
Dissecting Chain-of-Thought: A Study on
Compositional In-Context Learning of MLPs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Chain-of-thought (CoT) is a method that enables language models to handle com-1

plex reasoning tasks by decomposing them into simpler steps. Despite its success,2

the underlying mechanics of CoT are not yet fully understood. In an attempt to shed3

light on this, our study investigates the impact of CoT on the ability of transformers4

to in-context learn a simple to study, yet general family of compositional functions:5

multi-layer perceptrons (MLPs). In this setting, we reveal that the success of CoT6

can be attributed to breaking down in-context learning of a compositional function7

into two distinct phases: focusing on data related to each step of the composition8

and in-context learning the single-step composition function. Through both experi-9

mental and theoretical evidence, we demonstrate how CoT significantly reduces10

the sample complexity of in-context learning (ICL) and facilitates the learning of11

complex functions that non-CoT methods struggle with. Furthermore, we illustrate12

how transformers can transition from vanilla in-context learning to mastering a13

compositional function with CoT by simply incorporating an additional layer that14

performs the necessary filtering for CoT via the attention mechanism. In addition to15

these test-time benefits, we highlight how CoT accelerates pretraining by learning16

shortcuts to represent complex functions and how filtering plays an important role17

in pretraining. These findings collectively provide insights into the mechanics of18

CoT, inviting further investigation of its role in complex reasoning tasks.19

1 Introduction20

The advent of transformers [Vaswani et al., 2017] has revolutionized natural language processing,21

paving the way for remarkable performance in a wide array of tasks. LLMs, such as GPTs [Brown22

et al., 2020], have demonstrated an unparalleled ability to capture and leverage vast amounts of data,23

thereby facilitating near human-level performance across a variety of language generation tasks.24

Despite this success, a deep understanding of their underlying mechanisms remains elusive.25

Chain-of-thought prompting [Wei et al., 2022c] is an emergent ability of transformers where the model26

solves a complex problem [Wei et al., 2022b], by decomposing it into intermediate steps. Intuitively,27

such this underlies the ability of general-purpose language models to accomplish previously-unseen28

complex tasks by leveraging more basic skills acquired during the pretraining phase.29

Compositional learning and CoT has enjoyed significant recent success in practical language modeling30

tasks spanning question answering, code generation, and mathematical reasoning [Perez et al., 2021,31

Imani et al., 2023, Yuan et al., 2023]. In this work, we attempt to demystify some of the mechanics32

underlying this success and the benefits of CoT in terms of sample complexity and approximation33

ability. To do this we explore the role of CoT in learning in-context multi-layer perceptrons (MLP),34

that we believe can lead to a first set of insightful observations. Throughout, we ask:35

Does CoT improve in-context learning of MLPs, and what are the underlying mechanics?36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

… …

… …

… …

in-context sample

Er
ro

r

ICL
CoT-I
CoT-I/O

Input: x

1st hidden: s1

2nd hidden: s2

Output: y

ICL
x1y1x2y2 . . .xtest

ŷ

CoT-I
x1s11 s21y1x2s12

. . . xtest

ŷ

CoT-I/O
x1s

1
1 s21y1x2 . . . xtest

ŝ1

. . . xtest ŝ1

ŝ2

. . . xtest ŝ1 ŝ2

ŷ

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

CoT-I/O
CoT-I
ICL

Figure 1: An illustration of ICL, CoT-I and CoT-I/O methods where we take 3-layer MLP as an
example (see top left where x, y, s1, s2 represent input, output and hidden features). Then ICL
takes in-context example of form (x,y) and makes prediction directly based on given xtest, while
CoT-I and CoT-I/O admit prompt with samples formed by (x, s1, s2,y). Differently, CoT-I/O makes
recurrent predictions by feeding the intermediate output back to the input (as shown on the right).
Bottom left shows the performances and more details are discussed in Sections 2 and 4.2.

Contributions: As our central contribution, we establish a rigorous and experimentally-supported37

abstraction that decouples CoT prompting into a filtering phase and an in-context learning (ICL)38

phase. In the filtering phase, the model attends to the relevant tokens within the prompt based on an39

instruction, and suppresses those irrelevant. In the ICL phase, the model runs inference on the filtered40

prompt to output a step. The model then moves to the next step in the chain. How a transformer41

architecture can actually realize this process is formalized in Theorem 1 for MLPs.42

Building on this, we identify and thoroughly compare three schemes as illustrated in Figure 1. (a)43

ICL: In-context learning from input-output pairs provided in the prompt, (b) CoT-I: Examples in the44

prompt are augmented with intermediate steps, (c) CoT-I/O: The model also outputs intermediate45

steps during prediction. Our main contributions are:46

• Approximation and sample complexity: Through experiments and theory, we establish that47

intermediate steps in CoT-I improves the sample complexity of learning whereas step-by-step48

output improves the approximation ability through looping. Specifically, CoT-I/O can learn an49

MLP with input dimension d and k neurons using O(max(k, d)) in-context samples by filtering50

individual layers and solving them via linear regression – in contrast to the Ω(kd) lower bound51

without step-augmented prompt. In line with theory, our experiments (e.g. Figs. 2&3) identify a52

striking universality phenomenon (as k varies) and also demonstrate clear approximation benefits53

of CoT compared to vanilla ICL.54

• Accelerated pretraining via learning shortcuts: We construct deep linear MLPs where each55

layer is chosen from a discrete set of matrices. This is in contrast to above where MLP weights56

can be arbitrary. We show that CoT can dramatically accelerate pretraining by memorizing these57

discrete matrices and can infer all layers correctly from a single demonstration. Notably the58

pretraining loss goes to zero step-by-step where each step “learns to filter a layer”. Together, these59

showcase how CoT identifies composable shortcuts to avoid the need for solving linear regression.60

In contrast, we show that, ICL (without CoT) collapses to the linear regression performance as it61

fails to memorize exponentially many candidates (due to lack of composition).62

The paper is organized as follows. In Section 2, we introduce the problem setup and preliminaries.63

Section 3 provides an empirical investigation of CoT with 2-layer MLPs and states our main theoretical64

results. Section 4 presents holistic experiments on the sample complexity and approximation benefits65

of CoT. Finally, we elucidate the benefits of CoT during pretraining via experiments on deep linear66

MLPs in Section 4.3. Related work and discussion are provided in Section 5 and 6.67

2 Preliminaries and Setup68

Let [n] denote set {1, 2 · · · , n}. We will refer to vectors and matrices in bold text (e.g., x,A) while69

scalars will be represented in plain text (e.g., y). We will denote the input and output domains to be70

X and Y respectively (unless otherwise specified), and x ∈ X , y ∈ Y denote the input and output.71

2

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk k = 4

k = 8
k = 16

d = 10
d = 20

(a) CoT-I/O: d = 10 vs 20

0 2 4 6 8 10
in-context samples/d

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

d = 10, k = 16
d = 20, k = 16
d = 10, k = 16
d = 20, k = 16

(b) Alignment in Fig. 2(a)

Figure 2: Solving 2-layer MLPs with different input dimension d and hidden neuron size k.

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk k = 4

k = 16
k = 64

First layer risk
Second layer risk
First layer risk
Second layer risk

(a) CoT-I/O: composed risk (d = 10)

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk k = 4

k = 16
k = 64

(b) Risk of first layer

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk k = 4

k = 16
k = 64

(c) Risk of second layer

Figure 3: We decouple the composed risk of predicting 2-layer MLPs into risks of individual layers.

2.1 In-context Learning72

Following Garg et al. [2022], the fundamental problem of vanilla in-context learning (ICL) , considers73

a prompt with input-output pairs of the following form:74

pn(f) = (xi,yi)
n
i=1 where yi = f(xi), (P-ICL)

where the transition function f ∈ F : X → Y remains the same within a single prompt but can vary75

across prompts; the subscript n represents the number of in-context samples contained in the prompt.76

Consider language translation as an example, then f is identified as the target language and the77

prompt can be defined as p(Spanish) = ((apple, manzana), (ball, pelota), · · ·) or p(French)=((cat,78

chat), (flower, fleur), · · ·). Let TF denote any auto-regressive model (e.g., Decoder-only Transformer).79

Then, the problem of in-context learning aims to learn a model so that, given a prompt p and the test80

input xtest, the TF can accurately predict the output such that81

TF(pn(f̃),xtest) ≈ f̃(xtest) (2.1)

where f̃ ∈ F is the test function which can be different to the functions used on training. Previous82

work [Zhou et al., 2022, Oymak et al.] has shown that typically, larger prompt size (n) improves the83

performance of the model.84

2.2 Chain-of-thought Prompt and Prediction85

As we already mentioned, the prompt in vanilla ICL (P-ICL) contains input-output pairs of the86

target function. This requires the model to learn the function f ∈ F in one shot, and as F becomes87

more complex, larger models and longer prompt length (n) are needed to make correct predictions88

(see green curves in Figures 4&5). Existing work for chain-of-thought methods [Wei et al., 2022c]89

observed that prompts containing step-by-step instructions help the model deconstruct the function90

and make better predictions. Specifically, consider a function composed from L subfunctions, that is91

f := fL ◦ fL−1 ◦ . . . f1. Then each intermediate output can be perceived as a step, and we can define92

a length-n CoT prompt corresponding to f with L steps (represented with sℓ, ℓ ∈ [L]) as follows:93

pn(f) = (xi, s
1
i , · · · sL−1

i , sLi)
n
i=1 where sℓi = fℓ(s

ℓ−1
i), ℓ ∈ [L]. (P-CoT)

Here xi = s0i , yi = sLi and fℓ ∈ Fℓ, f ∈ FL × · · · F1 := F .94

We now present two different ways that predictions can be made in the context of CoT:95

CoT over input only (CoT-I). Compared to ICL, CoT-I takes in step-by-step instructions as inputs,96

which fragments the calculation of the target value into a set of simpler ones. However, the prediction97

3

over the last token is performed all together in one shot. Our experimental results show that it helps in98

reducing sample complexity for TF to learn the function f̃ at hand (see orange curves in Figures 4&5).99

Then the CoT-I prediction is as in Eq. (2.1) but the prompt is given by (P-CoT).100

One-shot prediction: TF(pn(f̃),xtest) ≈ f̃(xtest). (2.2)
CoT over both input and output (CoT-I/O). Even though CoT-I improves the sample complexity101

in calculating f̃ , the TF still needs to be expressive enough as to approximate functions from the102

function class F , since the prediction is made in one shot. To address this challenge, we consider103

the following scenario where in addition to applying CoT prompt, we make CoT predictions as well.104

Specifically, for a composed problem with inputs formed through (P-CoT), the model makes L-step105

predictions recurrently as follows:106

Step 1: TF(pn(f̃),xtest) := ŝ1

Step 2: TF(pn(f̃),xtest, ŝ
1) := ŝ2

...

Setp L: TF(pn(f̃),xtest, ŝ
1 · · · , ŝL−1) ≈ f̃(xtest), (2.3)

where at each step, model outputs an intermediate step (ŝℓ) which will be feed back to the input107

sequence to make the next-step prediction (ŝℓ+1). Following this strategy, the model only needs to108

learn the union of the sub-function sets,
⋃L

ℓ=1 Fℓ, which scales linearly with the number of steps109

L. Blue curves in Figures 4 and 5 empirically reflect the benefits of CoT-I/O compared to ICL and110

CoT-I in improving sample efficiency and model expressivity.111

3 Empirical and Theoretical Insights into CoT112

In this section, we first investigate how CoT-I/O performs when learning 2-layer MLPs with input di-113

mension d and hidden dimension k. Our experiments show that CoT-I/O requires only O(max(d, k))114

in-context samples. Then in Section 3.2, we provide our theoretical results showing that CoT-I/O115

can perform filtering over CoT prompt, and therefore, it turns to learn a 2-layer MLP as solving k116

d-dimensional ReLU and 1 k-dimensional linear regression problems.117

3.1 Empirical Investigation of 2-layer MLPs118

To investigate how MLP architecture will affect the CoT-I/O performance, we train 2-layer MLPs119

with different input dimension d and hidden layer size k, and results are shown in Figure 2 and 3120

respectively. Let x, s, y denote input, hidden state and output. We defer the implementation details to121

Section 4.2, and all the experiments are conductedwith small GPT-2 model.122

CoT-I/O performance agnostic to k when k ≤ d (Figure 2). In Fig. 2(a), we train different MLPs123

with d = 10, 20 and k = 4, 8, 16. Solid and dashed curves respectively represent CoT-I/O test risk124

of d = 10 and 20 given different in-context samples. Results show that enlarging d will increase125

the samples needed in in-context learning, while performance keeps unchangable with varying126

k ∈ {4, 8, 16}. To further investigate how d impacts CoT-I/O accuracy, in Fig. 2(b), we rescale the127

horizontal axis by dividing with input dimension d, and put both d = 10, k = 16 (blue solid) and128

d = 20, k = 16 (orange dashed) results on it. The two curves are aligned, which demonstrates that129

the in-context sample complexity of CoT-I/O is linearly dependent on d.130

Large k dominates CoT-I/O performance (Figure 3). Next, we investigate when k will turn to131

dominate the CoT-I/O performance. In Figure 3(a) we repeat the same experiments by fixing d = 10132

but train with wider MLPs (k = 64), and blue, orange and green curves represent k = 4, 16, 64 results.133

Now since hidden dimension k = 64 is large, learning second layer requires more hidden features134

(s), and therefore given N = 100 in-context samples (which will provide 100 ss) is not enough to135

restore the second layer, and performance gaps appear between k = 4, 16 and k = 64. To quantify136

the existing gaps, we make single-step evaluations for both first layer and second layer, and results137

are shown in Fig. 3(b) and Fig. 3(c). Specifically, let pn(f̃) be a test prompt containing n in-context138

samples where f̃ represents arbitrary 2-layer MLP. Then given a test sample (xtest, stest, ytest), the layer139

predictions are made as follows.140

1st layer prediction: TF(pn(f̃),xtest) := ŝ,

2nd layer prediction: TF(pn(f̃),xtest, stest) := ŷ,

4

the test risks are calculated by ∥ŝ − stest∥2 and (ŷ − ytest)
2 (The risks shown in the figures are141

normalized so that they are comparable. Also check Section 4.2 and appendix for more details).142

Evidences in Fig. 3(b) and 3(c) show that enlarging k will not influence the first layer prediction, but143

increase the number of samples required in learning the second layer. What’s more, we also plot the144

first layer risks of k = 4, 16 (blue/orange dotted) and second layer risk of k = 64 (green dashed)145

in Fig. 3(a), and they are aligned with CoT-I/O composed risks, which verifies that CoT-I/O learns146

2-layer MLP as compositional learning separate layers.147

3.2 Provable Approximation of MLPs via Chain-of-Thought148

The observations we made in Section 3.1 are indicative of the model processing each one of the two149

layers sequentially. Now in this section, we state our main contribution of establishing a result that150

decouples CoT-based in-context learning (CoT-I/O) into two phases: (1) Filtering Phase: Given a151

prompt that contains features of multiple MLP layers, retrieve only the features related to a target152

layer to create a homogeneous prompt. (2) ICL Phase: Given filtered prompt, learn the target layer153

weights through gradient descent. Combining these two phases, and looping over all layers, we154

will show that there exists a transformer architecture such that CoT-I/O can provably approximate155

a multilayer MLP up to a given resolution. To state our result, we assume access to an oracle that156

performs linear regression and consider the consider the condition number of the data matrix.157

Definition 1 (MLP and condition number) Consider a multilayer MLP defined by the recursion158

sℓi = ϕ(Wℓs
ℓ−1
i) for ℓ ∈ [L], i ∈ [n] and s0i = xi. Here ϕ(x) = max(αx, x) is a Leaky-ReLU159

activation with 1 ≥ α > 0. Define the feature matrix Tℓ = [sℓ1 . . . sℓn]
⊤ and define its condition160

number κℓ = σmax(Tℓ)/σmin(Tℓ) (with σmin := 0 for fat matrices) and κmax = max0≤ℓ<L κℓ.161

Assumption 1 (Oracle Model) We assume access to a transformer TFLR which can run T steps of162

gradient descent on the quadratic loss L(w) =
∑n

i=1(yi − w⊤xi)
2 given a prompt of the form163

(x1, y1, . . . ,xn, yn).164

We remark that this assumption is realistic and has been formally established by earlier work [Giannou165

et al., 2023, Akyürek et al., 2022]. Our CoT abstraction builds on these to demonstrate that CoT-I/O166

can call a blackbox TF model to implement a compositional function when combined with filtering.167

The following result summarizes our main theoretical contribution. The precise statement is deferred168

to the supplementary material.169

Theorem 1 (Decoupling CoT) Consider a prompt pn(f) generated from an L-layer MLP f(·) as170

described in Definition 1, and assume given test example (xtest, s
1
test, . . . s

L
test). For any resolution171

ϵ > 0, there exists δ = δ(ϵ), iteration choice T = O(κ2
max log(1/ϵ)), and a backend transformer172

construction TFBE such that the concatenated transformer TF = TFLR ◦TFBE implements the following:173

Let (ŝi)ℓ−1
i=1 denote the first ℓ− 1 CoT-I/O outputs of TF and set p[ℓ] = (pn(f),xtest, ŝ

1 . . . ŝℓ−1). At174

step ℓ, TF implements175

1. Filtering. Define the filtered prompt with input/output features of layer ℓ,176

pfilter
n =

(
. . .0, sℓ−1

1 , 0 . . . 0, sℓ−1
n , 0 . . . 0, ŝℓ−1

. . .0, 0, sℓ1 . . . 0, 0, sℓn . . . 0, 0

)
.

There exists a fixed projection matrix Π that applies individually on tokens such that the177

backend output obeys ∥Π(TFBE(p[ℓ]))− pfilter
n ∥ ≤ δ.178

2. Gradient descent. The combined model obeys ∥TF(p[ℓ])− sℓtest∥ ≤ ℓ · ϵ/L.179

TFBE has constant number of layers independent of T and n. Consequently, after L rounds of CoT-I/O,180

TF outputs f(xtest) up to ϵ accuracy.181

Remark 1 Note that, this result effectively shows that, with a sufficiently good blackbox transformer182

TFLR (per Assumption 1), CoT-I/O can learn an L-layer MLP using in-context sample size n >183

maxℓ∈[L] dℓ where dℓ is the input dimension of ℓth layer. This is assuming condition number κmax of184

the problem is finite as soon as all layers become over-determined. Consequently, CoT-I/O needs185

max(k, d) sample complexity to learn a two layer MLP. This provides a formal justification for the186

observation that empirical CoT-I/O performance is agnostic to k as long as k ≤ d.187

5

CoT-I/O CoT-I ICL0.0

0.1

0.2

0.3

Av
er

ag
ed

 ri
sk

Standard
Small
Tiny

(a) Averaged risk

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

CoT-I/O
CoT-I
ICL

(b) Standard GPT-2

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

CoT-I/O
CoT-I
ICL

(c) Small GPT-2

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

CoT-I/O
CoT-I
ICL

(d) Tiny GPT-2

Figure 4: Compare the three methods in solving 2-layer MLPs using different GPT-2 models.

CoT-I/O CoT-I ICL0.00

0.05

0.10

0.15

0.20

Av
er

ag
ed

 ri
sk

k = 4
k = 8
k = 16

(a) Averaged risk

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4
Te

st
 ri

sk
CoT-I/O
CoT-I
ICL

(b) k = 4

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

CoT-I/O
CoT-I
ICL

(c) k = 8

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

CoT-I/O
CoT-I
ICL

(d) k = 16

Figure 5: Compare the three methods in solving 2-layer MLPs of different hidden sizes.

We provide the filtering statements in the Appendix, and the key components of our construction are188

the following: (i) Inputs are projected through the embedding layer in which a set of encodings, an189

enumeration of the tokens (1, 2, . . . , N), an enumeration of the layers (1, 2, . . . , L) and an identifier190

for each layer already predicted are all attached. Notice that this “modification” to the input only191

depends on the sequence length and is agnostic to the token to-be-predicted. This allows for an192

automated looping over L predictions. (ii) We use this information to extract the sequence length N193

and the current layer ℓ to-be-predicted. (iii) With these at hand we construct an ‘if - then’ type of194

function using the ReLU layers to filter out the samples that are not needed for the prediction.195

4 Experimental Results196

4.1 Model Training197

In Figure 1 and Section 2, we have discussed the vanilla ICL, CoT-I and CoT-I/O methods. Intuitively,198

ICL is a special case of CoT-I (or CoT-I/O) if assuming only one step is performed. Therefore, we199

will implement CoT-I and CoT-I/O for model training in the following.200

Consider the CoT prompt (P-CoT), and assume that x ∼ DX , and fℓ ∼ Dℓ, ℓ ∈ [L], where201

L is the number of compositions/steps so that the final prediction should approximate f(x) =202

fL(fL−1 . . . f1(x)) := y ∈ Y . Define ℓ(ŷ,y) : Y × Y → R be a loss function, and for simplicity,203

assume fℓ(. . . f1(x)) ∈ Y , ℓ ∈ [L]. Let N be in-context window of TF, that is, TF can only admit204

prompt containing up to N in-context samples. Generally, our goal is to ensure high prediction205

performance given any length-n prompt, where n ∈ [N]. To this end, we train the model using206

prompts with length from 1 to N equally and aim to minimize the averaged risk over different prompt207

size. Assume model TF is parameterized by θ and consider meta learning problem. Then the objective208

functions for CoT-I and CoT-I/O are defined as follows.209

θ̂CoT-I = argmin
θ

E(xn)Nn=1,(fℓ)
L
ℓ=1

[
1

N

N∑
n=1

ℓ(ŷn, f(xn))

]
where ŷn = TF(pn(f),xn)

and210

θ̂CoT-I/O = argmin
θ

E(xn)Nn=1,(fℓ)
L
ℓ=1

[
1

NL

N∑
n=1

L∑
ℓ=1

ℓ(ŝℓn, s
ℓ
n)

]
where ŝℓn = TF(pn(f),xn · · · sℓ−1

n).

Here pn(f) is given by (P-CoT), and same as mentioned above, s0 = x and sL = y. All x and fℓ211

are independent and we take the expectation of the risk over their specific distributions.212

6

0 2 4 6 8 10
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk

ICL
CoT-2
CoT-3
CoT-6
Least squares

n = d

(a) Point-to-point meta prediction

0 100k 200k 300k 400k 500k
iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk ICL

CoT-2
CoT-3
CoT-6

(b) One-shot prediction over time

Figure 6: Evaluations over deep linear MLPs using CoT-I/O and ICL where CoT-X represents the
X-step CoT-I/O. Fig. 6(a) shows point-to-point meta results where model is trained with sufficiently
many samples, and in Fig. 6(b), we make prediction during training and evaluate the performance
given only one in-context sample. See Section 4.3 for implementation details.

4.2 2-layer Random MLPs213

For a clear exposition, we first focus on the case of two layer MLPs which is 2-step tasks and compare214

three different methods: ICL, CoT-I and CoT-I/O. Comparison results are shown in Figures 4 and 5.215

Dataset. Consider 2-layer MLPs with input x ∈ Rd, hidden feature (step-1 output) s ∈ Rk, and216

output y ∈ R, where s = f1(x) := (Wx)+ and y = f2(s) := v⊤s. Here W ∈ Rk×d, v ∈ Rk are217

the first and second layer/sub-function parameters, and (x)+ = max(x, 0) is ReLU activation. Hence,218

the function is composed as y = v⊤(Wx)+. We define the function distributions as follows: each219

entry of W is sampled via Wij ∼ N (0, 2
k), and v ∼ N (0, Ik), and inputs are sampled randomly220

through x ∼ N (0, Id)
1. We apply quadratic loss in our experiments. To avoid the implicit bias due221

to distribution shift, both training and test datasets are generated following the same strategy.222

Varying model sizes (Figure 4). We first evaluate the benefits of CoT-I/O from ICL and CoT-I223

over different TF models. Fix d = 10 and k = 8, and train over three different GPT-2 models:224

standard, small and tiny GPT-2. The small GPT-2 has 6 layers, 4 attention heads per layer and225

128 dimensional embeddings. While, standard GPT-2 contains twice of the layer number, attention226

heads and embedding dimension of small GPT-2 and tiny GPT-2 contains only half of each. We227

set N = 100, and test the performance given prompts with n in-context samples (n from 1 to 100),228

and test risks of each given n are shown in Figs. 4(b), 4(c) and 4(d). The blue, orange and green229

curves stand for CoT-I/O, CoT-I and ICL respectively. In Fig. 4(a), we display the averaged risks.230

Results show that using CoT-I/O, small GPT-2 can solve 2-layer MLPs at hand using 60 samples,231

and CoT-I needs standard GPT-2. However, ICL can not solve the problem since it does not achieve232

zero test risk using standard GPT-2 model and given up to 100 samples. One interpretation is that:233

to learn the 2-layer MLPs in one shot, ICL needs at least O(dk + d) samples to restore all function234

parameters. Different to ICL, CoT-I and CoT-I/O have implicit samples contained in the CoT prompt.235

Let f1 ∈ F1 (first layer) and f2 ∈ F2 (second layer). Comparing the performance of CoT-I and236

CoT-I/O shows that, standard GPT-2 is able to learn the composed function f = f2 ◦ f1 ∈ F , which237

small GPT-2 cannot express.238

Varying MLP widths (Figure 5). Next, we investigate how different MLP widths will impact the239

performance (by varying hidden neuron size k ∈ {4, 8, 16}) and results are shown in Figure 5. Blue,240

orange and green curves in Figs. 5(b), 5(c) and 5(d) correspond to the hidden layer size k = 4, 8,241

and 16 respectively, and Fig. 5(a) presents the averaged risks. Fix d = 10, N = 100 and train with242

small GPT-2. As we have discussed in Section 3, CoT-I/O can learn a 2-layer MLP using around 60243

samples for all k = 4, 8, 16 thanks to its ability of deconstructing the composed functions. While,244

CoT-I can only learn the narrow MLPs with k = 4 and ICL is not able to learn any of it. What’s245

more, we also observe that performance of CoT-I and CoT-I/O differs a lot with varying k (e.g., see246

averaged risks in Fig. 5(a)), and it can be explained as: enlarging k results in more complex F1 and247

F2, and therefore learning F = F2 ×F1 becomes more challenging for ICL and CoT-I.248

1Following this data generation strategy, x, s and y have the same expected norm, and risk curves shown in
the plots are normalized.

7

0 10k 20k 30k 40k 50k
iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk ICL

CoT-2
CoT-3
CoT-6

(a) Composed risk

0 10k 20k 30k 40k 50k0.0
0.2
0.4
0.6
0.8
1.0 Layer 6

0 10k 20k 30k 40k 50k0.0
0.2
0.4
0.6
0.8
1.0 Layer 3

0 10k 20k 30k 40k 50k0.0
0.2
0.4
0.6
0.8
1.0 Layer 2

0 10k 20k 30k 40k 50k0.0
0.2
0.4
0.6
0.8
1.0

Te
st

 ri
sk

Layer 4
0 10k 20k 30k 40k 50k0.0

0.2
0.4
0.6
0.8
1.0

Te
st

 ri
sk

Layer 1

0 10k 20k 30k 40k 50k
iteration

0.0
0.2
0.4
0.6
0.8
1.0 Layer 5

(b) Risk of each layer output

Figure 7: Fig. 7(a) is generated by magnifying the initial 50k iterations of Fig. 6(b), and we decouple
the composed risks from predicting 6-layer linear MLPs into each layer prediction and results are
depicted in Fig. 7(b). Check Section 4.3 for implementation details.

4.3 Deep Linear MLPs249

In Sections 3.1 and 4.2, we have discussed the approximation benefit of CoT-I/O and how it in-context250

learns 2-layer random MLPs by parallelly learning k d-dimensional ReLU and 1 k-dimensional linear251

regression, and composing them. In this section, we investigate the behaviors of CoT-I/O in learning252

longer compositions. For cleaner notation, in the following we use CoT to refer to as CoT-I/O.253

Dataset. Consider a L-layer linear MLPs with input x ∈ Rd ∼ N (0, Id), and output generated254

by y = WLWL−1 · · ·W1x, where Wℓ ∈ Rd×d is the ℓth layer parameters, ℓ ∈ [L]. In this work,255

to better understand the emergent ability of CoT, we assume each layer is functionalized from the256

same discrete sub-function set F̄ = {W̄k : W̄⊤
k W̄k = I, k ∈ [K]}2. Therefore to learn the L-layer257

neural net, CoT only needs to learn F̄ with |F̄ | = K, whereas ICL needs to learn function set F̄L,258

which contains KL random matrices.259

Composition ability of CoT (Figures 6). Set d = 5, L = 6 and K = 4. At each round, randomly260

pick L matrices Wℓ, ℓ ∈ [L] from F̄ so that for any input x, we can form a chain261

x → s1 → s2 · · · → s6 := y,

where sℓ = Wℓs
ℓ−1, ℓ ∈ [L] and s0 := x. Let CoT-X denote X-step CoT-I/O method. For262

example, the in-context sample of CoT-6 has form (x, s1, s2, . . . s5,y), which contains all the263

intermediate information outputted by each layer; while CoT-3, CoT-2 have prompt samples formed264

as (x, s2, s4,y) and (x, s3,y) respectively. In this setting, ICL can also be named as CoT-1, whose265

prompt contains (x,y) pairs. Intuitively, to solve the length-6 chain, CoT-X needs to learn a model266

that remembers 46/X matrices. Therefore, ICL is hard to solve the problem since it needs to remember267

46 = 4, 096 matrices (all the combinations of the 4 matrices we use for training and testing) compared268

to the 4 for CoT-6.269

We train small GPT-2 models using all the CoT-2/-3/-6 and ICL methods and results are presented270

in Fig. 6(a). From this figure, we can see that CoT-2 (orange), CoT-3 (green) and CoT-6 (red)271

performance curves are overlapping, and all can make precise predictions in one shot (given in-272

context example n = 1). It seems that TF has exactly learned to remember up to 64 matrices (for273

CoT-2) and compose up to 6 layers (for CoT-6). However, ICL (blue) is not able to learn the 6-layer274

MLPs in one shot. In black dashed curve, we solve linear regression y = β⊤x directly via least275

squares given n random training samples, where x is the input and y is from the output of the 6-layer276

MLPs (e.g., y[0]), and plot the test risks given n = 1, . . . 10. From Fig. 6(a) we can see that ICL277

curve is aligned with least squares performance, which implies that, instead of remembering all 4, 096278

matrices, ICL turns to solve the problem from the linear regression phase.279

In addition to the meta-learning results which show the approximation benefits of multi-step CoT, we280

also investigate the convergence rate of CoT-2/-3/-6 and ICL, and results are displayed in Fig. 6(b).281

We test the one-shot performance during training and results show that CoT-6 converges fastest, since282

it has the smallest sub-function set, and given the same tasks (e.g., deep neural nets), shortening the283

chain results in slower convergence. It evidences us that taking more steps helps in learning complex284

problems faster and better.285

2Here, we create unitary matrices to make sure the norm of feature is kept constant (∥x∥ = ∥y∥ = ∥sℓ∥),
so that evaluations over different layers are fair.

8

Evidence of Filtering (Figure 7). In Theorem 1 and appendix, we state that transformers can286

perform filtering over CoT prompts, and 2-layer MLP results are aligned with our theoretical findings.287

But can we actually capture filtering behaviors? In Fig. 7(a), we display the results of the first 50k288

iterations from Fig. 6(b), and observe that there exist risk drops in CoT-6 (red) at 15k and 25k’th289

iteration (shown in gray dotted and dashed lines). Then in the Fig. 7(b), we plot the test risk of each290

layer prediction (by feeding the model with correct intermediate features not the predicted ones),291

and CoT-6 (red) predicts the outputs from all 6 layers (s1, · · · , sL). From this figure, we can find292

that there exist risk drops as well when predicting different layers, which appear at iteration either293

15k (for layer 2, 3, 4, 5, 6) or 25k (for layer 1). This implies that the model learns to predict each294

step/layer function separately. Furthermore, we test the filtering evidence of ℓth layer by filling295

irrelevant positions with random features. Specifically, in-context example is formed by296

(z0, · · · , sℓ−1, sℓ, zℓ+1, . . . zL), where sℓ = Wℓ(s
ℓ−1) and z ∼ N (0, Id).

Test risks are displayed in black dotted curves in Fig. 7(b) and they are all aligned with the CoT-6297

curves (red). Each layer’s prediction only focuses on the corresponding intermediate steps in the298

prefix and ignores the irrelevant features, which evidences that filtering is indeed performed.299

5 Related Work300

With the success of LLMs and prompt structure [Lester et al., 2021], there is growing interest in301

in-context learning (ICL) from both theoretical and experimental lens [Garg et al., 2022, Brown302

et al., 2020, von Oswald et al., 2022, Dai et al., 2022, Min et al., 2022, Lyu et al., 2022, Li et al.,303

2023, Xie et al., 2021, Min et al., 2021, Wei et al., 2023]. As an extension, chain-of-thought (CoT)304

prompts have made impressive improvements in performing complex reasoning by decomposing it305

into step-by-step intermediate solutions [Wei et al., 2022c, Narang et al., 2020, Lampinen et al., 2022,306

Wei et al., 2022b, Zhou et al., 2022, Nye et al., 2021, Veličković and Blundell, 2021, Lanchantin307

et al., 2023], which in general, shows the ability of transformer in solving compositional functions,308

and the idea of learning how to compose skills has been well studied in other literatures [Sahni et al.,309

2017, Liška et al., 2018]. More specifically, for the problem of learning shallow networks, there are310

several well known hardness results Goel et al. [2017, 2020], Zhang et al. [2019]. In particular, Hahn311

and Goyal [2023] shows a formal learnability bound which implies that compositional structure can312

benefit ICL. However, most of the work focuses on investigating empirical benefits and algorithmic313

designing of CoT, and there exists little effort studying the underlying mechanisms of CoT.314

Considering the expressivity of the transformer architecture itself, Yun et al. [2019] showed that315

TFs are universal sequence to sequence approximators. More recently, Giannou et al. [2023] use316

an explicit construction to show that shallow TFs can be used to run general purpose programs as317

long as we loop them. Other works have also shown the turing-completeness of the TF architecture318

but these typically require infinite/high precision and recursion around attention layers [Wei et al.,319

2022a, Pérez et al., 2019, 2021, Liu et al., 2022]. Closer to our work, Akyürek et al. [2022] prove320

that a transformer with constant number of layers can implement gradient descent in solving linear321

regression, and Giannou et al. [2023] introduce similar results by looping outputs back into inputs.322

In this work, we prove CoT can be treated as: first apply filtering on the CoT prompts using special323

construction, and then in-context learn the filtered prompt.324

6 Conclusion and Discussion325

In this work, we investigate chain-of-thought prompting and shed light on how it enables composi-326

tional learning of multilayer perceptrons step-by-step. Specially, we have explored and contrasted327

three methods: ICL, CoT-I and CoT-I/O, and found that CoT-I/O facilitates better approximation and328

faster convergence through looping and sample efficiency. Additionally, we empirically and theoreti-329

cally demonstrated that to learn a 2-layer MLP with d-dimensional input and k neurons, CoT-I/O330

requires O(max(d, k)) in-context samples whereas ICL runs into approximation error bottlenecks.331

There are several interesting avenues for future research building on our findings. To what extent332

our decoupling of CoT (filtering followed by ICL) align with the empirical evidence in practical333

problems such as code generation and mathematical reasoning? We have shown that CoT-I/O can334

rely on linear regression oracle to learn an MLP. To what extent transformers can approximate MLPs335

without CoT-I/O (e.g. with CoT-I), what are lower/upper bounds?336

9

References337

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-338

rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,339

2022.340

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,341

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are342

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.343

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can gpt learn in-344

context? language models secretly perform gradient descent as meta optimizers. arXiv preprint345

arXiv:2212.10559, 2022.346

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn347

in-context? a case study of simple function classes. Advances in Neural Information Processing348

Systems, 35:30583–30598, 2022.349

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris Pa-350

pailiopoulos. Looped transformers as programmable computers. arXiv preprint arXiv:2301.13196,351

2023.352

Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning the relu in polynomial353

time. In Conference on Learning Theory, pages 1004–1042. PMLR, 2017.354

Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness results for355

training depth-2 relu networks. arXiv preprint arXiv:2011.13550, 2020.356

Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure357

induction. arXiv preprint arXiv:2303.07971, 2023.358

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large359

language models. arXiv preprint arXiv:2303.05398, 2023.360

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY Chan, Kory Matthewson, Michael Henry361

Tessler, Antonia Creswell, James L McClelland, Jane X Wang, and Felix Hill. Can language362

models learn from explanations in context? arXiv preprint arXiv:2204.02329, 2022.363

Jack Lanchantin, Shubham Toshniwal, Jason Weston, Arthur Szlam, and Sainbayar Sukhbaatar.364

Learning to reason and memorize with self-notes. arXiv preprint arXiv:2305.00833, 2023.365

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt366

tuning. arXiv preprint arXiv:2104.08691, 2021.367

Yingcong Li, M Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as368

algorithms: Generalization and implicit model selection in in-context learning. arXiv preprint369

arXiv:2301.07067, 2023.370

Adam Liška, Germán Kruszewski, and Marco Baroni. Memorize or generalize? searching for a371

compositional rnn in a haystack. arXiv preprint arXiv:1802.06467, 2018.372

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers373

learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.374

Xinxi Lyu, Sewon Min, Iz Beltagy, Luke Zettlemoyer, and Hannaneh Hajishirzi. Z-icl: Zero-shot375

in-context learning with pseudo-demonstrations. arXiv preprint arXiv:2212.09865, 2022.376

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in377

context. arXiv preprint arXiv:2110.15943, 2021.378

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke379

Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv380

preprint arXiv:2202.12837, 2022.381

10

Sharan Narang, Colin Raffel, Katherine Lee, Adam Roberts, Noah Fiedel, and Karishma Malkan.382

Wt5?! training text-to-text models to explain their predictions. arXiv preprint arXiv:2004.14546,383

2020.384

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David385

Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:386

Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,387

2021.388

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the389

role of attention in prompt-tuning. In ICLR 2023 Workshop on Mathematical and Empirical390

Understanding of Foundation Models.391

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural392

network architectures. arXiv preprint arXiv:1901.03429, 2019.393

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing complete. The Journal of394

Machine Learning Research, 22(1):3463–3497, 2021.395

Luis Perez, Lizi Ottens, and Sudharshan Viswanathan. Automatic code generation using pre-trained396

language models. arXiv preprint arXiv:2102.10535, 2021.397

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language398

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.399

Himanshu Sahni, Saurabh Kumar, Farhan Tejani, and Charles Isbell. Learning to compose skills.400

arXiv preprint arXiv:1711.11289, 2017.401

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz402

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing403

systems, 30, 2017.404

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.405

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,406

Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.407

arXiv preprint arXiv:2212.07677, 2022.408

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on409

approximating turing machines with transformers. Advances in Neural Information Processing410

Systems, 35:12071–12083, 2022a.411

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,412

Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.413

arXiv preprint arXiv:2206.07682, 2022b.414

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny415

Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint416

arXiv:2201.11903, 2022c.417

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,418

Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv419

preprint arXiv:2303.03846, 2023.420

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,421

Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:422

State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.423

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context424

learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.425

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. How well do large426

language models perform in arithmetic tasks? arXiv preprint arXiv:2304.02015, 2023.427

11

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.428

Are transformers universal approximators of sequence-to-sequence functions? arXiv preprint429

arXiv:1912.10077, 2019.430

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu431

networks via gradient descent. In The 22nd international conference on artificial intelligence and432

statistics, pages 1524–1534. PMLR, 2019.433

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi.434

Teaching algorithmic reasoning via in-context learning. arXiv preprint arXiv:2211.09066, 2022.435

12

436

Appendix437

Table of Contents
438
439

A Construction 13440

A.1 The Transformer architecture . 13441

A.2 Positional encodings . 13442

A.3 Constructing some useful “Bblack-box” functions 14443

A.4 Results on filtering . 15444

B Experimental Details 21445

B.1 Model evaluation . 21446

B.2 Implementation . 21447

C Additional Experimental Results 22448

C.1 Filtering evidence in 2-layer MLPs . 22449

C.2 Comparison of filtered CoT with ICL . 22450

C.3 CoT across different sizes of GPT-2 . 23451

C.4 Compare transformer prediction with linear regression 23452

453
454455

A Construction456

A.1 The Transformer architecture457

For the purpose of this proof, we consider encoder-based transformer architectures and assume that458

the positional encodings are appended to the input3. We also consider that the heads are added and459

each one has each own key, query and value weight matrices. Formally, we have460

attn(X) = X +

H∑
h=1

W h
VXsoftmax((W h

KX)⊤W h
QX) (A.1)

TF(X) = attn(X) +W2(W1attn(X) + b11n)+ + b21n (A.2)

where X ∈ Rd×n, H is the number of heads used and f(x) = (x)+ is the ReLU function. We also461

make use of the temperature λ, which is a parameter of the softmax. Specifically, softmax(x) =462

{eλxi/
∑

j e
λxj}i. Notice that as λ → ∞ we have softmax(x) → maxi xi. We also assume that the463

inputs are bounded; we denote with Nmax the maximum sequence length of the model.464

Assumption 2 Each entry is bounded by some constant c, which implies that ∥X∥ ≤ c′, for some465

large c′ that depends on the maximum sequence length and the width of the transformer.466

A.2 Positional encodings467

In the constructions below we use a combination of the binary representation of each position as well468

as some additional information as described in the following sections. The binary representations as469

well the encodings we construct, require only logarithmic space with respect to the sequence length.470

Notice that binary representation of the positions satisfy the following two conditions:471

3We note here that in terms of our construction adding the encodings or appending them to the input can
be viewed in a similar manner. Specifically, we can consider that the up-projection step projects the input to
zero padded vectors, while the encodings are orthogonal to that projection in the sense that the have zero in the
non-zero coordinates of the input. In that case adding the positional encodings corresponds to appending them to
the input.

13

1. Let ri be the binary representation of the i-th position, then there exists ε > 0 such that472

r⊤i ri > r⊤i rj + ε for all j ̸= i.473

2. There exists a one layer transformer that can implement the addition of two pointers (see474

Lemma 2).475

One useful fact about the encodings is that as476

A.3 Constructing some useful “Bblack-box” functions477

We follow the construction of previous work [Giannou et al., 2023] and use the following individual478

implementations as they do. We repeat the statements here for convenience. The first lemma is similar479

to Akyürek et al. [2022].480

Lemma 1 A transformer with one layer, two heads, and embedding dimension of O(log n + d),481

where d is the input dimension and n is the sequence length, can copy any block of the input to any482

other block of the input with error ε arbitrarily small.483

This is the move operation in Akyürek et al. [2022]. Notice that since Akyürek et al. [2022] use484

decoder only models they can only move things only from (i, j) to (i′, j′) such that i′ > i and j′ > j.485

However, since we consider encoder models by repeating their proof we can get the result for arbitrary486

positions. We also consider the positional encodings of Giannou et al. [2023] which leads to the ε487

error.488

Remark 2 For the idea on how this is possible we illustrate a simple example. Assume that N = 5489

and we want to copy and element from position (1,2) where the first element signifies the row and490

the second the column to position (3,5). The first step is to copy the second column to the fifth one;491

to do so we force the softmax matrix to acts as a permutation matrix, i.e., [e1 e2 e3 e4 e2] where492

ei is the one hot vector for the i-th row. This is achieved by the bianary representations by using as493

WKX = [r1 . . . r5], WQX = [r1 . . . r2] and by using λ large enough the result follows. Then,494

we use a value matrix that only keeps the row 1 and permutes it to the row 3. Finally, to account for495

the residual, we use an extra head, which softmax is approximately the identity and the value weight496

matrix is zero expect for the first row which is again permuted to the third one. This description497

follows the construction of Akyürek et al. [2022].498

Lemma 2 There exists a 1-hidden layer feedforward, ReLU network, with 8d activations in the499

hidden layer and d neurons in the output layer that when given two d-dimensional binary vectors500

representing two non-negative integers, can output the binary vector representation of their sum, as501

long as the sum is less than 2d+1.502

Lemma 3 Fix ϵ > 0 and consider an input of the following form503

X =

 A 0 0 . . . 0
0 0 0 . . . 0
r1:d r1:d r1:d . . . r1:d
R′

1 R′
2 R′

3 . . . R′
d

 .

where A ∈ Rd×d; then there exists transformer-based function block with 4 layers, 1 head and504

dimensionality r = 2d+ 2 log d = O(d) that outputs the following matrix505

X =

 A′ A′ A′ . . . A′

0 0 0 . . . 0
r1:d r1:d r1:d . . . r1:d
R′

1 R′
2 R′

3 . . . R′
d

 .

where A′ = A⊤ + ϵM, for some ∥M∥ ≤ 1. The error ϵ depends on the choice of the temperature λ,506

as it is a consequence of the read/write operations.507

Lemma 4 Let A ∈ Rd×m and B ∈ Rd×n. Then for any ϵ > 0 there exists a transformer-based508

function block with 2 layers, 1 head and width r = O(d) that outputs the multiplication A⊤B+ ϵM,509

for some ∥M∥ ≤ 1 .510

14

Remark 3 Notice that based on the proof of this lemma, the matrices/scalars/vectors need to be in511

the same rows, i.e., Q = [A B]. By also appending the appropriate binary encodings we can move512

the output in any specific place we choose as in Lemma 1. Also, following the proof of the paper the513

input matrix is actually514

X =


Q 0 0
0 11⊤ 0
I 0 0

r(1)

r(2)


where r(1), r(2) are chosen as in Lemma 1 to specify the position of the result.515

A.4 Results on filtering516

Lemma 5 Assume that the input to a transformer layer is of the following form517

X =

x1 x2 . . . xn−1 xn

0 0 . . . 0 0
b1 b2 . . . bn−1 bn
b′1 b′2 . . . b′n−1 bn

 (A.3)

where bi, b
′
i ∈ {0, 1}, with zero indicating that the corresponding point should be ignored. Then518

there exists a transformer TF consisting only of a ReLU layer that performs this filtering, i.e.,519

TF(X) =

1{b1 ̸= 0}x1 1{b2 ̸= 0}x2 . . . 1{bn−1 ̸= 0}xn−1 1{bn ̸= 0}xn

1{b′1 ̸= 0}x1 1{b′2 ̸= 0}x2 . . . 1{b′n−1 ̸= 0}xn−1 1{b′n ̸= 0}xn

b1 b2 . . . bn−1 bn
b′1 b′2 . . . b′n−1 bn

 (A.4)

Proof. The layer is the following:520

TF(xi) = xi + (−Cbi − xi)+ − (−Cbi + xi)+ (A.5)

for some large constant C. Notice that if bi = 1 the output is just xi. But if bi = 0 then the output is521

zero. For the second set instead of using the bits bi, we use the b′i.522

Remark 4 Notice that if some bi is instead of 1, 1± ε, ε < c/C. Then the output of the above layer523

would be524

TF(xi) = xi + (−C ± Cε− xi)− (−C ± Cε+ xi) (A.6)
= xi (A.7)

while if some bi = ±ε instead of zero, and assuming that xi > c > 0 or xi < −c < 0 the output525

would be526

TF(xi) = xi + (−Cε− xi)+ − (−Cbi + xi)+ (A.8)
= xi ± Cε− xi (A.9)
≤ c (A.10)

If |xi| ≤ c, again the output would be less than or equal to c, where c can be arbitrarily small.527

But how we can create these bits for each different token we want to produce? We now describe528

for clarity how next word prediction is performed. An d × N -dimensional input is given to the529

transformer architecture, which is up-projected using the embedding layer; afterwards the positional530

encodings are added/appended to the it. At the last layer, the last token predicted is appended to531

the input, while the rest of the tokens remain unchanged. The same holds for the actual input to the532

transformer after appending the encodings. The only difference of the new input is the n+1-th token.533

We consider encoder-based architectures in all of our lemmas below.534

In the subsequent lemma we will try to construct and automated process that works along those535

guidelines. To do so we assume that the input to the transformer contains the following information:536

1. An enumeration of the tokens from 1 to N .537

15

2. The ln of the above enumeration.538

3. Zeros for the tokens that correspond to the data points, 1 for each token that is the xtest or it539

is a prediction based on this.540

4. An enumeration 1 to L for each one of the data points provided. For example, if we are541

given three sets of data we would have : 1 . . . L 1 . . . L 1 . . . L.542

5. Some extra information that is needed to implement a multiplication step as described in543

Lemma 4 and to move things to the correct place.544

The above information can be viewed as part of the encodings that are appended to the transformer.545

Formally, we have546

Lemma 6 Consider that a prompt with n in-context samples is given and the ℓ− 1-th prediction has547

been made, and the transformer is to predict the ℓ-th one. Assume the input to the transformer is:548

X =



x1 . . . sℓ−1
1 sℓ

1 . . . sℓ−1
2 sℓ

2 . . . sL
n xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . L+ ℓ+ 1 L+ ℓ+ 2 . . . n(L+ 1) n(L+ 1) + 1 . . . N

ln(1) . . . ln(ℓ) ln(ℓ+ 1) . . . ln(L+ ℓ+ 1) ln(L+ ℓ+ 2) . . . ln(n(L+ 1)) ln(n(L+ 1) + 1) . . . ln(N)

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN


where (ŝi)ℓ−1

i=1 denote the first ℓ− 1 recurrent outputs of TF and for simplicity, let N := n(L+ 1) + ℓ549

denote the total number of tokens. Then there exists a transformer TF consisting of 4 layers that has550

as output551

TF(X) =



0 . . . sℓ−1
1 0 . . . sℓ−1

2 0 . . . 0 0 . . . ŝℓ−1

0 . . . 0 sℓ
1 . . . 0 sℓ

2 . . . 0 0 . . . 0

0 . . . 1 0 . . . 1 0 . . . 0 0 . . . 1

0 . . . 0 1 . . . 0 1 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . L+ ℓ+ 1 L+ ℓ+ 2 . . . n(L+ 1) n(L+ 1) + 1 . . . N

ln(1) . . . ln(ℓ) ln(ℓ+ 1) . . . ln(L+ ℓ+ 1) ln(L+ ℓ+ 2) . . . ln(n(L+ 1)) ln(n(L+ 1) + 1) . . . ln(N)
0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN


with error up to δM, where ∥M∥ ≤ 1 and δ > 0 is a constant that is controlled and can be arbitrarily552

small.553

Proof. Since the error of each step we use is controlled and can be arbitrarily small, we can omit it554

here in the sequence to make the proof simpler. Each one of the seven layers will induce an error555

of the form εiMi with ∥Mi∥ ≤ 1; at the end the error is aggregated and we have a total error of556 ∑7
i=1 εiMi with ∥

∑7
i=1 εiMi∥ ≤

∑7
i=1 εi. By setting εi = δ/7 we get the desired error bound.557

Step 1: Extract the sequence length (1 layer). Let558

WK = [0 0 0 0 0 1 0 0 0] WQ = [0 0 0 0 0 0 0 0 1 0] (A.11)

and thus559

(WKX)⊤(WQX) =


ln(1) ln(1) . . . ln(1)
ln(2) ln(2) . . . ln(2)

...
...

. . .
...

ln(N) ln(N) . . . ln(N)

 . (A.12)

16

So after the softmax is applied we have560

softmax((WKX)⊤(WQX)) =



1∑N
i=1 i

1∑N
i=1 i

. . .
1∑N
i=1 i

2∑N
i=1 i

2∑N
i=1 i

. . .
2∑N
i=1 i

...
...

. . .
...

N∑N
i=1 i

N∑N
i=1 i

. . .
N∑N
i=1 i


. (A.13)

We then set the weight value matrix as to zero-out all lines except for one line as follows561

WVX =

[
0 0 . . . 0
1 2 . . . N
0 0 . . . 0

]
. (A.14)

After adding the residual and using an extra head where the softmax returns identity matrix and the562

value weight matrix is minus the identity, we get attenton output563



x1 . . . sℓ−1
1 sℓ

1 . . . sℓ−1
2 sℓ

2 . . . sL
n xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ∑N
i=1 i

2∑N
i=1 i

. . .

∑N
i=1 i

2∑N
i=1 i

∑N
i=1 i

2∑N
i=1 i

. . .

∑N
i=1 i

2∑N
i=1 i

∑N
i=1 i

2∑N
i=1 i

. . .

∑N
i=1 i

2∑N
i=1 i

∑N
i=1 i

2∑N
i=1 i

. . .

∑N
i=1 i

2∑N
i=1 i

ln(1) . . . ln(ℓ) ln(ℓ+ 1) . . . ln(L+ ℓ+ 1) ln(L+ ℓ+ 2) . . . ln(n(L+ 1)) ln(n(L+ 1) + 1) . . . ln(N)

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN



.

Notice that
∑N

i=1 i
2∑N

i=1 i
=

2N(N + 1)(2N + 1)

6N(N + 1)
=

2N + 1

3
. We then use the ReLU layer as to multiply564

with 3/2 and subtract 1 from this column. This results to attention output565



x1 . . . sℓ−1
1 sℓ

1 . . . sℓ−1
2 sℓ

2 . . . sL
n xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

N . . . N N . . . N N . . . N N . . . N

ln(1) . . . ln(ℓ) ln(ℓ+ 1) . . . ln(L+ ℓ+ 1) ln(L+ ℓ+ 2) . . . ln(n(L+ 1)) ln(n(L+ 1) + 1) . . . ln(N)

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN



Step 2: Extract the identifier of the prediction to be made ℓ (3 layers). Now, by setting the key566

and query weight matrices of the attention as to just keep the all ones row, we get a matrix that attends567

equally to all tokens. Then the value weight matrix keeps the row that contains ℓ ones and thus we568

17

get the number
ℓ

N
, propagated in all the sequence length. Then the attention output is as follows:569



x1 . . . sℓ−1
1 sℓ1 . . . sℓ−1

2 sℓ2 . . . sLn xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

N . . . N N . . . N N . . . N N . . . N
ℓ

N
. . .

ℓ

N
ℓ

N
. . .

ℓ

N
ℓ

N
. . .

ℓ

N
ℓ

N
. . .

ℓ

N
0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN



. (A.15)

As described in Lemma 4 to implement multiplication of two values up to any error ϵ, we need 1)570

have the two numbers to be multiplied next to each other and an extra structure (some constants,571

which we consider that are encoded in the last rows of the matrix mi) and 2) the corresponding572

structure presented in Lemma 4 . So we need to make the following transformation in the rows573

containing N and
ℓ

N
574

N N . . . N
ℓ

N
ℓ

N
. . .

ℓ

N

 →

N
ℓ

N
. . . N

ℓ

N
ℓ

N
. . .

ℓ

N

 (A.16)

→

[
ℓ ∗ . . . ∗
∗ ∗ . . . ∗

]
(A.17)

→

[
ℓ ℓ . . . ℓ

∗ ∗ . . . ∗

]
(A.18)

where ∗ denotes inconsequential values. For the first step we assume that we have the necessary575

binary representations 4 and then we use Lemma 1 which shows how we can perform the operation of576

copy/paste. For the second step now we use Lemma 4 to perform the multiplication, this will affect577

some of the other values. Then for the last step consider the follow (sub-)rows of the matrix X578


ℓ ∗ ∗ . . . ∗
r1 r1 r1 . . . r1

r1 r2 r3 . . . rN

 (A.19)

where ri is the binary representation of position i. By choosing WK,WQ as to579

WKX =
[
r1 r2 . . . rN

]
, WQX =

[
r1 r1 . . . r1

]
(A.20)

4the size that we need will be 2 logNmax + 1, where Nmax is the maximum sequence length

18

and consider WVX =

[
ℓ ∗ . . . ∗
0 0 . . . 0

]
we have that580

attn(X) = X +WVXsoftmax((WKX)⊤WQX)

= X +

[
ℓ ∗ . . . ∗
0 0 . . . 0

]
softmax




r⊤1 r1 r⊤1 r1 . . . r⊤1 r1

r⊤1 r2 r⊤1 r2 . . . r⊤1 r2
...

...
. . .

...

r⊤1 rN r⊤1 rN . . . r⊤1 rN





= X +

[
ℓ ∗ . . . ∗
0 0 . . . 0

]
1 1 . . . 1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

+ εM

By subtracting one identity head for the first that we focus on as described in Lemma 1 we have that581

attn(X) results in the desired matrix. We output this result and overwrite ℓ/N, thus we have582

X =



x1 . . . sℓ−1
1 sℓ1 . . . sℓ−1

2 sℓ2 . . . sLn xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

N . . . N N . . . N N . . . N N . . . N

ℓ . . . ℓ ℓ . . . ℓ ℓ . . . ℓ ℓ . . . ℓ

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN



(A.21)

Step 3: Create ℓ+ 1 (0 layer). We first copy the row with ℓ to the row with N , this can trivially583

be done with a ReLU layer that outputs zero everywhere else except for the row of Ns that output584

(ℓ)+ − (N)+ to account also for the residual. We now use one of the bias terms (notice that ℓ is585

always positive) and set to one in one of the two rows that contain the ℓ, again we account for the586

residual as before; everything else remains unchanged. Thus, we have587

X =



x1 . . . sℓ−1
1 sℓ1 . . . sℓ−1

2 sℓ2 . . . sLn xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

ℓ+ 1 . . . ℓ+ 1 ℓ+ 1 . . . ℓ+ 1 ℓ+ 1 . . . ℓ+ 1 ℓ+ 1 . . . ℓ+ 1

ℓ . . . ℓ ℓ . . . ℓ ℓ . . . ℓ ℓ . . . ℓ

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN


(A.22)

This operation can collectively be implemented (add the bias + copy the row) in the ReLU layer of588

the previous transformer layer that was not used in the previous step.589

19

Step 4: Create the binary bits (2 layers). We will now use the information extracted in the590

previous steps, to create the binary indicators/bit to identify which tokens we want to filter. This can591

be easily implemented with one layer of transformer and especially the ReLU part of it. Notice that if592

we subtract the row that contains the tokens that have already been predicted, i.e., [ℓ ℓ . . . ℓ] from593

the row that contains [1 2 . . . L 1 2 . . . L . . . L] we will get zero only in the positions that we want to594

filter out and some non-zero quantity in the rest. This is trivially implemented with one ReLU layer.595

So, we need to implement an if..then type of operation. Basically, if the quantity at hand is zero we596

want to set the bit to one, while if it non-zero to set it to be zero. This can be implemented with the597

following ReLU part of a transformer layer598

TF(xi) = 1− (xi)+ − (−xi)+ + (xi − 1)+ + (−xi − 1)+ − ((xi)+ − (−xi)+) (A.23)

the last two terms are to account for the residual. Again the rest of the rows do not change and are599

zeroed-out.600

Step 5: Implement the filtering (1 layer). We now apply Lemma 5 and our proof is completed.601

Theorem 2 (Theorem 1 restated) Consider a prompt pn(f) generated from an L-layer MLP f(·)602

as described in Definition 1, and assume given test example (xtest, s
1
test, . . . s

L
test). For any resolution603

ϵ > 0, there exists δ = δ(ϵ), iteration choice T = O(κ2
max log(1/ϵ)), and a backend transformer604

construction TFBE such that the concatenated transformer TF = TFLR ◦TFBE implements the following:605

Let (ŝi)ℓ−1
i=1 denote the first ℓ− 1 CoT-I/O outputs of TF and set p[ℓ] = (pn(f),xtest, ŝ

1 . . . ŝℓ−1). At606

step ℓ, TF implements607

1. Filtering. Define the filtered prompt with input/output features of layer ℓ,608

pfilter
n =

(
. . .0, sℓ−1

1 , 0 . . . 0, sℓ−1
n , 0 . . . 0, ŝℓ−1

. . .0, 0, sℓ1 . . . 0, 0, sℓn . . . 0, 0

)
.

There exists a fixed projection matrix Π that applies individually on tokens such that the609

backend output obeys ∥Π(TFBE(p[ℓ]))− pfilter
n ∥ ≤ δ.610

2. Gradient descent. The combined model obeys ∥TF(p[ℓ])− sℓtest∥ ≤ ℓ · ϵ/L.611

TFBE has constant number of layers independent of T and n. Consequently, after L rounds of CoT-I/O,612

TF outputs f(xtest) up to ϵ accuracy.613

Proof. We apply Lemma 6 from which it is clear that there exists a projection such that the result614

stated in (1. Filtering) holds, and it is independent to T , n and ℓ. Next we turn to prove (2. Gradient615

descent). Since in Definition 1, we assume that the network’s activation function is leaky-ReLU, i.e.,616

ϕ(x) =

{
x, if x ≥ 0
αx, otherwise. (A.24)

Thus, as a first step we construct the inverse of leaky-ReLU and apply it in the second row of pfilter
n617

where the inverse of leaky-ReLU is618

ϕ−1(y) =

{
y, if y ≥ 0

y/α, otherwise. (A.25)

This can be implemented with the following activation function (denoted by σ(·)) using ReLU:619

σ(x) = (x)+ − 1/α(−x)+. (A.26)

After it, it remains TFLR to solve linear regression problems. Taking ℓth layer, first neuron prediction620

as an example, and letting x′
i := sℓ−1

i , y′i := ϕ−1(sℓi [0]) and w = Wℓ[0], linear regression has form621

of y′i = w⊤x′
i for i ∈ [n]. Notice that the extra zeros do not contribute in the update performed by622

gradient descent, and after gradient descent has been performed, we apply back the leaky ReLU. Then623

following Assumption 1, since we assume TFLR performs the same as gradient descent optimizer,624

given matrix condition as described in Definition 1, after running T iterations of gradient descend625

on the linear regression problem and considering each layer prediction with resolution ϵ/L, we can626

get that ∥TFLR(p[ℓ])− s̄ℓ∥ ≤ ϵ/L, where s̄ℓ = ϕ(Wℓŝ
ℓ−1) is the correct prediction if taking ŝℓ−1627

as input. Then we have628

∥TFLR(p[ℓ]− sℓtest)∥ ≤ ∥TFLR(p[ℓ])− s̄ℓ∥+ ∥Wℓ(ŝ
ℓ−1 − sℓ−1

test)∥ ≲ ϵ/L+ ∥TFLR(p[ℓ− 1]− sℓ−1
test)∥.

20

0 20 40 60 80 100
in-context samples

0.0

0.2

0.4

0.6

0.8

Te
st

 ri
sk

CoT
CoT-zero
CoT-random

(a) Test filtering on first layer prediction

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk k = 4

k = 8
k = 16

d = 10
d = 20

(b) CoT-I/O: composed risk (same as Fig. 2(a))

Figure 8: Fig. 8(a) presents a filtering evidence of 2-layer MLPs. Given a 2-layer MLP in-context
example (x, s, y), CoT admits (x, s, y) as test sample; while test samples of CoT-zero and CoT-
random are formed by (x, s, 0) and (x, s, z) where z ∼ N (0, d). Fig. 8(b) is directly cloned form
Fig. 2(a) with error bar for better comparison with results in Fig. 9.

Let TFLR(p[0]) returns xtest and therefore ∥TFLR(p[0]) − xtest∥ = 0. Combing results in that629

∥TFLR(p[ℓ] − sℓtest)∥ ≲ ℓ · ϵ/L. Since from Lemma 6 we have that we can choose δ to be ar-630

bitrary. Let δ = ϵ/L, where L is the total predictions we will make. Then it will result in631

∥TF(p[ℓ]− sℓtest)∥ ≲ ℓ · ϵ/L, which completes the proof.632

633

B Experimental Details634

In this section, we provide the implementation details of our experiments.635

B.1 Model evaluation636

Recap the same setting as in Section 4.1 and assume we have pretrained models with parameters637

θ̂CoT-I and θ̂CoT-I/O. Next we make predictions following Section 2.2. Letting ℓ(·, ·) : Y × Y → R be638

loss function, we can define test risks as follows.639

LCoT-I(n) = E(xi)ni=1,(fℓ)
L
ℓ=1

[ℓ(ŷn, f(xn))] where ŷn = TF(pn(f),xn; θ̂
CoT-I)

and640

LCoT-I/O(n) = E(xi)ni=1,(fℓ)
L
ℓ=1

[ℓ(ŷn, f(xn))] where ŷn = TF(pn(f),xn, ŝ
1 · · · , ŝL−1; θ̂CoT-I/O).

Here, we use L(n) to define the test risk when given prompt with n in-context samples. Then, results641

shown in Figures 2&3&4&5&6(a) are test risks L(n) given n ∈ [N]. Following model training and642

evaluation, we can see that once loss function is the same for both training and predicting, CoT-I (as643

well as ICL) accepts training risk LCoT-I
train = 1

N

∑N
n=1 LCoT-I(n).644

B.2 Implementation645

All the transformer experiments use the GPT-2 model [Radford et al., 2019] and our codebase is646

based on prior works [Garg et al., 2022, Wolf et al., 2019]. Specifically, the model is trained using647

the Adam optimizer with learning rate 0.0001 and batch size 64, and we train 500k iterations in total648

for all ICL, CoT-I and CoT-I/O methods. Each iteration randomly samples inputs xs and functions649

fs. We also apply curriculum learning over the prompt n as Garg et al. [2022] did for 2-layer random650

MLPs (Sec. 4.2). For both training and testing, we use the squared error as the loss function, i.e.,651

ℓ(ŷ,y) = ∥ŷ − y∥2 (or ℓ(ŷ, y) = (ŷ − y)2 for scalar).652

21

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk k = 4

k = 8
k = 16

d = 10
d = 20

(a) CoT-I/O: 1st layer prediction

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk k = 4

k = 8
k = 16

d = 10
d = 20

(b) Train ICL with (x, s) pairs

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk k = 4

k = 8
k = 16

d = 10
d = 20

(c) CoT-I/O: 2nd layer prediction

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk k = 4

k = 8
k = 16

d = 10
d = 20

(d) Train ICL with (s, y) pairs

Figure 9: We compare the performance of filtered CoT and ICL. In Fig. 9(a)&9(c), we decouple the
composed risk of predicting 2-layer MLPs into risks of individual layers (following Section 3.1),
which shows the filtered CoT results. In Fig. 9(b)&9(d), we train two additional models using ICL
method taking (x, s) and (s, y) as inputs.

C Additional Experimental Results653

C.1 Filtering evidence in 2-layer MLPs654

Section 4.3 has demonstrated the occurrence of filtering in the linear deep MLPs setting (black dotted655

curves in Fig. 7(b)). In this section, we present further empirical evidence based on the 2-layer MLPs656

setting discussed in Section 4.2.657

Follow the same setting as Figure 2(a) and choose d = 10 and k = 8. Assume we have a model658

pretrained using CoT-I/O method. As described in Section 4.2, during training, the prompt consists of659

in-context samples in the form of (x, s, y) where s = (Wx)+ and y = v⊤s. To investigate filtering,660

we make three different predictions to evaluate the intermediate output, whose test prompts have661

in-context examples with the following forms:662

CoT: (x, s, y), CoT-zero: (x, s, 0), CoT-random: (x, s, z),

where z ∼ N (0, d). The results are displayed in Figure 8(a) where blue, orange and green curves663

represent first layer prediction results using CoT, CoT-zero and CoT-random prompts, respectively.664

From this figure, we observe that the three curves are well aligned, indicating that when making a665

prediction for input x, TF will attend only to (x, s) and ignore y. Therefore filling the positions of y666

with any random values (or zero) will not change the performance of first layer prediction.667

C.2 Comparison of filtered CoT with ICL668

Until now, many experimental results have shown that CoT-I/O provides benefits in terms of sample669

complexity and model expressivity compared to ICL. As an interpretation, we state that CoT can be670

decoupled into two phases: Filtering and ICL, and theoretical results have been provided to prove this671

statement. As for the empirical evidence, Sections 4.3 and C.1 precisely show that filtering does occur672

in practice. In this section, we provide additional experiments to demonstrate that, after filtering, CoT673

performs similarly to ICL.674

For convenience and easier comparison, we repeat the same results as Fig. 2(a) in Fig. 8(b), where675

d ∈ {10, 20}, k ∈ {4, 8, 16}, and train with a small GPT-2. We again recap the data setting for676

22

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk # layer=3

layer=6
layer=12

layer=3
layer=6
layer=12

(a) Varying GPT-2 layers

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk # head=2

head=4
head=8

head=2
head=4
head=8

(b) Varying GPT-2 heads

0 20 40 60 80 100
in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk # embedding=64

embedding=128
embedding=256

embedding=64
embedding=128
embedding=256

(c) Varying embedding dimensions

Figure 10: To further investigate how model architectures impact the prediction performance, we
fix the number of heads and embedding dimension in Fig. 10(a) and change the layer number in
{3, 6, 12}. Similarly for Fig. 10(b)&10(c) but instead, change number of heads (in {2, 4, 8}) and
embedding dimensions (in {64, 128, 256}).

the 2-layer MLP, where the in-context examples of CoT prompt are in the form of (x, s, y). Given677

that filtering happens, we make first and second layer predictions following Section 3.1 and results678

are presented in Fig. 9(a) and Fig. 9(c), respectively. These results show the performances of the679

filtered CoT prompts. Next, we need to compare the performance with separate ICL training. To680

achieve this goal, we train a small GPT-2 model using ICL method with prompt containing (x, s)681

pairs (first layer). The test results are shown in Fig. 9(b). Additionally, in Fig. 9(d), we train another682

small GPT-2 model using ICL but with prompts containing (s, y) pairs (second layer). By comparing683

Fig. 9(a) and 9(b), as well as Fig. 9(c) and 9(d), we observe that after filtering, CoT-I/O achieves684

similar performance as individually training a single-step problem through the ICL phase.685

C.3 CoT across different sizes of GPT-2686

In Figure 4, we have demonstrated that larger models help in improving performance due to their687

ability of solving more complex function sets. However, since tiny, small and standard GPT-2 models688

scale the layer number, head number and embedding dimension simultaneously, it is difficult to689

determine which component has the greatest impact on performance. Therefore in this section, we690

investigate how different components of transformer model affect the resulting performance by run691

CoT-I/O on various GPT-2 architectures.692

We maintain the same setting as in Section 4.2, fix d = 10 and k = 8, and consider a base GPT-2693

model (small GPT-2) with 6 attention layers, 4 heads in each layer and 128-dimensional embeddings.694

In Fig. 10(a), we fix the number of heads at 4 and the embedding dimension at 128, while varying695

the number of layers in {3, 6, 12}. Similarly, we explore different models with different numbers of696

heads and embedding dimensions, and the results are respectively presented in Fig. 10(b) and 10(c).697

Comparing them, we can observe the following: 1) once the problem is sufficiently solved, increasing698

the model size does not significantly improve the prediction performance (see Fig. 10(b)&10(c)); 2)699

the number of layers influences model expressivity, particularly for small GPT-2 architecture (see700

Fig. 10(a)).701

C.4 Compare transformer prediction with linear regression702

We also provide experimental findings to verify Assumption 1 in this section. Previous work [Giannou703

et al., 2023, Akyürek et al., 2022] has theoretically proven that TF can perform similar to gradient704

descent, and empirical evidence from [Dai et al., 2022, Garg et al., 2022, Li et al., 2023] suggests that705

TF can even be competitive with Bayes optimizer in certain scenario. To this end, we first repeat the706

same first/layer predictions from Figure 3 in Figure 11, where d = 10 and blue, orange and green707

solid curves represent the performances of k = 4, 16, 64 using pretrained small GPT-2 models. We708

also display the evaluations of gradient descent/least square solutions in dashed curves. Specifically,709

in Fig. 11(a) , we solve problem710

ŵn = argmin
w

1

n

n∑
i=1

∥(w⊤xi)+ − yi∥2 where xi ∼ N (0, Id), yi = (w⋆⊤xi)+

23

0 20 40 60 80 100
in-context samples

0.0

0.2

0.4

0.6

0.8

Te
st

 ri
sk k = 4

k = 16
k = 64

Gradient descent

(a) 1st layer: compare with GD solving ReLU

0 20 40 60 80 100
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk k = 4

k = 16
k = 64

GPT-2
Least squares

(b) 2nd layer: compare with least squares

Figure 11: Fig. 11(a): compare transformer results (solid) with gradient descent optimizer (dashed)
when solving first layer of 2-layer MLPs; Fig. 11(b): compare transformer result (solid) with least
squares optimizer (dashed) when solving the second layer of 2-layer MLPs.

for some w⋆ ∼ N (0, 2Id) and n is the training sample size. Then the normalized test risks are711

computed by L(n) = Ew⋆,x[∥(ŵ⊤
n x)+ − y∥2]/d, and we show point-to-point results for n ∈ [N] in712

black dashed curve in Fig. 11(a)5. As for the second layer, we solve least squares problems as follows713

v̂n = S†y where S ∈ Rn×k, S[i] = (W ⋆xi)+, y[i] = v⋆⊤S[i], xi ∈ N (0, Id)

for some W ⋆ ∈ Rk×d ∼ N (0, 2/k) and v⋆ ∼ N (0, Ik). Here, † represents the pseudo-inverse714

operator. Then we calculate the normalized test risk of least square solution (given n training samples)715

as L(n) = EW ⋆,v⋆,x[∥v̂⊤
n s− y∥2]/d where s = (W ⋆x)+ and y = v⋆⊤s. The results are presented716

in Fig. 11(b) where blue, orange and green dashed curves correspond to solving the problem using717

different values of k ∈ {4, 16, 64}. In this figure, the curves for k = 4, 16 are aligned with GPT-2718

risk curves, which indicates that TF can efficiently solve linear regression as a least squares optimizer.719

However, the curve for k = 64 does not align, which can be attributed to the increased complexity of720

the function set with higher dimensionality (k = 64). Learning such complex functions requires a721

larger TF model.722

5To mitigate the bias introduced by ReLU activation, we subtract the mean value during prediction, i.e.,
L(n) = Ew⋆,x[∥(ŵ⊤

n x)+ − y − (Ex[(ŵ
⊤
n x)+ − y])∥2]/d.

24

	Introduction
	Preliminaries and Setup
	In-context Learning
	Chain-of-thought Prompt and Prediction

	Empirical and Theoretical Insights into CoT
	Empirical Investigation of 2-layer MLPs
	Provable Approximation of MLPs via Chain-of-Thought

	Experimental Results
	Model Training
	2-layer Random MLPs
	Deep Linear MLPs

	Related Work
	Conclusion and Discussion
	Appendix
	 Appendix
	Construction
	The Transformer architecture
	Positional encodings
	Constructing some useful ``Bblack-box'' functions
	Results on filtering

	Experimental Details
	Model evaluation
	Implementation

	Additional Experimental Results
	Filtering evidence in 2-layer MLPs
	Comparison of filtered CoT with ICL
	CoT across different sizes of GPT-2
	Compare transformer prediction with linear regression

