
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HYPERCONE ASSISTED CONTOUR GENERATION FOR
OUT-OF-DISTRIBUTION DETECTION

Anonymous authors
Paper under double-blind review

1 TIME COMPLEXITY

1.1 THEORETICAL ANALYSIS

Here, we will describe the time complexity of HACk-OOD, both in the training/hypercone construc-
tion phase and in the inference phase. Overall, both phases are efficient in terms of time complexity.
The hypercone construction phase scales with O(n2), while the inference phase scales with O(n),
where n represents the number of training observations. Neither phase is prohibitively expensive.

We will elaborate more upon each component of both phases. Let us use the following definitions:

d = Dimension of the embedding space
l = Number of labels
n = Number of observations in the training data
m = Number of observations in the testing data

maxk = Largest k used in hypercone angle construction
p = Number of observations in the potentially OOD inference data

In practice, it is often that case that n >> d, l, n,m,maxk. In theory, p could contain infinitely many
points, but we assume that the inference is performed on sime finite set of p points, where p << n.

During hypercone construction, the following tasks are performed with the following associated
time complexities. For larger modules, we mention sub-components which inform the overall time
complexity. Note that the time complexity for each module is determined based on the dominant time
complexities for the sub-components. Items marked with a (*) are optional.

1. Normalize embeddings (*): O(md+ nd)

(a) Normalize train embeddings: O(nd)

(b) Normalize test embeddings: O(md)

2. Filter out incorrectly classified predictions (*): O(n)

3. Create label centroids: O(n log(n) + nd)

(a) Get unique labels: O(n log(n))

(b) Calculate centroid: O(nd)

4. Replace label centroids with nearest neighbor in the data (*): O(n log(nd)) (in theory, this
could be performed in O(n) with a more efficient algorithm, which we will explore in the
future)

5. Choose k for each label: O(nd+ n log(dn
l ))

(a) Calculate embedding label statistics: O(nd)

(b) Generate uniformly distributed clusters and compute centroids: O(ldmaxk)

(c) Compute maxk nearest neighbors for training distribution: O(n log(dn
l ))

(d) Compute maxk nearest neighbors for uniform distribution: O(lmaxk log(dmaxk))

(e) Compute ratio of average of distances to k-th nearest neighbor for 10 k’s for training
distribution and average of distances to k-th nearest neighbor for 10 k’s for uniform
distribution: O(n+ maxk)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

6. Get hypercone angles for each label: O(n)

7. Build hypercones: O(dn
l (n+m))

(a) Construct hypercone axes: O(nd)

(b) Center and normalize test and train embeddings: O(nd+md)

(c) Identify which test and train embeddings are contained within each hypercone’s angular
boundary by computing the dot product between axes and embeddings: O(dn

l (n+m))

(d) Compute preliminary cone height for each hypercone based on statistics of test and
train embeddings contained within each hypercone: worst cast O(n(n+m

l )) but in
likely case O(nc1) where c1 << n+m

l represents average number of test and train
points contained within each hypercone

8. Get scores for ID data: O(ndm)

(a) Identify which test embeddings are contained within each hypercone’s angular boundary
by computing the dot product between axes and embeddings: O(dnm)

(b) Normalize test embeddings: O(dm)

(c) For each hypercone, normalize distance between each contained test point and the
centroid by the preliminary cone height: worst case O(mn) but in likely case O(nc2)
where c2 << m is the average number of test points contained within each hypercone

9. Compute boundary of ID data by sorting scores for ID data and indexing at desired FPR:
O(m log(m))

The largest limiting factor in the time complexity of hypercone construction is therefore in step 7,
when we compute the dot product between hypercone axes and train and test points to identify which
hypercones the points fall in to inform the preliminary radial boundaries. Assuming n >> d, l,m,
the O(dn

l (n+m)) time complexity is roughly O(n2).

During inference, the following tasks are performed.

1. Get OOD scores (same as getting scores for ID data): O(ndp)

2. Compare OOD scores to boundary of ID data: O(p)

Again, the largest limiting factor stems from computing the dot product between hypercone axes and
the inference data embeddings to determine which hypercones the inference points fall in. Assuming
n >> d,m, the time complexity of the inference step is about O(n).

1.2 EXPERIMENTAL ANALYSIS

In Table 1, we report the inference times for each of the benchmark models and in Table 2 we show
the time to construct hypercones. Note that the inference times for HACk-OOD differ slightly from
those reported in the original manuscript. This variation is due to randomness and our deliberate
effort to avoid running any processes concurrently this time.

2 FIGURES ON COMPARISON TO KNN+

Figures 1 and 2 show the inter and intra class variations which could have an effect on the
performance of KNN+.

3 EFFECTS OF PARAMETERS ON PERFORMANCE

Figures 3 and 4 show how HACk-OOD’s performance varies with angular and radial boundaries
independently.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Res18 Cifar100 Res34 Cifar100 Res50 Cifar100

MSP 0.0009 0.0009 0.0009
Mahalanobis 0.1256 0.1249 0.8590
MaxLogit 0.0009 0.0009 0.0009
Energy 0.0012 0.0012 0.0012
Energy+React 0.0025 0.0021 0.0056
Residual 0.0023 0.0021 0.0096
GradNorm 0.1163 0.1140 0.1152
SSD+ 0.0672 0.0650 0.5277
ViM 0.0026 0.0025 0.0097
KL-Matching 1.4816 1.4860 1.4788
KNN+ 2.0963 2.1029 8.3601
GEN 0.0015 0.0013 0.0015
NNGuide 0.6949 0.7213 0.9360
SHE 0.0102 0.0104 0.0130
ASH 0.0091 0.0097 0.0134
SCALE 0.0094 0.0058 0.0122
HACk-OOD 0.9976 0.9505 2.2488
HACk-OOD +React 1.0598 0.9918 2.2336
HACk-OOD+SHE 0.9981 0.9451 2.2232
HACk-OOD +ASH 0.9788 0.8771 2.1402

Table 1: Comparison of inference times per sample (ms) on ResNet architectures with Cifar100.

Res18 Cifar100 Res34 Cifar100 Res50 Cifar100

Total (s) 17.0924 15.9830 30.6542
Per Training Sample (ms) 0.3418 0.3197 0.6131

Table 2: HACk-OOD Hypercone Construction times for different ResNet architectures with Cifar100.

Figure 1: Small k - Inter Cluster Density Variations: KNN+ distances to 5th nearest neighbor is
represented by hyperspheres in a 2D feature space. The radius of test set observation for class A is 1
and class B is 3.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Large k: Intra Cluster Distance Variations: KNN+ distances to 17th nearest neighbor is
represented by hyperspheres in a @D feature space. The radii of test set observation hyperspheres for
classes C, D and E are 3, 3, and 5 respectively.

Figure 3: FPR95 performance of HACk-OOD when varying angular (number of neighbor) and radial
(preliminary boundary) parameters.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: AUROC performance of HACk-OOD when varying angular (number of neighbor) and
radial (preliminary boundary) parameters.

5


	Time Complexity
	Theoretical Analysis
	Experimental Analysis

	Figures on Comparison to KNN+
	Effects of Parameters on Performance

