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A Proof of Worst-case Regret Bounds (Theorem [3) and Sub-UCB Property
(Theorem [2))

Before proving Theorem [3] we first state and prove a useful lemma that gives us an upper bound to
the regret, which is useful for subsequent minimax ratio analysis and asymptotic analysis. This regret
bound consists of two components, which correspond to arms with suboptimality gaps at most or
greater than a predetermined threshold A respectively . The former is bounded by T'A, while the

latter is upper bounded by a finer O(ZQ:A(QA £ 4 K) term.
Lemma 8. For KL-MS, its regret is bounded by: for any A > 0,

lllJFAa TA(QL 2
Reg(T) < TA+ O —— | In| ——V
eg(T) < AZ>A< N )H<M1+Aa )

Proof. Applying Theoremwith c= i, we have:
Reg(T)

Ao In(Tkl(pg + cAa, p1 — cAy) V e?)
<TA
N * Z kl(ﬂa + CAaa M1 — CAa)

a:Ag>A
p’l + Aa ,[Ll + Aa TAE ,
560 F1T Za )y A y o :
" a:Az;A( g ) : ( A2 [+ A, € (Theorem |T))
11+ Ag TA2
<TA+O0 | ) <M1+> In [ 222 ye2] |, (Lemma[ZTand Lemma[Z8)
a:Ng>A Aa Hn1 + Aa

. o TA? .
here, the second inequality is because we choose TAD s the upper bound in the lower order term

then we use 2Lemma to lower bound kl(pg + cAq, p1 — cAy) 2 7 ﬁ_ZAa and Lemma [27| that
T M is monotonically decreasing when = > 0. Also by 1-Lipshitzness of z — 2(1 — z),

we have (/711 —cAy)(1 = (p1 — cAy)) < fu1 + ¢, and all terms except T'A will be merged into the
O(-) term. O

K In K
Proof of Theorem[3] Let A = /==, from Lemmawe have

/ll + Aa) TAZ 2
Reg(T) <TA+ O ——— |In[ ——5— Ve
g( )_ a:g;A( Aa </~L1+Aa
[ TAY - 2
< — p—
<TA+O0O Z Aaln<ﬂ1 Ve +0 Z 1n((TAa)\/e)
a:Ag>A a:Ag>A
: 2
<TA+0O % In (Tf vV e2> + O (KIn(T)) (Lemma[27)
1

<0 (VinKTWK) +0 (KIn (7)),
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where in the second inequality, we split fraction ‘“%A“ into % and 1, then bound each term
2 2
separately. The second-to-last inequality is due to the monotonicity of x > % proven in
Lemma 27} The last inequality is by algebra. O
Proof of Theorem[Z] This is an immediate consequence of Lemma [§] with A = 0, along with the
. 2
observations that %ﬁ‘”’ < Ala, and ﬂleﬁa <T. O

B Proof of Asymptotic Optimality (Theorem {4)

We establish asymptotic optimality of KL-MS by analyzing the ratio between the expected regret to
InT and letting T' — 0.

1

Proof. Starting from Theorem and letting A = 0 and ¢ = 7

lim su Reg(T)
T-}oop IH(T)
_ 2
< lim Z A, hi(z;(ll((lﬂa + CAAm Hn1 CAAQ) Ve )
TS0 el R0 nTkl(pg + Ay, 1 — cAg)
i 'al + Aa /'1/1 + Aa 2
+ Th—{réo 560 Z (M) In ((AIQI> Ve (Theorem[I))
a€[K]:Aq>0
_ 2
< lim Z Aa lrll((lTkl(Ma ZCAG, M1 < CAIG)T\/ e )
Tee a€[K]:An>0 (fta + A,y p1 — cAg) In
Y AelTMteda i~ 8 V) Hn)
T aeiKTAL >0 Kl(ta, pa) InT Kl(pta + cQqs 1 — cAy)
Aa . .
- Z (. 111)’ (By the continuity of kl(-, -))
a€[K]:A,>0 (’ua’/’cl)

. . . Y 2
where the first inequality is because of the fact that In (“;;'AAQ“ ﬂfiE) vV e? <
“ S Az

C% In ( % vV 62) due to Lemma , and, the second inequality is due to that when 1" — oo,

AT = 2L 5 o0, O

C Full Proof of Theorem/[1l

C.1 A general lemma on the expected arm pulls and its implication to Theorem ]

We first present a general lemma that bounds the number of pulls to arm a by KL-MS; due to its
technical nature, we defer its proof to Section @] and focus on its implication to Theorem E] in this
section.

Lemma 9 (LemmaE]restated). For any suboptimal arm a, let €1, > 0 be such that €1 + g5 < A,.
Then its expected number of pulls is bounded as:

In (Tkl(pg + €1, 11 — €2) V €2 1 1
B [Vr,] <1 4 2t e Z ) V) + ®
kl(po + €1, 11 — €2) Kl(g + €1, 01 —€2)  kl(ua + €1, ta)
T 4
t6HWn|(=AH)VeE |+ — = 9)
((H ) ) Kl(pe1 — €2, 1) (
o 1 o (I—pa+e2)
where H = oyt e,y and h(p, €2) = In (%)
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We now use Lemma[9 to conclude Theorem 1l

Proof of Theorem([l] Fix any c € (0, ﬂ Let 1 = €2 = cA; note that by the choice of ¢, €1 + 5 <

A,. From Lemmalgl, E [NT,,I] is bounded by Eq. (9). We now plug in the value of €1, £4, and further
upper bound the third to the sixth terms of the right hand side of Eq. (9):

1 < 4(#1762)(1*[“ +€2)+4(Aa*51*52) < 4 ',lllJrAa
kl(pa + €1, 11 — €2) — (Ay —e1 —e2)? ~(1-2¢)2 A2
1 <4ﬂa+451<g.ﬂl+Aa
Kl(pta + €1, fta) — 2 = 2 A2
4 16 + 1665 _ 16 i + A,
< < .
Kl(pa — €2, 1) — €3 T AZ

* By Lemma H < % < Z. "“%QA”, and by Lemma the function H +—

6H In ((% ANH)V 62) is monotonically increasing, we have that
T 12 u1+A /,Ll—f—A CZTA2
6HIn ( (5 AH)Ver ) <= - [ 5 )1 LA e ve?
“<(H ) )- ( A2 ) " ( 5z Nintal) e

Combining all the above bounds and Eq. (9), KL-MS satisfies that, for any arm a, for any ¢ € (0, i]:

<ln(Tk|(ua + g, 1 — cAy) Ve?)
- kl(pa + cAq, p1 — cAg)

34 4 i+ Ay fn+ Ay ATA2 )
— 1 < 10
() (s ( aaz Mnra,) )

For any A > 0, we now bound the pseudo-regret of KL-MS as follows:

E [N7.4]

Reg(T)

= > AE[Nra)

a:Ag>0

= Z A(LE [NT@]—F Z A(],E [NT,a]
a:Ag€(0,A] a:Ag>A

In(Tkl(pq + cAq, 1 — cAg) V €?)
kl(pa + cAq, 1 — cAg)

SAT+ Y A,
a:Ag>A

34 4 fu + Ag f1+ A, ATA? ,
Sy F H1T Ba )y a
+ <c2 + (1- 20)2> Z ( 2A, ) . ( 2A2 " fi1+ A Vel

a:Ag>A

where the last inequality is from Eq. (I0). Then we pick ¢ = i and conclude the proof of the
theorem. O

C.2  Proof of Lemma[9; arm pull count decomposition and additional notations

In this subsection, we prove Lemma[0] We first recall the following set of useful notations defined in
Section

Tk'(uaJrEl,p,l*Eg)\/ez)
Kl(pa+er,u1—e2)

Ay = {I; = a}

Recall that u = [ln( 1, and we have defined the following events
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Bt = {Nt,a < U}
Ct = {,[Lt,max Z M1 — 52}
D; = {ﬂt,a < la +51}

A useful decomposition of the expected number of pulls to arm a. With the notations above,
we bound the expected number of pulling any suboptimal a by decomposing the arm pull indicator
1 {I; = a} according to events B;_1,Cy_; and D;_; in a cascading manner:

T
E[Nro =E |Y 1{I, =a} (11)
t=1
[T
=1+E Z 1{A;} (Definition of Algorithm|T))
[ t=K+1
[T T
=14+E| > 1{4, B} +E| Y 1{4,B;,} (12)
[t=K+1 t=K+1
T
<l4+(u—-1)+E Z 1{A;, B} (LemmalT8)
t=K+1
T
=u—+E Z I{Atan_laCt—laDt—l} (13)
t=K+1
F1
[T
+E| Y 1{A.Bf ,,Cio1,Df )} (14)
[t=K+1
F2
[T
+E| Y 1{A4,Bf ,,Ci ) (15)
_t:K-‘,—l
F3

Given the above decomposition, the lemma is now an immediate consequence of the definition
of u, Lemmas [I0] [IT] and [T2] (that bounds F'1, F'2, F'3 respectively), which we state and prove in

Appendix

D Bounding the number of arm pulls in each case

D1 F1

In this section we bound F'1. This is the case that fi; , is small and ji; max is large, so that
KI(fit,a fit,max) do not significantly underestimate kl(pq, p1), which will imply that suboptimal
arm a will be only pulled a small number of times due to the arm selection rule (Eq. (3)). Note that u
is set carefully so that F'1 is bounded just enough to be lower than the kl(ln L_ Bernoulli asymptotic

Ha,fi1)
lower bound.
Lemma 10.
1
F1<
Kl(pa + €1, 11 — €2)
Proof. Recall the notations that A, = {l;=a}, Bf , = {Nt_l,a zu}, Cio1 =

{1 max = 1 — €2}, Dio1 = {fu—1,a < pa + €1 }. We have:
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T
FL=E | % 1{4:,B; .Ci—1. D1} (16)
t=K+
E {E [1 {At7 Bf {,Ci_4, Dt—l} | Ht_lH (Law of total expectation)

E {1 {Bf_l,CtA,thl} E [1 {A} | Htfl]]

(Bi_1,Cy_1, D;_4 are H;_1-measurable)

T
< Z E {1 {Bf 1,Ci—1,D¢_1} eXp(_Nt—l,akl(/:Lt—l,ayﬂt—l,max)):| (By Lemma[23)
=K1

T
< Z E {1 {Bf_1} exp(—u-kl(pq + €1, 11 — 52))}

t=K+1
(Based on Bf_;,C;_1 and Dy_1, there is N;—1,4 > wand kI (fi—1,q, t—1,max) = Kl (1ta + €1, 11 — £2))
<T-exp(—u - kl(po + €1, 11 — €2)) a{}<n
1
<T- Recall definition of u
T Tkl(pa +e1, 1 — €2) ( )

1
= D
Kl(pq + €1, 11 — €2)

D.2 F2

In this section we upper bound F'2. This is the case when the suboptimal arm a’s mean reward
is overestimated by at least 5. Intuitively this should not happen too many times, due to the
concentration between the empirical mean reward and the population mean reward of arm a.

Lemma 11.
1

PR —
kl(/’[’a + 617”@)

Proof. Recall the notations that A, = {l;=a}, Bf, = {Nt,lya > u}, Ci1 =
{fu—1,max = 1 — 2}, D§_y = {fu—1,a > pa + €1 }. We have:

T
F2=E| Y 1{A,Bf, Ci1,Df } (17)
_t=K+1
<E Zl{ch-a(k)flﬁcﬂz(k)—hDia,(k)fl}
k=2

(implie_s that only when ¢ = 7, (k) for some &k > 2 the inner indicator is non-zero)

<E Z 1 {Dia( k)q} (Drop unnecessary conditions)
k=2

=E |} 1 {Dﬁa(,ﬁl)} (firy(k)—1,a = Pory(k—1),a)
_k=2 .

-E [} 1 {D:a(k)} (shift time index ¢)
k=1

18



M8

<N exp(—k - kl(pe + €1, 1a)) (By Lemma 25)

=
Il

1

exp(—kl(pa + €1, f1a))
"1 —exp(—kl(pa + €, p1a))
1

[ —
“kl(ta + €15 )

(Geometric sum)

(Applying inequality e* > 1 4+ x when x > 0)
(18)

Note that in the first inequality, we use the observation that for every t > K + 1 such that A; happens,
there exists a unique k& > 2 such that t = 7,(k). The third inequality is due to the Chernoff’s
inequality (Lemma on the random variable fi,, (x).q — Ha. Given any 74(k), fir, (r),q is the
running average reward of the first k’s pulling of arm a. In each pulling of arm « the reward follows a
bounded distribution v, with mean u,, independently. O

D3 F3

In this section we upper bound F'3, which counts the expected number of times steps when arm
a is pulled while fi;_1 max underestimates f1; by at least €o. Our main result of this section is the
following lemma:

Lemma 12.

T 4
F3<6HIn|(=AH)ve?| 4+ —0 >
a <<H > ) Kl(p1 — €2, p1)

where we recall that H = 4

1
1—p1te2)(p1—e2)h?(u1,e2)"

D.3.1 Roadmap of analysis

Before proving the lemma, we sketch the key ideas underlying our proof. First, note that by
the KL-MS sampling rule (Eq. (), at any time step ¢, p;1 should not be too small (p;; =
exp(—Ny—1,1klI(fte—1.1, fit—1,max))/My), and as a result, the conditional probability of pulling arm a,
Dt,q should be not much higher than that of arm 1, p; 1; using this along with a “probability transfer”
argument similar to [4} [11] (see Lemma@] for a formal statement) tailored to KL-MS sampling rule,
we have:

T T
F3<E| Y 1{A,Cf }| <E| > 1{L=1,Cf  }exp(Ny—11 - Kl(fie—1,1, 11 — €2)
t=K+1 _t:K+1
T
<E Z L{L =111 <p —eafexp(Ny—1,1 - kl(u—1,1, 111 — €2)
t=K+1

By filtering the time steps when I; = 1, the above can be upper bounded by an expectation over the
outcomes in arm 1:

> E [1 {ﬂ(k),l < - 62} exp(k - k(A 1, 1 — €2)

k=1
Intuitively, this is well-controlled, as by Chernoff bound (Lemma [25), the probability that
1 {ﬂ(k),l <1 — 52} is nonzero is exponentially small in k; therefore, the expectation of

1 {ﬂ(k%l <p— 52} exp(k - kI(f(xy,1, 11 — €2) can be controlled. After a careful calculation

that utilizes a double-integral argument (that significantly simplifies similar arguments in [11} [24]]),
we can show that it is at most



Summing this over all k, we can upper bound F'3 by

2y, 1
F3§O(H1n(H\/e)—&-kl(ul_@’ul)). (19)

A slight generalization of the above argument yields the following useful lemma which further
focuses on bounding the expected number of time steps when the number of pulls of arm 1 is in
interval (m, n]; we defer its proof to Section

Lemma 13. Recall the notations Ay = {I; = a}, Cy—1 = {ﬂt_l,max >y — 82}. Define event

Sy = {Nt71 > m} and'Ty = {Nt,l < n} where m < n and m,n € NU {oco}. Then we have the
following inequality:

T n
. 2H
E E 1 {At7 thfh Stthtfl} < § (k’ + 1) eXp(_kkl(Ml - 827“1))
t=K+1 k=m-+1

Naively, the bound of F'3 given by Eq. (I9), when combined with previous bounds on F'1, F'2, suffice
to bound E[Np ,] by

I(TK(to + cAa i = D) VD) ) ((m +Aa> . (m +A, v€2)>

Kl(pa + cAq, 1 — cAy) c2A2 c2A2

which establishes KL.-MS’s asymptotic optimality in the Bernoulli setting and a O(\/f1 KT In T +
K InT) regret bound. To show a refined O(v/[11 KT In K + K In T') regret bound, we prove another

bound of F'3:
T 1
F3<O|(Hln \/€2>—|— . 20
- ( (H kl(p1 — €2, p1) 0)

This bound is sometimes stronger than bound (T9), since its logarithmic factor depends on % which
can be substantially smaller than H. This alternative bound is crucial to achieve to achieve the v/In K
minimax ratio; see Appendix[A]and the proof of Theorem 3] therein for details.

To this end, we decompose F'3 according to whether the number of times arm 1 get pulled exceeds
threshold H:
T

F3<E| Y 1{4,cf,}
t=K+1
T T
=E| > 1{A.Ci  E}|+E| > 1{A,Cf, Ef }|, (21)
t=K+1 t=K+1

= F3, =F3,

where E; := {N,; < H}.

Intuitively, F'3o is small as when number of time steps arm 1 is pulled is large, fi;—1,1 < pu1 — €2
is unlikely to happen. Indeed, using Lemma [13|with m = |H|,n = oo, we immediately have
F33 < O(qae7my)-

It remains to bound F'3;. These terms are concerned with the time steps when arm 1 is pulled at most
| H | times. Inspired by [33| 23]}, we introduce an event £ := {Vk €L H]], duyq € kal} (see
the definition of Ly, ; in Eq. (Z4)) and use it to induce a split:

T T
F3; <E| > 1{A,C{ | E 1, E} | +E| > 1{&%}
t=K+1 t=K+1
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T T
<E Z 1{At,ctc_1,Et_1,ﬂt_171 > _aNt—l,l} +E Z 1{SC}
t=K+1 t=K+1
A probability transferring argument on the first term shows that it is bounded by O (H In (% \Y, 62)) ;

the second term is at most TP(€¢), which in turn is at most H using a peeling device and maximal
Chernoff inequality (Lemma [24). Combining these two, we prove Eq. (20), which concludes the
proof of Lemma 12}

D.3.2 Proof of Lemma

Additional notations. In the proof of Lemma[I2] we will use the following notations: we denote
ramdom variable X} := 1 — fi(),1, and denote its probability density function by px, (). We also
define function fj(z) := exp(k - kl(u1 — =, 1 — €2)).

Proof of Lemma@ Recall that we introduce F; := {Nt,l <H }; and according to E;_; we obtain
the decomposition Eq. above that F'3 < F'3; + F'3.

As we will prove in Lemmasand F'31 and F'3, are bounded by 6 H In ((fl A H) \Y 62> +

NG —a ) and (TEEWNL respectively. The lemma follows from combining these two bounds by
algebra. O

D33 F3;

Lemma 14.
T 1
F3; <6HIn AH|VE | 4 ——
L ((H > ) kl(p1 — €2, p1)

Proof. We consider three cases.

Case 1: H < 1. In this case, F; cannot happen for ¢ > K + 1 since we have pulled each arm once in
the first K rounds and Ng , for any arm should be at least 1. Therefore

T 1
F3,=0<6HIn||=ANH)Ve? |+ ————
T <(H > ) k(1 — &2, 1)

Case2: H > % According to Lemma we can upper bound F'3; by
F3, <T'<4H

T 1
<6Hln||(=AH|Vve? |+ ———
- ((H ) ) k(1 — €2, 1)

Case3: 1< H L % It suffices to prove the following two inequalities:

T 1
F3;<6HIn| = Ve 22
3, <6 n(H\/e>+k|( (22)

%51 —52,/11)
1

F3,<6HWm(HVe*)+ —
b= ( ) kl(p1 — €2, p1)

(23)

Case 3 — Proof of Eq. (22). To show Eq. (22)), we first set up some useful notations. Recall from
Section [2|that we denote 71 (s) = min{t > 1: Ny 1 = s} and fi(s),1 := fir,(s),1- For s € N, we first
define interval L, ; as:
2In(T/s
Lsq:= {M €10,1] : kl(p, p1) < %

muzm}. (24)
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For notational convenience, we also define oy = p11 — inf Ly ; and therefore Ly 1 = [p1 — s, 1].

Define £ as {Vk € [1, LHJ] k) € Lk,l}. We denote event &, = {,&(k))l € Lk,1}§ in this

notation, £ = [ ,EH &k, that is, £ happens iff all & holds simultaneously for all & less or equal to H.

Note that Lemma implies that P(£°) < 2.

Therefore,
[T T
F3,<E| > 1{A,C{ | E 1} +E| > 1{€%}

_t:K+1 t=K+1
- ]

<E| Y 1{A,C{ | Ei1.En,_,,}| +TP(E)
[t=K+1 i
- -

<E| Y 1{A,C{ | Bi1.En,_,,}| +2H, (25)
t=K+1

where in the second inequality, we use the observation that if £ happens and N;_; 1 < H, & Ni_1a
also happens; in the third inequality, we recall that P(£¢) < %

We continue upper bounding Eq. (23). For the first term in Eq. (23)), we use a “probability transfer”
argument (Lemma[23) to bound the probability of pulling the suboptimal arm by the probability of
pulling optimal times an inflation term.

T

E Z l{At,O{:C_lyEt—:l?EN{,—l,l} (26)
[t=K+1

T
=E Z 1{C; 1N,  Bra} - E[1{A} | Hid] (Law of total expectation)
t=K+1

T
<E| Y 1{Cf 1N, Broa} - exp(Neo1p - K-, fie—1max))E [L{T; = 1} | Hy 1]
_t:K+1

(By Lemma 23)

T

=E | Y 1{L=1,C{ 1,&n,_,., Br1} - exp(Ne—11 - KI(fi-1,1, fit— 1 max))
t=K+1

(Law of total expectation)

Then we make a series of manipulations to reduce the above to bounding the expectation of some
function of the random observations drawn from the optimal arm. First, note that for the summation
inside the expectation above, each nonzero term corresponds to a time step ¢ such that ¢t = 7 (k) for
some unique k > 2, therefore,

A
=
M2

1 {Cil(k)—l’gNTl(k)—l,l’ETl(k)_l} : eXp(Nﬁ(k)—l,l . kl(ﬂﬁ(k)—l,lvﬂn(k)—l,max))

£
[|

2

] 27)

<E Z 1 {Cﬁl(k)fthrl(k)—l,NE‘Fl(k)*l} 'eXp(Nn(k)fl,l : kl(ﬂ‘rl(k)fl,la,ul - 52))

=2

=

(when the condition Cfl(k)_l holds, fir (ky—1,1 < flry (k)—1,max < M1 — €2)
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(oo}
<E Z 1 {EN,l(k),l,UEn(k)q} - exp(Nry (k)—1,1  KI(flry (k) —1,1, 11 — €2))
k=2

(Dropping Cﬁl (k)— D)

=E Y 1{& 1, k—1 < H}exp((k— 1) KI(fp1),1, 11 — £2))
k=2

(Neygy—1 =k —1and iy, (k)-11 = fir(k—1),1)

=E Z 1{&, k < H}exp(k - KI(fi),1, p1 — €2)) (shift index k by 1)
k=1
1] %
=E|> 1 {52 S i fuga < ak} cexp(k - Kl(jiggy 1 m —e2)) |+ Y 0
| k=1 k=|H |+1
(Under the conditions &, B, (x4+1)—1, When k > [H| + 1, E (441)—1 is always false)
LH]
= ZE [1{es < Xp < o} fu(Xp)] (Recall Xy = p11 — figry,1)
k=1

(28)

Here the Eq. (28) is the sum of expectation of the function fi(X})) over a bounded range
{e2 < X} < oy} from k = 1 to | H|. Continuing Eq. Z8),

T
E| > 1{4.C{ . E1,En,_,,} (29)
t=K+1
L H |
<D E[fr(Xi)1[{es < Xy < )] (30)
k=1
72 (2)px, (x) dz (px, () is the p.d.f. of X})
=17¢2

LHJ .
—Z / (fk(sz) + / fi(y) dy)) px, (z)dz (fi(x) = fr(e2) + [2 fi(y) dy)

LHJ LH]

—Z/ /fk Ypx, (z dydx+Z/ px, (@ (31)

A B

We denote the first term in Eq. (31)) as A and the second one as B. Next we are going to handle A
and B separately. Starting from the easier one,

LH]

=3 / px, (@ (32)

< ZP(Xk > £2) (33)
LH]

=Y Pl < p — e2) (34)
k=1
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IN
=

exp(—k - k(1 — &2, 1)) (Applying Lemma 23)

o
Il
—_

IN
agk
4

p(—k-ki(p1 — 2, 1)) (35)

bl
Il
—

exp (—kl(p1 — &2, 111))
-1 exp (—k|(ll1 — &2, ,u1))

(Geometric sum)

1
= (36)
exp (Kl(p — e2,p11)) — 1
7; (e* > x4+ 1 when x > 0)
kl(u1 — &2, 1)
(37)
On the other hand,
LH] z
A= Z / / fi@)px, (x) dy da (38)
€2
LHJ
= Z / / 11.(y)px, (x)dz dy (Switching the order of integral)
o LKl =y — )
= Z dz; Fr(W)Py < Xk < ag) dy (Calculate inner integral)
k=1v¢2
R [ Akl g~ 22)
< Z @ fe(y)exp (=k -KI(p1 —y,m))dy  (Apply Lemma[25)
B LK =y, 2)
<3 / L dy (fe(y)exp (—k Kl — yo ) < 1 wheny € [e2, k)
LHJ
= Z kkl(p1 — ag, 1 — €2) (Fundamental Theorem of Calculus)
k=1
LH] T
< 2ln — Recall definition of «
< kz_l 3 ( k)
LH]
<2|H|InT —2 / Inkdk (Integral inequality Lemma [20)
1
=2|H|InT — 2(kInk — k)| (the anti-derivative of In z is z In z — )
=2|H|InT —2|H|In(|H|) +2|H (39)
T
=2|H|In ( ) +2|H] (40)
LH ]
T
<2HIn (H Vv e2> +2H (zIn L is monotonically increasing when z € (0, L))
(41)

The fist inequality is due to the Lemma [25] In the second inequality, we use the fact that when
y € [e2, o], fr(y) exp (—k - kI(u1 — y, 1)) < 1. This is because

Fe(y) exp (=k - k(1 — y, 1)) = exp(k - (kl(p1 — y, i1 — €2) — kl(p1 —y, 1)) < 1
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In the third one we use the definition of v, to bound kl(u, — a, 11 — €2) by In ( ) In the fourth
inequality, we apply integral inequality Lemma[20]by letting f(x) := In(z), a = 2and b = | H]. For
the last inequality, we use the fact that z — x In (% is monotonically increasing when z € (0, %)

We conclude that F'3; is bounded by

F3, <A+ B+2H (42)
T 1
<2H In v@2> +2H+ ———— +2H (43)
(H k(1 — €2, 1)
T 1
<orm( Ly e2) PN S— (44)
(H k|(/~L1—52»/i1)
Case 3 - Proof of Eq. (23). Applying Lemma[13|by letting m = 0 and n = | H], we have that
T
F3;=E | Y 1{4,C{ |, B} (45)
t=K+1

LH]

2exp(—kkl(u1 — €2, 1))
< + Y exp(—kkl(uy — e, 46
Z k(pn —e2)(1 — pn + e2)h?(pa, €2) kz:: <p(—hkl{s = €2, ) (46)

1
<2H + 47
Z Ml - €2,M1)

1
k(1 — €2, 1)
where in the second inequality, we use that exp(—kkl(p1 — €, ,ul))
well as the fact that Z,LCH{ exp(—kt) < > po, exp(—kt) = __

1.
¢
use the algebraic fact that for ¢t > 0, Z,EHJI +<(+In([H]) <2(n(|H]) V1) <2In(H Ve?).

<6HIn(H V e?) + (48)

< 1 and the definition of H, as
<

in the third inequality, we

Therefore, when H € (1,Z), F3; can be bounded using Eq. (22) and Eq. (23) simultaneously,
concluding the proof in Case 3.

In summary, in all three cases, F'3; is upper bounded by 6 H In ((ZI A H) vV 62) + m;

this concludes the proof.

D34 F3,

As mentioned in the proof roadmap, intuitively, '3 is small, since when number of times arm 1 is
pulled is large, fi;—1,1 < p1 — €2 is unlikely to happen. Here, we control '35 using Lemma

Claim 15.

3
F3 _
2= kl(p1 — €2, p1)

Proof. F35 is the case where the number of arm pulling of optimal arm 1 is lower bounded by H.

T
F3;=E | > 1{A,C; , E{ } “9)
t=K+1
S 2 exp(—kkl(u1 — €2, p1)) 1
= + Lemma
716_2 kE(py —e2)(1 — py +e2)h?(u1,e2)  kl(pg — €2, p1) ( [13)
=LH]+1
S 2 exp(—kkl(p1 — €2, p11)) 1
= H+1>H
- k=LZH:J+1 H(py —e2)(1 = py + e2)h?(p1,€2) — Kl(pa — €2, 1) (LH] = H)
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> 1
< > 2exp(—kkl(u — g, ) + (By the definition of H)
k=|H|+1 kl(p1 — €2, 1)
2exp(—(|H| + Dkl(uy — 1
< exp(—([H | + Dkl(p1 — €2, p11)) (Geometric sum)
1 — exp(—kl(u1 — €2, p1)) kl(p1 — €2, 1t1)
2 1
< + exp(—z) <1whenx <0
T oxp( K — o)) T Ko — eaopmn) (exp(=2) )

3
<=
" kl(p1 — e2, 1)
The first inequality is true because Lemmaby letting m = | H | and n = oo, as well as the fact
that for ¢ > 0, 3777 7|y exp(—kt) < 3207 exp(—kt) = 15~ O

(50)

D.3.5 Proof of Lemma[13

Proof of Lemmal(I3] For any fixed k, recall that we denoted f;(z) = exp(k - kl(u1 — x, i1 — €2)),
Xk = g1 — fir, (k)1 and the pdf of X}, as px, ().

T
E| > 1{A,C{ S 1,Tiq} (51)
t=u+1
T
= Z E [1 {Cy 1,81, Ti1 }E [A; | Ht,l]} (Law of total expectation)
t=u+1

T
< Z E {1 {Cy 1,81, Ti—1} - exp(Ny—1,1 - KI(f—1,1, flt—1,max))E [1 = 1| /Ht—l]}

t=u+1
(Lemma[23)
T
< Z E {1 {Cy 1,81, i1} - exp(Ny—1,1 - Kl(fu—1,1, 1 — £2))E [T = 1 | /Ht—l]}
t=u+1
(when Cy_, happens, Kl(fit—1,1, fit—1,max) < KI(fte—1,1, 11 — €2))

T
= E [1 {I, =1,C{ 1,811, Ty—1} - exp(Ny—1,1 - KI(fy—1,1, p1 — 52))}

t=u+1
(Law of total expectation)
<E Z 1 {Oﬁl(k)—u k-1e (mﬂl]} exp(Nyy (ky—1,1 - Kl((r—1),1, 11 — €2))
k=2
(for any ¢ such that 1 {I; = _1} is nonzero, t = 7 (k) for some unique k; Ny (py—11 =k — 1, and fi; (-1 =
=E Z 1 {Cﬁl(k)_l, ke(m+1,n+ 1]} ~exp((k — 1) - kI(fi(g—1),1, 41 —€2))| (algebra)
k=2
i n+1
<E Z 1 {ul > p1 — fg—1),1 > 52} ~exp((k — 1) - klI(Ag—1),1, 11 — €2)) (52)
_k:m+2
=B | > 1{m = =i > 2 Sl — i) | (shift k by 1)
k=m+1

(53)

here, for the second to last inequality, we use the fact that when Sn( k)—1 happens, k — 1 > m, and
when T ()1 happens, k —1 < n. In the last inequality, we use the fact that when C’ﬁl (k)1 happens,
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fry (k) —1,max < 1 — €2. Combining this with the fact that fi(x_1)1

we have py — fip_1),1 > €2.
Hence Eq. (53) becomes

n

B)=E Z 1{ur > Xy > ea} - fro(Xi)

k=m+1

= flry(k)=1,1 < flry (k)—1,maxs

=Y [T (s Y [ Awa)a

(fi(x) = fre2) + [2 faly) dy))

k=m+1 2 k=m-+1"¢2

Z/ px, () fr(e2) dr + Z/ /52

k=m+1 k=m+1

Px, (m)fllc(y) dydx

Z/ px, () fi(e2) do + Z/ /ympxk(ﬂﬂ)fl;(y)dxdy

k=m+1 k=m+1

For A:

B
(Exchange the order of integral)

Z / px,. (@) fi(e2) da (54)
k=m+1
Z / px, (@) fi(e2) da (55)
k=m+1
< Z exp (fk kI (g — 52,p1)) fr(e2) (By Lemma23)
k=m+1
= Z exp (—k -kl (u1 — €2, 111)) (56)
k=m+1
where the last equality is because fi(e2) = 1. For B:
(57)
/ / Fil)px, (2) dy do (58)
k=m+1 €2
Nl
Z / (y)px, (z) dz dy (Switching the order of integral)
k=m-+1 Y
dkl —
= Z / k (1 dy’m €2)fk(y)IP’(y <a<up)dy (Calculate inner integral)
k=m+1"7¢2 Yy
i g —e
-y [ UL I 28] ek i o)) dy - (Apply LemmalZ5)
k=m+1
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dkl(py — y, 1 — €
Z / exp ((KI(i1 — g, i — 22) — Kl(1 — g, ))) - kA 5/ m=e2) 4, (s9)
k=m+1 Yy
= Z kexp( k(i — €2, 1)) (60)
k=m+1"¢2

(I —p1+e2)a dy
(By Lemma.with ¢(z) = zln(x) + (1 — z) In(1 — z), which induces By (z, ) = ki(z, z))

dkl(py —y, 1 — €
Z/ kexp kkl(ﬂl_52,/~L1)—k(y—52)h(ﬂ1,52)) (11— Yy, z)dy

exp (k (y —e2)In <(1 — ) (g — 62))) dkl(py — y, 1 — €2) y

k=m+1 dy
(Recall m%) = h(p1,e2))
= Z exp(—kkl(m —Eg,,&l))' (61)
k=m+1

- dkl(py =y, 1 — €2) dy

kexp (=K (y — €2) h(p, 2)) dy

(62)

€2

INT

Here, in the third to the last equation we have applied Lemma[29]and ¢(z) = z In(z)+ (1 —2) In(1—
x),By(z, x) becomes kl(z,z). We set z := (u1 —y,1 — g +y), x := (u1 — €2,1 — 1 + £2) and
y := (u, 1 — p1). Under this setting, according to Lemma 29} we have kl(u1 —y, u1 —e2) — kl(u1 —
yo i) = Kl — 22, ) + (y — =2) In ((alfases)),

Next, we need to give an upper bound to the integral part INT carefully. By applying the observation
below, the integral will become

p1 dkl — Y, U1 — €
INT:/ kexp (—k (y — €2) h(p,£2)) (i (in#l 2) dy (63)
m dkl(p1 — y, iy — €2) d(p1 — y)
= kexp (—k(y —e2) h(p1, e d 64
/52 p(—k (y —e2) hu1, e2)) d(p1 — ) dy y ©4)
H1
H1—Y M1 — €2
- _ k —k(y —e2) h(pa, 1 —1 d 65
[ ke (< (= i) (I (L) (=2 )y c69)
M1 mi—ez 1 1 b1
= kexp (—k (y —62)h(ﬂ17€2))/ ( + i)dazdy (n§ = [, ;do)
H1—Y
H1—E2 M1 1
/ / kexp (—k (y —Ez)h(M1752))( + 1f)dydifj

H1—x

(Change the order of integral)

:/Omsz exp (keah(p1,€2)) (eXp (—k (11 — 2) h(p, €2)) — exp (—kﬂlh(ﬂ17€2))) .

h(:uh 52) (66)
1 1
(= + ) dz (Calculate inner integral)
z 1l—-x
_&xp (—k (n1 — €2) h(p,e2)) _ 67
h(pa,€2)
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H1—E2 kxh -1 H1—E€2 kaxh —1
/ exp( x (H’17€2)) dl’+/ eXp( z (:u‘17€2)) dLE (68)
0 T 0 1—=z
part I part 11
Part I For part I, we can bound it by
H1—&2 kxh -1
Part I = / oxp (keh(,e2)) — 1, (69)
0 l‘

(p1—e2)kh(p1,e2) exp (y) — 1 1
_ kh(p, e ‘
/0 (11,€2) Y kh(in,e2) "

(change variable y = kxh(u1,£2))

(m1—e2)kh(pi,e2) oy -1
_ / epy) -1, (70)
0

Y
exp (1 — e2)kh(p, €2))
(Ml - Ez)kh(M1752)

(Using Lemma|[19|by letting ¢ = (11 — 2)kh(p1,€2))

(71)
Part IT For part II,
p1—e2 kxh(u, -1
part 1l = / exp (keh(pm,&2)) — 1, (72)
0 1—=z
pr—ez kxh(pi,e2)) — 1
§/ &P ( zh(im 2)) dx (Bound denominator by 1 — 1 + €2)
0 1—p1+e
1 1
= exp (kxh(py,e2)) —x ) |41 °2 calculate integral
[ (kh(HhEZ) xp (kxh(u1,e2)) ) lo ( gral)
exp (k (p1 — €2) h(p1,€2)) 73)

T (1= +e2)kh(p,e2)

Hence from Eq.(71) and Eq.(73)), by multiplying the first factor in the Eq. (68)), we can bound INT by
exp (—k(p1 — e2)h(p, €2))

INT < s (part I + part IT) (74)
_ & (k1 =~ 2)h(pa, £2)) 5 EXP (1 — e2)kh(p1,e2))  exp (k (u1 — &2) h(p,e2))

- h(p1,€2) (1 — e2)kh(p1, e2) (1 — p1 + e2)kh(p1, €2)
(75)

2 1 1 2 1
kh?(p1,€2) (Nl —e2 l-m +52) kh?(p1,€2) ((Hl —&2)(1—m +€2))

(76)
Therefore, we can upper bound B by
B< Y exp(—kKl(u —£2,41)) - INT (77)
k=m+1
2exp(—kkl(u1 — €2, 1))
Z . (78)
k(uy — €2)(1 — pr + €2)h? (1, €2)

k=m+1
In a summary, by combining Eq. (56) and Eq. (78), we have
T

Z P (As, Bf_1,Cfy, 84, Ty)
t=K+1
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<A+B

- 2
< + 1) exp(—kkl(p — €2, . L)
k=%:+1 (k(/“ —e9)(1 — p1 +e2)h?(p1,€2) ) p( (1 — €2, 1))

E Auxiliary Lemmas

E.1 Control Variance over Bounded Distribution

Lemma 16. Let v be a distribution supported on [0, 1] with mean pi. Then, the variance of v is no
larger than [1.

Proof. For arandom variable X ~ v,

Vary,[X] =E | X°] - (E[x])’

<E[X] - (E[x])? (X > X when X € [0,1])

=p—

=L (Recall that 1 = (1 — p))
m

E.2 Controlling the Moment Generating Function

Lemma 17. Let v be a distribution with mean 1 and support set S = [0, 1]. Then, moment generating
function of X ~ v is smaller than 1 — p1 + . More specifically,

Exay [ < et + (1= p) (79)

Proof. Since €Y is a convex function, we apply Jensen’s inequality on two pointy = O and y = A
with weights 1 — x and z respectively.

exp((1—2)-0+z-A) <(1—2) e +z-e
= E [exp (\x)] <(1—p) +p- e O

E.3 Upper Bounding the Sum of Probability of Cumulative Arm Pulling

Lemma 18. Let {Et}thl be a sequence of events determined at the time step t and N := By, _1.
M is an integer such that 1 < N < M <'T. Let t1,ts be time indices in N such that t1 < to and

F;, = {22:1 1{E;} <M } which is the event of upper bounding cumulative count Then, it holds

deterministically that
to
S U{E Fa}<M-N (80)

t=ty

E.4 Useful Integral Bound

Lemma 19. Let f(t) = f(f e @)= 42 We have the inequality f(t) < 2. =B @

T t

Proof. According to the Taylor expansion of exp(x) at x = 0, we have

exp(z) =1 N2, % —1 i i

B x
x x — (i+1)
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Then for f(t),

f(t)=/oz(2f_1) da
:Z/O Gr1 %

o0 ti—i—l
=L Gry e
e ti+1
— (i +2)!
0 ti—l
7!

1=2
exp(t)
=TT

O

Lemma 20. Given an integrable function f(x) which is monotonically increasing in the range RT.
For two integers 1 < a < b, we have the following inequality

/ fz dx<2f < fla /f

Proof. For the LHS inequality,

b
Zf Zf (i+1—1)
>Z/i1f(x)dx

= /ab1 f(z)dx

b
Zf Zf (i+1—14)
Zf —(i—1))

i=a+1

Z

1=a+1

+/a f(z)dx O

For the RHS,

E.5 Bounding H

Lemma 21. Given h(py,e2) = 1In (ﬁﬂ) with 0 < g9 < 1, there exists an inequality

—p1)(p1—e2)
82(1 —+ 62)

h(pn,e0) > — 221 €2)
(i, €2) p1(l—py + €2)
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Proof. Using concavity of logarithm function which is for two nonnegative point z, y
Ve,y > 0,lny <Inx + y— 2
x

We apply this property to get the lower bound A (i, £2) by
(L—p1+e2)m
h H1,€2) = In (
(h,22) (1= ) (1 — €2)
=lnp —In(ps —e2) +In(1 — pg +e2) —In (1 — pq)

> 2, % (concavity property of logarithm)
11—y +e2
€9 (1 +e€ 2)

. =em T =) O
pr(l — gy +e2)

: o 1 .7 (1—p1+e2)
Lemma 2. Given H i= f—sobsme s b, e2) o= In ({54220, 0 < =y <
%ul and 0 < p1 < 1. H is bounded by the following inequality
2/ 2
&5 €9

where f11 = (1 — pq)p1.

Proof. According to Lemma 21} h(p1, €2) is lower bounded by
h(p, e2) > _e2(lte)
T m(l = te2)

To upper bound H,
1

2
(1 =)= +22) (55052

pi(l— p +e2)
(11 — €2)e5(1 4 £2)?

_ M < 1 )2.(1—M1+52)M1

H<

2

= 1+4+¢e €3
1—
Sg.l.w (0 <ey < &)
€3
2/ 2
<+ 0
52 [Sp)

E.6 Probability Transferring Inequality

Lemma 23. Let H;_1 be the o-field generated by historical trajectory up to time (and including)
t — 1, which is defined as o ({L;, n}f;i) (1; is the arm pulling at the time round i and r; is its return

reward). Given the algorithm[l| the probability of pulling a sub-optimal arm a has the following
relationship.

]P(It = CL|7_[t71) < eXp(_Ntfl,akl(/:Ltfl,ayﬂtfl,max))
Also,
P(It = G|Ht71) < eXp(Ntfl,lkl(/itfl,h/ltfl,max))]P)(It =1 | ,Htfl)

Proof. For the first item, recall the definition of p; , = exp (—Ny—1,klI(Z—1,a, flt—1,max)) /M.
P(I; = a|Hi1) = Pt.a

:eXp(th—l,akl(,[Lt—l,av ﬂt—l,max))
M
<exp(—Ni—1,akl(ftt—1,a; fit—1,max))
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Since M; > 1 from the fact that K L(fi;—1,q, flt—1,max) = 0 When a = arg max; ¢ flz—1,q:, recall
the definition of M;, we have M; > 1.

For the second item, recall the algorithm setting, there exists the following relationship

P(It = a\?—[t_l)

:exp(_Ntfl,akl(/ltfl,ay/jtfl,max)
M;

_exp(=Ni 1okl (fit—1,0, lt—1,max))  exp(=Ni_1 1KI(fs 1,1, ftt—1,max))
~exp(—Ny—1,1KI(fie—1,1, ftt—1,max)) M,
_ exp(=Ni—1,aKl(ft 1.0, flt—1,max)) (L= 1| Hy)

exp(—Ny—11kI(f¢—1,1, fit—1,max))

! P, = 1| Hooy)

<
~exp(—Ne—1,1KI(fe—1,1, fi—1,max))
=exp(Np—1,1kI(fie—1,1, fit—1,max))P(Ly = 1| Hy—1)

The first inequality is due to kl(ft;—1,4, fi—1,max) > 0 and exp(—Ni—1 okl(f—1,a; ft—1,max)) <
1. O]

E.7 Bounding the Deviation of Running Averages from the Population Mean

Lemma 24. The distribution of random variable X is v; which is a distribution with bounded support
[0, 1] and mean 1. Suppose that there is a sequence of sample {Xi}le draw i.i.d. from v;. Denote

Zf:l Xi/s as /jés~
Let € > 0, assume T > k > 1. Then,

P(ﬂl@sk:klms,u)zmw)s?
S

Proof. We apply the peeling device TL% < s < £ to upper bound the upper left term

— 2TL
2In(T
P (35 <k KI(fis, p) > n(s/s)> (81)
> kk . 21n(T/s)
n=0
= E ok 27+ In (27T /k)
< Pl3s: KO (5 5oL Kl(s, p) 2 ——————
7; (s s € (KN (G g Kl 1) 3
(Relax s to the maximum in each subcase)
(83)
For n > |[logok] + 1, [k] N (3%r,2] = 0 , which means that the event

Js s € [K] N (gaer, o)y Kl (fis, 1) > W} cannot happen and its probability is O triv-
ially. Therefore,

[log, k|

n+1 n n oo
@)= Z P<33:3€[k]m(;ﬂ,;],kl(ﬂs,u)z“W)_,_ Z 0
n=0

n=|log, k]+1
[log, k| 1
ko 9n+1In (207 /k
<> P (33 > Gopp o M ) = ]£)>
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[log, k]
2 k ) 9n 1y (20T [k
= > P (35 2 [ G | Kl 1) 2 %

n=0

L10g2 kj 1 n
k 27+l n (27T /k
< E exp ( (2n+1 ]- n/i /) ) (Maximal Inequality Lemma23))

n=0

2" In(2" T T /k)

The first inequality relies on the Lemma for each choice of n, we set y to be %

O

The following lemma is standard in the literature, see e.g. [33]]; we include a proof for completeness.

Lemma 25. Given a natural number N in N¥, and a sequence of R.V.s {X;}:° is drawn from a
distribution v with bounded support [0, 1] and mean . Let fi,, = 2 37" | X;,n € N, which is the
empirical mean of the first n samples.

Then, fory > 0

PEn > N, kl(fin, p) = y, fin < p) <exp(—Ny) (84)
PEn = N, Kl(fin, p) 2y, fin > p) < exp(—Ny) (85)
Consequently, the following inequalities are also true:
P(an < p—¢) <exp(=N -kl(p — e, 1)) (86)
P(an > p+e) <exp(—N -kl(p+e, p)) (87)

Proof. First, we prove a useful fact that for any A € R, S,,(\) := exp (nfi,A — ng,(\)) (abbrev.
Sy,) is a super-martingale sequence when n € N* and n > N, where g, ()\) := In (1 —u+ ue)‘) is
the log moment generating function of Bernoulli(x).

Then, we have the following inequalities to finish the proof of the above fact:

E [Sus1 | Sus-- ) 51] =E [Snir | Sn]
—E [exp ((n+ Vi 1A — (0 + 1)gu(N) | S,L}

) [Sn cexp (Xpi1 A — gu(N) | Sn}
E [oxp (X 1))
exp (g,,()))
1—p+ pet
1= g+ pe
here, for the first equality, note that S,, 11, which is determined by i, +1 and fi,,+1 is conditionally
independent of the trajectory up to time step n — 1 given the condition S,,. The second and third

equalities are due to the definitions of S,, 1 and S, respectively. In the first inequality, we apply
Lemmato upper bound the numerator E[exp (X, 41A\)] by 1 — p + pe.

We now prove Eq. (84) and Eq. (83) respectively.

For Eq. (84), we consider two cases:

=5, (Lemma17)

—~n

Case 1: y > kl(0,) = In ﬁ In this case, event kl(ji,, ;) > y can never happen. Therefore,
LHS = 0 < RHS.
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Case 2: y < kl(0, ). In this case, there exists a unique zo € [0, ) such that kl(zg, ) = y. We

denote \g :=In ’(Z;’(lz g‘/z < 0.

Observe that
y = kl(zo0, 1) = 20A0 — gu(Ao)
Therefore, LHS of Eq. (84) is equal to

P(an > N, KI(fins 12) = 4, fin < 1)
In > N, i, < 20)

=P(
<P (3n > N,nfin o — ngu(Ao) > nzoho — ngu(Xo))
(Hn > N,nfinAo — TZQ;»()‘ ) > y)
( 9.(20)) > GXP(N?J))
_IP’(EIn >N, S, (X)) > exp(Ny))
E[Sn(Xo)]
_W < exp(—Ny)

For Eq. (83)), we consider two cases:

n
n

In > N,exp(nAofin —

(88)

(89)

(Ao < 0 and 1, < 2p)
(By the definition of zg)
(90)

oD

(Ville’s maximal inequality)

Case 1: y > kl(1,u) = In i In this case, event kl(fi,, ) > y can never happen. Therefore,

LHS =0 < RHS.

Case 2: y < kI(1, ). In this case, there exists a unique z; € (p, 1] such that kl(z1, u) = y. Let

A i=1n ((Zi(—lz:ﬁ) > (. Observe that

y =Kl(z1, 1) = 211 — gu(A1)
Then we have
]P’(Eln > N Kl(fn, 1) 2y, frn > 1)
=P (3n > N, fi, > 21)
(HTL > N,nfip\1 — ngu()\l) >nz A — ngu()‘l))
<P (3In > N,nfinA — ng, (A1) > ny)
( n > N,exp(nAifi, —ngu(A1)) > exp(Ny))
fIP’(EIn > N, Sp(A1) > exp(Ny))
_ElSy(w)

< (Ng) < exp(—Ny)

(A1 > 0and ﬂn > z1)
(By the definition of z;)

(Ville’s maximal inequality)

where the first inequality is due to the fact that A; > 0 and the condition i, > z; which is equivalent

to the event {kl (fi,,, 1) > Kl (21, 1) , i > p}.

Finally we derive Eq. (86) and (87) from Eq. (84) and Eq. (83) respectively.

For Eq. (86), by letting y = kl(u — &, 1) we have that
P(an < p—e) =P (kI(in, 1) > Kl(p — &, ), fin < p1)
<P (3n > N, Kl(fin, 1) >y, fin < 1))
<exp(—Ny) = exp(=N - kl(u — &, 1))
For Eq. (87), by letting y = k(1 + €, 1) we have that
P(an > p+e) =P (KI(in, 1) > Kl(p+ €, 1), fin > 1)
<P (3n > N, Kl(fin, 1) > y, fin > 1))
<exp(—Ny) = exp(—N -kl(u + &, 1)
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E.8 Lower Bound of KL

Lemma 26. Given a KL-divergence kl(j;, j1;) between two Bernoulli distribution v(y1;) and v(f1;)
where p;, ; € [0,1]. Denote fi; := p;(1 — p;), ft; = p;(1 — p;) and A = |Mj —
lower bound to Kl(fi;, 1t;).

W) > A S 1A, A
Pollid =4 v a=s\im+a " p+A

fj+A
. . 2
fri < foj 4+ 1|y — pj| = fi; + A and ( A? ) > 1 (uﬁﬁ) > 1 (uﬁA) Then we split y;
into two cases.

Case 1: p1; < 1.

Proof. It suffices to show kl(s;, 1) > & ( A* ) since by 1-Lipshizness of z — z(1 — z) we have

In this case, p; = pj - 1 < pj - 2(1 — pj) = 2415

kI( ) > A’ A’ > A’ > A’ >1 A
Pl = 90uvig) ~ 20+ A) T 220 +A) T 4y 28 T 4\ fy + A

Case 2: i; > 3
In this case, we have 1 — p; < (1 — p;)20; = 241,.
Using the following inequality
kI(pis )
AQ
>
2 ((1— i) V(1 = )
A2
27
2(1 — i)
A2
> -
T2(1 —p; + A)
A2
SO
A2
T4, + 24

2
>1 _Ai O]
—4 ,uj+A

E.9 Algebraic Lemmas

Lemma 27. Let ¢ > p > 0 and b > 0, and define f, ,(x) = n(z?Vel)  Then f(z) is mono-

x
tonically decreasing in R. Specifically, both fi2(x) = W and fa2(x) = M are
monotonically decreasing.

Proof. Note that

q baP < ed
fp,q(x) {ivn(bw ) baP > ed
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Algorithm 2 The KL-UCB algorithm (taken from Lattimore and Szepesvari [29) Section 10.2])
1: Input: K > 2
2: fort=1,2,--- ,ndo
3. ift < K then

4: Pull the arm I; = ¢ and observe reward y; ~ v;.
5:  else
6: For every a € [K], compute
UCB,(a) = maX{u € 0.1] : Koy o) < 2SO }
Nt—l,a
where f(t) =1+ tIn¢.
7 Choose arm I; = argmax,¢(x] UCB¢(a)
8: Receive reward y; ~ vy,
9: endif

10: end for

aq
* When z € (0, <1), ba? < e?. In this case, f, , is monotonically decreasing as f, (z) is
bp

inverse proportional to x.

I

e Whenz € [ei ,+00), baP > e?. In this case,
be

1 (z) = Pz _p—gq

p.q 1.2 x2

which implies that f,, ; is also monotonically decreasing in this region. O

<0,

Lemma 28. For C > 1and a > 0,
In(Ca Ve?) < Cln(a Vv e?)

Proof. From Lemma fio(z) == m(biive% is monotonically decreasing. Therefore, we have
In(Ca V e?) < In(a V e?)
Ca - a
this yields the lemma. O

E.10 Bregman divergence identity

Lemma 29 (Lemma 6.6 in Orabona [37]]). Let By the Bregman divergence w.r.t. ¢ : X — R. Then,
Sor any three points x,y € interior(X) and z € X, the following equality holds:

By(z,z) + Bg(z,y) — Bs(z,y) = (Vo(y) — Vo(x),z — ),
where By(z,x) := ¢(2) — ¢(z) — (Vo(z),z — z).

F Refined worst-case guarantees for existing algorithms

F.1 KL-UCB’s refined regret guarantee

In this section, we show that KL-UCB [[13] also can enjoy a worst-case regret bound of the form
V1 TK InT in the bandits with [0, 1] bounded reward setting. We first recall the KL-UCB algorithm,
Algorithm@ and we take the version of [29, Section 10.2].

The following theorem is a refinement of the guarantee of KL-UCB in [29, Theorem 10.6].

Theorem 30 (KL-UCB: refined guarantee). For any K-arm bandit problem with reward distributions
supported on [0, 1], KL-UCB (Algorithm |2) has regret bounded as follows. For any A > 0 and
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Ay,In(1+TIn*T) i1+ Ag
< E E .
Reg(T) <TA+ KL(pa + cAq, 1 — c¢Ag) +0 A, ©2)
a:Ag>A a:Ag>A

and consequently,

Reg(T <O(\/u1TK1n +K1nT) (93)

Proof sketch. To show Eq. (92)), fix any suboptimal arm «; it suffices to show that

2
A;In(1+Tln"T) Lo Z i1+ Ag ' 04)

E [NT a] T KL(pg + cAg, 1 — cAy) A,

a:ANg>A

To this end, following Lattimore and Szepesvari [29, proof of Theorem 10.6], let €1, €2 > 0 be such
that e1 + g9 < A,.

Define

. . In f(t
T = min {t : 36?11’2‘1371} KI(fi1,(s), 1 — €2) — é( ) < O} ’

and

zi: {k|l~ta()l~tl—52) AT )}

A close examination of Lattimore and Szepesvari [29, proof of Lemma 10.7] reveals that a stronger
bound on E [7] holds, i.e.,

2
Erl< ——mmM
< kl(p1 — e2, p1)

and similarly, a close examination of Lattimore and Szepesvari [29, proof of Lemma 10.8] reveals
that a stronger bound on E [] holds,

1 T 1
E [K,} S n f( )
Kl(pa + €1, 1 —€2)  kl(pta + €1, ta)
Therefore, by Lattimore and Szepesvari [29, proof of Theorem 10.6], we have

In f(T)

E [Nr,o] <E[r]+E[x] < + 95)
[ g ] 7] Ie] < Ki(pa +e1, 11 —€2)  Kl(pta + 1, pta) — kl(p1 — 2, p1)
We now set e = €5 = c¢A,. Observe that by Lemma
1 </:La+€1</:61+Aa
o teri) © &~ @A7
and
2 <ﬂ1+€2<ﬂ1+Aa
ki(u1 — €2, 1) ~ €5~ A2
Plugging these two inequalities into Eq. (93) yields Eq. (94).
As for Eq. (93), we note that GTen 1 T < ’lé;AAg" , and therefore, Eq. implies that for
any A > 0,
A,
Reg(T) <AT+ Y Mt Ba )
c2A,
a:Ag>A
<AT+K’“‘1 + A F)

Choosing A = /1 Klnf K /(D) yields Eq. ©3). O
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F.2 KL-UCB++’s refined regret guarantee

In this section, we show a worst-case regret guarantee of KL-UCB++ of order
0 (J;m + K2%In T) by adapting the original KL-UCB++ analysis (Theorem 2
of [33]).

First, we derive a refined bound of the number of suboptimal arm pulling, corresponding to Eq. (24)
in [33], which we state in the following theorem.

Theorem 31 (KL-UCB++: refined upper bound of suboptimal arm pulling). For any suboptimal arm
a, the expected number of its pulling up to time step T', namely E [Na (T)}, is bounded by

In(T) (K +InIn(T)) (11 + As)
E [No(T)] < PR s < 5 > , (96)
forany § € [B35 + 88‘;}1}{, Ag"].

Proof. First we decompose the expected number of arm pulling w.r.t. suboptimal arm a, E [Na(T)]
as

T—1 T-1
E[ND)] <1+ > P(UL) < —6) + Y P (1 — 6 < Ua(t) and Iy = a)
t=K t=K
A B

Following [33]], we can bound each term in A as:
P (Uy(t) < py —0)

<P (31 <n < f(0), i < po, KI(f1m, pi1) > gn> +P (Elf(é) <n<T,fir, < pr— 5),

Ay

here, with foresight, we choose f(6) = kl(ll«li(s-ﬂl) In kl(’“}?”“)T.

Note that Ay < exp(—f(6)kl(p1 — 6, 1)) by the maximal inequality (Lemma [25).

K
<
Az < TkI(

_— 97
/’Ll_(suul) ( )

For bounding A, we rely on the following inequality borrowed from [33| page 7]: for any /N such
that % > 3/ 2

P (31 << N fugn < i, KIin  a1) > M)
n
12D ER AW (FR)) NK(u —dm) K
B In(7y) (L) TKiGa —6,m)

Therefore, setting N = f () we have the following inequality when #@5) > e3/2:

P (31 <n < f(0), fir,n < pa, KI(fi1 ny 1) > g(n))

n
2
42 (e (L4 0% () F(OKI(an — 6.) K .
B In( KfT((s)) In( K?(é)) Tkl(p1 — 6, 1)
C D

Also, based on the assumption that § > 55 4, / %, we have that W > ¢3/2 and

%@ > 1 (we defer the justification at the end of this paragraph). Now:

Swe only replaced their f(u) with N. The proof still goes through since the proof has no assumption except
T 5 3/2
Kf(u) = :
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. . . In(z(1+In? z))
For C, we apply the elementary inequality that —— -

therefore, C' < 2.

< 2forx > 1withax =

Kf()

n M0 —0)T
1n(“<“11;6>T/1n Ay =80T

forx > e3/2 with z = W; therefore, D < 2.

* For D = In(z/Inz) —

) , we apply the elementary inequality that @ 9

Now we are going to justify the condition that § > 88X 4 8K ohgures these two elementar

going to j y T T y
inequalities being true. In proving W > 3/2
[26). More specifically,

, we use the KL lower bound lemma (lemma

Tk -0
w Z 63/2 (98)
T5?
PR — Lemma [26)
4K (fn +6) — (
44K (f 1)
4401 K 44K6
<:5222-max{ ‘:‘Fl - } (100)
88K 88K
o> e 101
<=0 2 max{ T T } ( )
88K 8811 K
o> 102
0> =+ T (102)
In summary, from the above derivation, § > S35 | /884K implies that W > ¢3/2, In
; T TKI (1 —8,01) / K 9
this case, furthermore we have Kf() — 1n(Tk(ll(t175,f;3)//K) 2 56‘3/2 > 1.
Therefore we bound A; by
K K
Ay <4e?.2.2. <16 (103)

2
e .
Tkl (g1 — 6, 1) — Tkl (g1 — 0, 1)
Combining Eq and (T03), we derive the upper bound for A:

T
A< (1662 + 1)

I
-

K K(ju +0)
— < 2 <
Tkl(p1 — 6, p1) — <166 " 1) ki(pr — 6, 1) — o ( 62 ) 7

i
=

(104)
where in the last inequality we use Lemma[26]

To bound B, we reuse the same idea in [33]] but change the definition of n(¢) to accommodate our

new analysis,
In (}; (1 + lnz(z;)))
0= | s

applying the same analysis in [33]] (specifically, from their Eq. (28) to Eq.(29)), we bound B by

T
B <n(6) -1+ Z P (kl <ﬂa,(n),u1 - 5) <kl (pq + 0, p11 — 5)) (105)
n=n(d)
T
<n(@) =1+ > P (fia ) = pa+9) (106)

n=n(d)
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-1+ Z exp —nkl(pq + 6, ,ua)) (Lemmal[23)

n=1
1
<n(d) -1+ Geometric sum
=) exp (Kl(pa + 0, 1a)) — 1 ( )
1
<né)-14 ——— T > 1 wh >0
<n(J) +k|(ua+5,ua) (e* >z +1whenz > 0)
In (}; (1—1—1112 (;))) n )
Ha +

< L

T + 52 (Lemma[26)
In <1 + In? <)>
B In (T) +4(u1+Aa+5)
Kl (pg + 0, 1 — 0) Kl (pg + 0, 1 — 0) 52
(By the 1-Lipshitzness of p — f1)
In| & (1 + In? (T)>>
K K
In (') ( 4(fn + Ay +9)

L

Warom—9 | ®mrrg (LemmalZ6)
In(T) fu+ A,

InlnT - ——5—]). 107
_k|(ua+5,u1—5)+0<nn 5 ) o
Combining Eq.(T04) and Eq.(T07), we get the final inequality Eq.(96). O

Based on the above refinement and replace § by cA,, we can have the following theorem.

Theorem 32 (KL-UCB++: refined guarantee). For any K-arm bandit problem with reward distribu-
tions supported on [0, 1], KL-UCB++ has regret bounded as follows:

Reg(T) < O (s/ulTKS T + K2 lnT) (108)

Proof. Define S = qa € [K]: % + 4/ % < A3“} For a € S, applying Theorem |31| with
0 = ==, and observe that by Lemma
! it ity
Mo+ o —0)~ o2~ A2

we get:
1+ Ay)InT K+ Inln(T))(f11 + Ag
E[N,(T)] 5% 1ol (Ag)( ! ) (109)
<O((K+lnT)(M1+Aa)> (110)
Therefore, for any A > 0, the regret given a timespan of 7" is bounded by
Reg(T) < > ALE[NJD+ D> AE[NJD]+ D AE[N(T)]
a:A <A a:Ag>Aa€S a:Ag>AagS
(K +InT) (11 + Aa) K MK
< _ it
<STA+ ) 0( A, + Y o|T|FH
a:Ag>AaES a:Ag>ANagS
gTA+O<K(K+ln§)(“1+A)> +0 (K* + /i K°T)
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Choosing A = M yields Eq. (I08). O

F.3 The worst-case regret bound of UCB-V

In this section, we will show that the problem dependent regret bound presented in UCB-V[7] can
also be adaptive to i in the bandits with [0, 1] bounded reward setting. The starting point is that we
will obtain a lemma (Lemma 33) to bound the arm pulling for all suboptimal arms like what we did
in our paper.

Lemma 33. Let N;(T) to be the number of the arm pulling in terms of the arm i until the time step
T (inclusively) in the algorithm UCB-V from [|7|]. Then we can bound E [NZ'(T)] by the following
inequality

E[N:(T)] < (ZQ + A1> log T (111)

Proof. Inside the proof of Theorem 3 in [[7]], by setting ¢ = 1, for each arm ¢, we obtain the following
inequality for any ¢ > O:

22 e (i,
E[N;(T)] <1+ 8&r <A2+A>+T (A? + Z (&,T), (112

t=u+1

o, We

where u := [8¢ (A2 + A ) log T, Ep := (log T and 3 (€;,¢) := inf1<3 (lggi A t)
pick ¢ = 1.1. The last term is bounded by

L L logt I logt £
E < E . -2 < E e~ TI
Blent) < 3 1<12f§3 <loga /\t> T A log (1. 1 o (113)

t=u-+1 t=u+1
T 0o
3 logt logt
<——— —— <1 114
~log(1.1) t:;ﬂ g1 z:: o~ (114
Therefore, we have the following inequality
E [N,(T)] < A1 log T (115)
~ A2 A
O

By using the lemma[33] we just obtained, we can obtain the following theorem about worst-case regret
bound of UCB-V.

Theorem 34. The regret of the algorithm UCB-V[7|] is bounded by:

Reg(T) < Vi KT In(T) + K 1n(T) (116)

Proof.

Reg(T) = Y AE[N(T)] + AE[N,
A <A A >A

<STA+ Y AE[N(T)]
A >A

STA+ Y (Z + 1) log(T) (By Eq. (TT3))

A >A

<TA+ Y (Z + 1> log(T) + > (Z + 1> log(T)

A E[A,1/4] ¢ A >1/4 ¢
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STA+ Y Kliog(T) + Klog(T).
A E[A /4] T

To bound the second term above, we consider two cases.

Casel: ;g < 3.

In this case, one can show that fi; < fi;. Thus,

. < gt
| > Ailn(T)NKAln(T).
A E[A,1/4]

Case2: (11 > 3 .
We observe that if ¢ satisfies A; € [A,1/4], then f1; = p; (1 — ;) <1 —p; =1 —p; +p1 — p1 =
L —p1+ Ay S 1+ Ag. Thus,

3 %mmg 3y (“f+1)1n(T)<K"‘A11n(T)+K1n(T).
iAE[A,1/4 " A E€[A,1/4] v

Altogether, we have

Reg(T) < TA + K% In(T) + K In(T) .

Let us choose A = Kj’i‘l A %. If T > K11, then we obtain the desired bound. If T" < K i1, we
get A =1/4,s0

Reg(T) Sn+ Ky In(T) + KIn(T) < Kpy + Ky In(T) + KIn(T) ,
which is less than the desired bound. This concludes the proof. O

G Improved minimax analysis of the sub-Gaussian MS

We sketch how to change the proof of the sub-Gaussian MS regret bound in Bian and Jun [11] so it
can achieve the minimax ratio of 1/In(K).

It suffices to show that Va : j1o < p1, E[Nro] S & 111(:2—522 V €2). To bound E[Nr,q], recall that
there are three terms to bound: (F'1), (F'2), and (F'3). Recall the symbols in Bian and Jun [11]:

e o2: the sub-Gaussian parameter.

L "202(1+c)2ln(TAi/(202)\/62)
o U= =

a

—‘ for some ¢ > 0.

* ¢ > 0: an analysis parameter that will be chosen later to be A, up to a constant factor.

The reason why one does not obtain the minimax ratio of /In(K) is that the bound obtained in Bian
and Jun [L1] for (F'3) is O(‘;—j ln(‘;—j V €2)) rather than O(‘;—j ln(T—i2 V €2)). To achieve the latter

bound for (F'3), first we choose the splitting threshold ‘;—2 which takes the same role as H for KL-MS
in the [0, 1]-bounded reward case and F'3 will be separated into '3; and F'35. F'3; is the case where

. . .. 2 . .
F'3 is with the extra condition that N;_; ; < ‘;—2 for 1 <t < T and F'3, the case where F'3 is with
.. 2 . . . .
the extra condition that Ny 1 > %7 for 1 <t < T Itis easy to bound F'3; using a similar argument
2
as our Claimthat F3; 5 %.

For F'31, we define the following event

£ = {Vk €1, L%J]ﬂﬂ(k),l >y — \/40211;;%}

where fi(1) 1 is the empirical mean of arm 1 (the true best arm) after k£ arm pulls.
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We have

N

T 2
. o
F3, =E E 1 {It =a,N¢ 1,0 > Uy flg—1,max < 1 — & Ny_11 < 52}
1

2 T-1
=F Z 1 {It = a,Nt,l,a > u,,&tfl,max < 1 — €7Nt71’1 < :2,5} +E Z 1 {50}

t=K+1

S E Z 1 {It = athfl,a > uvﬂtfl,max < M1 — 575} + T- P(gc)
t=K+1

2
Note that one can show that 7' - P(£¢) < % using a similar argument to Lemma One can also
see that the first term above corresponds to the first term of Eq. (Z3)) in KL-MS, and one can use a

o . . 2 2
similar technique therein to bound the first term above by Z> ln(i—s2 V €2) up to a constant factor.

Adding the bounds of F'3; and F'35 together, we conclude that F'3 < g—j ln(Tg—i2 Ve?).

H Additional Experiments

H.1 Regret comparison

We compare KL-MS with the Bernoulli Thompson Sampling and MS [11]]. Bernoulli Thompson
Sampling chooses beta distribution as the prior (Beta(0.5, 0.5)) and the posterior. The reward
environment is borrowed from [25]], where there are two reward environments. Both are two-arm
bandit, one has the mean reward [0, 20, 0, 25] and the other has the mean reward [0.80, 0.90]. From
Figure|[T)and Figure 2] we find that the performance of KL-MS is better than MS by a margin, although
worse than Bernoulli Thompson Sampling. Nevertheless, we will see in the next section that Bernoulli
Thompson Sampling tends to generate somewhat unreliable logged data for offline evaluation.

Regret comparison with 2000 times simulation

Comparison | Comparison |
mu=[0.2, 0, 25] | mu=[0.8, 0.9]|
simulations=2000 simulations=2000
40 MS:0.95% CI MS:0.95% CI
35 25
KL-MS:0.95% CI
30
20
g g
g2 g
2 5 Glli Thompson Sampling:0.95% Cl v15 KL-MS:0.95% CI
B 8
- L o
E 15 g 10 oulli Thompson Sampling:0.95% CI
3 3
v 10 v
—— Bernoulli Thompson Sampling 5 —— Bernoulli Thompson Sampling
5 — KL-MS — KL-Ms
0 — MS 0 — MS
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time step time step
Figure 1: ;1 = [0.20,0.25], T = 10,000 Figure 2: 1 = [0.80,0.90], 7 = 10,000

H.2 Offline evaluation

This section presents our simulation results on offline evaluation using logged data. We use the
logged data generated by our algorithm, KL.-MS, and standard Thompson Sampling, to estimate the
expected reward of the policy that takes an action uniformly at random in [K], which is equal to
= % Zfil ;. The logged data are of the form (I, py 1, , rt)le, where I, is the action taken, p; r,
is the action probability (which can be exact or approximate), 7; is the received reward, all at time
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step t. We consider the IPW estimator [22] that estimates 1, defined as

SeprLes
T Pt,1,

We set T, the time horizon of the interaction log, to be 1,000 or 10, 000. For Thompson sampling,
we use Monte Carlo (MC) to estimate the action probabilities; we vary the number of MC samples
M in {103,10%,10°}. Note that MC estimation of action probabilities induces a high time cost: in
our simulations, for T = 103, KL-MS uses 0.43s to generate its logged data; in contrast, BernoulliTS
with M = 103 uses 15.21s to generate its logged data. This suggest that setting M = 10 or 10°
may be impractical in applications.

Figures [3]to[I4] shows the histogram of the IPW estimates of the average reward induced by logged
data generated by KL-MS and Bernoulli-TS with MC estimation of action probabilities, based
on N = 2000 independent trials in the same reward environment used in the previous experiment.
Repeatedly, We have two 2-armed bandit problems, whose mean rewards are [0.20, 0.25] and [0.8,0.9]
respectively. Tables[2]to[9]report the MSE and the bias estimate of the respective estimator. It can be
seen from the figures and tables that: (1) the logged data induced by KL-MS consistently give more
accurate estimates of u, compared to that of BernoulliTS with MC estimation of action probabilities;
(2) the offline evaluation performance of the logged data induced by BernoulliTS is sensitive to the
number of MC samples M ; while the performance of setting M = 10* or 10° is on par with KL-MS,
the estimation error of the more-practical M = 10 setting is evidently higher. (3) When time step T’
is increasing, the error between the IPW estimator induced by BernoulliTS logged data and the true
performance become larger while KL-MS remains the same level of error which is smaller than the
BernoulliTS.

1= [0.20,0.25],7 = 1,000

BernoulliTs
KL-MS

-
o
o

BernoulliTs
KL-MS

BernoulliTs | |
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i, — BernoulliTs
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Figure 3: M = 10° Figure 4: M = 10* Figure 5: M = 10°
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Figure 6: M = 103 Figure 7: M = 10* Figure 8: M = 10°
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Figure 10: M = 10*
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Figure 11: M = 10°
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Table 2: MSEs for = [0.20,0.25],
T = 1,000
M
10 10* 10°
BernoulliTS  0.00014  0.00012  0.00014
KL-MS 0.00001  0.00001 0.00001
Table 4: MSEs for = [0.80,0.90],
T = 1,000
M
10° 10* 10°
BernoulliTS 0.01464 0.01143  0.01228
KL-MS 0.00733  0.00782 0.00749
Table 6: MSEs for p = [0.20,0.25],
T = 10,000
M
10° 10% 10°
BernoulliTS  0.00017  0.00010  0.00009
KL-MS 0.00007  0.00006 0.00011
Table 8: MSEs for 1 = [0.80,0.90],
T = 10,000
M
10° 10% 10°
BernoulliTS  0.06842 0.01276  0.01220
KL-MS 0.00898 0.00804 0.00929
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Table 3: Bias for y = [0.20,0.25], T =
1,000
M
10° 10* 10°
BernoulliTS  -0.00059 0.00106 -0.00068
KL-MS -0.00096 0.00118 0.00011

Table 5: Bias for y = [0.80,0.90], T' =

1,000
M
10° 10* 10°
BernoulliTS  0.02911 0.01741 0.01636
KL-MS 0.01304 0.01412 0.01355
Table 7: Bias for u = [0.20,0.25], T =
10,000
M
10° 10% 10°
BernoulliTS  0.00637  0.00142  -0.00240
KL-MS 0.00052  0.00066 0.00220
Table 9: Bias for ;4 = [0.80,0.90], T' =
10, 000
M
10° 10* 10°
BernoulliTS  0.17947 0.03401 0.04313
KL-MS 0.02046 0.01731 0.01123
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