Under review as a conference paper at ICLR 2023

A THEORY

ROAST is a generalized model compression which performs operation specific system-friendly
lookup and global memory sharing. This raises some interesting theoretical questions

A.1 BACKWARD PASS FOR MODEL SHARING WEIGHTS ACROSS DIFFERENT COMPONENTS

A general function sharing a weight, say « across different components can be written as , f(z, g(x))
The interpretation is that x was used in g(.) and then again used ahead in f. (In case of MLP, we can
think of x being used in multiple layers)

Let f(g1,g2) where both ¢; and g» are functions of z.
0f(91,92) _ 0f(g1,92) 991 | 0f(g1,92) Ogo

= — % = 1
Ox dq * ox + 0go * Or (10)

g1 =z and g2 = g(x)

0f(g1,92) Of(x,9(y)) 9f(y,9(z)) 9g(z)

Ox - Ox ly=a + dg(x) Oz ly=2 (in
of(g1,92) _ Of(x,9(y)) of(y,9(x))
ox o Ox ly=a + ox ly=a (12)
Renaming,
of (x,g9(z)) _ 9f(2,9()) f(z,9(y))
05(,’ - 02 |y:w,z:x + 8—y|y::p,z:w (]-3)

Thus, we can essentially consider each place where x appears as new variables and then gradient
w.I.t X is just summation of partial derivatives of the function w.r.t these new variables. Thus, it is
easy to implement this in the backward pass. In order to make sure that the memory utilization in
backward pass is not of the order of the recovered model size, we do not use the auto-differentiation
of tensorflow/pytorch. We implement our own backward pass and it can be found in the code.

A.2 GLOBAL FEATURE HASHING VS LOCAL FEATURE HASHING.

We can consider model compression techniques as dimensionality reduction of the parameter vector
(a one dimensional vector of all parameters in a model) of size n into a vector of size |[M| = m.
Quality of inner-product preservation is used as a metric to measure the quality of dimensionality
reduction. In terms of dimensionality reduction, ROAST uses ROBE hashing Desai et al. (2022),
which showed that chunk based hashing is theoretically better than hashing individual elements. In
this section, we analyse GMS proposal of ROAST against LMS of HashedNet. For the purpose of
this comparison we assume a chunk size of 1. Consider two parameter vectors x,y € R". We are
interested in how inner product between these parameter vectors are preserved under hashing. Let
x = [x129...21] and y = [y1y2...yx] be composed of k pieces of sizes ny,na, ...ng. In LMS, let each
piece be mapped into memory of size f;m where), f; = 1.

The estimators of inner product in the GMS case can be written as ,

Wem = DO Uh(D)=5)g(D)zli]) (Y Uh(i)=)g(i)yli]) (14)
j=1 i=1 i=1
The estimate of inner product with LMS can be written as,
. k fim n n; k /_\
@) o= 3 ST =)g (i) Un(i)=)gDuli)) = > @t v (gom
1=1 j=1 i=1 j=1 =1

(15)

12

Under review as a conference paper at ICLR 2023

Note that

x,y L.m f G’ ,(fim) (16)

IIMa-

The GMS estimator is the standard feature hashlng estimator and the LMS is essentially sum of GMS
estimators for each of the piece. as E[g(i)] = 0, it is easy to check by linearity of expectations that
Expectation The suffix L refers to local hashing and G refers to global hashing.

EG = E((.’ZI, y>G,m) = <$,y> (17)
By =E({t,9), ,, 7) = (@9) (18)

Let us now look at the variance. Let us follow the following notation,

* Vo =V((z,9)4,,)- GMS variance of entire vectors
* Vo =V((z,y),,, 7). LMS variance of entire vectors
* Vi=V({z1,y)q) variance of each piece

we can write V; as follows. The following equation is easy to derive and it can be found the lemma 2
of Weinberger et al. (2009)

1 1
V= Z 2b2 + Za ba;b;) where z; = (a1, as...a,,) and y; = (b1, b2...by,) (19)

fl m i#] i#]
As, each of the piece is independently hashed in LSM, we can see

V=YV (20)

Let us now look at Viz. Again, using lemma 2 from Weinberger et al. (2009)

1
Ve = E(Z iy + Z TiYiT5Y5) (21
i#] i#]

The expression can be split into terms that belong to same pieces and those across pieces

k
1
Ve =— Z(Z zjy; + A Z TiYi%;Y;)
1=1 1isj€Epiece-1 i#£j Epiece-1
L k

T Z (Z (z3y2) + Z TiYi%5Y;))

11=11

112=1,I1+#12 i€Epiece-11,jEpieces-12 iEpiece-11,j Epieces-12

Vo = Zflv +— Z Z lzn|Blyi2ll3 + (@0, viz) (@2, yiz) (22)

M e, A1£12

Observation 1: In V;, we can see that there are terms with - - which makes it unbounded. It makes
sense as if number of pieces increase a lot a lot of compress10ns will not work for example if number
of peices > | M]|. Also, it will affect V7, a lot when some f; is very small which can often be the
case. For example, generally embedding tables in DLRM model are much larger than that of matrix
multiplciation modules (MLP) . which can make f ~ 0.001 for MLP components.

Observation 2: Practically we can assume each piece, no matter the size of the vector, to be of same
norm. The reason lies in initialization. According to Xavier’s initialization the weights of a particular
node are initialized with norm 1. So for now lets assume a more practical case of all norms being
equal to v/a. Also, in order to make the comparisons we need to consider some average case over the

13

Under review as a conference paper at ICLR 2023

data. So let us assume that under independent randomized data assumption, the expected value of all
inner products are 5. With this , in expectation over randomized data, we have

k(k—1) 5 4
Vo = Vi+—= 23
G=> fVi+ = (@ +57) (23)
Now note that,
11
V= fl - Z 262 + Zmb a;b;) where z; = (a1, as...an,) and y; = (b1, ba...by,) (24)
i#£j i)
(dropping the subscript "1" below)
11
Vi=+o —((I[=113ly113 + —221’ (25)
Vi (0% + 67) - 22 (26)
L= fim i

Note that for each negative term, there are n; positive terms. To simplify we disregard this term in
the equation above. This is an approximation which is practical and only made to get a sense of V7,
and V; relation.

VL_VG:Z‘/Z_Z](ZVI_W(OH‘FBQ)
V= Vo = 3 ool ~ (e + 8) -

m
7 l

Vi Vo = 3 g i+ 57 - HE e 4)

—kn;l (a® + 8%

VL _ VG > k(k B 1)((042 +62) _ k(k — 1)(042 +B2)
m m
VL —Vg >0
Note that we ignored a term which reduces the V7, a bit, Let the error be €
VL = Vg > —¢ 27

The above equation shows even for the best case, Vi might be slightly more than V7. However for
general case where harmonic mean is much worse than arithmetic mean, V;, will be much larger
depending on exact f; s

14

Under review as a conference paper at ICLR 2023

Table 6: Inference times of different square weight matrices using an input batch of 512. For ROAST,
the tile parameters of each matrix multiplication are autotuned. The measurements were taken using
TF32 on a NVIDIA A100 GPU (48GB). We used PyTorch’s matmul function (MM) for the full
uncompressed matrix multiplication. l:bad B: good

Inference time (ms)

Weight matrix dimensions (Dim x Dim)

Model Msize] | 512 [1024 | 2048 | 4096 8096 10240 | 20480 | Average
Full size — IMB | 4MB | 16MB | 64MB | 128MB | 420MB | 1.6GB
PyTorch-MM 0.69 1.18 3.01 0.91

4MB 6.20 9.67 35.22 777
13.66 22.11 | 92.40 19.06
31.21 42.45 37.15
AedE] 3462 | 56.03 4737
38.28 62.67 52.88
40.55 65.74 56.03
0.99 1.36
1.01 1.38 4.88 1.22
1.00 1.40 493 1.23
RO 1.01 139 | 491 | 123
1.01 1.40 4.90 1.23
1.02 1.39 4.95 1.24
B ROAST-MM LATENCY MEASUREMENTS
B.1 INFERENCE OPTIMIZATION
B.2 TRAINING OPTIMIZATION
See tables 7, 8, 9, 10
forward(ms)

(optimized for forward + backward)

512

Full
(uncompressed)

HashedNet

ROAST

dim (Matrix dimension = dim x dim)

1024 2048

4096 8096

10240

Average

Table 7: Inference (forward pass time) for different shapes of square weight matrix with input batch of
512. The tile-parameters of multiplication are optimized for each function over "forward + backward"
pass .The measurements are taken with tf32 on A100 (48GB)

C VARIANCE IN QUALITY OVER DIFFERENT RUNS

The figure 4 shows three runs of ROASTed BERT and BERT models

15

Under review as a conference paper at ICLR 2023

backward(ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)

512 1024 2048 4096 8096 10240 Average
Full
(uncompressed)
HashedNet
ROAST

Table 8: Backward pass for different shapes of square weight matrix with input batch of 512. The
tile-parameters of multiplication are optimized for each function over "forward + backward" pass
.The measurements are taken with tf32 on A100 (48GB)

0.90 090
0.88
0.88
> >
% g 0.86
5 0.86 5
8 8 0.84
< 0.84 < .
’ —— original-seedl —— ROAST-100x-seedl
0.82
—— original-seed2 —— ROAST-100x-seed2
0.82
—— original-seed3 P —— ROAST-100x-seed3
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Iterations Iterations
(a) yelp - original (b) yelp - ROAST100x
0.92
0.900
0.90 0.875
0.850
> >
g 0.88 g 0.825
— —
a 3 0.800
O 0.86 O
< — < o775
—— original-seedl —— ROAST-100x-seed1
084 —— original-seed2 0750 —— ROAST-100x-seed?2
—— original-seed3 0725 —— ROAST-100x-seed3
0.82
ll) 2500 5000 7500 10600 12_‘;00 15600 17.‘;00 o700) 2560 50'00 75b0 10600 12.‘;00 15600 17500
Iterations Iterations
(c) ag_news - original (d) ag_news - ROAST100x

Figure 4: Three runs of original and ROAST-100x runs

16

Under review as a conference paper at ICLR 2023

update weights (optim.step())(ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)
optim Model v 512 1024 2048 4096 8096 10240 20480 PNETEE
adagrad | Full [0.60 | 2.16 | 3.41 |
4 0.54
32
HashedNet 64 | 0.61 0.61 | 0.61 | 0.61 | 0.61 0.62 0.61 0.61
128 | 1.15 | 1.14 | 1.14 | 1.14 | 1.15 1.19 1.18 1.15
256 | 222 | 221 | 221 | 221 | 222 2.26 3.87 2.46
512 | 436 436 | 435 | 435 | 437 4.40 4.47 4.38
0.60 | 0.61 | 0.61 | 0.60 | 0.61 0.61 0.61 0.61
IRGIRSIT 128 | 1.14 | 1.14 | 1.14 | 1.14 | 1.14 1.14 1.14 1.14
256 | 221 221 | 221 | 221 | 2.21 2.21 2.21 2.21
512 | 438 435 | 436 | 435 | 4.35 4.36 4.35 4.36
Full 1.06 | 3.89 6.18
4
0.57 | 0.57 | 057 | 0.57 | 0.57 0.57 0.59 0.57
HashedNet 64 | 1.06 1.06 | 1.06 | 1.06 | 1.06 1.06 1.16 1.08
128 | 2.03 | 2.05 | 2.04 | 2.04 | 2.05 2.04 2.23 2.07
256 | 398 399 | 398 | 3.99 | 4.00 4.00 4.22 4.02
adam 512 | 7.89 7.89 | 7.89 | 7.89 | 7.91 7.90 8.13 7.93
0.57 @ 0.57 | 0.57 | 0.57 | 0.57 0.57 0.57 0.57
ROAST 64 | 1.07 | 1.06 | 1.06 | 1.06 | 1.06 1.07 1.06 1.06
128 | 2.05 | 2.03 | 2.04 | 2.04 | 2.03 2.04 2.04 2.04
256 | 401 398 | 399 | 3.99 | 3.99 3.99 3.99 3.99
512 | 789 7.89 | 7.89 | 7.89 | 7.89 7.89 7.89 7.89
Full 0.62 0.97 3.92 0.85
HashedNet 128 048
256 | 0.64 0.64 | 0.64 | 0.64 | 0.65 0.67 0.83 0.67
4
32
64
ROAST
0.64

Table 9: Weight update operation (optimizer.step()) for different shapes of square weight matrix
with input batch of 512. The tile-parameters of multiplication are optimized for each function over
"forward + backward" pass .The measurements are taken with tf32 on A100 (48GB)

17

Under review as a conference paper at ICLR 2023

Table 10: Total training step time for different shapes of square weight matrix with input batch of 512.
The tile-parameters of multiplication are optimized for each function over "forward + backward" pass

.The measurements are taken with tf32 on A100 (48GB)

18

total = fwd + bkwd + optimize (ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)
| Tl 512 1024 2048 4096 8096 10240 20430 NI
adagrad | Full 417 | 633 | 24.13 537
4 1486 | 2295 | 9278 | 19.88
32 3819 | 61.35 52.79
o4 67.74 | 110.15 93.53
HashedNeEH S 52 86.36 | 13851 118.12
256 98.42 | 155.92 133.73
512 10721 | 16830 142.83
4 4097 584 5.19
32 449 | 646 | 23.00 5.68
64 487 | 686 | 23.90 6.12
[HOAST 128 572 | 797 | 2728 7.5
256 710 | 940 | 2835 8.58
512 997 | 1231 | 3204 | 1161
Full 580 [011 [3501 762
4 1494 | 2307 | 8676 | 19.13
&y, 3845 | 61.64 [253207 5291
o4 68.28 | 110.63
RESIedEL | g 427 87.47 | 139.30
256 | 545 | 630 100.19 | 157.55
ik 512 10.94 11071 | 171.67
4 4067 5.89 :
32 472 | 669 | 2328 5.92
64 534 | 739 | 2435 6.60
e 128 662 | 885 | 2822 8.18
256 | 582 | 533 545 897 | 11.15| 3019 | 1045
512 1352 | 1582 | 3559 | 15.09
Full 3007 14.08
4 1476 | 22.96 | 86.70
32 38.10 | 61.16 [1252.997 5250
o4 67.28 | 109.78
HashedNet 1=z 85.46 | 137.54
256 96.91 | 154.43
sgd 512 104.03 | 164.94
4 3047 582
32 428 | 625 | 2277 5.45
64 445 | 645 | 2401 5.84
o 128 490 | 725 | 27.8 6.56
256 553 | 791 | 2698 7.08
512 710 | 917 | 3120 8.82

