
LD3 [NCSN++] NCSN++ < 3 minutes 1 A100 15.61 / NFE=4
LD3 [NCSN++] NCSN++ < 3 minutes 1 A100 7.29/ NFE=5
LD3 [NCSN++] NCSN++ ≈ 3 minutes 1 A100 5.60 / NFE=6
LD3 [NCSN++] NCSN++ < 6 minutes 1 A100 3.19 / NFE=7
LD3 [NCSN++] NCSN++ < 6 minutes 1 A100 2.90 / NFE=8
LD3 [NCSN++] NCSN++ < 6 minutes 1 A100 3.59 / NFE=9
LD3 [NCSN++] NCSN++ ≈ 6 minutes 1 A100 2.87 / NFE=10

Consistency distillation (Song et al., 2023) is a diffusion-based distillation method designed to
produce high-quality samples in just one or two steps. Training a consistency model on CIFAR10
requires approximately one day on 8 A100 GPUs. For a fair comparison, we train LD3 under the
same conditions, using the same NCSN++ diffusion model backbone (Song et al., 2020b). With LD3,
we achieve slightly better sample quality than consistency distillation when using 8 NFE. While our
inference is 4 times slower, our training is 240 times faster and requires only 1/8 of the GPUs.

C.2 COMPARISON WITH RECTIFIED FLOWS

Rectified Flow (Liu et al., 2022b) seeks to learn a straight flow from the prior distribution to the data
distribution. However, the method still requires multiple steps to generate high-quality samples. For

21

Published as a conference paper at ICLR 2025

Table 12: Comparison with Rectified Flow: We estimate the training time for Rectified Flow using
the official code provided by its authors (Liu et al., 2022b), while the FID score is taken from Table
1-a of the original paper. For LD3, we employ the iPNDM solver.

Architecture Training time #GPUs FID/NFE

RF DDPM++ 1 day 8 A100s 2.58 / NFE=127
LD3 [DDPM++] DDPM++ < 3 minutes 1 A100 9.31 / NFE=4
LD3 [DDPM++] DDPM++ < 3 minutes 1 A100 8.17 / NFE=5
LD3 [DDPM++] DDPM++ ≈ 3 minutes 1 A100 3.35 / NFE=6
LD3 [DDPM++] DDPM++ < 6 minutes 1 A100 3.97 / NFE=7
LD3 [DDPM++] DDPM++ < 6 minutes 1 A100 2.81 / NFE=8
LD3 [DDPM++] DDPM++ < 6 minutes 1 A100 2.51 / NFE=9
LD3 [DDPM++] DDPM++ ≈ 6 minutes 1 A100 2.38 / NFE=10

instance, achieving a 2.58 FID score necessitates 127 NFE, which is comparable to LD3 applied
to the same diffusion backbone but comes at a significantly higher computational cost and longer
training time.

C.3 COMPARISON WITH PROGRESSIVE DISTILLATION

Progressive Distillation (Salimans & Ho, 2022) is a distillation method that trains a student model
to reduce the number of sampling steps to half of the teacher model. By repeating this process,
Progressive Distillation enables the generation of high-quality images in fewer steps. While we
acknowledge that the network architectures used in this comparison differ, we include this experiment
to strengthen our argument that training LD3 is significantly more efficient than training a distillation-
based method.

Table 13: Comparison to Progressive Distillation. The data in the first row is sourced from the original
paper by Salimans & Ho (2022). Progressive Distillation introduces architectural enhancements to
iDDPM (Nichol & Dhariwal, 2021).

Architecture Training time #GPUs FID/NFE

PD iDDPM∗ 1 day 8 TPUs 9.12 / NFE=1
PD iDDPM∗ 1 day 8 TPUs 4.51 / NFE=2
PD iDDPM∗ 1 day 8 TPUs 3.00 / NFE=4
PD iDDPM∗ 1 day 8 TPUs 2.57 / NFE=8
LD3 [DDPM++] DDPM++ < 3 minutes 1 A100 9.31 / NFE=4
LD3 [DDPM++] DDPM++ < 3 minutes 1 A100 8.17 / NFE=5
LD3 [DDPM++] DDPM++ ≈ 3 minutes 1 A100 3.35 / NFE=6
LD3 [DDPM++] DDPM++ < 6 minutes 1 A100 3.97 / NFE=7
LD3 [DDPM++] DDPM++ < 6 minutes 1 A100 2.81 / NFE=8
LD3 [DDPM++] DDPM++ < 6 minutes 1 A100 2.51 / NFE=9
LD3 [DDPM++] DDPM++ ≈ 6 minutes 1 A100 2.38 / NFE=10

D EXPERIMENT DETAILS

In this section, we provide more experiment details for each setting, including the codebases and the
configurations for evaluation.

D.1 PRACTICAL IMPLEMENT DETAILS

We denote W , H , and C as the width, height, and number of channels of an image, respectively.
Thus we have d = C ×W ×H . Similarly, W ′, H ′, and C ′ represent the corresponding dimensions
in the latent space for the Latent Diffusion model (Rombach et al., 2022), so d = C ′ ×W ′ ×H ′.

22

Published as a conference paper at ICLR 2025

Teacher Solver and Data Generation. Generally, we select the best-performing solver at 20 NFE
as our teacher solver, except for ImageNet and text-to-image generation tasks. For ImageNet, we
select 10 NFE as the teacher because it performs better than higher NFE, as noted in (Sabour et al.,
2024). For text-to-image generation, we also use 10 NFE, since increasing NFE does not significantly
enhance our model’s performance. We generate 50 to 100 samples for training. Detailed choices of
solvers and NFE for the teacher solver are provided in Appendices D.1.1 to D.1.3.

Optimizer and Trainable Parameters. We update three primary parameter sets during training:
the step-size parameters ξ, the coupling time step input to the denoising model ξc, and the starting
point x′

T . Their optimizers are RMSprop for ξ and SGD for both ξc and x′
T . The learning rates are

denoted as lξ, lξc , and lx′
T

. We set lξ = 0.005 for pixel space datasets and lξ = 0.001 for latent space
datasets, while lξc and lx′

T
are NFE-dependent. Further details are available in Appendices D.1.1

to D.1.3.

Initialization. We evaluate several baseline heuristics for ξ by computing their validation loss
(a process taking only a few seconds) and choose the one that minimizes this loss for parameter
initialization. We initialize ξc as a zero vector.

Training. Initially, we freeze ξc and optimize only ξ and x′
T during the first one or two epochs (we

call it phase 1). After this phase, we jointly update all parameters (we call it phase 2). At the end
of each epoch, we update x′

T for all samples in the validation set, without updating ξ and x′
T , with

respect to Lsoft. We save the checkpoint that minimizes Lsoft for the validation set after each training
iteration.

Evaluation. We evaluate our model using the FID score with 50,000 randomly generated samples.
For ImageNet, we generate an equal number of samples for each class to ensure a balanced FID
evaluation.

We provide more detail about our training setting in Appendices D.1.1 to D.1.3.

D.1.1 PIXEL SPACE DIFFUSION ON CIFAR10, FFHQ, AND AFHQV2

• Pre-trained model:
– EDM (Karras et al., 2022)

• Image resolution:
– W = H = 32, C = 3 for CIFAR10.
– W = H = 64, C = 3 for FFHQ and AFHQv2.

• Training/Validation data:
– Size: 50/50.
– The data are generated with the best baseline at NFE of 20, which is Uni_PC solver

with Time LogSNR discretization for all three datasets.

• Phase 1 and Phase 2:
– Phase 1: 2 epochs.
– Phase 2: 5 epochs.

• Starting point x′
T and r:

– SGD optimizer, lx′
T

= 12.0
NFE , momentum = 0, weight decay = 0.

– r = 0.001×W×H×C
NFE2 .

• Time discretization parameters ξ
– RMSprop optimizer, lξ = 0.005, momentum = 0.9, weight decay = 0.
– Gradients are clipped by the norm of 1.0.
– If the validation loss does not improve for 5 consecutive iterations (patience = 5),

reduce the learning rate by a factor of 0.8. Stop decay if the learning rate reaches a
minimum of 5× 10−5.

23

Published as a conference paper at ICLR 2025

• Time coupling parameters ξc:
– SGD optimizer, lξc = 0.1

NFE .
– Gradients are clipped by the norm of 1.0.
– If the validation loss does not improve for 5 consecutive iterations (patience = 5),

reduce the learning rate by a factor of 0.8. Stop decay if the learning rate reaches a
minimum of 1× 10−6.

D.1.2 LATENT SPACE DIFFUSION ON LSUN-BEDROOM AND IMAGENET

• Pre-trained model:
– Latent Diffusion (Rombach et al., 2022)

• Image resolution:
– W = H = 256, C = 3.
– W ′ = H ′ = 64, C ′ = 3.

• Guidance scale: 2.0 (for ImageNet).
• Training/Validation data:

– Size: 50/50.
– The data are generated with the best baseline at NFE of 20 for LSUN-Bedroom and 10

for ImageNet, using the Uni_PC solver with Time uniform discretization for LSUN-
Bedroom and Time quadratic for ImageNet.

• Phase 1 and Phase 2:
– Phase 1: 2 epochs.
– Phase 2: 3 epochs.

• Starting point x′
T and r:

– SGD optimizer, lx′
T

= 12.0
NFE , momentum = 0, weight decay = 0.

– r = 0.001×W ′×H′×C′

NFE2 .
• Time discretization parameters ξ

– RMSprop optimizer, lξ = 0.001, momentum = 0.9, weight decay = 0.
– Gradients are clipped by the norm of 1.0.
– If the validation loss does not improve for 5 consecutive iterations (patience = 5),

reduce the learning rate by a factor of 0.8. Stop decay if the learning rate reaches a
minimum of 5× 10−5.

• Time coupling parameters ξc:
– SGD optimizer, lξc = 0.001

NFE .
– Gradients are clipped by the norm of 1.0.
– If the validation loss does not improve for 5 consecutive iterations (patience = 5),

reduce the learning rate by a factor of 0.8. Stop decay if the learning rate reaches a
minimum of 1× 10−6.

D.1.3 TEXT-TO-IMAGE GENERATION WITH STABLE DIFFUSION

We randomly sample 5 captions from the MS COCO dataset (Lin et al., 2015), which are:

1. "Two individuals learning to ski along with an instructor."
2. "A man sitting on a chair that is on a deck over the water."
3. "A dog sitting at a table in front of a plate."
4. "Four people sit around eating food outside together."
5. "A cat dips its paws into a cup on a nightstand."

We utilize Stable Diffusion v1.5 (Rombach et al., 2022) with the iPNDM solver and the NFE equal to
the number of NFE of the student plus one. We used optimized GITS timestep as teacher.

24

Published as a conference paper at ICLR 2025

• Pre-trained model:
– Stable Diffusion (Rombach et al., 2022)

• Image resolution:
– W = H = 512, C = 3.
– W ′ = H ′ = 64, C ′ = 4.

• Guidance scale: 7.5.
• Training/Validation data:

– Size: 25/25.
– The data are generated with more than one NFE compared to student. The discretization

of teacher is optimized GITS.
• Phase 1 and Phase 2:

– Phase 1: 2 epochs.
– Phase 2: 3 epochs.

• Starting point x′
T and r:

– SGD optimizer, lx′
T

= 12.0
NFE , momentum = 0, weight decay = 0.

– r = 0.001×W ′×H′×C′

NFE2 .
• Time discretization parameters ξ

– RMSprop optimizer, lξ = 0.001, momentum = 0.9, weight decay = 0.
– Gradients are clipped by the norm of 1.0.
– If the validation loss does not improve for 5 consecutive iterations (patience = 5),

reduce the learning rate by a factor of 0.8. Stop decay if the learning rate reaches a
minimum of 5× 10−5.

• Time coupling parameters ξc:
– SGD optimizer, lξc = 0.001

NFE .
– Gradients are clipped by the norm of 1.0.
– If the validation loss does not improve for 5 consecutive iterations (patience = 5),

reduce the learning rate by a factor of 0.8. Stop decay if the learning rate reaches a
minimum of 1× 10−6.

D.2 BASELINE DISCRETIZATION HEURISTICS

We compare our learned time discretization with the following discretizations heuristics:

Polynomial discretization (Time quadratic, Time uniform): This discretization is a polynomial
function. Specifically:

ti =

(
i

N

)ρ

(tmax − tmin) + tmin , tmax = T , i = 0, 1, . . . , N (10)

here ρ is often set to 1 or 2 (Song et al., 2020b; Ho et al., 2020; Lu et al., 2022b; Song et al., 2020a)
which corresponds to time quadratic and time uniform discretization.

Time EDM discretization: First introduced by (Karras et al., 2022), Time EDM discretization has
been shown to be effective with Heun’s solver on EDM pre-trained model (Karras et al., 2022):

σ(ti) =

(
σ−ρ

max +
i

N − 1

(
σ−ρ

min − σ−ρ
max

))ρ

(11)

Time LogSNR: This schedule uniformly separate the logSNR. Specifically:

λ(ti) =
N − i

N
(λmax − λmin) + λmin , whereλ(ti) =

α(ti)

σ(ti)
(12)

this schedule is often used with solvers from (Lu et al., 2022a;b; Zheng et al., 2024).

25

Published as a conference paper at ICLR 2025

D.3 THE REMATERIALIZATION TRICK

Although the student model has few trainable parameters, the memory cost of maintaining the forward
pass state scales linearly with the number of inference steps when taking gradients concerning model
samples. This scaling can quickly become unfeasible given the large size of DPM architectures. To
address this, we adopt the gradient rematerialization technique proposed in (Watson et al., 2022),
following (Kumar et al., 2019). Rather than storing specific forward pass outputs for backward pass
computations, we recompute them as needed, trading O(N) memory cost for O(N) computation
time. This involves rematerializing calls to the pre-trained DDPM while keeping all progressively
denoised images from the sampling chain in memory. Our model exhibits rapid convergence, even
with a small batch size of 1 or 2.

E MORE COMPARISON WITH TIME DISCRETIZATION OPTIMIZATION METHODS

In this section, we further compare our method with some time discretization methods such as
AYS (Sabour et al., 2024) and GGDM + PRED (Watson et al., 2022).

• AYS (Sabour et al., 2024) focuses on aligning the discretized sampling process with the
continuous-time process in diffusion models. The authors introduce the KL-divergence
Upper Bound (KLUB) objective to formalize the optimization of the sampling schedule. This
objective measures the discrepancy between the discrete and continuous processes, guiding
the optimization toward schedules that minimize this discrepancy. However, optimizing this
objective function is challenging due to its high variance, often requiring hours of running
time on multiple GPUs.

• GGDM + PRED + TIME (Watson et al., 2022) is a Differentiable Diffusion Sampler Search
method designed to improve the Kernel Inception Score by optimizing time discretization.
However, their method requires 50,000 training iterations with a batch size of 512 to achieve
convergence.

We compare our method with AYS in Appendix E.1 on CIFAR10 and FFHQ. Since the official
implementation of AYS has not been published, we have used the numbers reported in their paper
for the settings we have in common. We also compare our method with AYS and GGDM + PRED
+ TIME on an unconditional ImageNet-64 dataset in Appendix E.2 trained with a diffusion model
from (Nichol & Dhariwal, 2021).

E.1 COMPARE TO AYS ON CIFAR10 AND FFHQ

Table 14: Comparison of LD3 to AYS (Sabour et al., 2024) (results sourced from (Sabour et al., 2024))
and the best baseline (Best) among time uniform, time quadratic, time EDM, and time LogSNR. Unlike
the experiments in Table 2, which use DPM_Solver++ (3M) (order = 3), we use DPM_Solver++ (2M)
(order = 2) following (Sabour et al., 2024).

Pre-trained DPM (Karras et al., 2022) CIFAR10 FFHQ

NFE 10 20 10 20

DPM_Solver++ (2M) (Best) 5.07 2.37 7.07 3.41
DPM_Solver++ (2M) (AYS) 2.98 2.10 5.43 3.29
DPM_Solver++ (2M) LD3 3.38 ± 0.64 2.36 ± 0.02 3.98 ± 0.10 2.89 ± 0.03

We compare LD3 with AYS (Sabour et al., 2024) on CIFAR10 and FFHQ. Since the implementation
of AYS has not been published, we use their reported result and run LD3 on CIFAR10 and FFHQ
with pre-trained EDM model (Karras et al., 2019) using DPM_Solver++ (2M). It can be seen from
Table 14 that LD3 achieves competitive results with AYS. Specifically, YAS outperforms LD3 on
CIFAR10 while our model achieves significantly better results on the FFHQ dataset.

26

Published as a conference paper at ICLR 2025

E.2 COMPARE TO AYS AND GGDM+PRED+TIME ON IMAGENET-64

Table 15: Comparison of LD3 to AYS (Sabour et al., 2024) and GGDM+PRED+TIME (Watson et al.,
2022) on unconditional ImageNet-64 dataset. Baseline performance is sourced from (Sabour et al.,
2024).

Model Solver Discretization method NFE=5 NFE=10 NFE=15 NFE=20 NFE=25

3M steps
DDIM Time Uniform 135.4 40.70 28.54 24.23 22.13
DDIM Time Quadratic 409.1 148.6 67.65 45.60 36.11
GGDM + PRED + TIME Learned Schedule 55.14 37.32 24.69 20.69 18.40

1.5M steps
DDIM Time Uniform 145.01 42.51 30.32 26.60 24.77
DDIM AYS 50.38 29.23 24.21 22.26 21.42
DDIM LD3 49.79 28.61 22.93 21.16 19.81

Following Sabour et al. (2024), we compare our model with GGDM + PRED + TIME (Watson et al.,
2022) on the ImageNet-64 dataset trained using iDDPM (Nichol & Dhariwal, 2021). The sampler
being used is DDIM. Since the code for GGDM + PRED + TIME has not been published, we rely on
the reported numbers in their paper. We ran our model using the published checkpoint from Nichol
& Dhariwal (2021), which was trained for 1.5 million steps. Table 15 shows that, despite testing on a
less trained model, LD3 significantly outperforms GGDM + PRED + TIME in the small steps regime
(NFE < 20). Additionally, we compared LD3 with AYS on this dataset, and our method shows better
results in all settings.

F ADDITIONAL RESULTS

F.1 LD3 ON PIXEL SPACE LSUN-BEDROOM-256 TRAINED WITH IDDPM

To prove the effectiveness of our method on high-resolution pixel space diffusion models, we evaluate
LD3 on LSUN-Bedroom-256 dataset trained with iDDPM (Nichol & Dhariwal, 2021). We use
their implemented solver, DDIM sampler, and compare the FID score generated using different
discretization strategies. Table 16 compares LD3 with commonly used discretization strategies. LD3
consistently demonstrates superior performance across most NFEs (Number of Function Evaluations),
achieving significantly lower FID scores than the other methods. For instance, at NFE 4, LD3 records
an FID of 92.43, outperforming Time Uniform (135.57), Time Quadratic (129.88), and Time LogSNR
(178.69). This trend continues as NFE increases, with LD3 maintaining the lowest FID scores up
to NFE 9. However, at NFE 10, Time Uniform slightly surpasses LD3, achieving an FID of 22.62
compared to LD3’s 23.03, marking the only instance where LD3 is not the top performer.

Table 16: FID comparison between LD3 and commonly used discretization strategies on LSUN-
Bedroom-256, pixel space pre-trained model iDDPM (Nichol & Dhariwal, 2021), and DDIM sampler.

Solver Discretization
NFE

4 5 6 7 8 9 10

D
D

IM

Time LogSNR 178.69 142.71 106.64 85.24 67.72 56.67 47.80
Time Uniform 135.57 88.04 61.06 44.30 33.66 26.81 22.62
Time Quadratic 129.88 101.76 81.18 65.94 52.77 45.86 39.47
Time EDM 294.54 282.52 273.05 265.34 258.88 252.15 245.67

LD3 92.43 65.95 49.30 37.85 31.73 25.82 23.03

27

Published as a conference paper at ICLR 2025

F.2 FID PROGRESSION DURING TRAINING

0 20 40 60 80
Training iteration

20

30

40

50
FID

CIFAR10 DPM_Solver++ (3M) 4 NFE
FFHQ Uni_PC (3M) 4 NFE

Figure 10: FID progression during training. We report the FID values during training for CIFAR10
and FFHQ datasets, using 4 NFE with the DPM_Solver++ (3M) for CIFAR10 and the Uni_PC (3M)
solver for FFHQ. The FID, computed based on 5000 generated samples, is evaluated each time the
validation loss decreases.

In our method, we save the optimal parameters based on the validation loss criterion. Figure 10 shows
a decreasing trend in FID values throughout the training process. This trend suggests a correlation
between FID and validation loss, indicating that FID generally decreases as the validation loss
decreases. This observation further validates the effectiveness of our method.

F.3 STABLE DIFFUSION TRAINED WITH DIFFERENT PROMPT SETS

To demonstrate the robustness and independence of the method with respect to the training prompts,
we use different subsets of 5 prompts for training. Insterestingly, despite varying the prompts, the
performance remains consistent, as shown in Table 17.

Table 17: FID score averaged over 5 runs on Stable Diffusion v1.5 using the iPNDM [LD3] solver.

NFE=4 NFE=5 NFE=6 NFE=7

FID 17.34± 0.02 13.22± 0.12 12.48± 0.08 12.04± 0.22

28

Published as a conference paper at ICLR 2025

F.4 FULL RESULT TABLES

Table 18: Full FID comparison on CIFAR10 32×32 (Krizhevsky & Hinton, 2009).

Solver Discretization NFE=4 NFE=5 NFE=6 NFE=7 NFE=8 NFE=9 NFE=10

D
PM

_S
ol

ve
r+

+
(3

M
)

Time LogSNR 46.59 24.99 12.16 6.88 4.62 3.54 3.08
Time Uniform 282.94 263.80 249.75 238.26 227.79 217.86 208.34
Time Quadratic 170.95 124.73 91.56 69.93 54.97 44.59 37.21
Time EDM 50.91 32.13 18.64 11.71 8.44 6.51 5.16
GITS 31.58 16.28 11.07 6.04 5.61 3.96 3.51
DMN 39.31 22.88 12.37 8.21 7.23 4.35 2.67
LD3 19.39 9.08 7.51 5.90 3.42 2.90 3.09

iP
N

D
M

(3
M

)

Time LogSNR 35.04 20.52 11.80 7.69 5.67 4.37 3.69
Time Uniform 266.26 242.94 229.39 217.13 205.24 194.72 185.28
Time Quadratic 139.72 96.67 68.82 52.32 37.82 27.51 23.40
Time EDM 29.78 17.35 9.95 7.61 5.41 5.00 3.80
GITS 15.63 10.12 6.82 4.48 4.29 3.10 2.78
DMN 28.09 16.76 9.24 6.85 7.68 4.75 3.31
LD3 9.31 8.17 3.35 3.97 2.81 2.51 2.38

U
ni

_P
C

(3
M

)

Time LogSNR 43.92 24.01 13.12 6.63 4.41 3.55 3.16
Time Uniform 282.77 263.61 249.42 237.81 227.21 217.09 207.40
Time Quadratic 164.78 117.28 85.14 65.25 51.91 42.48 35.52
Time EDM 50.65 34.24 19.56 12.68 9.65 7.83 6.12
GITS 25.32 13.79 11.19 6.80 5.67 4.40 3.70
DMN 26.35 12.93 8.09 5.42 5.90 3.62 2.45
LD3 13.72 6.39 5.92 2.98 3.42 2.81 2.87

Table 19: Full FID comparison on AFHQv2 64×64 (Choi et al., 2020).

Solver Discretization NFE=4 NFE=5 NFE=6 NFE=7 NFE=8 NFE=9 NFE=10

D
PM

_S
ol

ve
r+

+
(3

M
)

Time LogSNR 27.82 17.88 10.72 6.15 4.28 3.64 3.19
Time Uniform 153.20 143.45 134.46 125.39 116.13 107.01 98.25
Time Quadratic 68.78 42.48 30.92 24.70 20.94 18.48 16.73
Time EDM 19.65 13.34 9.64 7.82 6.54 4.99 4.11
GITS 16.79 12.62 9.91 7.75 5.55 4.37 3.98
DMN 37.54 30.09 18.41 14.66 9.10 5.94 3.24
LD3 13.86 9.48 5.47 4.27 3.63 2.73 2.68

iP
N

D
M

(3
M

)

Time LogSNR 23.20 15.63 9.55 5.98 4.49 3.75 3.19
Time Uniform 159.22 139.47 125.17 113.68 102.99 92.57 82.89
Time Quadratic 53.67 32.27 23.80 20.32 18.18 16.52 15.10
Time EDM 15.35 9.01 6.26 4.73 3.83 3.55 3.02
GITS 12.89 8.72 6.10 5.48 4.03 3.47 3.26
DMN 33.15 26.11 16.01 13.03 10.12 6.68 3.22
LD3 9.96 6.09 3.63 2.97 2.63 2.25 2.27

U
ni

_P
C

(3
M

)

Time LogSNR 33.78 13.01 8.27 5.07 4.60 4.46 3.81
Time Uniform 153.24 143.46 134.27 124.98 115.52 106.21 97.30
Time Quadratic 66.38 41.56 30.62 24.26 20.47 18.04 16.33
Time EDM 23.74 15.84 10.24 8.37 7.75 6.67 6.26
GITS 12.20 9.45 7.26 4.85 3.86 3.26 2.88
DMN 30.32 23.04 14.46 11.53 6.85 4.36 2.94
LD3 12.99 6.35 3.81 3.18 2.90 2.87 2.84

29

Published as a conference paper at ICLR 2025

Table 20: Full FID comparison on FFHQ 64×64 (Karras et al., 2019).

Solver Discretization NFE=4 NFE=5 NFE=6 NFE=7 NFE=8 NFE=9 NFE=10

D
PM

_S
ol

ve
r+

+
(3

M
)

Time LogSNR 46.14 22.79 14.01 8.63 6.18 4.86 4.18
Time Uniform 179.07 165.50 153.56 142.80 133.07 124.26 116.30
Time Quadratic 94.11 70.17 54.93 44.64 37.41 32.12 28.30
Time EDM 39.59 23.81 15.29 11.17 9.67 8.45 7.01
GITS 29.09 17.54 12.73 9.72 7.60 6.30 4.99
DMN 40.23 26.31 14.73 11.21 10.30 7.37 4.29
LD3 27.99 13.32 7.53 4.86 4.42 3.37 3.55

iP
N

D
M

(3
M

)

Time LogSNR 36.54 24.57 16.44 11.31 8.11 6.39 5.39
Time Uniform 39.49 26.15 20.80 17.52 14.69 12.50 10.89
Time Quadratic 71.51 51.66 39.17 31.32 26.50 23.71 21.22
Time EDM 29.35 17.52 11.44 8.76 6.86 5.96 4.93
GITS 18.05 12.91 9.38 7.56 5.72 4.75 3.96
DMN 31.30 20.93 12.12 10.17 11.00 8.36 5.24
LD3 17.96 11.98 6.47 4.88 3.97 3.57 3.25

U
ni

_P
C

(3
M

)

Time LogSNR 53.25 20.20 11.24 7.09 5.59 4.53 3.90
Time Uniform 178.68 165.03 152.97 142.09 132.22 123.28 115.20
Time Quadratic 89.75 65.94 51.28 41.47 34.67 29.85 26.45
Time EDM 47.74 26.73 15.18 11.33 11.70 10.94 8.93
GITS 21.38 14.33 12.21 9.94 7.84 6.19 4.46
DMN 25.82 13.32 9.47 7.62 6.85 5.06 3.54
LD3 21.00 10.36 5.97 4.38 3.50 2.94 3.27

Table 21: Full FID comparison on LSUN-
Bedroom 256×256 (Yu et al., 2015).

Solver Discretization NFE=4 NFE=5 NFE=6 NFE=7

D
PM

_S
ol

ve
r+

+
(3

M
)

Time LogSNR 80.44 35.81 16.95 11.38
Time Uniform 48.82 18.64 8.50 5.16
Time Quadratic 47.64 21.29 12.42 9.68
Time EDM 324.41 294.61 268.96 243.91
GITS 93.58 65.37 31.13 23.28
DMN 35.93 11.13 4.97 4.21
LD3 28.83 12.17 5.83 4.16

iP
N

D
M

(3
M

)

Time LogSNR 55.77 32.51 20.26 14.52
Time Uniform 11.93 6.38 5.08 4.39
Time Quadratic 27.44 18.77 14.39 11.71
Time EDM 312.44 284.15 252.37 221.56
GITS 76.86 59.17 28.09 19.54
DMN 11.82 6.15 4.71 5.16
LD3 8.48 5.93 4.52 4.31

U
ni

_P
C

(3
M

)

Time LogSNR 73.87 34.06 17.18 12.05
Time Uniform 39.78 13.88 6.57 4.56
Time Quadratic 35.97 15.94 10.91 9.43
Time EDM 297.83 259.90 232.79 204.89
GITS 70.93 47.37 22.33 17.27
DMN 29.22 8.21 4.40 4.55
LD3 20.15 9.09 4.98 4.18

Table 22: Full FID comparison on ImageNet
256×256 (Russakovsky et al., 2015). We cor-
rected a typo in the table: The results for the
first 4 baselines of DPM_Solver++ and iPNDM
solvers in this table were previously swapped.

Solver Discretization NFE=4 NFE=5 NFE=6 NFE=7

D
PM

_S
ol

ve
r+

+
(3

M
) Time LogSNR 54.61 23.24 11.52 7.26

Time Uniform 26.07 11.91 7.51 5.95
Time Quadratic 41.94 22.42 12.04 7.78
Time EDM 244.49 233.18 221.56 210.02
GITS 71.77 51.05 24.72 13.85
DMN 21.48 9.36 7.77 7.61
LD3 16.92 6.74 4.74 4.44

iP
N

D
M

(3
M

)

Time LogSNR 51.35 24.93 13.94 9.11
Time Uniform 13.86 7.80 6.03 5.35
Time Quadratic 28.54 15.98 9.50 6.76
Time EDM 237.68 223.29 210.10 195.59
GITS 56.00 43.56 19.33 10.33
DMN 10.15 7.33 7.25 7.40
LD3 9.19 6.03 5.09 4.68

U
ni

_P
C

(3
M

)

Time LogSNR 50.26 19.22 9.08 5.87
Time Uniform 20.01 8.51 5.92 5.20
Time Quadratic 30.66 13.71 7.15 5.17
Time EDM 235.31 218.15 203.26 186.88
GITS 54.88 34.91 14.62 9.04
DMN 16.72 7.96 7.54 7.81
LD3 9.89 5.03 4.46 4.32

F.5 ADDITIONAL SAMPLES

We offer additional visual examples in Figures 11 to 23 to illustrate the qualitative effectiveness of
LD3. The visual quality of LD3 surpasses discretization baselines. Our method can generate images
with more visual details and less severe contrast.

30

Published as a conference paper at ICLR 2025

(a) Time Uniform (b) DMN (c) GITS (d) LD3

Figure 11: Text prompt: "An expressive oil painting of a basketball player dunking, depicted as an
explosion of a nebula" Stable Diffusion v1.5 (Rombach et al., 2022), iPNDM (2M) solver, NFE = 5.

(a) Time Uniform (b) DMN (c) GITS (d) LD3

Figure 12: Text prompt: "A plush toy robot sitting against a yellow wall" Stable Diffusion v1.5 (Rom-
bach et al., 2022), iPNDM (2M) solver, NFE = 5.

(a) Time Uniform (b) DMN (c) GITS (d) LD3

Figure 13: Text prompt: "A hand drawn sketch of a Porsche 911" Stable Diffusion v1.5 (Rombach
et al., 2022), iPNDM (2M) solver, NFE = 5.

(a) Time Uniform (b) DMN (c) GITS (d) LD3

Figure 14: Text prompt: "A photo of a Samoyed dog with its tongue out hugging a white Siamese cat"
Stable Diffusion v1.5 (Rombach et al., 2022), iPNDM (2M) solver, NFE = 5.

31

Published as a conference paper at ICLR 2025

(a) Time Uniform (b) DMN (c) GITS (d) LD3

Figure 15: Text prompt: "An expressive oil painting of a basketball player dunking, depicted as an
explosion of a nebula" Stable Diffusion v1.5 (Rombach et al., 2022), iPNDM (2M) solver, NFE = 10.

(a) Time Uniform (b) DMN (c) GITS (d) LD3

Figure 16: Text prompt: "A van Gogh style painting of an American football player" Stable Diffusion
v1.5 (Rombach et al., 2022), iPNDM (2M) solver, NFE = 10.

(a) Time Uniform (b) DMN (c) GITS (d) LD3

Figure 17: Text prompt: "A portrait of a dog" Stable Diffusion v1.5 (Rombach et al., 2022), iPNDM
(2M) solver, NFE = 10.

32

Published as a conference paper at ICLR 2025

Time Uniform DMN GITS LD3
(a) NFE = 4

Time Uniform DMN GITS LD3
(b) NFE = 5

Time Uniform DMN GITS LD3
(c) NFE = 6

Time Uniform DMN GITS LD3
(d) NFE = 7

Figure 18: Side-by-side comparison. Random samples on LSUN-Bedroom. Qualitative comparison
of methods across NFEs using the iPNDM solver, with the same randomly sampled initial noises.

33

Published as a conference paper at ICLR 2025

Time Uniform DMN GITS LD3
(a) NFE = 4

Time Uniform DMN GITS LD3
(b) NFE = 5

Time Uniform DMN GITS LD3
(c) NFE = 6

Time Uniform DMN GITS LD3
(d) NFE = 7

Figure 19: Side-by-side comparison. Random samples on class-conditional ImageNet. Qualitative
comparison of methods across NFEs using the Uni_PC solver, with the same randomly sampled
initial noises.

34

Published as a conference paper at ICLR 2025

Time EDM DMN GITS LD3
(a) NFE = 4

Time EDM DMN GITS LD3
(b) NFE = 6

Time EDM DMN GITS LD3
(c) NFE = 8

Time EDM DMN GITS LD3
(d) NFE = 10

Figure 20: Side-by-side comparison. Random samples on AFHQv2. Qualitative comparison of
methods across NFEs using the DPM_Solver++ solver, with the same randomly sampled initial
noises.

35

Published as a conference paper at ICLR 2025

Time EDM DMN GITS LD3
(a) NFE = 4

Time EDM DMN GITS LD3
(b) NFE = 6

Time EDM DMN GITS LD3
(c) NFE = 8

Time EDM DMN GITS LD3
(d) NFE = 10

Figure 21: Side-by-side comparison. Random samples on FFHQ. Qualitative comparison of methods
across NFEs using the DPM_Solver++ solver, with the same randomly sampled initial noises.

36

Published as a conference paper at ICLR 2025

Time EDM DMN GITS LD3
(a) NFE = 4

Time EDM DMN GITS LD3
(b) NFE = 6

Time EDM DMN GITS LD3
(c) NFE = 8

Time EDM DMN GITS LD3
(d) NFE = 10

Figure 22: Side-by-side comparison. Random samples on CIFAR10. Qualitative comparison of
methods across NFEs using the Uni_PC solver, with the same randomly sampled initial noises.

37

Published as a conference paper at ICLR 2025

(a) Baseline, FID = 22.56 (b) LD3, FID=15.49.

Figure 23: Side-by-side comparison. Text prompts, from left to right, top to bottom: "A large grizzly
bear with grass in the background.", "A man standing in front of a microwave, next to pots and pans.",
"A bedroom scene with a bookcase, blue comforter, and window.", "A herd of elephants walking
through a water-filled lake." Instaflow (Liu et al., 2023), NFE = 2.

38

Published as a conference paper at ICLR 2025

39

	Introduction
	Related work
	Background
	Learning to Discretize Denoising Diffusion ODEs
	Learning to discretize by optimizing the global truncation error
	Optimizing Discretization Points by Soft Teacher Forcing
	Practical Implementation

	Experiments
	Conclusion and Limitations
	Analytical proofs
	Proof of theorem
	Empirical measurement of the bound.

	Applying LD3 to different domains
	Point cloud generation
	Molecular Docking

	Comparison with few-step generation methods
	Comparison with Consistency Distillation
	Comparison with Rectified Flows
	Comparison with Progressive Distillation

	Experiment Details
	Practical Implement Details
	Baseline discretization heuristics
	The Rematerialization Trick

	More comparison with time discretization optimization methods
	Compare to AYS on CIFAR10 and FFHQ
	Compare to AYS and GGDM+PRED+TIME on ImageNet-64

	Additional Results
	LD3 on pixel space LSUN-Bedroom-256 trained with iDDPM
	FID Progression during training
	Stable diffusion trained with different prompt sets
	Full result tables
	Additional Samples

