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ABSTRACT

We initiate a formal investigation into the design and analysis of LLM-based
algorithms, i.e. algorithms that contain one or multiple calls of large language
models (LLMs) as sub-routines and critically rely on the capabilities of LLMs.
While LLM-based algorithms, ranging from combinations of basic LLM calls
to complicated LLM-powered agent systems and compound AI systems, have
achieved remarkable empirical success, the design and optimization of them have
oftentimes relied on heuristics and trial-and-errors, which is largely due to a
lack of formal and analytical study for these algorithms. To fill this gap, we
start by identifying the computational-graph representation, task decomposition
as the design principle, and some key abstractions, which then facilitate our
formal analysis for the accuracy and efficiency of LLM-based algorithms, despite
the black-box nature of LLMs. Through extensive analytical and empirical
investigation in a series of case studies, we demonstrate that the proposed
framework is broadly applicable to a wide range of scenarios and diverse
patterns of LLM-based algorithms, such as parallel, hierarchical and recursive
task decomposition. Our proposed framework holds promise for advancing LLM-
based algorithms, by revealing the reasons behind curious empirical phenomena,
guiding the choices of hyperparameters, predicting the empirical performance of
algorithms, and inspiring new algorithm design. To promote further study, we
include our source code in the supplementary materials.

1 INTRODUCTION

The rapid advancements of pre-trained large language models (LLMs) in the past few years (Bubeck
et al., 2023; Wei et al., 2022a; Schaeffer et al., 2023) have given rise to the new paradigm of
algorithmic problem solving by utilizing LLMs as general-purpose solvers and prompting them with
task descriptions plus additional inputs that can help enhance their performance (Wei et al., 2022b;
Kojima et al., 2022). Meanwhile, it is also well recognized that even the best LLMs today still exhibit
various limitations, such as finite context window sizes and difficulty with complex reasoning. Some
of these limitations are fundamental (Merrill & Sabharwal, 2023; Peng et al., 2024; Thomm et al.,
2024; Hahn & Rofin, 2024; Wen et al., 2024; Merrill et al., 2024), and resolving them requires new
breakthroughs. Moreover, in resource-constrained scenarios where using the state-of-the-art LLMs
is not feasible, one might have to resort to smaller and weaker LLMs for solving complex tasks.

All these have motivated the developments of what we call LLM-based algorithms, namely,
algorithms that contain one or multiple LLM calls as sub-routines and fundamentally rely on the
capabilities of LLMs. In its most basic form, an LLM-based algorithm can be a combination of
multiple LLM calls (Yao et al., 2023a; Besta et al., 2023; Wang et al., 2023). More advanced
examples include LLM-powered agent systems (Mialon et al., 2023; Pezeshkpour et al., 2024;
Xi et al., 2023) and compound AI systems (Zaharia et al., 2024) that augment LLMs with
additional abilities like tool use and long-term memory, as well as the emerging paradigm of LLM
programming (Schlag et al., 2023; Zheng et al., 2024).

LLM-based algorithms, in a similar spirit to neuro-symbolic programming (Chaudhuri et al., 2021;
Gupta & Kembhavi, 2023) and learning-augmented algorithms (Mitzenmacher & Vassilvitskii,
2022; Lindermayr & Megow, 2022), combine the advantages of both LLMs and traditional
algorithms. An LLM-based algorithm, designed with human’s intelligence and knowledge of
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algorithmic problem solving, can exhibit much better controllability and interpretability, stronger
performance that is less reliant on delicate prompting or extensive trial-and-errors, and capabilities
that far exceed what could possibly be achieved by directly prompting the LLM for a solution.

The rapid developments of LLM-based algorithms naturally raise the question: is it possible to
provide any formal analysis or guarantee for LLM-based algorithms? This seems like a daunting
task at first glance, due to the black-box nature of LLMs. Indeed, in prior works of this field,
LLM-based algorithms have been typically designed in a heuristic manner and evaluated empirically
with measurements of some error or cost metrics on certain benchmarks. In contrast, formal
analysis of LLM-based algorithms, if it does exist, can bring various potential benefits, including
but not limited to revealing the reasons behind curious empirical phenomena, instructing choices
of hyperparameters, predicting the empirical performance of LLM-based algorithms, and even
inspiring new algorithm design.

Main contributions. The goal of this work is to initiate a formal investigation into the design and
analysis of LLM-based algorithms. Our contributions to filling this gap, and thereby advancing the
field of LLM-based algorithms, are summarized as follows.

• Section 2 introduces a novel analytical framework. We start by formulating LLM-based
algorithms as computational graphs, and identifying task decomposition as the design
principle. We further introduce some key abstractions, based on which formal analysis
for the accuracy and efficiency of LLM-based algorithms is developed.

• Through a series of case studies in Sections 3, 4 and 5, we demonstrate the proposed
framework in action for various patterns of LLM-based algorithms, including parallel,
hierarchical and recursive decomposition, in a wide range of diverse scenarios and tasks.

• We derive novel insights from our analytical study, which are also validated by experiments.
For example, considering the hyperparameter m that represents the granularity of parallel
decomposition, our analysis explains why error and cost metrics of an LLM-based
algorithm are monotone in m in certain cases while non-monotone in others, which in
turn guides the choices of m for achieving the desired accuracy or efficiency. Our work
exemplifies how to leverage the proposed framework for systematic design and analysis of
practical LLM-based algorithms, which can potentially inspire future work in this area.

2 AN ANALYTICAL FRAMEWORK

This section introduces our formal framework for the design and analysis of LLM-based algorithms.

2.1 DEFINITION, REPRESENTATION, AND DESIGN PRINCIPLE

Definition and computational-graph representation. Generally speaking, an LLM-based
algorithm is simply an algorithm that contains one or multiple LLM calls as its key components.
Examples of LLM-based algorithms range from one single LLM call, to LLM-powered agent
systems or compound AI systems consisting of a mixture of LLM calls and non-LLM programs.

An LLM-based algorithm can be naturally formulated as a computational graph. Each graph node
takes some inputs from its predecessor nodes, executes certain operations, and returns some outputs.
The nodes can be categorized into two types, which we refer to as LLM nodes and non-LLM nodes,
demonstrated in Figure 1. Within an LLM node, the operations consist of a prompter that formats
a prompt based on the inputs, an LLM call that processes the prompt, and a parser that extracts
the targeted information from the LLM’s response. The prompter and parser, designed specifically
for the current node, serve as translators between natural language and traditional data structures.
Within a non-LLM node, the operations can be anything that does not involve LLMs, e.g. a symbolic
algorithm, an API call for a search engine, or a classical machine learning model.

Given such nodes, the computational graph is built by connecting them with directed edges that
specify the data flows within the LLM-based algorithm. For example, Figure 2a demonstrates the
pattern of parallel decomposition, which divides the input problem into parallel sub-tasks, solves
each with one LLM node, and aggregates the results for the final solution; Figure 2b illustrates an
algorithm for book-length summarization with chunking and incremental updating (Chang et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Inputs (DS) Outputs (DS)

Non-LLM 
program

Inputs (DS)
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Prompt (NL) Response (NL)

(b) A non-LLM node(a) An LLM node

Figure 1: Two types of nodes in the computational graphs of LLM-based algorithms. We use the
abbreviation “NL” for “natural language”, and “DS” for “data structure”.
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(a) Parallel decomposition. Examples of this pattern are
elaborated in Section 3 and Appendix C.

Input
text

Output
summary

LLM node

LLM node

LLM node

Dividing
(symbolic)

......

Initial global 
summary = “ ”

(b) Book-length summarization via chunking
and incremental updating (Chang et al., 2024).
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(c) The ReAct algorithm (Yao et al., 2023b). Each “acting” node represents one API call for some tool, and
each “aggregation” node aggregates the outputs of its predecessor nodes, e.g. by simple concatenation.

Figure 2: Examples of computational-graph representations for LLM-based algorithms.

2024; OpenAI, 2024b); and Figure 2c demonstrates the ReAct algorithm (Yao et al., 2023b), which
consists of multiple iterations of reasoning, tool use and aggregation. The computational-graph
formulation is expressive enough to cover these diverse algorithms and facilitates unified analysis
for all of them. The computational graph of an LLM-based algorithm can be pre-specified and
static, or dynamically constructed at runtime. Configurations of an LLM-based algorithm include
how task decomposition is done (reflected by the graph topology and the sub-tasks of graph nodes),
the methods of prompting and parsing for each LLM node, configurations of the LLM(s) being used
(e.g. the LLM nodes within one graph might use the same or different backbone LLMs), and so on.

Design principle: task decomposition. As shown above, an LLM-based algorithm might utilize
multiple LLM calls and non-LLM programs to handle sub-tasks derived from the original problem,
whose outputs together give rise to the final solution. This naturally implies task decomposition as a
crucial principle. One key aspect of designing an LLM-based algorithm is to decompose the original
task appropriately, so that each sub-task can be handled by one LLM call or non-LLM program
accurately and efficiently, while the performance of the overall algorithm is also guaranteed.

Task decomposition, widely adopted in prior works on LLM-based algorithms, is beneficial and
oftentimes crucial for solving problems with LLMs. For example, a large document that is well
beyond the context window or long-context capability of the LLM might need to be divided into
chunks, each processed by one LLM call; or, a complex reasoning process might need to be
decomposed into smaller steps, handled by multiple LLM calls in coordination. It is also possible
that better efficiency might be achieved with task decomposition, e.g. when the input problem can be
decomposed into multiple independent sub-tasks to be solved in parallel, with a smaller end-to-end
latency than autoregressive decoding within one single LLM call.1 Despite all these benefits, it is
also possible that fine-grained task decomposition can incur higher errors or costs in certain cases.
Choosing the appropriate decomposition is crucial for achieving good performance of the overall
algorithm, be it a trade-off between accuracy and efficiency or the best of both worlds.

1It is worth noting that one single LLM call, as a special case of LLM-based algorithms, can also be treated
from the perspective of task decomposition. Thus the analysis proposed in this work still holds for this case.
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Analysis: accuracy and efficiency. Given a task and the corresponding LLM-based algorithm,
we aim to analyze its performance, namely how accurately and efficiently the algorithm solves the
task, akin to analysis for any generic algorithm. This is done by analyzing for each LLM call or
non-LLM program first, and then for the overall algorithm. Given that LLMs are regarded as black-
box general-purpose problem solvers using natural language as input and output, we find it useful
and necessary to leverage certain abstractions, to be introduced in Section 2.2, in order to facilitate
formal analysis that will be presented in Section 2.3. One practical usage of formal analysis is to
predict the performance of an LLM-based algorithm before actually running it, which will in turn
help to optimize certain hyperparameters in the configurations or inspire better algorithm design.

2.2 KEY ABSTRACTIONS

We introduce a few key abstractions, summarized in Figure 3, that will facilitate our formal analysis.

LLM-based algorithm
with configurations

LLM characteristics
(capabilities and limitations)

LLM inference service

Error metrics
(accuracy)

Cost metrics
(efficiency)

Assumptions on LLMs

Performance of each node
and the overall algorithm

Figure 3: Key abstractions and their relation.

Error and cost metrics. The accuracy and
efficiency of each graph node and the overall
LLM-based algorithm can be quantified by
certain error and cost metrics respectively.
The performance of individual graph nodes,
together with the graph topology, implies the
performance of the overall algorithm. For each
specific task or algorithm, one might define
multiple error metrics and cost metrics, which
can be analyzed in a unified manner within our
proposed framework.

Error metrics are task-specific in general, and
graph nodes within the same algorithm might
have different error metrics.2 Cost metrics, on the other hand, are largely task-agnostic. Examples
include the total length of prompts and generated texts within one run of the algorithm, which are
especially relevant to the financial costs when the algorithm uses a proprietary LLM accessed via
commercial API calls. Another example is the end-to-end latency, namely the time complexity,
which can be impacted by parallelism of LLM calls, an important aspect of LLM inference service
in practice. Other possible cost metrics include the peak memory usage, the total number of LLM
calls, FLOPs, energy consumption, carbon emission, and so on. Unless specified otherwise, we
focus on the costs of the LLM nodes and neglect those of the non-LLM nodes, since the latter is
much smaller than the former in all concrete scenarios that we will consider later in this work.

LLM characteristics and inference service. Characteristics of LLMs, namely their capabilities
and limitations, determine what the generated text will be for a specific prompt, and thus directly
affect the error metrics of graph nodes and the overall algorithm. They also affect the cost metrics
indirectly, via the lengths of prompts and generated texts. Assumptions on LLM characteristics can
be task-specific or task-agnostic. Assumptions on LLM inference service, on the other hand, are
task-agnostic and only affect the cost metrics, not error metrics. They determine how cost metrics
are dependent on the lengths of prompt and generated text for each LLM call, the parallelism of
multiple LLM calls, among other factors. While LLM inference service in practice can be very
diverse, we will see that unified and formal analysis is possible with appropriate abstractions of it.

2.3 FORMAL ANALYSIS: ACCURACY AND EFFICIENCY

Given the above formulations and abstractions, we are ready to conduct formal analysis for the
accuracy and efficiency of LLM-based algorithms. Our approach is to first analyze the error and
cost metrics for each individual node within the computational graph; these, combined with the
graph topology, lead to results about the error and cost metrics of the overall algorithm. Unless
otherwise specified, our analysis is deterministic, for a given task instance and fixed random seed(s).

2Throughout this work, we use “accuracy” to refer to the broader concept of “quality”, and an “error metric”
can be any metric that measures how much the output of an algorithm deviates from certain criteria.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Analysis of error metrics. The error metrics of the output of each LLM node, calculated with
respect to what the output should have been if all nodes accomplish their tasks with exact accuracy,
depend on the characteristics (i.e. capabilities and limitations) of the LLM, as well as the specific
problem instance and random seed(s). For each node v, the error of its output y can be bounded by
some function fv of the errors of its inputs x1, x2, . . . , xk, i.e. the outputs of its predecessor nodes:

E(y) ≤ fv
(
E(x1), E(x2), . . . , E(xk)

)
. (1)

The function fv can be a linear function in a counting task to be introduced in Section 3.2, or the
minimum operator in code generation where multiple code samples are generated and the best one
that passes all or the most test cases is chosen. More examples of fv will be demonstrated in our
case studies later in this work. Finally, the error metrics of the overall algorithm are exactly those of
the particular graph node that generates the final solution returned by the algorithm.

Analysis of cost metrics. Let us first consider the cost of one LLM call, which consists of a
prefilling phase with a prompt of length Lpre, and a decoding phase that generates text of length
Ldec. In our framework, it is assumed that the cost C of one LLM call can be bounded by

C ≤ C(prefilling) + C(decoding) = Cpre(Lpre) + Cdec(Lpre,Ldec) =: CLLM(Lpre,Ldec). (2)
The functions Cpre, Cdec and CLLM are specific to each LLM call, and depend on the choices of cost
metrics and LLM inference service. For example, they might be linear functions when the financial
costs of LLM API calls charged by tokens are under consideration, or quadratic functions for the
latency of inference by Transformers with full attention (Vaswani et al., 2017).

Next, we consider the cost of the overall algorithm, which is a function of the costs of all LLM
nodes within its computational graph. This function might be a simple sum (e.g. for LLM API
costs) or something more complex. One particular case of interest is the latency in a setting of
ideal parallelism with maximum degree p, which assumes that the inference service is capable of
processing k ≤ p independent LLM calls in parallel within time maxi∈[k] Ci, where Ci denotes the
latency of processing the i-th LLM call alone. If k > p instead, a natural idea is to divide them into
g = ⌈k/p⌉ groups, with each group of p LLM calls processed in parallel; the end-to-end latency C
in this case is thus

C =
∑
j∈[g]

max
{
C(j−1)p+1, C(j−1)p+2, . . . , Cmin{jp,k}

}
. (3)

This setting of ideal parallelism will be considered throughout our case studies in Sections 3 and 4,

Case studies. We have presented our unified and systematic analysis for generic LLM-based
algorithms. Through a series of case studies to be presented in Sections 3, 4 and 5, we will
demonstrate the proposed framework in action and derive novel insights for diverse patterns of
LLM-based algorithms, including parallel, hierarchical and recursive decomposition.

3 PARALLEL DECOMPOSITION

This section focuses on parallel decomposition, a basic MapReduce-like (Dean & Ghemawat, 2008)
pattern visualized in Figure 2a. An algorithm of this pattern divides the input problem into multiple
independent sub-tasks, solves each with one LLM node, and aggregates the results with an LLM or
non-LLM node for the final solution. The intermediate sub-tasks can be solved sequentially or in
parallel, which has impacts on certain cost metrics. This basic pattern of task decomposition can
be used as a building block for more sophisticated algorithms. Despite its simplicity, interesting
analysis and a wide variety of concrete tasks and algorithms can be derived from it.

In the following, Section 3.1 introduces our general analysis for parallel decomposition, while
Sections 3.2 and 3.3 further demonstrate two concrete examples, namely counting and retrieval.
Analysis with the proposed framework for more concrete examples (including sorting, retrieval-
augmented generation, and long-text summarization) can be found in Appendix C.

3.1 NOTATIONS AND ANALYSIS

We define some formal notations that will be useful in our analysis. Let n denote the size of the input
problem instance, e.g. the number of tokens in a piece of text or the length of a list. Let k denote the
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number of parallel sub-tasks after decomposition, and mi denote the size of the i-th sub-task, where
i ∈ [k]. It is assumed that mi ≤ m for some maximum value m that can fit into the context window
of the LLM. For most of our analysis, we will assume for simplicity that mi = m for all i ∈ [k],
and that k = O(n/m). We denote p ≥ 1 as the maximum degree of ideal parallelism supported
by LLM inference service. Finally, let Lsys be an upper bound for the length of the system prompt
of each LLM call, which includes everything in the prompt except for the size-n input problem
instance. The presence of Lsys, which can be large in practice, is essentially due to the fact that the
LLM is used as a general-purpose sub-routine, hence specifying the concrete task for each LLM call
constitutes part of the complexity.

For notational convenience, we will often write f(n) ≲ g(n) in place of f(n) = O(g(n)), which
means there exists a universal constant C > 0 such that f(n) ≤ C · g(n) for any positive integer
n. In addition, f(n) ≍ g(n) means f(n) ≲ g(n) and g(n) ≲ f(n) both hold. To further simplify
notation, we will often omit the big-O notation in the input arguments of cost functions Cpre, Cdec
and CLLM; for example, given a prompt of length Lsys +O(n), we will write the cost of the prefilling
phase as Cpre(Lsys + n) rather than Cpre(Lsys +O(n)).

Analysis of cost metrics. We assume for simplicity that all parallel LLM nodes share the same
LLM model and inference service, and thus the same cost functions Cpre, Cdec and CLLM.

In many cases, the cost of the overall algorithm is a simple sum of the costs of all LLM calls,
e.g. the financial cost for commercial LLM API calls, or the end-to-end latency when all LLM
calls are executed sequentially. In such cases, we can write the total cost as C = C(sub-tasks) +
C(aggregation), where C(aggregation) is the cost of the final aggregation step, and

C(sub-tasks) = k × C(one sub-task) ≤ k × CLLM(Lsys +m,Ldec) ≲ n×
CLLM(Lsys +m,Ldec)

m
.

(4)

Here, the first inequality follows Eq. (2), the second follows k ≲ n/m, and Ldec = Ldec(m) is
task-specific, which can be O(1) or O(m) for example. This basic analysis already provides some
hints for tuning the hyperparameter m from the perspective of minimizing costs. To see this, let us
assume for simplicity that Ldec = O(1). If CLLM(Lsys +m, 1) grows with m at a linear or sub-linear
rate, then the right-hand side of Eq. (4) is monotonely decreasing in m, which means C(sub-tasks) is
minimized at m = min{n,m}. On the other hand, it is well known that a Transformer model with
full attention suffers from quadratic complexity in long-sequence processing. A general assumption
would be CLLM(Lsys +m, 1) ≤ α× (Lsys +m)2 + β × (Lsys +m) + γ, which takes into account
a more precise characterization of the FLOPs, as well as memory IO for loading model weights and
KV caches (Agarwal et al., 2023). In this case, we have

C(sub-tasks) ≲ n×
CLLM(Lsys +m, 1)

m
≤ n×

α× (Lsys +m)2 + β × (Lsys +m) + γ

m

= n×
(
α×m+

α× L2
sys + β × Lsys + γ

m
+ 2× α× Lsys + β

)
,

and the right-hand side is minimized at m =
√
L2

sys + Lsys × β/α+ γ/α.

The above analysis can be extended to the case with parallelism, which is especially relevant to
the end-to-end latency of the overall algorithm. Considering parallel LLM calls for homogeneous
sub-tasks in the setting of ideal parallelism introduced earlier, we have

C = C(sub-tasks) + C(aggregation), where C(sub-tasks) ≤
⌈k
p

⌉
× CLLM(Lsys +m,Ldec)

according to Eq. (3). For large m such that k ≤ p, we have ⌈k/p⌉ = 1 and thus C(sub-tasks) ≤
CLLM(Lsys +m,Ldec) is monotonely increasing in m. On the other hand, for sufficiently small m
and large k, we have ⌈k/p⌉ ≈ k/p, and thus the upper bound for C(sub-tasks) can be approximated
by C(sub-tasks) ≤ (k/p) × CLLM(Lsys + m,Ldec) ≲ (n/p) × CLLM(Lsys +m,Ldec)/m, which
might be monotonely decreasing in m if CLLM(Lsys +m,Ldec) grows with m at a (sub-)linear rate.
In this case, the overall cost C(sub-tasks) is minimized by k ≍ p and hence m ≍ n/p.

One implication of the above analysis is, the optimal value of m that minimizes costs might depend
on the choices of cost metrics and assumptions of LLM inference service, among other factors.
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Analysis of error metrics. As explained earlier in Section 2.2, error metrics are mostly task-
specific, and thus the analysis of error metrics need to be done in a case-by-case manner. For a given
task, error metrics for each homogeneous and parallel sub-task typically increases with the size m,
although this is not always the case. Error metrics of the overall algorithm after the final aggregation
step also depend on the specific task, the method of aggregation, and choices of metrics. We will
soon demonstrate the analysis of error metrics in several concrete examples.

3.2 EXAMPLE: COUNTING

As a warm-up exercise, we consider a simple counting task formulated as follows: given a string of
length n consisting of letters and digits, the task is to count the number of digits in it. This can be
seen as an abstraction or synthetic version of more generic counting tasks in practice.

Algorithm. We consider the following algorithm with the pattern of parallel decomposition. It
first divides the input string into k disjoint sub-strings of lengths m1,m2, . . . ,mk. Then, for each
i ∈ [k], one LLM call is invoked to count the number of digits in the i-th sub-string, whose answer
is denoted by yi. The final solution returned by the algorithm is then y =

∑
i∈[k] yi. For each

LLM call, we prompt the LLM to generate its answer directly without intermediate steps, thus it is
reasonable to assume that the text generated by each LLM call has length Ldec = O(1).

Analysis. Let us assume for notational convenience that mi = m for all i ∈ [k], and k = n/m
is an integer. We first consider the accuracy of this algorithm. Denote by y⋆ and y⋆i the ground-
truth count for the complete string and the i-th sub-string, respectively. If E represents the absolute
counting error, then E(y) := |y − y⋆| = |

∑
i∈[k](yi − y⋆i )| ≤

∑
i∈[k] |yi − y⋆i | =

∑
i∈[k] E(yi). If

we let E represent the normalized counting error instead, then

E(y) := |y − y⋆|
n

≤ 1

n

∑
i∈[k]

|yi − y⋆i | =
1

k

∑
i∈[k]

|yi − y⋆i |
m

=
1

k

∑
i∈[k]

E(yi).

Since a smaller value of m makes each sub-task easier, it is reasonable to expect that the overall
error E(y) with this metric will also become smaller as m decreases.

Next, our analysis of efficiency follows Section 3.1. Here, we have Ldec = O(1) by assumption, and
C(aggregation) = 0 since the final aggregation step is done by a non-LLM node. Considering the
total prefilling length and decoding length as cost metrics, one has C(prefilling) ≲ k×(Lsys+m) =
n × (Lsys/m + 1) and C(decoding) ≲ k × 1 = n/m, both of which are monotonely decreasing
in m. More generally, the sum of costs of all LLM calls is C = C(sub-tasks) ≤ k × CLLM(Lsys +
m, 1) = n × CLLM(Lsys +m, 1)/m. The optimal choice of m under various conditions has been
discussed in Section 3.1. Finally, considering the end-to-end latency with parallelism degree p, we
have C = C(sub-tasks) ≤ ⌈k/p⌉ × CLLM(Lsys + m, 1), which is minimized around k = p and
m = n/p under the assumptions explained in Section 3.1.

In sum, the above analysis characterizes the accuracy and efficiency of the counting algorithm, with
a particular focus on how they are impacted by the hyperparameter m indicating the granularity of
parallel decomposition. Empirical validation of our analysis can be found in Appendix C.1.

3.3 EXAMPLE: RETRIEVAL

For another application of parallel decomposition, let us consider the task of question answering that
requires retrieving some key information from a long piece of text, akin to the needle-in-a-haystack
benchmark (Kamradt, 2023). For example, suppose that a key message (the needle) of the form
“The passcode to the {targeted object, e.g. red door} is {6-digit passcode}” is randomly inserted
into a piece of long text (the haystack), and the algorithm is asked to answer “What is the passcode
to the {targeted object}?”. To make this task more challenging and fun, we further assume that the
haystack consist of alike sentences of the form “The passcode to the {colored object} is {6-digit
passcode}”, with colored objects different from the targeted object. This allows us to investigate
both sides of retrieval capabilities of LLMs and LLM-based algorithms: retrieving the targeted
information correctly, while avoiding being confused or misled by background information that
might seem relevant to the question (Shi et al., 2023). In the following, we highlight our algorithm
design and analysis of accuracy, with full details of this example deferred to Appendix C.3.
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We consider the algorithm below that follows the pattern of parallel decomposition. It first divides
the input text of length n into k chunks of lengths m1, . . . ,mk. Then for each chunk, one LLM
call is invoked to try to answer the question based on that chunk, or simply return “I don’t know”
if the LLM decides that the corresponding chunk does not contain sufficient information. The final
answer is generated by majority voting, with the “I don’t know” responses excluded.

For our analysis, let us assume for simplicity that mi = m for all i ∈ [k], and focus on understanding
how the accuracy of the overall algorithm is impacted by the hyperparameter m, i.e. the chunk size.
Following the approach in Section 2.3, this is achieve by first understanding each individual LLM
call. We start by identifying two failure modes of each LLM call for retrieval from one chunk:
(1) while the needle is contained in the chunk, the LLM might mistakenly return “I don’t know”
or an incorrect passcode; (2) while the chunk contains no needle, the LLM might hallucinate and
mistakenly return a passcode that it believes is the true answer, especially when the chunk contains
some objects that seem similar to the targeted object (e.g. “red lock” versus “red door”). It is
reasonable to expect that the first failure mode will occur more frequently for a larger chunk size m;
for the second failure mode, however, we observed empirically that some LLMs are more prone to it
even when the value of m is small, while others are much less so. Based on these observations, we
hypothetically categorize LLMs into two types: Type-1 LLMs are only prone to the first failure mode,
while Type-2 LLMs are prone to both. Now we are ready to consider the accuracy of the overall
algorithm. With a Type-1 LLM, a smaller value of m means the first failure mode is less likely to
occur in Step 2 of the algorithm, which implies higher accuracy for the final solution. Analysis with
a Type-2 LLM, on the other hand, is more complicated: a larger m means the first failure mode
is more likely to occur, while a smaller m implies a larger number of chunks k ≍ n/m, which
can potentially increase the chance of error in the final step of majority voting, due to the frequent
occurrence of the second failure mode in Step 2 of the algorithm. Consequently, the minimum error
of the overall algorithm might be obtained by some intermediate value of m that achieves a balance
between these two failure modes. If the input size n is too large, then there might not exist a good
value of m that can achieve a low error, as either failure mode must occur with high probability.

4 HIERARCHICAL DECOMPOSITION

In this section, we apply the proposed analytical framework to the design and analysis of LLM-
based algorithms following a more expressive pattern named hierarchical decomposition, where the
original task is decomposed into multiple sub-tasks, and each of them can be further decomposed
into more lower-level sub-tasks. We outline our study for this pattern and highlight the key insights
in the following; the full version of this section can be found in Appendix D, which also includes
empirical validation of our analysis.

Task. The concrete example under consideration is a question-answering task that requires
retrieval of multiple needles from a large haystack and multi-hop reasoning over them. Suppose that
the targeted question is about finding the numeric value of a particular variable, while the haystack
consists of clues about the dependency between many variables, akin to the problem formulation
considered by Ye et al. (2024). The needles embedded in the haystack are logically related, and some
of the needles are related to the targeted question only indirectly via connection to other needles. For
example, the targeted question might be “What is the numeric value of A?”, while the needles are “A
= B”, “B = C”, and “C = 100”, located separately in different chunks of the haystack. An algorithm
with the pattern of parallel decomposition, e.g. retrieving the needles from the chunks independently
and then aggregating them for answering the targeted question, is doomed to fail in this case.

Algorithm. We consider an LLM-based algorithm that involves multiple rounds of iterative
retrieval and reasoning, visualized in Figure 13 in the appendix. It starts by dividing the input
haystack of size n into k chunks, each of size no larger than m ≍ n/k, and initializing an empty
list of references for storing the relevant clues retrieved by LLM calls. Then for each round, the
algorithm invokes k sequential (Figure 13a) or parallel (Figure 13b) LLM calls for retrieval from
k chunks based on the targeted question and references, followed by one LLM call for reasoning
about the updated references and deciding whether the algorithm is ready to answer the question
or need more rounds of retrieval and reasoning. Similar approaches have been widely adopted in
prior works (Creswell et al., 2023; Xiong et al., 2024; Qwen-Team, 2024). The resulting algorithm
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exhibits a hierarchical structure: the original task is decomposed into multiple sequential rounds,
and each round is further decomposed into multiple steps of retrieval and reasoning.

Analysis and insights. We are particularly interested in two critical design choices: the option of
prompting the LLM calls responsible for reasoning and answering (“answer directly” or “think step
by step”), and the option of retrieval from multiple chunks within each round (sequentially or in
parallel). In the following, we let r denote the number of rounds (which is determined adaptively by
the algorithm itself at runtime), and ℓ denote the total length of the needles. We assume that, when
the LLM is given all needles and asked to answer the targeted question, the number of generated
tokens Ldec will be O(1) if it is prompted to answer directly, or O(ℓ) if it is prompted to think step
by step before answering. The cost of such an LLM call is thus bounded by CLLM(Lsys + ℓ, 1 or ℓ).

For the case of sequential retrieval within each round (Figure 13a), we conclude that the total cost
of the overall algorithm can be bounded as follows (see Appendix D.3 for the derivation):

C ≤ r ×
(
k × CLLM(Lsys +m+ ℓ, ℓ) + CLLM(Lsys + ℓ, 1 or ℓ)

)
. (5)

In particular, this bound quantifies how the cost of LLM calls for reasoning and answering, namely
r × CLLM(Lsys + ℓ, 1 or ℓ), only occupies a small fraction of the total cost. These results also holds
for the case of parallel retrieval (Figure 13b), but a better bound can be obtained for the end-to-end
latency with parallelism degree p, by replacing the k factor on the right-hand side of Eq. (5) with
⌈k/p⌉. Note that the concrete value of r in the case of parallel retrieval, where the list of references
is updated only once at the end of each round, is typically larger than that in the case of sequential
retrieval, where the list of references is updated immediately after each retrieval step.

We derive two major insights from the above analysis. (1) LLM nodes for reasoning and answering
only occupy a small fraction of the total cost, while playing a critical role in the output (and thus
accuracy) of the overall algorithm. Our general recommendation is thus prompting them to think step
by step before answering, which will boost the accuracy significantly with minor loss in efficiency.
(2) Each option of retrieval has its own pros and cons. The sequential option requires fewer rounds
of retrieval and reasoning (thanks to the timely updates to the references), with the downside that all
retrieval steps have to be executed sequentially. In contrast, the parallel option requires more rounds
and thus larger costs, but can leverage parallelism for achieving a smaller end-to-end latency.

5 RECURSIVE DECOMPOSITION

This section studies recursive decomposition, a pattern that is vastly different from those in previous
sections, yet still covered by our proposed framework. A recursive LLM-based algorithm starts from
the original task and recursively generates intermediate sub-tasks, each of which can be solved by
aggregating the solutions to its own children tasks. In particular, decomposing and/or solving each
sub-task can be achieved by LLM calls, while the outline of recursive task decomposition remains
symbolic. Such LLM-based algorithms have been widely applied in the literature (Kazemi et al.,
2023; Schlag et al., 2023; Prasad et al., 2024; Schroeder et al., 2024; Lee & Kim, 2023; Khot et al.,
2023). We outline our study for this pattern and highlight some key results in the following; the full
version of this section (including empirical validation) can be found in Appendix E.

Task. We consider the same task from Section 4, which is about calculating a targeted variable
based on clues about the dependency between many variables. One major difference here is that
we consider a much larger number of relevant variables. The complex reasoning required to answer
the targeted question correctly, even if all relevant clues are given a priori, can be well beyond
the capability of one single LLM call, which motivates decomposing the reasoning process into
multiple LLM calls. The other major difference is, we assume that the clues can be accessed only
via querying a database: for each query, the database takes a name as input (say “A”), and returns a
clue for the variable of the same name, e.g. “A = B + C” if A is a non-leaf variable, or “A = 10” if A
is a leaf variable. Such a setting is motivated by (and can be regarded as an abstraction of) real-world
scenarios where an autonomous agent in the wild need to actively retrieve relevant information by
itself, via querying a real database, using a search engine, retrieving from documents, etc.

Algorithm. The key behind our algorithm design is a function named ProcessNode, which
takes the name of a variable as input and returns its numeric value. This function is defined
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Figure 4: The computational graph of a recursive LLM-based algorithm is constructed dynamically,
while a dictionary of solved sub-tasks is maintained to avoid solving the same sub-task repetitively.

recursively: if the value of the input variable can be easily found (e.g. it has been found before,
or can be easily inferred from its corresponding clue returned by the database), then this value is
returned; otherwise, one LLM call is invoked for spawning children tasks (i.e. identifying variables
whose values will be useful for calculating the input variable), each of which is processed with one
function call of ProcessNode, and finally the solutions to these children tasks are aggregated
by an LLM call for solving the current task. It is worth noting that the computational graph of
this algorithm, or more general LLM-based algorithms with recursive decomposition, is constructed
dynamically in a depth-first-search style at runtime. See Figure 4 for a visualization.

Analysis and a generic error bound. We focus on analysis of accuracy here. For the current
case study, errors of the algorithm largely arise from the limited arithmetic capabilities of LLMs.
Moreover, all mathematical operations considered in this task, e.g. “A = B + C” or “A = max{B,
C}”, are assumed to be continuous with respect to each input variable. These motivate us to derive
the following error bound, which indeed holds true for generic tasks and LLM-based algorithms
satisfying the technical assumption explained in this proposition:
Proposition 1. Suppose that the assumption of additive errors and bounded sensitivity holds for
an LLM-based algorithm represented by a directed acyclic graph (DAG), i.e., for each node v with
inputs x1, . . . , xk and a single output y, it holds that E(y) ≤ Ev +S×

∑
i∈[k] E(xi) for some node-

specific additive error Ev and finite sensitivity parameter S ≥ 0. Then the error of the output y(v)
of any node v, including the one that generates the output of the overall algorithm, is bounded by

E(y(v)) ≤
∑

w∈DAG

∑
path∈P(w→v)

S|path| × Ew, (6)

where |path| denotes the length of a path on the DAG, and P(w → v) represents the set of paths
from node w to node v if w ̸= v, or a set containing one hypothetical path of length 0 if w = v.

6 CONCLUSION AND DISCUSSION

This work introduces an analytical framework for studying the design and analysis of LLM-based
algorithms. After identifying the computational-graph representation, task decomposition as the
design principle, and other abstractions, we find it feasible to provide formal analysis for the
accuracy and efficiency of generic LLM-based algorithms. Through extensive case studies, we
demonstrate the proposed framework in action and derive novel insights for various scenarios.

Due to limited space, we defer extended discussion on related works to Appendix A, and discussion
on potential directions for future work to Appendix B. Appendix C includes additional examples
for parallel decomposition studied in Section 3, while Appendices D and E are the full versions of
Sections 4 and 5, which investigate hierarchical and recursive decomposition respectively.

Moving forward, we find it promising future research to further expand or apply the proposed
framework and thereby advance the field of LLM-based algorithms, from a theoretical or practical
perspective. We would like to invite the community to contribute to this exciting and rapidly
developing field, using the current work as a starting point.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Megha Agarwal, Asfandyar Qureshi, Nikhil Sardana, Linden Li, Julian Quevedo, and Daya Khudia.
LLM Inference Performance Engineering: Best Practices. https://www.databricks.
com/blog/llm-inference-performance-engineering-best-practices,
2023.

Xingjian Bai and Christian Coester. Sorting with Predictions. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.
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A RELATED WORKS

LLM-based algorithms. The concept of LLM-based algorithms, as was explained in Section 1,
is fairly broad and general, ranging from a combination of one or multiple LLM calls with some
prompt engineering (Yao et al., 2023a; Besta et al., 2023; 2024; Lei et al., 2023; Saha et al., 2023;
Zhou et al., 2023; Wang et al., 2023; Prasad et al., 2024; Chang et al., 2024; Zhang et al., 2023;
2024b), to LLM-powered agent systems (Mialon et al., 2023; Wu et al., 2023; Hong et al., 2024;
Gao et al., 2024a; Shen et al., 2023; Zhuge et al., 2024; Pezeshkpour et al., 2024; Xi et al., 2023; Qian
et al., 2024; Kapoor et al., 2024) and compound AI systems (Zaharia et al., 2024; Chen et al., 2024)
that augment LLMs with additional abilities like tool use and long-term memory, and to the emerging
paradigm of LLM programming (Schlag et al., 2023; Khot et al., 2023; Khattab et al., 2024; Zheng
et al., 2024; Kambhampati et al., 2024). Some elements of our analytical framework proposed
in Section 2, such as the principle of task decomposition, the computational-graph representation,
evaluation of and comparison between LLM-based algorithms with accuracy and efficiency taken
into account simultaneously, etc., have already appeared in one way or another in these prior works.
It is primarily our unified, systematic and formal investigation into the design and analysis of generic
LLM-based algorithms that distinguishes the current work from this vast literature.

Scaling properties of LLM test-time computation. Recent works have started to investigate,
analytically or empirically, the scaling properties of LLM test-time computation.

One line of research is concerned about the scaling properties of repeated sampling, e.g. randomly
generating multiple sequences for the same prompt and then aggregating the results (Chen et al.,
2024; Brown et al., 2024; Snell et al., 2024; Wu et al., 2024), which might be regarded as a
stochastic version of parallel decomposition investigated in Section 3. Our work is orthogonal
and complementary to this line of research, as our analysis is deterministic and targeted at generic
patterns of LLM-based algorithms. Indeed, one potential direction for expanding the analytical
framework proposed in this work would be to augment it with stochastic decoding and repeated
sampling, along with relevant theoretical results from prior works.

Another line of works is concerned about improving the output quality of an LLM call, albeit at
a higher cost, by generating more tokens autoregressively, e.g. via chains of thoughts (Wei et al.,
2022b) or step-by-step reasoning (Kojima et al., 2022). This idea has been investigated theoretically
(Feng et al., 2023; Merrill & Sabharwal, 2024; Li et al., 2024b), and further popularized recently by
the OpenAI o1 model (OpenAI, 2024a). As this approach of scaling up the test-time computation of
individual LLM calls is becoming more widely adopted, it is important to understand, analytically
and quantitatively, how it will impact the overall accuracy and efficiency when such LLM calls are
embedded within an LLM-based algorithm. Our work can be useful in achieving this, as illustrated
in the case studies in Appendices D and E, where the impacts of prompting LLM calls to “think step
by step” versus “answer directly” can be characterized analytically with our proposed framework.

Learning-augmented algorithms. Our work draws inspiration from the research area of
algorithms with predictions / learning-augmented algorithms (Mitzenmacher & Vassilvitskii, 2022;
Lindermayr & Megow, 2022). One standard paradigm of this area is to consider a specific task
(say sorting (Bai & Coester, 2023) or clustering (Ergun et al., 2022)), assume access to a black-
box machine learning model that satisfies certain properties (e.g. what additional computation or
information it can offer), propose a novel algorithm that leverages this ML model, provide theoretical
guarantees for its accuracy and efficiency, and show the improvements over traditional, purely
symbolic algorithms. Our work is similar in spirit to this line of research, but also substantially
different, in that our analytical framework is targeted at general tasks and LLM-based algorithms,
with assumptions on the capabilities, limitations and inference service of LLMs (regarded as
general-purpose problem solvers) that are quite different from typical assumptions for task-specific
ML models in the literature of learning-augmented algorithms.
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B FURTHER DISCUSSION

B.1 DIRECTIONS FOR FUTURE WORK

Moving forward, we find it promising future research to further expand or apply the proposed
framework and thereby advance the field of LLM-based algorithms, from a theoretical or practical
perspective. For example:

• We have been assuming that LLM nodes are state-less, and only considering the simplest
and most straightforward usage of LLMs, i.e. sending a prompt and receiving a response for
each LLM call. One potential extension is to consider LLM nodes with states, like short-
term memory in agent systems, or other advanced ways of using LLMs, and understand
how accuracy and efficiency of LLM-based algorithms are impacted in such cases.

• In our empirical study, we have mainly focused on the hyperparameter m that indicates the
granularity of parallel task decomposition, or the option of prompting certain LLM calls
to either answer directly or think step by step. Future work might place more emphasis
on other configurations of LLM-based algorithms, such as the choices of LLM models
(e.g. choosing a strong-but-expensive model for specific LLM calls and a weak-but-cheap
one for the others within the same algorithm), LLM decoding methods (e.g. greedy versus
stochastic (Wang et al., 2023; Chen et al., 2024; Brown et al., 2024)), etc., and better
understand how they impact the accuracy and efficiency of LLM-based algorithms.

• Through our abstractions of multiple error and cost metrics for the same task, we have
touched upon the topics of multi-objective optimization and hyperparameter optimization.
Future work might try to formally investigate these aspects.

• From a more practical perspective, future work might adopt the proposed framework, or
some components and methodology within it, to assist the design, analysis, improvement
and application of new LLM-based algorithms, or for fair comparison between different
algorithms, with both accuracy and efficiency taken into account.

B.2 PRACTICAL CONSIDERATIONS

We make two comments about some practical considerations for the proposed framework.

First, regarding the capabilities and limitations of LLMs in a specific task, the black-box nature of
LLMs can make it challenging to analytically and accurately quantify these factors, in which case
one might resort to measuring and profiling in practice. On the positive side, it is oftentimes easier
to make certain qualitative assumptions. For example, in many tasks of interest, a larger problem
instance is harder than a smaller one, and thus incurs larger error metrics of an LLM call. For
practical purposes like optimizing certain hyperparameters of an LLM-based algorithm, such weak
assumptions might be sufficient already.

Second, understanding LLM inference service (Yuan et al., 2024; Pope et al., 2023; Zhou et al.,
2024), especially from a system perspective, is crucial for in-depth analysis of cost metrics. LLM
inference service can be diverse in practice: for example, LLMs might run on CPUs in a personal
laptop or on a distributed GPU cluster, inference might be compute-bound or memory-bound, the
complexity of long-sequence processing and generation might be linear or quadratic, parallelism
at various levels (e.g. multiple LLMs deployed on multiple machines, or batch inference with one
LLM) might be supported, and so on. All these are covered by our proposed framework in a unified
manner.
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Table 1: A list of notations for analysis of parallel decomposition.

Notation Definition

n Size of the input problem instance
m Size of each parallel sub-task, m ≤ m
k Number of parallel sub-tasks, k ≲ n/m
p Maximum degree of parallelism
Lsys Maximum length of the system prompt

C PARALLEL DECOMPOSITION (EXTENDED)

This section is dedicated to the analytical and empirical study of a few specific tasks and their
corresponding LLM-based algorithms that follow the pattern of parallel decomposition. For
convenient reference, Table 1 includes a list of notations introduced in Section 3.1.

Concrete examples. Tasks that we consider in this section include counting, sorting, retrieval,
retrieval-augmented generation (RAG) and long-text summarization, whose details will be explained
in their corresponding subsections. For each task, we specify the concrete LLM-based algorithm,
analyze its performance in terms of error and cost metrics, and validate our analysis with numerical
experiments. Error metrics are task-specific, while cost metrics of interest are common among
tasks, including the total prefilling length and decoding length, the total number of LLM calls, and
the end-to-end latency with sequential or parallel LLM calls. These concrete examples not only
confirm the practical advantages of LLM-based algorithms, but also verify that our analysis can
help explain or predict the empirical performance of LLM-based algorithms, reveal the reasons
behind some interesting empirical phenomena, and instruct the design of algorithms or choices of
hyperparameters, e.g. the sub-task size m.
Remark 1. While the tasks under consideration are motivated by practical scenarios, our study will
mostly focus on synthetic task design, like many prior works do. This brings numerous benefits, such
as avoiding data contamination, allowing full transparency and control over task configurations, and
making the current work as self-contained as possible.

Experiment settings. We use the following LLMs in our experiments, which cover a wide range
of LLM characteristics and inference service:

• A Llama-3-8B model (Meta, 2024), supported by ollama (ollama, 2023) and running on
a Macbook Pro with a M2 Pro chip and 16GB memory;

• A Llama-3-70B model (Meta, 2024), supported by vLLM (Kwon et al., 2023) and
running on a server with 4 Nvidia A100-80G GPUs;

• A GPT-4-Turbo model (OpenAI, 2024), accessed via API queries.

All of these LLMs are chat models. Each LLM call involved in our algorithms is prompted in a chat
format, based on the sub-task that it is responsible for. Interested readers are referred to the source
code for the prompts used in our experiments. We use greedy decoding, which is deterministic, in
all experiments.

Below are a few more details about our experiments. (1) For ideal parallelism of LLM calls, we
consider parallelism degree p = 4 and p = ∞. Latencies in the presence of parallelism are
simulated according to Eq. (3). (2) In all experiments, the number of tokens for a piece of text
is estimated using the same tokenizer, namely the cl100k_base encoding of the tiktoken
package3. This simplification has no effect on the major conclusions from our experiment results.
(3) Our experiment results include curves of some error metric (in blue) or cost metric (in red) versus
the problem size n or sub-task size m. For each curve, we plot the mean and standard deviation of
measured metrics from multiple independent trials, i.e. multiple randomly generated task instances.

3https://github.com/openai/openai-cookbook/blob/main/examples/How_to_
count_tokens_with_tiktoken.ipynb
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C.1 EXPERIMENTS FOR COUNTING

We validate our analysis in Section 3.2 for the counting example with numerical experiments. For
each problem instance, the input string is generated by randomly sampling n characters from the
union of digits, lower-case letters and upper-case letters.

Results with Llama-3-8B. Our empirical results with a Llama-3-8B model are illustrated in
Figure 5 and explained in the following.

In Figure 5a, we vary the problem size n and set m = n in our algorithm, which means the
algorithm becomes equivalent to a single LLM call. Unsurprising, error metrics in this counting
task monotonely increase with n. The number of prefilling tokens increases linearly with n, while
the number of decoding tokens is insensitive to n, since we prompt the LLM to output its answer
directly without intermediate reasoning steps. The latency of one LLM call also increases linearly
with n, which is likely due to the relatively small sequence lengths and the compute-bound nature
of LLM inference by a Llama-3-8B model running on a CPU.

In Figure 5b, we fix n = 200 and vary the hyperparameter m, namely the size of each sub-task in
our proposed LLM-based algorithm. It is confirmed that decomposing the original task into smaller
parallel sub-tasks with a smaller value of m improves the accuracy of the overall algorithm, while
incuring higher cost metrics, except for the latency with infinite parallelism (which is monotonely
increasing in m) and the latency with parallelism degree p = 4 (which achieves the minimum at
m = n/p = 50, as was predicted by our previous analysis).

Results with GPT-4-Turbo. Figure 6 demonstrates the empirical results for the same
experiments but with a GPT-4-Turbo model. We observe from Figure 6a that the latency of
one LLM call is insensitive to the input problem size n, which is likely because LLM inference of
GPT-4-Turbo is memory-bound for the range of sequence lengths considered in our experiments.
One potential implication is that, for the LLM-based algorithm with parallel decomposition, the
latency with infinite parallelism p = ∞ might slightly increase for smaller m and hence larger k,
due to the random variation of latencies in reality; this is indeed what we observe from Figure 6b.
Other than that, the results in Figure 6 are similar to those in Figure 5.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

50 100 150 200
Task size n

0

20

40

60

80

Co
un

tin
g 

er
ro

r

50 100 150 200
Task size n

0.0

0.1

0.2

0.3

0.4

No
rm

al
ize

d 
co

un
tin

g 
er

ro
r

50 100 150 200
Task size n

50

75

100

125

150

175

200

Pr
ef

illi
ng

 to
ke

ns

100 200
Task size n

9.6

9.8

10.0

10.2

10.4

De
co

di
ng

 to
ke

ns

50 100 150 200
Task size n

0.6

0.7

0.8

0.9

La
te

nc
y 

(s
ec

)

(a) Vary n and set m = n. (10 trials)

50 100 150 200
Sub-task size m

0

10

20

30

40

50

60

Co
un

tin
g 

er
ro

r

50 100 150 200
Sub-task size m

5

10

15

20

LL
M

 c
al

ls

100 200
Sub-task size m

200

400

600

800

1000

Pr
ef

illi
ng

 to
ke

ns

50 100 150 200
Sub-task size m

50

100

150

200

De
co

di
ng

 to
ke

ns

100 200
Sub-task size m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

No
rm

al
ize

d 
co

un
tin

g 
er

ro
r

50 100 150 200
Sub-task size m

2

4

6

8

10

La
te

nc
y 

(s
ec

)

50 100 150 200
Sub-task size m

1.0

1.5

2.0

2.5

La
te

nc
y,

 p
=4

 (s
ec

)

50 100 150 200
Sub-task size m

0.6

0.7

0.8

0.9

1.0

La
te

nc
y,

 p
=

 (s
ec

)

(b) Fix n = 200 and vary m. (10 trials)

Figure 5: Empirical results for counting with Llama-3-8B.
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Figure 6: Empirical results for counting with GPT-4-Turbo.
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C.2 EXAMPLE: SORTING

For a more challenging example, let us consider the classical sorting problem: given a list of n
numbers x ∈ Rn, the task is to sort it in ascending order.

C.2.1 ALGORITHM

Below is an LLM-based algorithm for sorting a list, which generalizes the naive approach of sorting
the list with one single LLM call:

1. Divide the input list x into k disjoint sub-lists x1, . . . ,xk of lengths m1, . . . ,mk;
2. For each i ∈ [k], use one LLM call to sort the i-th sub-list, which returns a solution yi;
3. Merge the sub-lists y1, . . . ,yk into a single list y using a symbolic algorithm.

We note two details about this algorithm. (1) To ensure efficiency and stability, for each LLM call,
we prompt the LLM to generate the sorted list directly, without intermediate reasoning steps. It has
been verified empirically that the LLMs considered in our experiments can follow such instructions,
and generate text of length Ldec(m) = O(m) that can be easily parsed into a list. (2) Step 3 of the
algorithm relies on a classical symbolic algorithm for merging two sorted lists, which maintains two
moving pointers, one for each list, and chooses each entry of the merged list by comparing the values
corresponding to the two pointers. Merging multiple sorted lists can be done by merging one pair
of lists at a time, in an incremental or hierarchical manner. Python code for these procedures can be
found in Listing 1 at the end of this subsection. Although they are designed under the assumption
that the input lists are sorted, they can also be applied to input lists that are not fully sorted, which
can possibly happen within the LLM-based algorithm since the input lists in Step 3 are generated by
LLM calls in Step 2.

C.2.2 ANALYSIS

Let us assume for notational convenience that mi = m for all i ∈ [k], and k = n/m is an integer.

Error metrics. Compared to counting, there are more diverse phenomena in the sorting task in
terms of error metrics. In particular, multiple possible failure modes exist in sorting with an LLM-
based algorithm:

1. The output list might not be monotone;
2. The length of the output list might be larger or smaller than that of the input list;
3. The output list might contain numbers that do not match exactly those of the input list.

Based on these failure modes, we define the following error metrics for sorting a list, where y
denotes the solution returned by the algorithm and y⋆ denotes the ground-truth solution:

• Exact-match error: E = 0 if y matches y⋆ exactly, and E = 1 otherwise;
• Non-monotonicity error: E =

∑
i∈[n−1] max{yi − yi+1, 0}, which is zero if and only if y

is perfectly sorted;
• Length-mismatch error: E = 1

n |len(y)− len(y⋆)| = 1
n |len(y)− n|;

• Fuzzy ℓ∞ and fuzzy normalized ℓ1 errors: we first convert, via simple extending or
truncating, the output solution y to a version ŷ that matches the length n of the input
list, and then calculate the fuzzy ℓ∞ error as E = ∥ŷ − y⋆∥∞ = maxi∈[n] |ŷi − y⋆i |, or the
fuzzy normalized ℓ1 error as E = 1

n∥ŷ − y⋆∥1 = 1
n

∑
i∈[n] |ŷi − y⋆i |.

Note that the same error metrics can be similarly defined for each parallel sub-task in Step 2 of the
LLM-based algorithm, and it is reasonable to expect that they become smaller as the sub-task size
m decreases. On the other hand, analyzing the error metrics of the overall algorithm after the final
merging step can be more complicated, and might be an interesting theoretical problem on its own.
As an example, focusing on the third failure mode and the ℓ∞ error metric, we have the following
guarantee, whose proof is deferred after the experiments in this subsection.
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Proposition 2. Assume that for each i ∈ [k], the solution yi returned by one LLM call for the i-th
sub-task is monotone, matches the length of the corresponding input xi, and has an ℓ∞ error Ei.
Then the ℓ∞ error of the final solution y is upper bounded by E ≤ max{E1, . . . , Ek}.

Cost metrics. Our analysis of cost metrics for the LLM-based sorting algorithm follows
Section 3.1, and is similar to that for counting. One major difference is that Ldec = O(m) rather
than O(1) for each sub-task.

• Considering the total prefilling length and decoding length as cost metrics, one has

C(prefilling) ≲ k × (Lsys +m) =
n

m
× (Lsys +m) = n× (

Lsys

m
+ 1),

C(decoding) ≲ k ×m = n.

The former is decreasing in m, while the latter is insensitive to m.
• More generally, the sum of costs of all LLM calls is

C = C(sub-tasks) ≤ k ×
(
Cpre(Lsys +m) + Cdec(Lsys +m,m)

)
= n×

Cpre(Lsys +m) + Cdec(Lsys +m,m)

m
.

• For the end-to-end latency with parallelism degree p, we have

C = C(sub-tasks) ≤
⌈k
p

⌉
×

(
Cpre(Lsys +m) + Cdec(Lsys +m,m)

)
=

⌈ n

p×m

⌉
×

(
Cpre(Lsys +m) + Cdec(Lsys +m,m)

)
.

C.2.3 EXPERIMENTS

We validate our analysis with numerical experiments. The input list of each problem instance is
generated by randomly sampling entries of the list from the uniform distribution over the interval
[0, 1] and then rounding each of them to two decimals.

Results with Llama-3-70B. Our empirical results with a Llama-3-70B model are illustrated
in Figure 7 and explained in the following.

In Figure 7a, we vary the problem size n and set m = n in the LLM-based algorithm, in which case
the algorithm becomes equivalent to a single LLM call. We make the following observations:

• Unsurprisingly, all error metrics in this task monotonely increase with n.
• While the LLM might output a list that deviates from the ground-truth solution, it is at least

good at ensuring that the output list itself is sorted or has a very small non-monotonicity
error.

• The prefilling length grows linearly with n, while the growth of the decoding length and
end-to-end latency slows down slightly for large values of n, which is mainly because the
LLM is prone to returning a list that is shorter than the input list when n is large, as reflected
in the length-mismatch error curve.

In Figure 7b, we fix n = 200 and vary the sub-task size m. It is confirmed that decomposing the
original task into smaller parallel sub-tasks with a smaller value of m implies lower error metrics
achieved by the overall algorithm, while increasing certain cost metrics. Two specific observations:

• The total number of decoding tokens decreases with m at a rate that matches the length-
mismatch error curve. This does not contradict our previous analysis, which predicts an
upper bound that is insensitive to the value of m.

• Regarding the end-to-end latency with parallelism degree p = 4, the zigzag part of
the curve might seems curious. In fact, a fine-grained analysis can well explain this
phenomenon. If we approximate the latency for one LLM call solving a sub-task of
size m by O(m), then the end-to-end latency of the overall algorithm is approximately
O(m × ⌈k/p⌉). The numbers calculated in Table 2 for the concrete setting of this
experiment match the empirical results and explain the zigzag part.
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Table 2: Fine-grained analysis for the latency with parallelism degree p = 4 in the setting of
Figure 7b, where n = 200.

Sub-task size m 10 20 40 50 67 100 200

Number of sub-tasks k = ⌈n/m⌉ 20 10 5 4 3 2 1
Sequential depth d = ⌈k/p⌉ 5 3 2 1 1 1 1
Predicted latency ≍ d×m 50 60 80 50 67 100 200
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(b) Fix n = 200 and vary m. (10 trials)

Figure 7: Empirical results for sorting with Llama-3-70B.
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Figure 8: Empirical results for sorting with GPT-4-Turbo.
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Results with GPT-4-Turbo. Figure 8 demonstrates the empirical results for the same
experiments but with a GPT-4-Turbomodel. Similar observations can be made from these results,
except that latencies exhibit higher variance due to the inference service of GPT-4-Turbo.

C.2.4 PROOF OF PROPOSITION 2

Recall that yi denotes the solution returned by an LLM call, which is assumed to be monotone,
for sorting the i-th input sub-list. Let y⋆

i denote the ground-truth solution for sorting the i-th input
sub-list. Assuming that ∥yi − y⋆

i ∥∞ ≤ ϵ for all i ∈ [k], our goal is to prove that ∥y − y⋆∥∞ ≤ ϵ.

It is easy to check that merging multiple sorted lists is equivalent to sorting the concatenation of the
lists. Therefore, we have

y = sort
(
[y1, . . . ,yk]

)
= sort

(
permute([y1, . . . ,yk])

)
,

y⋆ = sort
(
[y⋆

1 , . . . ,y
⋆
k]
)
= sort

(
permute([y⋆

1 , . . . ,y
⋆
k])

)
,

where permute can be any permutation of n elements in a list. In particular, we let permute be the
permutation that sorts [y⋆

1 , . . . ,y
⋆
k], which implies

y⋆ = sort(permute([y⋆
1 , . . . ,y

⋆
k])) = permute([y⋆

1 , . . . ,y
⋆
k]).

Also notice that∥∥permute([y1, . . . ,yk])− permute([y⋆
1 , . . . ,y

⋆
k])

∥∥
∞ =

∥∥[y1, . . . ,yk]− [y⋆
1 , . . . ,y

⋆
k]
∥∥
∞

= max
i∈[k]

∥yi − y⋆
i ∥∞ ≤ ϵ.

Based on the above analysis, our initial goal boils down to the following problem: given two lists
z, z⋆ ∈ Rn such that ∥z− z⋆∥∞ ≤ ϵ and z⋆ is sorted, we need to show that ∥sort(z)− z⋆∥∞ ≤ ϵ.
Here, z corresponds to permute([y1, . . . ,yk]), and z⋆ corresponds to y⋆.

To prove this, let us consider the classical in-place insertion-sort algorithm illustrated in Algorithm 1.
We choose to prove by induction that, throughout the execution of this algorithm where z is updated
in place, it always holds that ∥z− z⋆∥∞ ≤ ϵ, which immediately implies ∥sort(z)− z⋆∥∞ ≤ ϵ for
the initial z. To prove this, notice that the only place in Algorithm 1 where z is changed is the step
of swapping zj and zj−1 when the condition zj < zj−1 is satisfied. Under this condition, we have
the following for z before the swapping happens:

zj−1 − z⋆j > zj − z⋆j ≥ −ϵ,

zj−1 − z⋆j ≤ zj−1 − z⋆j−1 ≤ ϵ,

zj − z⋆j−1 < zj−1 − z⋆j−1 ≤ ϵ,

zj − z⋆j−1 ≥ zj − z⋆j ≥ −ϵ,

which implies |zj−1−z⋆j | ≤ ϵ and |zj −z⋆j−1| ≤ ϵ. This means that the ℓ∞ error bound is preserved
after this swapping step, which concludes our proof.

Algorithm 1: The classical insertion-sort algorithm
1 Input: a list z ∈ Rn to be sorted.
2 for i = 2, 3, . . . , n do
3 for j = i, i− 1, . . . , 2 do
4 if zj ≥ zj−1 then
5 Break.
6 Swap zj and zj−1.

7 Output: the sorted list z.
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1 import numpy as np
2

3

4 def merge_two_sorted_lists(list1, list2):
5 """Merge two non-empty lists or np.arrays that are
6 assumed to be (at least approximately) sorted"""
7

8 len1, len2 = len(list1), len(list2)
9 idx1, idx2 = 0, 0

10 idx = 0
11 solution = np.zeros(len1 + len2)
12 while idx < len1 + len2:
13 if idx1 == len1:
14 val = list2[idx2]
15 idx2 += 1
16 elif idx2 == len2:
17 val = list1[idx1]
18 idx1 += 1
19 else:
20 val1, val2 = list1[idx1], list2[idx2]
21 if val1 <= val2:
22 val = val1
23 idx1 += 1
24 else:
25 val = val2
26 idx2 += 1
27 solution[idx] = val
28 idx += 1
29

30 return solution
31

32

33 def merge_sorted_lists_incremental(lists):
34 """Merge lists = [list1, list2, ...] in an incremental manner"""
35

36 for _ in range(len(lists) - 1):
37 list1 = lists.pop()
38 list2 = lists.pop()
39 solution = merge_two_sorted_lists(list1, list2)
40 lists.append(solution)
41

42 return lists[0]
43

44

45 def merge_sorted_lists_hierarchical(lists):
46 """Merge lists = [list1, list2, ...] in a hierarchical manner"""
47

48 while len(lists) > 1:
49 niters = len(lists) // 2
50 for _ in range(niters):
51 list1 = lists.pop(0)
52 list2 = lists.pop(0)
53 solution = merge_two_sorted_lists(list1, list2)
54 lists.append(solution)
55

56 return lists[0]

Listing 1: Python code for merging sorted lists. We choose the hierarchical option in our
experiments.
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C.3 EXAMPLE: RETRIEVAL

We study a more realistic application of LLM-based algorithms, which is answering a given question
that requires retrieving some key information from a long piece of text. Our design of this task
draws inspiration from the needle-in-a-haystack benchmark (Kamradt, 2023) and other similar
benchmarks that have been widely adopted for evaluating the long-context capability of LLMs as
well as techniques of retrieval-augmented generation (Weston et al., 2015; Roucher, 2023; Kuratov
et al., 2024; Mohtashami & Jaggi, 2023; Zhang et al., 2024a).

Consider the following setting as an example. A key message (the needle) of the form “The passcode
to the {targeted object, e.g. red door} is {6-digit passcode}” is randomly inserted into a piece of
long text (the haystack). The algorithm is asked to answer the question “What is the passcode to
the {targeted object}?”. To make the problem more challenging and fun, we let the haystack consist
of alike sentences of the form “The passcode to the {colored object, e.g. red lock or green door}
is {6-digit passcode}”, with colored objects different from the targeted object. This allows us to
investigate both sides of retrieval capabilities of LLMs and LLM-based algorithms: retrieving the
targeted information correctly, while avoiding being confused or misled by background information
that might seem relevant to the question (Shi et al., 2023).

Note that while we use this concrete setting for our empirical study, the proposed algorithm and
analysis in the following are actually applicable to generic settings of this retrieval task.

C.3.1 ALGORITHM

We consider the following LLM-based algorithm that follows the pattern of parallel decomposition:

1. Divide the input text of length n into k overlapping chunks of lengths m1, . . . ,mk;

2. For each chunk, use one LLM call to try to answer the question based on that chunk;

3. Generate the final answer by majority voting.

We note a few details about this algorithm. (1) All lengths involved here are measured by the number
of characters. (2) In the first step of chunking, we let each pair of adjacent chunks share an overlap
that is larger than the length of the needle, to ensure that the needle will appears as a whole in at
least one chunk. (3) For each LLM call in the second step, the LLM is prompted to answer “I don’t
know” if it believes that there is not sufficient information in the corresponding chunk, e.g. when
the chunk simply does not contain the needle. Such answers will be excluded from the final step of
the algorithm. (4) In the final step of majority voting, it is possible that there are multiple (say h)
candidate solutions with the same frequency, in which case we let the algorithm return the list of
such candidates. If this list contains the ground-truth solution, we calculate the exact-match error as
1− 1/h in our experiments.

C.3.2 ANALYSIS

Let us assume for concreteness that each pair of adjacent chunks share an overlap of length m/2,
and mi = m for all i ∈ [k − 1], while m/2 ≤ mk ≤ m. In this case, we have k = ⌈2n/m− 1⌉.

Error metrics. Let us focus on how error metrics of the LLM-based algorithm are impacted by
the hyperparameter m. We start by identifying two failure modes of each LLM call for retrieving
the targeted information from a chunk of size m in Step 2 of the algorithm:

1. The first failure mode is that, while the needle is contained in the chunk, the LLM might
mistakenly return “I don’t know” or an incorrect passcode. It is reasonable to expect that
this failure mode will occur more frequently for larger values of m. Our early experiments
with various LLMs confirmed that this failure mode starts to occur when m exceeds a
certain threshold specific to each LLM.

2. The second failure mode is that, while the needle is actually absent from the chunk, the
LLM might mistakenly return a passcode that it believes is the true answer to the question.
We observed empirically that this is more likely to happen when the chunk contains some
objects that seem similar to the targeted object (e.g. “red lock” or “green door” versus “red
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door”), and that some LLMs are more prone to this failure mode even when the value of m
is small, while others are less so.

Based on the above observations, we can hypothetically categorize LLMs into two types: Type-1
LLMs are only prone to the first failure mode, while Type-2 LLMs are prone to both. It turns out that
analysis of error metrics for the overall LLM-based algorithm is dependent on the type of the LLM
being used.

• Analysis is simpler if a Type-1 LLM is used: a smaller value of m means the first failure
mode is less likely to occur in Step 2 of the algorithm, which implies higher accuracy for
the final solution of the overall algorithm.

• Analysis is more complicated if a Type-2 LLM is used, since both failure modes can
possibly occur in Step 2 of the algorithm. A larger value of m means the first failure
mode is more likely to occur, while a smaller value of m implies a larger number of chunks
k = ⌈2n/m − 1⌉, which can potentially increase the chance of error in the final step of
majority voting, due to the frequent occurrence of the second failure mode in Step 2 of the
algorithm. Consequently, the minimum error of the overall algorithm might be achieved by
some intermediate value of m that achieves a balance between the two failure modes. If n
is too large, then there might not exist a good value of m that can achieve a low error, as
either failure mode must occur with high probability.4

Cost metrics. Our analysis of cost metrics for this task is largely the same as that for the counting
task, despite how different these two tasks might seem. Under some mild conditions explained in
Section 3.1, most cost metrics of interest are monotonely decreasing in m, except for the end-to-end
latency with parallel LLM calls, which is increasing in m for parallelism degree p = ∞ and possibly
non-monotone for finite p. One thing to note is that, due to the overlaps between consecutive chunks,
the number of parallel sub-tasks in Step 2 of the algorithm is k = ⌈2n/m − 1⌉, rather than ⌈n/m⌉
as in the counting task. This implies that the value of m minimizing the latency can be predicted by
letting 2n/m− 1 ≈ p, namely m ≈ 2n/(p+ 1).

C.3.3 EXPERIMENTS

We validate our analysis with numerical experiments. For each task instance, the passcodes of
all objects, the targeted object, the position of the haystack where the needle is inserted, etc., are
all randomly chosen. The error metric of interest, namely the exact-match error, takes value 0 if
the final solution of the algorithm is exactly the same as the ground-truth passcode to the targeted
object, 1− 1/h if the algorithm returns a list of h candidate solutions that includes the ground-truth
passcode, and 1 otherwise.

Results with Llama-3-8B. Figure 9 includes the results of our experiments with
Llama-3-8B.5

4An informal probabilistic analysis is as follows. Given the sub-task size m, denote the probability of the
first and second failure modes as p1(m) and p2(m) respectively. Then, the success rate of retrieval for the
chunk containing the needle is 1− p1(m), while the expected number of “false positives” from the remaining
chunks is approximately k×p2(m) ≈ 2n×p2(m)/m. One might opt for a relatively small value of m, which
hopefully increases 1 − p1(m) and hence mitigates the first failure mode. However, even if p2(m)/m is very
small, say 10−3, the number of false positives can still be large if the size n of the original problem is large,
which will cause errors in the solution returned by majority voting.

5After executing many LLM calls in a row during our experiments with Llama-3-8B supported by ollama
(ollama, 2023), we started to observe unusually large latencies (at least two orders of magnitude larger than their
normal values) for some LLM calls, even though the generated texts are normal. We believe that this is most
likely due to memory-related issues caused by running ollama on a laptop with limited 16GB memory, which
can be easily avoided if a laptop with more memory is used. To mitigate this issue in our experiments, we take a
different approach, i.e. adding a 3-second pause between each pair of consecutive LLM calls in the LLM-based
algorithm when Llama-3-8B and ollama are used. While this proves to be quite effective, anomalies might
still occur after running the experiments for a long period of time, in which case we simply re-run the part of
experiments containing such anomalies, or remove these data points manually before plotting if there are very
few of them.
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In Figure 9a, we vary the length n of the input text containing one needle in a haystack, and set
m = n for the LLM-based algorithm, which becomes equivalent to a single LLM call. Notice that
the exact-match error, which corresponds to the first failure mode explained earlier, approaches zero
as the problem size n decreases. In addition, the decoding length is O(1), and the wall-clock latency
is O(Lsys +n); one detailed observation is that as n increases, it becomes more likely that the LLM
call returns “I don’t know”, which slightly decreases the number of decoding tokens and thus the
latency.

Figure 9b includes the results for the same experiment setting, except that no needle is inserted into
the haystack. One crucial observation is that the exact-match error in this case, which corresponds to
the second failure mode of retrieval, remains non-zero even for very small values of n. This suggests
that Llama-3-8B should be regarded as a Type-2 LLM prone to both failure modes.

In Figures 9c and 9d, we vary the sub-task size m while n is fixed at 10000 and 20000 respectively.
As was predicted by our analysis, the error of the overall algorithm is not monotone in the value
of m, due to the presence of two failure modes. Another difference from the previous counting
or sorting task is that the latency with parallelism degree p = 4 achieves the minimum around
m = 2n/(p+1) = 0.4n rather than m = n/p = 0.25n, which again matches our previous analysis.

Results with Llama-3-70B. Figure 10 includes the results for the same experiments but with
Llama-3-70B used within the LLM-based algorithm.

In particular, Figure 10a shows that Llama-3-70B achieves lower errors in the first failure mode
of retrieval compared to Llama-3-8B, while Figure 10b suggests that Llama-3-70B is much
less prone to the second failure mode and hence might be regarded as a Type-1 LLM. Consequently,
in Figures 10c and 10d, the exact-match error exhibits a more monotone relation with the sub-task
size m.

Regarding the cost metrics, results with Llama-3-70B are similar to those with Llama-3-8B.
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(b) Vary n and set m = n for the no-needle case. (20 trials)
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Figure 9: Empirical results for retrieval with Llama-3-8B.
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(d) Fix n = 20000 and vary m. (10 trials)

Figure 10: Empirical results for retrieval with Llama-3-70B.
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C.4 EXAMPLE: RETRIEVAL-AUGMENTED GENERATION

Our next example is a multiple-needle generalization of the previous retrieval task, which can be
regarded as a synthetic and simplified version of retrieval-augmented generation (RAG) (Lewis
et al., 2020; Gao et al., 2024b). In particular, we consider fine-grained sentence-level retrieval by
LLMs, rather than document-level or chunk-level retrieval by certain similarity measure of dense
embedding vectors.

More concretely, suppose that the input text is composed of sentences of the form “The {i}-th digit
of the passcode to the {colored object}” is {digit}”, where i ∈ [6]. The algorithm is asked to answer
the question “What is the 6-digit passcode to the {targeted object}?”. Compared with the previous
single-needle retrieval task, here the algorithm need to retrieve multiple needles, each for one digit
of the targeted object, in order to answer the question correctly; moreover, the final aggregation step
requires certain capability of reasoning or summarization over the retrieved needles.

Note again that while we focus on this specific setting in our experiments, the algorithm and analysis
in the following are actually applicable to generic settings of this RAG task.

C.4.1 ALGORITHM

We consider the following LLM-based algorithm for solving this task:

1. Divide the input text of length n into k overlapping chunks of lengths m1, . . . ,mk;

2. For each chunk, use one LLM call to retrieve sentences that can be useful for answering
the question;

3. Put the retrieved sentences together, based on which one LLM call is invoked for answering
the question.

We note a few details about this algorithm. (1) For each chunk in Step 2, we prompt the LLM to
retrieve relevant sentences, or return “None” if no relevant sentence is found in that chunk. Such
“None” results will be excluded from Step 3 of the algorithm. (2) Unlike previous examples, the
final aggregation step of this algorithm involves an LLM node, which adds to the cost metrics of
the overall algorithm. (3) For simplicity, we assume that the number of needles (i.e. length of the
passcode) and the length of each needle are both O(1). For more general cases, the final aggregation
step might benefit from further task decomposition. (4) We allow the algorithm to return a partial
answer, by placing a special character in the digit(s) of the passcode that it is uncertain about.

C.4.2 ANALYSIS

Let us assume for concreteness that each pair of adjacent chunks share an overlap of length m/2,
and mi = m for all i ∈ [k − 1], while m/2 ≤ mk ≤ m. In this case, we have k = ⌈2n/m− 1⌉.

Error metrics. Our analysis of error metrics for this task is similar to that for the previous retrieval
example. In particular, there are two possible failure modes in the retrieval step, and conclusions for
the errors of the final solution returned by the overall algorithm are dependent on whether a Type-1
or Type-2 LLM is being used. For example, if a Type-1 LLM, which will not mistakenly retrieve
irrelevant sentences from the input text, is used within the algorithm, then a smaller value of m
implies higher accuracy of retrieval in Step 2 of the algorithm, which further leads to lower error
metrics for the solution returned by the final aggregation step.

Cost metrics. For simplicity, let us assume that a Type-1 LLM is used within the overall algorithm.
Consequently, in Step 2 of the algorithm, each LLM call has Lpre ≤ Lsys+O(m) and Ldec = O(1),
since only the relevant text within the chunk is retrieved. Moreover, among the k LLM calls, only
O(1) of them return answers that are not “None”. By excluding the “None” results from the final
aggregation step, the last LLM call has Lpre ≤ Lsys + O(1) and Ldec = O(1). Putting things
together, with a degree of parallelism p and the number of chunks k = ⌈2n/m− 1⌉, the cost metric
C of the overall algorithm is bounded by

C = C(sub-tasks) + C(aggregation), where
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C(sub-tasks) ≤
⌈k
p

⌉
×

(
Cpre(Lsys +m) + Cdec(Lsys +m, 1)

)
,

C(aggregation) ≤ Cpre(Lsys + 1) + Cdec(Lsys + 1, 1).

C.4.3 EXPERIMENTS

We empirically validate the performance of the proposed LLM-based algorithm with a
Llama-3-70B model. Two error metrics are considered: the exact-match error taking value in
{0, 1}, and the fraction of incorrect digits, which takes value in [0, 1] and is always no larger than
the exact-match error.

In Figure 11a, we vary the problem size n, and set m = n in the LLM-based algorithm. It is observed
that the error metrics are monotonely increasing in n, and approach zero as n decreases. Most cost
metrics are also increasing in n, except for the number of decoding tokens, which is supposed to
be determined by the number and lengths of the needles only, not the haystack, and thus should be
insensitive to n.

In Figure 11b, we fix n = 20000 and vary the chunk size m. As was predicted by our analysis
for a Type-1 LLM, a smaller value of m implies lower error metrics, indicating the efficacy of task
decomposition.
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Figure 11: Empirical results for RAG with Llama-3-70B.
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C.5 EXAMPLE: LONG-TEXT SUMMARIZATION WITH CHUNKING

For the final example of this section, we apply our analytical framework to the task of long-text
summarization (Kryscinski et al., 2022; Chang et al., 2024), where generating a summary for the
long input text with a single LLM call is infeasible. Algorithms that process the long text to be
summarized by chunks have been proposed, such as hierarchical merging (Wu et al., 2021) and
incremental updating (OpenAI, 2024b). The former first generates one summary for each chunk
independently and then merge these intermediate summaries into the final one, while the latter
maintains and updates a global summary as the chunks get processed one by one in order. Since
objective and quantitative evaluation for the summarization task is known to be challenging (Chang
et al., 2024) and remains an active research area, we focus our study on the cost metrics of both
algorithms. Our analysis leads to interesting observations that are different from those in previous
examples, primarily due to the various options of setting the number of generated tokens Ldec for
each LLM call within the algorithms.

C.5.1 PROCESSING CHUNKS IN PARALLEL

Algorithm. Let us consider the following algorithm that processes the chunks in parallel, which
is a simplification of hierarchical merging (Chang et al., 2024) and visualized in Figure 2a:

1. Divide the input text of length n into k chunks of length m1,m2, . . . ,mk.

2. Summarize each chunk with one LLM call, independently and in parallel. For the i-th
chunk, the LLM is prompted to generate a summary of length no larger than si.

3. Invoke one LLM call to merge the summaries into a single one of length no larger than s.

Note that the targeted lengths of the intermediate and final summaries, denoted by {si}i∈[k] and
s, are hyperparameters of the algorithm that need to be pre-specified, in addition to the number of
chunks k and the chunk sizes {mi}i∈[k].

Analysis. For notational convenience, we assume that mi ≍ m := n/k for all i ∈ [k].

First, consider each individual LLM call: the cost of summarizing the i-th chunk can be bounded
by CLLM(Lsys + m, si), while the cost of the final merging step can be bounded by CLLM(Lsys +∑

i∈[k] si, s). To further simplify notations, we assume that si = s1 for all i ∈ [k], which will soon
be justified. Then the total cost C of the overall algorithm can be bounded by

C ≤ C(summarize chunks) + C(merge summaries)
= k × CLLM(Lsys +m, s1) + CLLM(Lsys + k × s1, s),

while the end-to-end latency with parallelism degree p can be bounded by

C ≤ ⌈k
p
⌉ × CLLM(Lsys +m, s1) + CLLM(Lsys + k × s1, s).

Let us specify the hyperparameters s1 and more generally {si}, assuming that the targeted length s
of the final summary has been determined. If the targeted information that we wish to be included
in the final summary is distributed evenly across the input text, e.g. in a story with a linear narrative,
then it is reasonable to set si = s1 = s/k for all i ∈ [k]. In other scenarios where the targeted
information is distributed unevenly (e.g. in query-focused summarization (Laban et al., 2024; Vig
et al., 2022)), it is generally safer to set si = s1 = s for all i ∈ [k]. The latency with parallelism
degree p in both cases is summarized as follows:

C ≤
{
⌈k/p⌉ × CLLM(Lsys +m, s/k) + CLLM(Lsys + s, s) if s1 = s/k,

⌈k/p⌉ × CLLM(Lsys +m, s) + CLLM(Lsys + k × s, s) if s1 = s.

Further analysis can be derived from here. To give an example, let us focus on the case of s1 = s
and try to find the chunk size m that minimizes the latency with parallelism degree p. For simplicity,
we ignore the length Lsys of the system prompt and the limit m on the context window size. We also
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assume that the time complexity of each LLM call is linear, namely CLLM(Lpre,Ldec) ≲ Lpre+Ldec.
Then we have

C ≤ ⌈k
p
⌉ × CLLM(Lsys +m, s) + CLLM(Lsys + k × s, s) ≲ ⌈k

p
⌉ × (m+ s) + k × s.

Even in such an oversimplified case, finding the optimal chunk size m is non-trivial:

• For large m ≥ m̃ := n/p such that k = n/m < p, we have ⌈k/p⌉ = 1, and hence

C ≲ m+ s+ k × s = m+
n× s

m
+ s.

The right-hand side attains the minimum at m̂ :=
√
n× s.

• For small m < m̃ = n/p, we have the approximation ⌈k/p⌉ ≈ k/p, and hence

C ≲
k

p
× (m+ s) + k × s = k ×

(
m

p
+
(1
p
+ 1

)
× s

)
≲

n

m
×
(
m

p
+ s

)
= n×

(
1

p
+

s

m

)
.

The right-hand side is monotonely decreasing in m.

Given the above, it can be verified that the optimal chunk size m⋆ that minimizes the latency C can
be estimated by m⋆ ≍ max{m̂, m̃} = max{

√
n× s, n/p}.

C.5.2 PROCESSING CHUNKS SEQUENTIALLY

Algorithm. Let us consider the following algorithm that processes the chunks sequentially, which
is a simplification of incremental updating (Chang et al., 2024) and visualized in Figure 2b:

1. Divide the input text of length n into k chunks of length m1,m2, . . . ,mk.
2. Initialize the global summary as an empty string, and update it incrementally via processing

the chunks in order: at the i-th iteration, invoke one LLM call to utilize the global summary
and the i-th chunk for generating a new global summary of length no larger than si.

3. The output of the overall algorithm is the global summary returned by the final LLM call.

Analysis. While this algorithm clearly has a sequential nature, our previous analysis for parallel
decomposition can be easily adapted for this case. For the i-th step of updating the global summary,
we have Lpre ≤ Lsys +m+ si−1 and Ldec ≤ si, and thus its cost is bounded by

Ci ≤ CLLM(Lsys +m+ si−1, si).

Therefore, the total cost of the overall algorithm satisfies

C ≤
∑
i∈[k]

Ci ≤
∑
i∈[k]

CLLM(Lsys +m+ si−1, si).

Further analysis can provide insights for choosing the hyperparameters that minimize the total cost,
though we omit the details here to avoid repetition.
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D HIERARCHICAL DECOMPOSITION (EXTENDED)

This section studies the pattern of hierarchical decomposition for LLM-based algorithms, where the
original task is decomposed into multiple sub-tasks, and each of them can be further decomposed
into more lower-level sub-tasks. This pattern is strictly more expressive than parallel decomposition
studied in the previous section, and hence capable of solving more problems.

For concreteness, we investigate a challenging version of the RAG task studied in Appendix C.4 that
requires multi-hop reasoning (Yang et al., 2018; Li et al., 2024a). Recall that in the previous RAG
example, given a question and multiple text chunks, the algorithm following the pattern of parallel
decomposition will first retrieve useful sentences from each chunk, and then invoke one LLM call
to answer the question based on the retrieved information. Such a method might not be feasible
in more challenging scenarios, where the needles embedded in the haystack are logically related,
and some of the needles are related to the targeted question only indirectly via connection to other
needles. For example, suppose that the question is “What is the numeric value of A?”, while the
needles are “A = B”, “B = C”, and “C = 100”, located separately in different chunks. Retrieving
needles from their corresponding chunks solely based on the targeted question will certainly fail in
this case.

To tackle this challenge, a natural idea is to extend the RAG algorithm considered in Appendix C.4,
allowing it to perform multiple rounds of iterative retrieval and reasoning. For each round, the
algorithm performs retrieval based on the targeted question as well as additional information from
previous rounds, followed by reasoning about the retrieved sentences and deciding whether the
targeted question can be answered, or further retrieval and reasoning is needed. Similar approaches
have been widely adopted in prior work, e.g. in the Selection-Inference framework (Creswell et al.,
2023), in a RAG system with iterative follow-up questions for applications in medicine (Xiong
et al., 2024), or as a technique of extending the effective context window of a LLM-powered agent
system (Qwen-Team, 2024). The resulting algorithm for reasoning with iterative retrieval exhibits
a hierarchical structure: the original task is decomposed into multiple sequential rounds, and each
round is further decomposed into multiple steps of retrieval and reasoning.

In the rest of this section, we first elaborate the concrete setup and algorithms for this case study,
and then demonstrate our analysis of accuracy and efficiency based on the proposed analytical
framework, as well as insights derived from it. Finally, numerical experiments are conducted to
validate the efficacy and scalability of the considered algorithm, as well as our analysis and insights.

D.1 CONCRETE SETUP

For concreteness, let us consider the task of finding the numeric value of a targeted variable
embedded within a grid, similar to the setting considered by Ye et al. (2024). A visualization can
be found in Figure 12. Configurations of the grid include its depth d, width w, and degree g, which
control the difficulty of this task. More specifically, the grid consists of d levels, each containing
w variables; each variable at a certain level is a function (e.g. addition, substraction, maximum or
minimum) of g variables at the next level, except for the leaf variables at the final level, whose
numeric values are given. Such information is provided in clues of the form “A2 = B1 + B3” or “C1
= 10”, each of which corresponds to one variable. As a result, the total number of clues is d×w, and
each clue has length O(g). We refer to the clues that are necessary and sufficient for calculating the
targeted variable as the needles, which constitute a directed acyclic graph (DAG) embedded within
the grid. It is assumed that the level of reasoning required in this case study is non-trivial yet also
simple enough, in the sense that one single LLM call with step-by-step reasoning is sufficient for
answering the targeted question correctly if all needles are given a priori.

D.2 ALGORITHM

To solve this task, we consider an LLM-based algorithm that involves multiple rounds of retrieval
and reasoning, which is visualized in Figure 13 and explained in the following:

1. Divide the input clues into k chunks. In addition, initialize an empty list of references,
i.e. clues retrieved by LLM calls, which will be maintained and updated throughout the
algorithm.
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A

B

C

1 2 3 4

Depth = 3

Width = 4

Target variable: A2

Needles (sorted):

⚫ A2 = B1 + B3
⚫ B1 = max(C2, C3)
⚫ B3 = C2 – C1
⚫ C1 = 10
⚫ C2 = -5
⚫ C3 = 20

Figure 12: An example grid of variables with depth d = 3, width w = 4, and degree g = 2. The
targeted variable is A2 at the top level, which is a function of B1 and B3 at the next level. The
variables whose numeric values are necessary and sufficient for calculating A2 are highlighted in
red, and their corresponding clues constitute a DAG of needles.

2. For each round of the algorithm, invoke k sequential (Figure 13a) or parallel (Figure 13b)
LLM calls for retrieval from k chunks based on the targeted question and references, then
invoke one LLM call to reason about the updated references and try to answer the targeted
question.

• If the LLM returns an answer, then the overall algorithm outputs that answer and
terminate.

• If the LLM cannot answer, and no additional clue has been retrieved in this round,
then the algorithm terminates and fails6.

• Otherwise, move on to the next round of retrieval and reasoning, with the updated
references.

Options for reasoning and answering. We consider two options of prompting the LLM to reason
about the references and answer the targeted question: answering directly, or thinking step by step
before answering (Kojima et al., 2022). It is reasonable to expect that the latter will boost the
accuracy while incurring higher costs, which will soon be investigated analytically and quantitatively
in Appendix D.3.

Options for retrieval. We consider two options, referred to as “cyclic” and “parallel”, for retrieval
from multiple chunks during each round of the algorithm.

• With the “cyclic” option (Figure 13a), chunks are processed sequentially; more specifically,
after retrieval for each chunk, the retrieved clues are added to the list of references
immediately, before retrieval for the next chunk starts. Consequently, the chunks are
processed in a cyclic manner throughout the overall algorithm, which gives rise to the
name of this option.

• With the “parallel” option (Figure 13b), chunks are processed independently and in
parallel, after which the list of references is updated once. This exemplifies using parallel
decomposition (cf. Section 3) as a building block for more complicated LLM-based
algorithms.

With the “cyclic” option, the overall algorithm typically need fewer rounds to answer the targeted
question correctly, since each LLM call for retrieval always leverages the most updated references.
On the other hand, the “parallel” option can leverage parallelism of LLM calls for reducing the end-
to-end latency of the overall algorithm. The comparison between these two options will soon be
elaborated in Appendix D.3.

6This is due to the assumption that greedy decoding, which is deterministic, is adopted. In this case, running
one more round of retrieval and reasoning will give the same result as that of the current round, which will be
useless and wasteful. A potential improvement is to adaptively decrease (e.g. halve) the chunk size and continue
the algorithm with more rounds; such improvements are not the focus of this work, and hence omitted here.
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(a) The “cyclic” version.

Input clues
and question

Output 
answer

Retrieval
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Chunking
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Retrieval
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Retrieval

...

Update ref,
reasoning

Update ref,
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Initial references = []
(list of retrieved sentences)

If LLM decides not to answer: use 
reference for the next round of retrieval

...

(b) The “parallel” version.

Figure 13: Algorithms for reasoning with iterative retrieval, which exhibit the pattern of hierarchical
decomposition. While the number of rounds is assumed to be 2 in this visualization, it is actually
determined adaptively by the algorithm itself at runtime. For clarity of visualization, some LLM
or non-LLM nodes (cf. Figure 1) are merged into one, and an arrow from the “chunking” node to
a dashed block means that each “retrieval” node within the dashed block takes the corresponding
chunk as input.
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Remark 2. The algorithm under consideration exhibits the pattern of hierarchical decomposition,
in that the overall task is decomposed into a sequence of rounds, and each round is further
decomposed into multiple steps of retrieval and reasoning. Another feature of this algorithm is
that its computational graph is constructed dynamically at runtime, since the number of rounds is
determined adaptively by the algorithm itself.

D.3 ANALYSIS

D.3.1 ERROR METRICS

There are two major failure modes for this algorithm of reasoning with iterative retrieval:

• Mistakes in reasoning and answering. For example, the LLM call responsible for reasoning
and answering might mistakenly decide that it is not yet ready to answer the targeted
question, or make mistakes when doing the arithmetic and thus return a wrong numeric
value, even when all needles have been successfully retrieved. It is also possible that the
LLM call mistakenly returns a numeric value (e.g. the value of a variable whose name is
similar to that of the targeted variable), while the needles have not been fully retrieved
yet. The probability of this failure mode is particularly related to whether the LLM call
responsible for reasoning and answering is prompted to answer directly or think step by
step before answering.

• Failure to retrieve all needles. As long as the ground-truth DAG of needles has a limited
size, the probability of this failure mode is largely determined by the choice of the chunk
size. Since this has been thoroughly investigated in our previous retrieval (Appendix C.3)
and RAG (Appendix C.4) examples, it will not be our focus in this section.

D.3.2 COST METRICS

Notations. Recall from Eq. (2) that CLLM(Lpre,Ldec) = Cpre(Lpre) + Cdec(Lpre,Ldec) stands for
the cost of one LLM call with a prompt of length Lpre and generated text of length Ldec. We also
adopt some notations from Section 3.1 in our previous study of parallel decomposition: n represents
the total length (in tokens or characters) of the input clues, m represents an upper bound for the
chunk size, k ≲ n/m denotes the number of chunks, and Lsys denotes an upper bound for the
length of the system prompt for each LLM call.

In addition, let r denote the number of rounds, which is determined adaptively by the algorithm
itself at runtime. Finally, let ℓ be the total length of the needles, i.e. clues that are necessary and
sufficient for answering the targeted question correctly. The value of ℓ can depend on the depth d,
width w and degree g of the grid in various ways:

• If g = 1, then the needles form a chain of length d, in the form of “A = B”, “B = C”, “C =
D”, and so on. In this case, we have ℓ ≲ d.

• If the width w > dg−1 is sufficiently large, then the number of needles can be upper
bounded by the size of a tree with d levels and g children per node, namely 1 + g +
g2 + · · · + gd−1 = (gd − 1)/(g − 1). Since each needle has length O(g), we have ℓ ≲
g × (gd − 1)/(g − 1).

• If the width w ≪ dg−1 is limited, then a tighter bound for the number of needles will be
d× w, and thus ℓ ≲ g × d× w.

The “cyclic” version (Figure 13a). Let us first study the cost of each LLM call.

• An LLM call responsible for retrieval takes one chunk and the references as input, which
has length O(m+ ℓ). In addition, it is supposed to output a list of clues, which has length
O(ℓ), that is relevant to the targeted question. In other words, we have Lpre ≤ Lsys +
O(m+ ℓ), Ldec ≲ ℓ, and thus

C(retrieval) ≤ CLLM(Lsys +m+ ℓ, ℓ)

• An LLM call responsible for reasoning and answering takes the references of length O(ℓ) as
input, namely Lpre ≤ Lsys+O(ℓ). As for the length of generated text Ldec, it is reasonable
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to assume that Ldec ≲ 1 if the LLM is prompted to answer directly, and Ldec ≲ ℓ if it is
prompted to do the calculation step by step before returning its final answer7. Consequently,
one has

C(reasoning) ≤ CLLM(Lsys + ℓ, 1 or ℓ).

Now we are ready to find out the cost of the overall algorithm with r rounds of iterative retrieval (for
k chunks) and reasoning:

C ≤ r × C(one round)

= r ×
(
k × C(retrieval) + C(reasoning)

)
≤ r ×

(
k × CLLM(Lsys +m+ ℓ, ℓ) + CLLM(Lsys + ℓ, 1 or ℓ)

)
.

In particular, this bound quantifies how the cost of LLM calls responsible for reasoning and
answering, namely r × CLLM(Lsys + ℓ, 1 or ℓ), only occupies a small fraction of the total cost of
the overall algorithm.

The “parallel” version (Figure 13b). Analysis of cost metrics for the “parallel” version is largely
the same as that for the “cyclic” version, with the following two major differences:

• For the same task instance, the “parallel” version requires the same or a larger number of
rounds, since in the “cyclic” version, each retrieval step always leverages the most updated
references. For example, consider the case with degree g = 1 and a chain of d needles
located separately in different chunks. Then, the number of rounds will be r = d for the
“parallel” version, but can be as small as r = 1 for the “cyclic” version, if the needles
happen to appear in the right order in the original clues.

• If the cost metric of interest is the end-to-end latency with parallelism degree p, then the k
LLM calls for retrieval within each round can be parallelized, which implies

C ≤ r ×
(
⌈k
p
⌉ × C(retrieval) + C(reasoning)

)
≤ r ×

(
⌈k
p
⌉ × CLLM(Lsys +m+ ℓ, ℓ) + CLLM(Lsys + ℓ, 1 or ℓ)

)
. (7)

As a result, the end-to-end latency of the “parallel” version with a sufficiently large
parallelism degree p can be potentially smaller than that of the “cyclic” version.

D.3.3 INSIGHTS

In sum, we derive two major insights from the above analysis of error and cost metrics:

1. LLM nodes responsible for reasoning and answering only occupy a small fraction of the
costs of the overall algorithm, while playing a critical role in the output of the algorithm
and thus in the error metrics. Therefore, our general recommendation is to prompt these
LLM calls to think step by step before answering, instead of answering directly, which will
most likely boost the accuracy significantly with negligible loss in efficiency.

2. Regarding the “cyclic” and “parallel” options for retrieval, we conclude that each of them
has its own pros and cons. With the “cyclic” option, fewer rounds of retrieval and reasoning
are needed (thanks to the timely updates to the references), but the downside is that all
retrieval steps have to be executed sequentially. In contrast, with the “parallel” option, the
algorithm typically requires more rounds of retrieval and reasoning and thus larger costs
in terms of most metrics, but can leverage parallelism of LLM calls for reducing the end-
to-end latency. Therefore, whether the “cyclic” or “parallel” option is preferred largely
depends on which cost metric is of more concern.

7There might exist more precise characterizations of Ldec in this case, e.g. Ldec ≲ ℓ × g if the LLM tends
to take g steps for calculating the sum of g numbers. For simplicity, we mostly assume g = O(1) in this case
study, and thus stick to the assumption that Ldec ≲ ℓ.
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D.4 EXPERIMENTS

We validate our analysis via experiments with a Qwen2-72B-Instruct model (Yang et al.,
2024), supported by vLLM (Kwon et al., 2023) and running on a server with 4 Nvidia A100-80G
GPUs. For each experiment, we vary the depth, width or degree of the grid of variables (which
controls the difficulty of task instances), while validating Insight 1 by comparing two options for
prompting LLM calls that are responsible for reasoning and answering, or Insight 2 by comparing
the “cyclic” and “parallel” options for retrieval.

Error metrics of interest include (1) the exact-match error, which takes value 0 if the answer returned
by the algorithm matches the ground-truth solution exactly, and value 1 otherwise; (2) the absolute
error, i.e. the absolute value of the difference between the algorithm’s answer and the ground-
truth solution; and (3) the missed-coverage error, i.e. the ratio of needles that the algorithm fails
to retrieve and hence are not included in the references maintained by the algorithm. Note that
missed coverage might arise not just from failures of the LLM calls responsible for retrieval, but
also from the possibility that the algorithm terminates too early with fewer rounds than necessary,
due to hallucination by the LLM calls responsible for reasoning and answering. Cost metrics of
interest are the same as those explained in Appendix C, plus the number of rounds, a metric specific
to the hierarchical pattern of algorithms considered in this section.
Remark 3 (Mitigating hallucination in retrieval). During our early experiments, we observed that
LLMs tend to make up clues not present in the input during the retrieval steps. To address this, we
prompt the LLM to return exact copies of clues from the original text, and further use a symbolic
program to check whether the retrieved clues are indeed exact copies (which, from the perspective
of LLM-powered agent systems, might be regarded as tool use). Only those passing the test will be
added to the list of references. It has been confirmed empirically that this simple method effectively
mitigates the errors caused by hallucination of LLMs during retrieval, making the overall algorithm
much more robust and accurate in our experiments.

Comparing two prompting options. For this experiment, we consider shallow and wide grids of
variables, with depth d = 2 and width w = 300. The degree g varies, controlling the difficulty in
arithmetic. The algorithm uses a fixed chunk size of 50 clues, and the “parallel” version of retrieval.
In this case, the ideal number of rounds should be 2 if each retrieval step succeeds.

Empirical results for this experiment are illustrated in Figure 14, which confirm Insight 1,
i.e. prompting the LLM to think step by step for reasoning and answering significantly boosts
the accuracy of the overall algorithm while incurring minor overhead in cost metrics, compared
to answering directly. Note from the last row, though, that the relative difference in terms of end-to-
end latencies increases with the parallelism degree p, which has been predicted by our analysis as
well, in particular Eq. (7).

Comparing the “cyclic” and “parallel” versions. In the following experiments, we consider
grids with degree g = 1 and thus chains of needles. We either fix the depth d = 5 and vary the width
w, or fix the width w = 100 and vary the depth d. The algorithm uses a fixed chunk size of 100
clues, and prompts the LLM calls responsible for reasoning and answering to think step by step.

Empirical results for these two experiments can be found in Figures 15 and 16, which confirm that
the considered algorithm achieves high accuracy for a wide range of task configurations. Insight 2
from our analysis is also validated: compared with the “cyclic” version, the “parallel” version incurs
a larger number of rounds and hence higher cost metrics, except for the end-to-end latencies with
parallelism, for which the benefits of parallelism outweight the downside of requiring more rounds.
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Figure 14: Empirical results (10 trials) for reasoning with iterative retrieval, where two options of
prompting the LLM calls responsible for reasoning and answering are compared. The depth d = 2
and width w = 300 are fixed, while the degree g varies. The algorithm uses a chunk size of 50 clues,
and the “parallel” version of retrieval.
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Figure 15: Empirical results (10 trials) for reasoning with iterative retrieval, where two options of
retrieval, namely “cyclic” and “parallel”, are compared. The degree g = 1 and width w = 100 are
fixed, while the depth d varies. The algorithm uses a chunk size of 100 clues, and prompts the LLM
calls responsible for reasoning and answering to think step by step.
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Figure 16: Empirical results (10 trials) for reasoning with iterative retrieval, where two options of
retrieval, namely “cyclic” and “parallel”, are compared. The degree g = 1 and depth d = 5 are
fixed, while the width w varies. The algorithm uses a chunk size of 100 clues, and prompts the LLM
calls responsible for reasoning and answering to think step by step.
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E RECURSIVE DECOMPOSITION (EXTENDED)

This section studies LLM-based algorithms with recursive task decomposition, a pattern that is
vastly different from those studied in previous sections, and yet still covered by the analytical
framework proposed in Section 2. Roughly speaking, a recursive LLM-based algorithm starts from
the original task of concern and recursively generates more intermediate sub-tasks, so that each sub-
task can be solved by aggregating the solutions to its children tasks, while being unaware of other
sub-tasks involved in the overall algorithm. In particular, solving and/or decomposing each sub-task
can be achieved by LLM calls, while the outline of recursive task decomposition remains symbolic.
Such LLM-based algorithms have been widely applied, e.g. in LAMBADA (Kazemi et al., 2023),
LLM programs (Schlag et al., 2023), ADaPT (Prasad et al., 2024), THREAD (Schroeder et al.,
2024), Recursion of Thought (Lee & Kim, 2023), Decomposed Prompting (Khot et al., 2023), ReDel
(Zhu et al., 2024), among many others.

In the following, we first introduce the concrete task under consideration, and then design a recursive
LLM-based algorithm for solving it, highlighting the dynamic construction of its computational
graph at runtime. We then provide analysis for its accuracy and efficiency using the proposed
framework, which is further validated with numerical experiments; along the way, we derive a
formal guarantee for generic LLM-based algorithms, under the technical assumption of additive
errors and bounded sensitivity.

E.1 CONCRETE SETUP

For concreteness, we consider the same task introduced in Appendix D.1 and visualized in Figure 12,
which is about calculating a targeted variable based on clues about a grid of many variables.

One major difference here is that we consider much larger depth d, width w and/or degree g for
the grid of variables, which implies a larger DAG of needles, i.e. clues relevant to the targeted
question. Even if all relevant clues are given a priori, the complex reasoning required to answer
the targeted question correctly can be well beyond the capability of one single LLM call, which
motivates decomposing the reasoning process into multiple LLM calls.

The other major difference is, we assume that the clues are not directly given in plain text, but rather
need to be accessed via querying a database. For each query, the database takes a name as input, and
returns a clue for the variable of the same name, e.g. “A2 = B1 + B3” for input “A2” or “C1 = 10”
for input “C1”. The LLM-based algorithm need to decide by itself what to query from the database.
Such a setting is motivated by, and can be regarded as an abstraction of, practical scenarios where
an autonomous agent in the wild need to actively retrieve relevant information by itself in order to
accomplish a task (unlike in typical problem-solving benchmarks where such information is given),
via querying a real database or knowledge graph, using a search engine, retrieving from documents,
etc. In this case study, we assume that querying the database does not involve LLM calls, and thus
neglect its costs in our analysis.

E.2 ALGORITHM

We consider the following recursive LLM-based algorithm for solving this task. The overall
algorithm maintains a dictionary of variables that have been calculated throughout its execution,
and eventually outputs the value returned by applying a function named ProcessNode to the
targeted variable.

The function ProcessNode, which takes the name of a variable as input and returns its numeric
value, is defined in a recursive manner:

1. If the input variable is found in the dictionary of calculated variables, then return its value
directly.

2. Otherwise, query the database with the input variable, and invoke one LLM call with the
returned clue, which is prompted to either answer with a numeric value or conduct further
task decomposition, i.e. identifying variables whose values will be necessary and sufficient
for calculating the input variable.
(a) If the LLM chooses to answer with a numeric value, then return it.
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(b) Otherwise, invoke ProcessNode once for each variable identified by the LLM call,
collect the answers returned by these children tasks, and finally invoke one LLM call
to calculate and return the numeric value of the input variable.

We make a few comments about this recursive algorithm. (1) The computational graph of this
algorithm, or a generic LLM-based algorithm following the pattern of recursive decomposition, is
constructed dynamically in a depth-first-search style at runtime. See Figure 4 for a visualization.
The final graph is symmetric about the nodes corresponding to the leaf variables (D, E); on the
left are LLM calls for identifying children variables for the non-leaf variables (A, B, C), while
on the right are LLM calls for calculating their numeric values. (2) The process of complex
reasoning is decomposed recursively, so that each LLM call within this algorithm only need to
handle a small step of reasoning, whose complexity is irrelevant to that of the overall task. (3) One
particular configuration of this algorithm, like in the previous case study, is about how the LLM calls
(especially the ones responsible for calculation) are prompted, e.g. to answer directly or think step
by step. The impact of this design choice on the accuracy and efficiency of the overall algorithm
will be investigated analytically and empirically soon in this section.

E.3 ANALYSIS

E.3.1 ERROR METRICS

Recall from Eq. (1) that for a specific node v with inputs x1, . . . , xk, the error of its output y is
assumed to be upper bounded by E(y) ≤ fv(E(x1), E(x2), . . . , E(xk)) for some function fv . For the
concrete setting of the current case study, there are two major failure modes for the aforementioned
algorithm: errors in recursive task decomposition, and errors in calculating the numeric values of
specific variables. Empirical results during our early exploration suggested that LLMs make very
few mistakes of the first kind, while the second failure mode is much more common, due to the
limited arithmetic capabilities of current LLMs. Moreover, all mathematical operations considered
in this concrete settings (including addition, substraction, maximum and minimum) are 1-Lipschitz
continuous with respect to each input variable.

All these motivate us to derive the following error bound, which indeed holds true for any generic
LLM-based algorithm represented by a directed acyclic graph (DAG), under the assumption of
additive errors and bounded sensitivity. The proof is deferred to Section E.5 after the experiments.

Proposition 3. Suppose that the assumption of additive errors and bounded sensitivity holds true
for an LLM-based algorithm represented by a DAG, namely for each node v with k inputs x1, . . . , xk

and a single output y, it holds that

E(y) ≤ fv
(
E(x1), E(x2), . . . , E(xk)

)
:= Ev + S ×

∑
i∈[k]

E(xi)

for some node-specific additive error Ev and finite sensitivity parameter S ≥ 0. Then the error of the
output y(v) of any node v, including the one that generates the final output of the overall algorithm,
is bounded by

E(y(v)) ≤
∑

w∈DAG

∑
path∈P(w→v)

S|path| × Ew. (8)

Here, |path| denotes the length of a path on the DAG, while P(w → v) represents the set of paths
from node w to node v if w ̸= v, or a singleton set containing one hypothetical path of length
0 if w = v. For the special case of S = 1, this upper bound can be simplified as E(y(v)) ≤∑

w∈DAG |P(w → v)| × Ew.

This proposition precisely characterizes how the error Ew of each node w impacts the accuracy of
the overall algorithm, via the number and lengths of the paths from each node to the final output.

E.3.2 COST METRICS

Let us first consider the cost of each LLM call. For each leaf variable, one LLM call is needed
for finding its numeric value based on its corresponding clue of length O(1), which implies
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Lpre ≤ Lsys + O(1) and Ldec ≤ O(1), and thus C(leaf) ≤ CLLM(Lsys + 1, 1). For each non-
leaf variable, two LLM calls are needed. One of them is responsible for task decomposition,
i.e. identifying its g children variables, which implies Lpre ≤ Lsys + O(g) and Ldec ≤ O(g),
and thus C(decomposition) ≤ CLLM(Lsys + g, g). The other LLM call is responsible for calculating
the numeric value of the current variable based on the values of its children variables, which has
Lpre ≤ Lsys+O(g), and Ldec ≤ O(1) if the LLM is prompted to answer directly, or Ldec ≤ Lcalc(g)
for some function Lcalc if it is prompted to do the calculation step by step (e.g. Lcalc(g) ≤ O(g)
or O(g2), depending on how the LLM executes the calculation with g variables). In sum, we have
C(calculation) ≤ CLLM(Lsys + g, 1 or Lcalc(g)) for each LLM call responsible for calculation.

The analysis above has also revealed the total number of LLM calls. Let n and nleaf be the number
of relevant variables and the number of relevant leaf variables, respectively. These parameters are
determined by d,w, g and other factors, as is the case for the ℓ parameter (total length of relevant
clues) in Appendix D. Recall from above that each leaf variable requires one LLM call for finding
its value from its corresponding clue, while each non-leaf variable requires two LLM calls, one for
task decomposition and one for calculation. Assuming that task decomposition is done correctly by
the LLM for each non-leaf variable, the total number of LLM calls will be 2× (n− nleaf) + nleaf =
2× n− nleaf.

Putting things together, we finally arrive at the total cost of the overall recursive algorithm:

C ≤ (n− nleaf)×
(
CLLM

(
Lsys + g, g

)
+ CLLM

(
Lsys + g, 1 or Lcalc(g)

))
+ nleaf × CLLM(Lsys, 1).

(9)

In particular, prompting the LLM to do the calculation step by step, which is anticipated to
significantly improve the accuracy of the overall algorithm, will increase most cost metrics (though
not for the number of LLM calls or the total number of prefilling tokens) by a multiplicative factor,
in contrast to the previous case study in Appendix D where step-by-step prompting incurs a minor
additive cost.

E.4 EXPERIMENTS

We validate our analysis via experiments with a Qwen2-72B-Instruct model (Yang et al.,
2024), supported by vLLM (Kwon et al., 2023) and running on a server with 4 Nvidia A100-80G
GPUs. For each experiment, we vary the difficulty of the task through the depth d or degree g
of the grid of variables, while comparing two options of prompting the LLM calls responsible for
calculation, namely “answer directly” and “calculate step by step”.

Empirical results are shown in Figures 17 and 18. For the former, we fix the width w = 6 and
degree g = 4, while varying the depth d; for the latter, we fix the depth d = 3 and width w =
100, while varying the degree g. The results confirm our previous analysis: compared to “answer
directly”, prompting the LLM calls to “calculate step by step” significantly boosts the accuracy of
the overall algorithm and leads to satisfactory performance for a wide range of task configurations,
while incurring higher costs in the latency and total number of decoding tokens by a multiplicative
factor, and making no difference in the number of LLM calls or total number of prefilling tokens.
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Figure 17: Empirical results (10 trials) for reasoning with recursive task decomposition, where two
options of prompting the LLM calls responsible for calculation are compared. The width w = 6 and
degree g = 4 are fixed, while the depth d varies.
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Figure 18: Empirical results (10 trials) for reasoning with recursive task decomposition, where two
options of prompting the LLM calls responsible for calculation are compared. The depth d = 3 and
width w = 100 are fixed, while the degree g varies.
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E.5 PROOF OF PROPOSITION 3

We prove the proposition by induction. First, consider the base case where v is a leaf node of the
DAG that has no input. Then it can be checked that Eq. (8) holds true:

E(y(v)) ≤ Ev =
∑

w∈DAG

∑
path∈P(w→v)

S|path| × Ew.

The inequality follows the assumption, while the equality holds true because P(w → v) for a leaf
node v is an empty set unless w = v, in which case P(w → v) contains only a hypothetical path of
length 0.

Next, consider a non-leaf node v, whose predecessor nodes are denoted by u1, u2, . . . , uk. Suppose
that Eq. (8) holds true for each ui, namely

E(y(ui)) ≤
∑

w∈DAG

∑
path∈P(w→ui)

S|path| × Ew, i ∈ [k].

To prove that Eq. (8) also holds true for node v, we start with the following:

E(y(v)) ≤ Ev + S ×
∑
i∈[k]

E(y(ui))

≤ Ev + S ×
∑
i∈[k]

∑
w∈DAG

∑
path∈P(w→ui)

S|path| × Ew

= Ev + S ×
∑
i∈[k]

∑
w∈DAG\{v}

∑
path∈P(w→ui)

S|path| × Ew

= Ev + S ×
∑

w∈DAG\{v}

∑
i∈[k]

∑
path∈P(w→ui)

S|path| × Ew

= Ev +
∑

w∈DAG\{v}

∑
i∈[k]

∑
path∈P(w→ui)

S|path|+1 × Ew.

Here in the third line, we replace the summation over w ∈ DAG with w ∈ DAG \ {v}, since there is
certainly no path from node v to its predecessor node ui. To move forward, notice that P(w → v)
is a union of k disjoint sets, where the i-th set contains paths ending with the directed edge from ui

to v:

P(w → v) =
⋃
i∈[k]

{
path + [ui → v] : path ∈ P(w → ui)

}
.

With this, we can further simplify the previous upper bound:

E(y(v)) ≤ Ev +
∑

w∈DAG\{v}

∑
i∈[k]

∑
path∈P(w→ui)

S|path|+1 × Ew

= Ev +
∑

w∈DAG\{v}

∑
path∈P(w→v)

S|path| × Ew

=
∑

w∈DAG

∑
path∈P(w→v)

S|path| × Ew.

This concludes our proof of the proposition.
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