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1 TIME COMPLEXITY

1.1 THEORETICAL ANALYSIS

Here, we will describe the time complexity of HACk-OOD, both in the training/hypercone construc-
tion phase and in the inference phase. Overall, both phases are efficient in terms of time complexity.
The hypercone construction phase scales with O(n2), while the inference phase scales with O(n),
where n represents the number of training observations. Neither phase is prohibitively expensive.

We will elaborate more upon each component of both phases. Let us use the following definitions:

d = Dimension of the embedding space
l = Number of labels
n = Number of observations in the training data
m = Number of observations in the testing data

maxk = Largest k used in hypercone angle construction
p = Number of observations in the potentially OOD inference data

In practice, it is often that case that n >> d, l, n,m,maxk. In theory, p could contain infinitely many
points, but we assume that the inference is performed on sime finite set of p points, where p << n.

During hypercone construction, the following tasks are performed with the following associated
time complexities. For larger modules, we mention sub-components which inform the overall time
complexity. Note that the time complexity for each module is determined based on the dominant time
complexities for the sub-components. Items marked with a (*) are optional.

1. Normalize embeddings (*): O(md+ nd)

(a) Normalize train embeddings: O(nd)

(b) Normalize test embeddings: O(md)

2. Filter out incorrectly classified predictions (*): O(n)

3. Create label centroids: O(n log(n) + nd)

(a) Get unique labels: O(n log(n))

(b) Calculate centroid: O(nd)

4. Replace label centroids with nearest neighbor in the data (*): O(n log(nd)) (in theory, this
could be performed in O(n) with a more efficient algorithm, which we will explore in the
future)

5. Choose k for each label: O(nd+ n log(dn
l ))

(a) Calculate embedding label statistics: O(nd)

(b) Generate uniformly distributed clusters and compute centroids: O(ldmaxk)

(c) Compute maxk nearest neighbors for training distribution: O(n log(dn
l ))

(d) Compute maxk nearest neighbors for uniform distribution: O(lmaxk log(dmaxk))

(e) Compute ratio of average of distances to k-th nearest neighbor for 10 k’s for training
distribution and average of distances to k-th nearest neighbor for 10 k’s for uniform
distribution: O(n+ maxk)
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6. Get hypercone angles for each label: O(n)

7. Build hypercones: O(dn
l (n+m))

(a) Construct hypercone axes: O(nd)

(b) Center and normalize test and train embeddings: O(nd+md)

(c) Identify which test and train embeddings are contained within each hypercone’s angular
boundary by computing the dot product between axes and embeddings: O(dn

l (n+m))

(d) Compute preliminary cone height for each hypercone based on statistics of test and
train embeddings contained within each hypercone: worst cast O(n(n+m

l )) but in
likely case O(nc1) where c1 << n+m

l represents average number of test and train
points contained within each hypercone

8. Get scores for ID data: O(ndm)

(a) Identify which test embeddings are contained within each hypercone’s angular boundary
by computing the dot product between axes and embeddings: O(dnm)

(b) Normalize test embeddings: O(dm)

(c) For each hypercone, normalize distance between each contained test point and the
centroid by the preliminary cone height: worst case O(mn) but in likely case O(nc2)
where c2 << m is the average number of test points contained within each hypercone

9. Compute boundary of ID data by sorting scores for ID data and indexing at desired FPR:
O(m log(m))

The largest limiting factor in the time complexity of hypercone construction is therefore in step 7,
when we compute the dot product between hypercone axes and train and test points to identify which
hypercones the points fall in to inform the preliminary radial boundaries. Assuming n >> d, l,m,
the O(dn

l (n+m)) time complexity is roughly O(n2).

During inference, the following tasks are performed.

1. Get OOD scores (same as getting scores for ID data): O(ndp)

2. Compare OOD scores to boundary of ID data: O(p)

Again, the largest limiting factor stems from computing the dot product between hypercone axes and
the inference data embeddings to determine which hypercones the inference points fall in. Assuming
n >> d,m, the time complexity of the inference step is about O(n).

1.2 EXPERIMENTAL ANALYSIS

In Table 1, we report the inference times for each of the benchmark models and in Table 2 we show
the time to construct hypercones. Note that the inference times for HACk-OOD differ slightly from
those reported in the original manuscript. This variation is due to randomness and our deliberate
effort to avoid running any processes concurrently this time.

2 FIGURES ON COMPARISON TO KNN+

Figures 1 and 2 show the inter and intra class variations which could have an effect on the
performance of KNN+.

3 EFFECTS OF PARAMETERS ON PERFORMANCE

Figures 3 and 4 show how HACk-OOD’s performance varies with angular and radial boundaries
independently.
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Res18 Cifar100 Res34 Cifar100 Res50 Cifar100

MSP 0.0009 0.0009 0.0009
Mahalanobis 0.1256 0.1249 0.8590
MaxLogit 0.0009 0.0009 0.0009
Energy 0.0012 0.0012 0.0012
Energy+React 0.0025 0.0021 0.0056
Residual 0.0023 0.0021 0.0096
GradNorm 0.1163 0.1140 0.1152
SSD+ 0.0672 0.0650 0.5277
ViM 0.0026 0.0025 0.0097
KL-Matching 1.4816 1.4860 1.4788
KNN+ 2.0963 2.1029 8.3601
GEN 0.0015 0.0013 0.0015
NNGuide 0.6949 0.7213 0.9360
SHE 0.0102 0.0104 0.0130
ASH 0.0091 0.0097 0.0134
SCALE 0.0094 0.0058 0.0122
HACk-OOD 0.9976 0.9505 2.2488
HACk-OOD +React 1.0598 0.9918 2.2336
HACk-OOD+SHE 0.9981 0.9451 2.2232
HACk-OOD +ASH 0.9788 0.8771 2.1402

Table 1: Comparison of inference times per sample (ms) on ResNet architectures with Cifar100.

Res18 Cifar100 Res34 Cifar100 Res50 Cifar100

Total (s) 17.0924 15.9830 30.6542
Per Training Sample (ms) 0.3418 0.3197 0.6131

Table 2: HACk-OOD Hypercone Construction times for different ResNet architectures with Cifar100.

Figure 1: Small k - Inter Cluster Density Variations: KNN+ distances to 5th nearest neighbor is
represented by hyperspheres in a 2D feature space. The radius of test set observation for class A is 1
and class B is 3.
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Figure 2: Large k: Intra Cluster Distance Variations: KNN+ distances to 17th nearest neighbor is
represented by hyperspheres in a @D feature space. The radii of test set observation hyperspheres for
classes C, D and E are 3, 3, and 5 respectively.

Figure 3: FPR95 performance of HACk-OOD when varying angular (number of neighbor) and radial
(preliminary boundary) parameters.
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Figure 4: AUROC performance of HACk-OOD when varying angular (number of neighbor) and
radial (preliminary boundary) parameters.
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