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ABSTRACT

Decoder-based large language models (LLMs) have proven highly versatile, with
remarkable successes even on problems ostensibly removed from traditional lan-
guage generation. One such example is solving regression problems, where the
targets are real numbers rather than textual tokens. A common approach to use
LLMs on such problems is to perform fine-tuning based on the cross-entropy loss,
and use autoregressive sampling at inference time. Another approach relies on fine-
tuning a separate predictive head with a suitable loss such as squared error. While
each approach has had success, there has been limited study on principled ways of
using decoder LLMs for regression. In this work, we compare different prior works
under a unified view, and introduce regression-aware fine-tuning (RAFT), a novel
approach based on the Bayes-optimal decision rule. We demonstrate how RAFT
improves over established baselines on several benchmarks and model families.

1 INTRODUCTION

Decoder-based large language models (LLMs) (Brown et al., 2020; OpenAI et al., 2023; Anil et al.,
2023; Touvron et al., 2023; Gemini Team et al., 2024; Grattafiori et al., 2024; DeepSeek-AI et al.,
2024) have set new benchmarks in challenging generative tasks (e.g., summarization, translation,
open-ended dialogue). Such models’ versatility has further prompted their exploration for classic
predictive tasks (e.g., classification, regression, ranking) (Liu & Low, 2023; Fernandes et al., 2023;
Qin et al., 2023; Vacareanu et al., 2024b; Yang et al., 2023; Dukić & Snajder, 2024; Lukasik et al.,
2024; Vacareanu et al., 2024a), once the purview of encoder-only models such as BERT (Devlin
et al., 2019). Such exploration is expected to increase given the sustained efforts towards building
ever-larger decoder-based LLMs, with limited parallels in scaling encoder-based models.

Our interest is in the predictive task of natural language regression, where the goal is to predict
a real-valued target given a textual input. This covers important practical applications such as
semantic similarity prediction (Cer et al., 2017), automatic quality assessment of translation (Kocmi
& Federmann, 2023) or written text (Chiang & Lee, 2023), and sentiment analysis (Zhang et al.,
2024). At first glance, it is not apparent how to perform numeric prediction via a model operating
on textual tokens. Existing works have successfully followed two broad approaches. Autoregressive
regression approaches directly predict as text the numeric targets (e.g., predict 12.34 by iteratively
predicting tokens: ’1’, ’2’, ’.’, ’3’, ’4’) or corresponding discretized categories (e.g., predict one
of { "bad", "ok", "good" }) (Fernandes et al., 2023), via either standard autoregressive decoding (Liu
& Low, 2023; Yang et al., 2023) or suitable modifications (Gruver et al., 2023; Lukasik et al., 2024;
Requeima et al., 2024). Such approaches have been explored for both in-context learning, as well
as standard cross-entropy loss fine-tuning (c.f. Figure 1(a)). Predictive head approaches side-step
autoregressive decoding entirely, and instead learn a separate head on representations derived from
the inputs. Common representations include mean-pooled output embeddings (Zhuang et al., 2023),
and the final-position logit for a special token (e.g., <extra_id_0> in T5) (Fernandes et al., 2023).

Both autoregressive and predictive head approaches have proven successful for natural language
regression tasks. However, there has been (to our knowledge) no systematic comparison between
these methods; further, each of them has a conceptual shortcoming. The autoregressive regression
approach does not exploit the numerical nature of the regression targets, and thus does not consider
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(
y∗ −∑y∈Ygrid

p(str(y) | x) · y
)2

− log p(y∗ | x)

... score is

(a) Standard fine-tuning (§2.4)

(
y∗ −∑y∈Ygrid

p(str(y) | x) · y
)2

... score is

(b) RAFT (§4.1)

Figure 1: Illustrative example contrasting approaches to autoregressive regression fine-tuning for a
decoder-only Transformer. We consider an input string x ending with tokens { ‘score’, ‘is’ }, and
a numerical target y∗, which for simplicity we assume to comprise a single string token. With abuse
of notation, we use y∗ as both its numerical value and the corresponding string token. (a) Standard
(CE) fine-tuning optimizes the likelihood − log p(y∗ | x) of individual tokens in the numerical string
representation, essentially treating numeric generation as a classification task. In general, y∗ can have
a multi-digit representation (i.e., y∗1y

∗
2 · · · y∗k), in which case the CE loss is applied over each token.

(b) RAFT leverages the LLM’s predictive distribution over the next numerical token (from some grid
Ygrid) to compute an expected numerical value, and minimizes the squared difference to the target.

the fact that for a target of 1, predicting 11 is worse than predicting 1.1. On the other hand, the
predictive head approach deviates from the pre-training objective typically used in decoder-based
LLMs, viz. next-token prediction (Radford et al., 2018), and thus may not use the model in an optimal
manner. This prompts us to ask: how can we respect both the LLM pre-training objective and the
numerical nature of targets for natural language regression tasks?

In this work, we introduce regression-aware fine-tuning (RAFT), a novel approach to autoregressive
regression which makes use of the numerical nature of the targets. We prove theoretical limitations
of established alternative approaches to autoregressive regression, and prove that RAFT mitigates
them. We systematically compare RAFT against autoregressive and predictive head baselines, and
consider several ablations for understanding the crucial design decisions for making a decoder-based
LLM work under different settings. See Table 1 for an overview of both the previous works and the
approach introduced in this work. Overall, our contributions are as follows:

(i) We identify theoretical limitations of standard approaches to LLM-based regression (§3).
(ii) We propose regression-aware fine-tuning (RAFT), a novel approach to autoregressive regression,

and prove that it mitigates the theoretical limitations of prior works (§4.1). We further present a
unified view of decoder-based LLM regression approaches, capturing both the autoregressive
and the prediction head approaches (§4.2).

(iii) We systematically compare autoregressive regression, predictive head and RAFT approaches
across multiple datasets and LLMs, and consistently find RAFT to be the most performant.
We further attempt to pinpoint the sources of differences in the performance between different
approaches, explicating the design choices behind the effectiveness of RAFT (§5).

2 BACKGROUND

We first introduce notation and review previous works on applying decoder-based LLMs to regression.

2.1 NOTATION AND PROBLEM SETTING

For a finite vocabulary V of tokens (e.g., words in English), let X ⊂ V∗ be a set of inputs comprising
strings of tokens, and Y ⊂ R be a set of real-valued targets. We restrict our consideration to targets
with finite (base-10) bit representations, thus excluding irrational numbers. We further assume that
each y ∈ Y has a unique string representation str(y) ∈ V∗; for example, the integer 1 has the
string encoding "1". Let P denote a ground-truth distribution over X× Y, with the decomposition
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Approach Autoregressive Fine-tuning Inference References

Zero-shot decoding X None Standard decoding Kocmi & Federmann (2023)
Fine-tuning and decoding X Cross-entropy Standard decoding Fernandes et al. (2023)
Zero-shot RAIL X None Regression-aware decoding Lukasik et al. (2024)
Fine-tuning and RAIL X Cross-entropy Regression-aware decoding this work
Predictive head 7 Target metric Point estimate Fernandes et al. (2023)
RAFT X Target metric Regression-aware decoding this work

Table 1: Summary of the approaches to applying decoder-based LLMs to natural language regression
tasks. Previous works rely either on using the model autoregressively (i.e., analogously to how it was
pre-trained) or as an encoder (i.e., an output is constructed based on embeddings or logits obtained for
the inputs). Different training and inference approaches have been considered for both approaches.

P(x, y) = P(x) · P(y | x). The natural language regression problem involves learning a predictor
ŷ : X→ R that minimises the mean squared error over (input, target) pairs drawn from P:

L(ŷ) = E(x,y∗)∼P
[
(y∗ − ŷ(x))2

]
.

The mean squared error is a canonical choice in regression problems (Fernandes et al., 2023). The
Bayes-optimal predictor minimizing the above is ŷ(x) = Ey∗∼P(·|x)[y∗]. Classical natural language
regression problems include sentiment analysis and semantic similarity prediction. More broadly,
many problems can be framed as natural language regression tasks, e.g., by crafting a suitable prompt
that summarizes a raw feature vector into a natural language description (Requeima et al., 2025).

We seek to employ large language models (LLMs) for such regression tasks. An LLM specifies
a distribution p over strings in V∗. Given an input x ∈ X, let p(· | x) denote the corresponding
conditional distribution over possible continuations. Note that it may be possible for p(z | x) > 0
where z ∈ V∗ does not have a numerical representation; we discuss this issue more in Section 2.2.

LLMs are typically pre-trained on large corpora via self-supervised objectives (Radford et al., 2018),
and can perform few-shot or in-context learning given suitably crafted prompts (Brown et al., 2020).
For example, if the goal is to predict the probability that a user will enjoy a movie titled “Cure”, we
may construct an input x = “Hereditary: 0.7 | Ringu: 0.9 | Cure: ”, and probe the LLM’s
estimate of plausible continuations via p(· | x). We next discuss inference (or decoding) procedures
for deriving a predictor ŷ given a pre-trained LLM.

2.2 STANDARD LLM INFERENCE FOR REGRESSION

Standard LLM inference involves predicting numerical targets in a generative manner, by performing
autoregressive decoding to draw a sample from the distribution p(· | x):

ŷAR(x)
.
= float(z)

z ∼ p(· |x).
(1)

Here, z ∈ V∗ is generated autoregressively on a token-by-token basis. Further, float(z) denotes an
operator that converts a given string z (e.g., “12.34”) to a corresponding numeric value (e.g., 12.34);
if z does not have a numeric representation (e.g., “banana”), then we assume that a suitable default
value is returned. Unless otherwise stated, we assume float(z) = 0.0 for z 6∈ Y.

Different algorithms may be used for the autoregressive generation of z, e.g., greedy decoding and
temperature sampling (Naseh et al., 2023). Many such algorithms seek to approximate the mode:

ŷmode(x) := arg max
y∈Y

p(y | x). (2)

Note that one may also forcibly restrict the decoding output to comprise numerical targets, e.g., by
employing a form of constrained decoding (Geng et al., 2023). However, in practice, the targets from
high-quality LLMs tend to be numerical even under zero-shot settings (Lukasik et al., 2024).

2.3 RAIL: REGRESSION-AWARE LLM INFERENCE

Recently, Lukasik et al. (2024) pointed out a limitation of decoding the most likely target when
employing autoregressive models for regression. Decoding of the most likely targets can be shown
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to minimize the 0-1 loss `(y, ŷ) = 1(y 6= ŷ), which may not be well aligned with the square loss
of interest in regression. As a remedy, instead of autoregressive decoding per Equation 1, Lukasik
et al. (2024) proposed the regression-aware inference (RAIL) method, which given a loss ` and model
prediction p(· | x) estimates the Bayes-optimal minimizer of the expected loss: i.e.,

ŷRAIL(x) = arg min
v∈R

Ey∼p(·|x) [`(float(y), v)] , (3)

where float(·) is as per the previous section. For the squared loss `(y, ŷ) = (y − ŷ)2, the optimal
decision rule can be shown to take the following closed-form solution:

ŷRAIL(x) = Ey∼p(·|x) [float(y)] . (4)

Since p(· | x) is a distribution over all possible strings, it is typically intractable to compute the above
expectation exactly; this remains true even if we restrict attention to those strings corresponding to a
valid numerical value (of which there are infinitely many). In practice, Equation 4 can be estimated
either via sampling a finite number of y values, or via scoring of targets. In the latter, suppose we
have some restricted target grid Ygrid ⊂ Y. Then, the RAIL predictor is averaged over Ygrid, yielding:

ŷRAIL(x;Ygrid) =
∑

y∈Ygrid

p(str(y) | x) · y. (5)

Note that
∑
y∈Ygrid

p(str(y) | x) 6= 1 is possible, so the above is technically not an expectation;
however, in practice, high-quality LLMs tend to concentrate most mass on numerical targets.

There are several choices of Ygrid available to the practitioner. For discrete targets Y of moderate size,
one may simply choose Ygrid = Y. For bounded Y, one choice is equally spaced targets covering the
range of Y, e.g. integers or fixed-precision numbers (e.g. 2 decimal points) (Lukasik et al., 2024).

2.4 STANDARD FINE-TUNING FOR REGRESSION

The above approaches operate on a pre-trained LLM via few-shot prompting. However, it has been
consistently observed that direct fine-tuning of LLMs on the task of interest can be beneficial (Liu
et al., 2022). Fine-tuning seeks to adapt an LLM to the target distribution P by minimizing

L(p) = E(x,y∗)∼P [`(y∗, p(· | x))] (6)

for a suitable loss function ` : Y×∆V∗ → R, where ∆S denotes the set of distributions over a set S.
Given a sample S ∈ (X× Y)N of N (input, target) pairs drawn from P, the empirical loss is

L̂(p) =
1

N

∑

(x,y∗)∈S
`(y∗, p(· | x)). (7)

A standard choice of ` is the log-loss (also referred to as cross-entropy):

`(y∗, p(· | x)) = − log p(str(y∗) |x), (8)

recalling that str(y∗) denotes the string representation of a numeric target y∗ ∈ R. More generally,
one may use categorical descriptions of the target after discretising to some finite grid Ygrid ⊂ Y;
e.g., { "very bad", "bad", "ok", "good", "very good" } (Fernandes et al., 2023).

A model obtained from standard fine-tuning can rely on either of the above decoding procedures
(standard decoding §2.2 or RAIL §2.3) at inference time.

2.5 PREDICTIVE HEAD APPROACHES TO REGRESSION

Predictive head approaches are an alternative to standard fine-tuning. Here, one constructs a predictor
ŷ(x) by utilizing activations or embeddings from a forward pass of the LLM. Abstractly, we first ex-
tract an input representation Φ(x) ∈ Rq , which is then fed into a regressor s : Rq → R. Canonically,
the regressor is a linear model, yielding ŷ(x) = b+ w>Φ(x) for learnable w ∈ Rq, b ∈ R.

Various choices for Φ(x) have been considered in previous works. To describe these, we need some
additional notation. Let V .

= |V|. Given a string x ∈ V∗ of length L, a Transformer-based language
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model (Vaswani et al., 2017) first constructs an input embedding εin(x) = Einεoh(x) ∈ RD×L, where
Ein ∈ RD×V is a matrix of D-dimensional token embeddings, and εoh(x) ∈ RV×L is the one-hot
embedding of each token in x. Next, this input embedding is passed through a stack of attention
and MLP layers, to produce the output embedding εout(x) ∈ RD×L. One further projects this to the
vocabulary space to produce output logits fout(x) = E>outεout(x) ∈ RV×L, where Eout ∈ RD×V .
Finally, one transforms these to a distribution pout(· | x) = softmax(fout(x)) ∈ [0, 1]V×L over
possible tokens via the softmax operator. For certain models (e.g., Gemma), one ties Ein = Eout.

Given the above, one may extract an input representation through multiple means, most commonly
pooling or selection of the output token embeddings, output logits, or output probabilities. For
example, we may consider the final-token logit activation for a special token v∗ ∈ V (Fernandes et al.,
2023; Zhuang et al., 2023), or mean-pooling the output token embeddings (Zhuang et al., 2023).

Given a suitable predictor, one may directly optimize the mean squared error during fine-tuning. Note
here that no autoregressive decoding is conducted at inference.

3 LIMITATIONS OF STANDARD FINE-TUNING FOR REGRESSION

We analyze limitations of standard fine-tuning for autoregressive regression (proofs in Appendix A).

3.1 LIMITATIONS OF STANDARD FINE-TUNING AND STANDARD DECODING

A natural baseline is to employ cross-entropy based fine-tuning by minimizing Equation 7, and to
then apply standard decoding (see Equation 2). Since the log-loss is strictly proper, minimizing
Equation 7 recovers the Bayes distribution P(· | x) in the population limit (Gneiting & Raftery,
2007). In practice, however, the fine-tuned model distribution p(· | x) may deviate from P(· | x). The
following Lemma shows that even when the fine-tuned model distribution p(· | x) perfectly fits P, the
standard decoding predictor can incur a high squared error compared to the Bayes-optimal predictor.

Lemma 1. Assume |Y| ≥ 2 and 0 ∈ Y, with N .
= max(Y). For any ε ∈ [0, 0.5], there exist P, p such

that: Ex
[
DKL

(
P(·|x), p(·|x)

)]
≤ ε, and Ex

[(
Ey∗∼P(·|x)[y∗]− ŷmode(x)

)2] ≥
(
N
2

)2
.

Thus, using cross-entropy fine-tuning with standard decoding is not well-aligned with the eventual
goal of approximating Ey∗∼P(·|x)[y∗]. Simply stated, although the distance between a predicted
probability distribution p, and the true distribution P may be small (or even 0), the squared error
between the mean of the distribution P and the mode of the distribution p can be disproportionately
large. This is because the mode of a distribution can be far from its mean, leading to a high error.

3.2 LIMITATIONS OF STANDARD FINE-TUNING AND RAIL DECODING

Given that the standard decoding can lead to arbitrary large errors due to the predictor being ill suited
for regression tasks, one may expect a better approach would be to employ cross-entropy based
fine-tuning by minimizing Equation 7, and to then apply the RAIL decoding (see Equation 5). This
approach indeed mitigates the issue of standard decoding being misaligned with the Bayes-optimal
predictor. However, we can show that when the fine-tuned model distribution p(· | x) deviates from
P by even a small error, the predictor can lead to a significant squared error.

Lemma 2. Assume |Y| ≥ 2 and 0 ∈ Y, with N .
= max(Y). For any ε ∈ [0, 0.5], there exists P, p

such that: Ex
[
DKL

(
P(·|x), p(·|x)

)]
≤ ε, and Ex

[(
Ey∗∼P(·|x)[y∗]− ŷRAIL(x)

)2] ≥
(
N
4

)2
ε.

Thus again, using cross-entropy fine-tuning with RAIL might not align with the goal of approximating
Ey∗∼P(·|x)[y∗]. Intuitively, cross-entropy fine-tuning treats all “wrong” predictions the same, as it is
unaware of the difference in the magnitude of the numerical values represented by the tokens; e.g., if
100 and 1, 000 are two incorrect predictions each represented by single tokens, then placing a large
mass on the token representing 100 is penalized similarly to placing a large mass on the token 1, 000.

One solution to the above issue is to directly employ the RAIL predictor in the fine-tuning process.
This requires going beyond the log-loss in Equation 8, as we detail next.
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4 REGRESSION-AWARE AUTOREGRESSIVE LLM TRAINING

To overcome the drawbacks of using RAIL with traditional fine-tuning, we propose a novel regression-
aware objective that directly minimizes the squared loss on the RAIL predictor.

4.1 REGRESSION-AWARE LLM FINE-TUNING

As an alternative to the standard log-loss, we propose the following.

Definition 1. Define the regression-aware fine-tuning (RAFT) loss as follows:

`RAFT(y∗, p(· | x)) =
(
y∗ − Ey∼p(·|x)[float(y)]

)2
. (9)

Equally, this uses the RAIL predictor ŷRAIL(x) to construct a numeric value from the LLM, and
measures the square loss against the target y∗. Given a finite grid Ygrid ⊂ Y and fine-tuning set S, the
empirical loss corresponding to Equation 9 is:

L̂RAFT(p;Ygrid) =
1

N

∑

(x,y∗)∈S


y∗ −

∑

y∈Ygrid

p(str(y) | x) · y




2

. (10)

Note that computing this loss only requires scoring each y ∈ Ygrid under the model; we do not need
to perform any explicit sampling or decoding during training.

Compared to standard fine-tuning with RAIL decoding, we attempt to avoid the issue in Lemma 2 by
seeking to directly minimize Ex

[(
Ey∗∼P(·|x)[y∗]− ŷRAIL(x)

)2]
. Surprisingly, despite computing

ŷRAIL(x) over the restricted target space Ygrid, under mild conditions the minimizer of Equation 9
exactly mimics the Bayes-optimal predictor over the full space Y.

Lemma 3. Suppose Y ⊂ R, and arg miny∈Y ∈ Ygrid and arg maxy∈Y ∈ Ygrid. Let p∗(· | x) be the
minimizer of the RAFT loss from Definition 1 over all distributions p(· | x). Then the RAIL predictor
ŷRAIL(x;Ygrid) =

∑
y∈Ygrid

p∗(str(y) | x) · y constructed from p∗(· | x) satisfies:

ŷRAIL(x;Ygrid) = Ey∗∼P(·|x)[y∗].

The intuition behind this result is that any numerical target in Y can be expressed by a convex
combination of the smallest and largest numbers in Y, and can thus be realized by the RAIL predictor.

In Appendix C we contrast RAFT loss against a variant optimizing regression metrics via sampled
model predictions, following the Minimum Bayes Risk prediction literature (Kaiser et al., 2000;
Shannon, 2017; Prabhavalkar et al., 2018).

4.2 CONTRASTING AND UNIFYING RAFT AND PREDICTIVE HEAD APPROACHES

Our discussion of RAFT highlighted its close relation to autoregressive RAIL decoding, which
appears rather different to predictive head approaches. However, in the case of a single-digit grid
Ygrid (wherein each element corresponds to a single token in V), the predictor function for RAFT
bears similarities to the predictive head approaches. Note that if y ∈ Ygrid corresponds to a single
token, by definition p(str(y) | x) = pout(· | x)str(y),L. Then, the RAIL predictor becomes

ŷRAIL(x;Ygrid) =
∑

y∈Ygrid

y · p(str(y) | x) =
∑

y∈Ygrid

y · pout(· | x)str(y),L.

We may now contrast RAFT against various predictors considered in prior work (see Table 2 for a
summary). In particular, it is instructive to compare this with the final-token logit activation method
from Table 2. Both take the following form for an activation Ψ and weight vector w ∈ RV:

ŷ(x) = b+ w>Ψ (fout(x):,L) .

Contrasting the RAFT and the final-token logit method, we observe the following differences:
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Category Approach Predictor function ŷ(x) Fine-tuning loss

Autoregressive
(prior works)

Standard decoding zero-shot (Kocmi & Federmann, 2023) arg maxy∈Y p(y |x) N/A
RAIL zero-shot (Lukasik et al., 2024)

∑
y′∈Y y

′ · p(y′|x) N/A
Standard fine-tuning and standard decoding (Fernandes et al., 2023) arg maxy∈Y p(y |x) − log p(y∗ |x)

Autoregressive
(this work) RAIL standard fine-tuning

∑
y′∈Y y

′ · p(y′|x) − log p(y∗ |x)

RAFT
(this work)

General RAFT
∑
y′∈Y y

′ · p(y′|x) (ŷ(x)− y∗)2
Single-digit RAFT

∑
y′∈Ydigit

y′ · pout(x)y′,L (ŷ(x)− y∗)2

Predictive head
(prior works)

Final-token logit (Fernandes et al., 2023) b+ fout(x)v∗,L (ŷ(x)− y∗)2
Pooled output embeddings (Zhuang et al., 2023) b+ w>pool(εout(x)) (ŷ(x)− y∗)2

Predictive head
(this work)

MLP on the final-token logits b+ MLP(E>outεout(x):,L) (ŷ(x)− y∗)2
Probability-vector projection b+ w>pout(x):,L (ŷ(x)− y∗)2
Learnable regression-aware training

∑
y′∈Y wy′ · pout(x)y′,L (ŷ(x)− y∗)2

Table 2: Approaches for applying decoder-based LLMs to regression. Here, p(· | x) denotes a
distribution over possible outputs given an input string x, and ŷ(x) ∈ R a predictor given by a
predictive head approach. b and w are learnable parameters, v∗ ∈ V is a fixed token, pool is a pooling
operator, L is the length of input x, and Ydigits denotes all digits covering the range of targets (unless
otherwise stated, ’1’-’5’). The first 4 rows show the autoregressive baselines: standard decoding
(Section 2.2), RAIL zero-shot (Section 2.3), standard fine-tuning and decoding (Section 2.4), RAIL
with standard fine-tuning (Section 3.2). The next 2 rows show RAFT: the general autoregressive
form (Y = Ygrid for general output spaces), and the single digit version (e.g. Y = {1, 2, 3, 4, 5}). The
following 2 rows present the prior works from Fernandes et al. (2023); Zhuang et al. (2023). The last
3 rows present new predictive head approaches that attempt to mimic the behavior of RAFT.

• Activation: for single-digit RAFT, Ψ is the softmax activation that converts fout(x) to the proba-
bility vector pout(· | x). For the final-token logit, Ψ is the identity activation.

• Weight vector: for the final-token logit, w is a one-hot vector with 1 corresponding to the special
token position. For single-digit RAFT, wv = float(v) for each v ∈ V; note that, as a result,
positions corresponding to non-digits have weight 0.

• Initialization: another important factor is that the RAFT predictor at initialization exactly co-
incides with RAIL decoding, and thus, forms a strong predictor for zero-shot inference with
LLMs (Lukasik et al., 2024). By contrast, most predictive head approaches will incur a high error
at initialization due to deviating from the next token prediction task. Therefore, RAFT can be
seen as a predictive head approach with strong performance at initialization, potentially making
optimization easier; indeed, we empirically observe RAFT to converge faster compared to the
baselines (see Figure 4 and Figure 5 in Appendix E.7).

In light of the close similarities between RAFT and the final-token logit approach, it is prudent to
carefully analyze these differences and identify whether any of these choices play an important role
in RAFT’s performance. Therefore, we introduce the following new predictive head variants:

• MLP on final-token logits: this is a variant of the final-token logit method, wherein a 2-layer MLP
with a non-linear activation (sigmoid) is employed on the entire final-token logit vector, rather
than selecting the logit for a single special token:

ŷ(x) = b+ MLP(fout(x):,L). (11)

• Learnable-RAFT: this is a variant of RAFT, wherein the weights over the output model probabili-
ties are learned, rather than being fixed to the vector wv = float(v):

ŷ(x) =
∑

y′∈Y
wy′ · pout(x)str(y′),L (12)

The learnable-RAFT variant adds more flexibility to the predictor function ŷ over the vanilla RAFT
method. However, as with other predictive head methods, it deviates from the next-token prediction
pre-training task. Which of these two factors — predictor flexibility, and alignment to the pre-training
task — is the most important? To answer this question, we compare learnable-RAFT against RAFT,
and also experiment with fine-tuning from a randomly initialized (as opposed to a pre-trained) model.
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Dataset Model size Zero-shot
standard decoding

Zero-shot
RAIL

Standard fine-tuning
standard decoding

Standard fine-tuning
RAIL

Predictive head RAFT

Wireless 2B 0.88 0.88 0.70 ± 0.01 0.67 ± 0.01 0.51 ± 0.01 0.47 ± 0.01
(Amazon) 9B 0.89 0.88 0.78 ± 0.05 0.86 ± 0.03 0.46 ± 0.00 0.45 ± 0.00

Personal care 2B 1.00 0.97 0.77 ± 0.01 0.74 ± 0.01 0.52 ± 0.02 0.49 ± 0.00
(Amazon) 9B 0.97 0.95 0.73 ± 0.14 0.59 ± 0.01 0.48 ± 0.01 0.47 ± 0.01

Music 2B 1.30 1.29 1.16 ± 0.11 0.88 ± 0.12 0.52 ± 0.00 0.50 ± 0.00
(Amazon) 9B 1.29 1.29 0.83 ± 0.35 0.61 ± 0.02 0.50 ± 0.00 0.47 ± 0.00

STSB 2B 1.10 1.05 0.59 ± 0.01 0.57 ± 0.00 0.54 ± 0.00 0.54 ± 0.01
9B 1.37 1.29 0.58 ± 0.00 0.53 ± 0.00 0.52 ± 0.00 0.51 ± 0.01

Table 3: RMSE across datasets, methods, and Gemma-2 models of varying sizes. Fine-tuning
methods report mean ± std dev from model retraining. See Table 10 (Appendix) for Gemma-2 27B.

5 EXPERIMENTAL RESULTS

We now present experiments and ablations comparing the autoregressive regression, predictive head
and RAFT approaches on natural language regression datasets. We make the following main empirical
findings: (i) RAFT outperforms all autoregressive regression and predictive head baselines across
datasets and models; (ii) ablations indicate the importance of aligning fine-tuning to the pre-training
loss; (iii) RAFT tends to work well when the grid Ygrid corresponds to digit tokens.

5.1 EXPERIMENT SETTINGS

Datasets. We use the following natural language regression datasets, with RMSE as the main metric:

(i) US Amazon reviews, where we aim to predict the 5-star rating for a product review (Ni et al.,
2019). We consider a few categories from the Amazon reviews datasets, each forming a separate
dataset: Wireless, Music, Personal products. We use 1,500 examples for the test set (after
Lukasik et al. (2024)), 1,500 for validation and 10,000 examples for training.

(ii) Semantic Textual Similarity Benchmark (STSB) (Cer et al., 2017), comprising of sentence pairs
human-annotated with a similarity score from 0 to 5. To measure the impact of varying the
dataset size, we also consider 1,000 examples for training (STSB 1K; see Table 8 in Appendix).

(iii) MovieLens-1M, where we construct a movie rating prediction task following Luo et al. (2024).

We summarize the dataset statistics and the prompts in Table 6 and Table 7 (Appendix).

Models. We experiment with Gemma-2 (Team et al., 2024) and PaLM-2 (Anil et al., 2023) instruction-
tuned model families of different sizes (see Appendix D for training details). Where standard
deviations are reported, fine-tuning is performed 3 times.

Methods. We compare the following methods: (1) autoregressive baselines (Section 2.2), RAIL zero-
shot (Section 2.3), RAIL with cross-entropy fine-tuning (Section 3.2); (2) predictive head approaches
from Fernandes et al. (2023); Zhuang et al. (2023); (3) the new RAFT method (Section 4.1); (4) new
predictive head approaches that attempt to mimic the behavior of RAFT (Section 4.2). In zero-shot
standard decoding, we use greedy decoding; in zero-shot RAIL, the predictor is obtained by sampling
32 targets with temperature T = 1 (Lukasik et al., 2024). We also run ablations with replacing causal
attention masking with bi-directional attention masking, following previous works on classification
with decoder-based LLMs (Dukić & Snajder, 2024; Qorib et al., 2024).

Implementation of the RAFT objective. An important practical consideration is the grid Ygrid.
Unless otherwise stated, we choose Ygrid = { 1, 2, 3, 4, 5 } as targets from all considered datasets
belong to [0, 5]. For Amazon reviews datasets, Ygrid = Y, while for STSB, Ygrid ⊂ Y (as the targets
take floating point values). Recall that RAFT can represent real valued targets even under such a
choice for Ygrid (see Lemma 3). Nonetheless, we analyze the impact of Ygrid on the results.
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Figure 2: Comparing standard fine-tuning, predictive head and RAFT approaches on MovieLens
(left) and the synthetic “Original #1” (right) datasets with Gemma-2 2B. RAFT outperforms the
baselines on MovieLens. RAFT also improves over the baselines on the synthetic dataset “Original #
1” when using a pre-trained — but not a randomly initialized — checkpoint. (Best viewed in color.)

Approach Gemma-2 2B Gemma-2 9B

Standard fine-tuning 0.83 0.82

Special-token logit (Fernandes et al., 2023) 0.51 0.46

Special-token logit + 2-layer MLP 0.48 0.46

Pooled output embeddings (mean) (Zhuang et al., 2023) 0.50 0.47

Pooled output embeddings (min) 1.38 1.18

Pooled output embeddings (max) 1.32 1.13

RAFT 0.47 0.45
Learnable-RAFT over all tokens 0.48 0.45
Learnable-RAFT over digits ’1’-’5’ 0.47 0.45

Table 4: RMSE on Gemma-2 models on Amazon Wireless across predictive head and RAFT variants.
RAFT outperforms the different predictive head variants. Additionally, we find that RAFT with
learnable decision rule (learnable-RAFT) does not improve over RAFT with the fixed decision rule.

5.2 RAFT LEADS TO BETTER AUTOREGRESSIVE REGRESSION

We compare different autoregressive and prediction head approaches across across Gemma-2 models
of varying sizes in Table 3. We report additional results from PaLM-2 models on STSB in Table 11
(Appendix) to verify the findings across an additional model family. We make several observations.

First, we verify the value of both (1) use of an appropriate decoding strategy (greedy versus regression-
aware inference), and (2) fine-tuning over zero-shot inference. Indeed, we find that zero-shot greedy
decoding, RAIL (see Section 2.3), standard fine-tuning with greedy decoding (see Section 3.2) and
standard fine-tuning with RAIL inference (see Section 4.1) work increasingly better.

Second, we find that the predictive head approach outperforms the autoregressive baselines, including
those that perform standard fine-tuning. This corroborates Lemma 1 and Lemma 2, which pointed at
the limitations of standard fine-tuning due to it being misaligned with the squared error.

Finally, we find RAFT to outperform the predictive head and the autoregressive approaches across
almost all settings. RAFT outperforming the autoregressive approaches corroborates the posited
importance of aligning the fine-tuning loss in regression tasks to a regression loss. RAFT outper-
forming the predictive head approach corroborates the posited importance of not deviating from the
autoregressive setting, which aligns with the next-token prediction pre-training task.

To further evaluate RAFT, we next contrast the key approaches (RAFT, predictive head and standard
fine-tuning) on a large scale dataset for the movie recommendation problem (MovieLens-1M) with
Gemma-2 2B model. We again find RAFT to improve over the baselines (see Figure 2(a)).
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Figure 3: Comparing standard fine-tuning, predictive head and RAFT variants on Amazon Wireless.
We find that changing causal to bi-directional attention masking does not significantly affect the
results of the predictive head and RAFT, while expectedly making standard fine-tuning untrainable
(due to the model being able to attend to the predicted target). We also analyze the effect of random
initialization, and find all methods to perform worse. RAFT improves over predictive head when
initializing from a pretrained checkpoint, but not when initializing from a random checkpoint,
empirically corroborating the argument for better alignment of RAFT to the pre-training task.

5.3 ABLATING DESIGN CHOICES IN RAFT AND PREDICTIVE HEAD APPROACHES

Predictive head non-linear variant. We experiment with two variants of learnable-RAFT (see
Equation 12): one where the weight vector is learnt for all vocabulary entries, and the second, where
only entries corresponding to digits ’1’-’5’ are learnt, while other entries are fixed to 0. For both
variants we found it necessary to initialize from the solution corresponding to RAFT, as random
initialization did not lead to good training dynamics. Overall, as reported in Table 4, we find both
approaches to not improve over RAFT. We also consider adding a non-linear function over the
special-token logit in the form of a two-layer MLP (see Equation 11). This again does not lead
to improvements over RAFT. Both results demonstrate that it may be more important to align the
fine-tuning to the pre-training loss, as opposed to only try make the predictor more expressive.

Predictive head design choices. We experiment with additional predictive head variants, including
pooling over the full sequence of token embeddings from the LLM, instead of taking the final token
activation. As shown in Table 4, we find it to not lead to significantly better results than the special-
token logit method. Additionally, as seen on Figure 3, we find bi-directional masking of attention
does not significantly affect the results of the predictive head and RAFT, while expectedly making
standard fine-tuning untrainable (due to the model being able to attend to the predicted target during
training). Overall, none of the predictive head variants improves over the RAFT approaches, again
suggesting the importance of not deviating from the pre-training loss in fine-tuning.

Role of pre-training. To shed light on the importance of aligning the method with the pre-training
task, we experiment with fine-tuning from a randomly initialized checkpoint (see Figure 3). We
find that standard fine-tuning does not converge to a reasonable result, RAFT converges to a poor
predictor, and predictive head fares the best. We next run experiments on a synthetic regression
dataset from Vacareanu et al. (2024a) (the Original #1 dataset) and report results in Figure 2(b). We
corroborate the finding that RAFT improves over predictive head when initialized from a pre-trained
checkpoint, and not when the model weights are initialized randomly. This supports the hypothesis
that RAFT outperforms predictive head due to alignment with the pre-training task.

6 DISCUSSION AND FUTURE WORK

We introduced regression-aware fine-tuning (RAFT), a new method for fine-tuning decoder-based
LLMs to predict numeric targets. We demonstrated empirically that RAFT can consistently out-
perform existing methods that perform standard cross-entropy fine-tuning, as well as methods that
construct separate predictive heads. An interesting direction for study would be applications of such
techniques to problems like time-series forecasting, as well as problems of ordinal regression.
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A PROOFS OF THEORETICAL RESULTS

A.1 PROOF FOR LEMMA 1

Lemma (Restated). Assume |Y| ≥ 2 and 0 ∈ Y, with N .
= max(Y). For any ε ∈ [0, 0.5], there exist

P, p such that: Ex
[
DKL

(
P(·|x), p(·|x)

)]
≤ ε, and Ex

[(
Ey∗∼P(·|x)[y∗]− ŷmode(x)

)2] ≥
(
N
2

)2
.

Proof. Pick any α ∈ [0, 1]. Recall that N .
= max(Y). Consider a distribution P where, for any

example x ∈ X, P(0 | x) = 1+0.5α
2 , P(N | x) = 1−0.5α

2 , and all other targets attain probability 0.

Next, consider the model distribution: p(0 | x) = 1−0.5α
2 , p(N | x) = 1+0.5α

2 , and all other targets

attain probability 0. Then, for any x ∈ X, we have: (ŷmode(x)− Ey∗∼P[y∗])2 =
(
N
2

)2 (
1 + α

2

)2 ≥(
N
2

)2
and ‖P(·|x)− p(·|x)‖1 = α. Using the reverse Pinsker’s inequality (Sason, 2015), we further

have

DKL
(
P(·|x), p(·|x)

)
≤ log

(
1 +
‖P(·|x)− p(·|x)‖21

miny∈Y p(y|x)

)
= log

(
1 +

2α2

1− 0.5α

)
≤ log

(
1 + 4α2

)
,

where we use the fact that α ≤ 1.

Setting α = 1
2

√
eε − 1, for any ε ∈ [0, log(5)], we have:

Ex
[
DKL

(
P(·|x), p(·|x)

)]
≤ ε; Ex

[
(ŷmode(x)− Ey∗∼P[y∗])2

]
≥
(
N

2

)2

.

A.2 PROOF FOR LEMMA 2

Lemma (Restated). Assume |Y| ≥ 2 and 0 ∈ Y, with N .
= max(Y). For any ε ∈ [0, 0.5], there exists

P, p such that: Ex
[
DKL

(
P(·|x), p(·|x)

)]
≤ ε, and Ex

[(
Ey∗∼P(·|x)[y∗]− ŷRAIL(x)

)2] ≥
(
N
4

)2
ε.

Proof. Pick any α ∈ (0, 1]. Recall that N .
= max(Y). Consider a distribution P such that, for any

example x ∈ X, P(0 | x) = 1+0.5α
2 , P(N | x) = 1−0.5α

2 , and all other targets attain probability 0.

Next, consider the model distribution: p(0 | x) = 1−0.5α
2 , p(N | x) = 1+0.5α

2 , and all other

targets attain probability 0. Then, for any x ∈ X:
(
Ey∗∼P(·|x)[y∗]− ŷRAIL(x)

)2
=
(
αN
2

)2
and

‖P(·|x)− p(·|x)‖1 = α. Using the reverse Pinsker’s inequality (Sason, 2015), we further have

DKL
(
P(·|x), p(·|x)

)
≤ log

(
1 +
‖P(·|x)− p(·|x)‖21

miny∈Y p(y|x)

)
= log

(
1 +

2α2

1− 0.5α

)
≤ log

(
1 + 4α2

)
,

where we use the fact that α ≤ 1.

Setting α = 1
2

√
eε − 1, for any ε ∈ [0, log(5)], we have Ex

[
DKL

(
P(·|x), p(·|x)

)]
≤ ε, and:

Ex
[(
Ey∗∼P(·|x)[y∗]− ŷRAIL(x)

)2]
=

(
N

4

)2

(eε − 1) ≥
(
N

4

)2

(1 + ε− 1) =

(
N

4

)2

ε,

where we use the fact that eε ≥ 1 + ε.

A.3 PROOF FOR LEMMA 3

Proof. For simplicity, we avoid explicitly stating conversions from float to string, and vice versa. For
any x, we wish to minimize:

Ey∗∼P(·|x)





 ∑

y∈Ygrid

p(y|x) · y − y∗



2

 .
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Equating the derivative w.r.t. p(y|x) to 0, we derive the first-order condition for optimality:

2 · Ey∗∼P(·|x)




 ∑

y′∈Ygrid

p(y′|x) · y′ − y∗



 · y = 0,∀y ∈ Ygrid.

So the optimal solution is achieved when:
∑

y′∈Ygrid

p(y′|x) · y′ = Ey∗∼P(·|x)[y∗].

From the conditions in the lemma, we have that the smallest and largest numbers in Y are present
in Ygrid. Since Ey∗∼P(·|x)[y∗] can be expressed as a convex combination of the smallest and largest
numbers in Y, it can also be expressed as a convex combination of numbers in Ygrid. Hence, there
exists a probability distribution p∗(y|x) such that ŷRAIL(x;Ygrid) =

∑
y′∈Ygrid

p∗(y′ | x) · y′ =

Ey∗∼P(·|x)[y∗], thus satisfying the condition for optimality.
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B RELATED WORKS

Encoder-based models (e.g., BERT) relying on the masked language modeling pretraining tasks have
been primarily employed to discriminative tasks (including classification and regression) (Devlin
et al., 2019). Decoder-based large language models (LLMs) (e.g., GPT, LLaMa) on the other hand,
mostly relying on the next-token prediction pretraining task, showed state of the art results across
a range of generative tasks. (OpenAI et al., 2023; Anil et al., 2023; Touvron et al., 2023; Gemini
Team et al., 2024) While there is an on-going research regarding whether the encoder or decoder
architecture is better tailored to predictive tasks (Nityasya et al., 2023; Li et al., 2023; Dukić &
Snajder, 2024; Qorib et al., 2024), in this work we focus on the question of how do we best apply
decoder models to predictive tasks?

Generative models have been successfuly applied to numeric prediction, where a number is generated
autoregressively token-by-token. For example, Gruver et al. (2023); Requeima et al. (2024) considered
it in a zero-shot learning setup for time series prediction, Vacareanu et al. (2024a) experimented
with zero-shot regression problems, and Liu & Low (2023); Yang et al. (2023) considered the
autoregressive finetuning over numerical targets applied to arithmetic tasks. Multiple prior works
used predictive distribution from an LLM towards improving the prediction, including the median
rule (Gruver et al., 2023; Requeima et al., 2024) and more broadly, Bayes-optimal rule optimizing
a regression metric of choice (Lukasik et al., 2024). The importance of tokenizing the numerical
targets into individual digits has been raised by previous works (Liu & Low, 2023; Yang et al., 2023),
and importance of prompt selection was analyzed by Requeima et al. (2024).
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C COMPARISON TO MBR-BASED FINE-TUNING

The RAFT loss may be contrast against ideas in the literature on Minimum Bayes Risk (MBR)
prediction literature (Kaiser et al., 2000; Shannon, 2017; Prabhavalkar et al., 2018), which optimize
non-regression metrics via approximation using sampled model predictions. For the squared loss,
this may be formulated as follows:
Definition 2. Define the sampled regression-aware loss as follows:

`MBR(y∗, p(· | x)) = Ey∼p(·|x)
[
(y∗ − float(y))

2
]
. (13)

Compared to the loss in Equation 9, the key difference is that the expectation over the model outputs
appears outside the square loss. A naïve empirical implementation of this objective requires explicitly
sample responses from the model p(· | x); this can be expensive and incur high variance. As with
ŷRAIL(x;Ygrid), one may instead consider a practical variant that approximates the expectation using
a restricted grid of targets Ygrid ⊂ Y:

L̂MBR(p;Ygrid) =
1

N

∑

(x,y∗)∈S

∑

y∈Ygrid

p(str(y) | x) · (y∗ − y)
2 (14)

Even this variant has a notable disadvantage: the minimizer of Equation 14 is a one-hot distribution
that places all its probability mass on one of the targets in Ygrid ⊂ Y:
Lemma 4. Let y∗(x) = Ey∗∼P(·|x) [y∗] denote the Bayes-optimal prediction for input x. We
assume P(· | x) is supported on numerical targets only. The minimizer of the approximate sampled
regression-aware loss in Equation 14 over all model distributions p(· | x) is of the form:

p(y | x) =

{
1 if y = arg miny′∈Ygrid

‖y′ − y∗(x)‖2
0 else

.

Therefore, the quality of the minimizer p(· | x) entirely depends on how well Ygrid approximates the
original target space Y. For example, if Ygrid is a set of integers, the minimizer of Equation 14 will
also be limited to predicting integers, even when the original target space Y contains floating-point
numbers of arbitrary precision. As shown in Lemma 3, RAFT does not suffer from the loss of
precision resulting from the use an approximate target space, and also avoids the high variance
associated with sampling. In Table 5, we experimentally verify better performance of RAFT over the
MBR-based fine-tuning, and unless otherwise stated, we focus our attention to RAFT. Also, see §E.8
for an analysis of the RAFT predictor in terms of the learnt distributions over tokens.

We next prove Lemma 4.

Proof. Notice that:

Ey∗∼P(·|x)
[
Ey∼p(·|x)

[
(y − y∗)2

]]
= Ey∗∼P(·|x)

[∑

y

p(y|x) · (y − y∗)2
]

=
∑

y

p(y|x) · Ey∗∼P(·|x)
[
(y − y∗)2

]
.

Since this is a convex combination, the optimal value is achieved for p to be a one-hot vector with a 1
on the index arg miny Ey∗∼P(·|x)

[
(y − y∗)2

]
. We thus want a y that minimizes:

Ey∗∼P(·|x)
[
(y − y∗)2

]
= Ey∗∼P(·|x)

[
y2 + (y∗)2 − 2 · y · y∗

]
.

Equivalently, we want a y that minimizes:

y2 − 2 · y · Ey∗∼P(·|x) [y∗] .

or equivalently:

y2 − 2 · y · Ey∗∼P(·|x) [y∗] + (Ey∗∼P(·|x) [y∗])2 = (y − Ey∗∼P(·|x) [y∗])2.
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Method/ablation RMSE

Sampled regression aware (Definition (2)) 0.98
Regression aware (Definition (1)) 0.40

Table 5: Root mean squared error (RMSE) on STSB across regression aware approaches and their
variants on Gemma-2 9B.

We next provide a general version of Lemma 4.
Lemma 5. The minimizer of the following objective:

Ey∗∼p∗(·|x)Ey∼p(·|x) [`(y∗, y)] ,

for a loss function ` : Y × Y → R+, is a one-hot distribution over targets such that all probability
mass is on a target ŷ ∈ Y which minimizes Ey∗∼p∗(·|x) [`(y∗, ŷ)].

Proof. The proof is elementary. Expanding the above objective:

Ey∗∼p∗(·|x)Ey∼p(·|x) [`(y∗, y)] = Ey∼p(·|x)Ey∗∼p∗(·|x) [`(y∗, y)]

=

∫

y∈Y
Ey∗∼p∗(·|x) [`(y∗, y)] · p(y|x) · dy

≥
∫

y∈Y
Ey∗∼p∗(·|x) [`(y∗, ŷ)] · p(y|x) · dy

= Ey∗∼p∗(·|x) [`(y∗, ŷ)]

=

∫

y∈Y
Ey∗∼p∗(·|x) [`(y∗, y)] · p(y|x) · dy,

where the third step follows from the fact that ŷ minimizes Ey∗∼p∗(·|x) [`(y∗, ·)]; on the final step,
p(·|x) is a probability distribution that has a point mass on ŷ.
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D ADDITIONAL EXPERIMENTAL DETAILS

We update all parameters during the fine-tuning. We summarize specific settings below. For Gemma-2,
we use the following settings:

• We use dropout rate 0.1 and batch size 16.
• We train for 200K steps and select the best step using the held out validation set (see Table

7 for details on the train/test/validation splits).
• We use a constant learning rate schedule. We select the learning rate value over the validation

set from the values: 10−4, 10−5, 10−6.
• We use the Adafactor optimizer to save memory during the fine-tuning (we find Adam to

not perform better). The parameters for Adafactor are: ε1 = 10−30, ε2 = 10−3, decay rate
= 0.8.

For PaLM-2, we use the above settings, except we use batch size 64 and no dropout, and train for 5K
steps and report the results from the last checkpoint.

For MovieLens, we use AdamW optimizer and sweep learning rates from the range {10−4, 10−5,
10−6}. We use a cosine decay schedule for the learning rate, with 10K steps of warmup from learning
rate 10−8 .

In Table 6, we report the prompts we used in our experiments, and in Table 7 we report the dataset
statistics.

Dataset Input prompt Target
range

STSB What is the sentence similarity between the following two sentences measured on a scale of 0 to 5:
{Sentence #1}, {Sentence #2}. The similarity measured on a scale of 0 to 5 with 0 being unrelated
and 5 being related is equal to

[0, 5]

Amazon reviews product_category: {product category} product_title: {product title} review_date: {review date}
review_headline: {review headline} review_body: {review body} Question: In a star rating of 1, 2, 3,
4, 5, the higher the better, what would be the star rating of the above review? Please only give me the
final rating and I do not need any explanations.

1, 2, 3,
4, 5

MovieLens-1M Instruction: Predict the rating of a target movie based on the user’s historical movie ratings. Rating
History: {Rating history} Candidate Item: {Candidate Item}. Output:

1, 2, 3,
4, 5

Synthetic (Original
#1 from (Vacareanu
et al., 2024a))

The task is to provide your best estimate for ’output score’ based on ’input score’. Please provide that
and only that, without any additional text. Input score: {Input score}. Output score:

[0, 9]

Table 6: Prompts used for different datasets and the corresponding target ranges. Curly braces denote
inputs specific to an input example. For Synthetic (Original #1 from (Vacareanu et al., 2024a)) we
normalize the targets to correspond to [0, 9].

Dataset Train size Validation size test size

Wireless 10,000 1,500 1,500
Personal care 10,000 1,500 1,500
Music 10,000 1,500 1,500
STSB 4,887 863 1,500
STSB 1k 1,000 863 1,500
MovieLens-1M 797,758 10,145 10,145
Synthetic (Original #1 from (Vacareanu et al., 2024a)) 10,000 1,000 1,000

Table 7: Summary of dataset statistics.
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E ADDITIONAL EXPERIMENTAL RESULTS

We provide additional experimental results corroborating the findings in the main paper.

E.1 STSB-1K

In Table 8, we report results from sub-sampling the training set for STSB down to 1K examples. We
find similar trends as observed in the case of other datasets in Table 3.

Model size Zero-shot
standard decoding

Standard fine-tuning
standard decoding

Predictive head RAFT

2B 1.10 0.61±0.01 0.58±0.01 0.58±0.00
9B 1.31 0.57±0.01 0.57±0.01 0.56±0.01

Table 8: RMSE on STSB-1K across methods, and Gemma-2 models of varying sizes. Fine-tuning
methods report mean ± std dev from model retraining.

E.2 SYNTHETIC DATA

For a simple setting, we consider a synthetic regression dataset from Vacareanu et al. (2024a) referred
to as the Original #1 dataset by the authors. We report results in Table 9 and corroborate our
observation from the language regression task experiment that RAFT improves over the predictive
head approach when initialized from a pre-trained checkpoint, and not when the model weights are
initialized randomly. This provides additional support for our hypothesis that the alignment of RAFT
to the next-token prediction pre-training task is the underlying reason for its better performance over
the predictive head.

initialiation model size autoregressive predictive head RAFT

Pre-trained
checkpoint

2B 0.018 0.013 0.005
9B 0.017 0.017 0.006

Random
2B 2.536 0.327 1.704
9B 2.536 0.147 1.092

Table 9: The role of initialization to the pre-trained checkpoint on a synthetic regression dataset
from Vacareanu et al. (2024a) (the Original #1 dataset). We compare RMSE across different
Gemma model sizes, and across different fine-tuning methods: autoregressive, predictive head and
autoregressive regression aware. We corroborate our observation from language regression tasks that
RAFT improves over the predictive head approach when initialized from a pre-trained checkpoint,
and not when model weights are initialized randomly.

E.3 GEMMA-2 27B AND PALM-2 MODELS

We report results on Gemma-2 27B across all dataset in Table 10 and on PALM-2 models on STSB
in Table 11, corroborating the findings of RAFT improving in most settings.

E.4 COMPARISON TO ENCODER-BASED BASELINES

In Table 12, we report results with additional baselines that use a prediction head over RoBERTa
representation for the input sequence. We include: mean-pooling and CLS token variants, and both
frozen RoBERTa weights and unfrozen weights in the fine-tuning. We also include the SMART
method (Jiang et al., 2019). In keeping with previous work, in addition to RMSE, we also report
performance on the Pearson and Spearman metrics for STSB (Jiang et al., 2019) (where available).
We find RAFT to surpass all the included baselines.
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dataset zero-shot autoregressive predictive head RAFT

Wireless 0.87 0.83 0.50 0.44
Personal care 0.94 0.89 0.50 0.47
Music 1.26 1.23 0.47 0.49
STSB 1k 1.29 0.60 0.56 0.55
STSB 1.29 0.62 0.51 0.48

Table 10: Comparison of RMSE across datasets for Gemma-2 27B. In most cases, RAFT outperforms
all other methods.

model family model size autoregressive predictive head RAFT

PALM-2 1B 0.79 ± 0.02 0.61 ± 0.01 0.62 ± 0.01
PALM-2 24B 0.63 ± 0.03 0.56 ± 0.00 0.53 ± 0.00

Table 11: Comparison of root mean squared error (RMSE) on STSB across different PALM-2 model
sizes, and across different fine-tuning methods: autoregressive, predictive head and autoregressive
regression aware. Each model is ran for 3 times to obtain standard deviations. For PALM-2 1B,
we find no difference in the performance of predictive head and RAFT, and both outperform the
autoregressive approach. For PALM-2 24B, we see a significant improvement from RAFT over both
the autoregressive and the predictive head approaches.

E.5 CHOICES FOR TOKENS IN RAFT

Sensitivity to the grid size Following Lemma 3, ŷRAIL(x) can express any numerical target in the
population limit, even with a coarse grid. Empirically, however, one might expect different grids to
affect the results. We now assess this point on the Amazon reviews Wireless dataset, comparing the
following choices for Ygrid:

(1) { ’1’, ’2’, ’3’, ’4’, ’5’ } (the default choice for RAFT),

(2) { ’5’ } (viz. max(Y)),

(3) { ’1’,’9’ } (the smallest and largest digit in V),

(4) { ’4’, ’5’ } (the two largest digits in Y for all datasets),

(5) { ’7’,’8’,’9’ } (the two largest digits in V).

Method/ablation Parameter count RMSE Pearson corr. Spearman corr.

RoBERTa Base CLS 110M 0.64 90.84 90.59
RoBERTa Large CLS 356M 0.59 91.99 92.02
RoBERTa Large mean-pooling 356M 0.63 91.65 91.56
RoBERTa Large mean-pooling freeze 356M 1.08 72.72 74.16
RoBERTa Large CLS freeze 356M 1.30 56.48 54.76

SMART BERT (Jiang et al., 2019) 356M - 90.00 89.40
SMART RoBERTa (Jiang et al., 2019) 356M - 92.80 92.60

Gemma-2 2B RAFT 2B 0.54 93.55 93.22
Gemma-2 9B RAFT 9B 0.51 94.30 94.18

Table 12: Parameter counts and performance metrics on STSB across baselines. Results from SMART
(Jiang et al., 2019) taken as reported in the paper (RMSE was not reported).
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Dataset Model size ’1’-’5’ ’5’ ’1’,’9’ ’4’,’5’ ’7’,’8’,’9’

Wireless 2B 0.47±0.01 0.48±0.01 0.48±0.00 0.48±0.00 0.48±0.01
9B 0.45±0.01 0.45±0.01 0.47±0.02 0.46±0.00 0.47±0.01

Personal care 2B 0.49±0.00 0.49±0.00 0.49±0.02 0.49±0.00 0.49±0.00
9B 0.47±0.01 0.48±0.01 0.48±0.02 0.47±0.00 0.47±0.00

Music 2B 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.50±0.01
9B 0.46±0.01 0.47±0.00 0.48±0.02 0.47±0.00 0.48±0.00

Table 13: Comparison of RMSE (mean ± std dev) across variants of RAFT with varying sizes of the
grid Ygrid. The choice of ’1’-’5’ outperforms the alternatives.

In Table 13, we report the results for different choices for Ygrid. We find that, aligned with Lemma 3,
limiting the grid does not significantly impact the results. However, when comparing the number of
steps to convergence (see Table 21), we find that the default choice (1) in most cases tends to converge
faster to the best solution than other choices. One explanation for this finding is the following. As
shown by Lukasik et al. (2024), the choice of { ’1’, ’2’, ’3’, ’4’, ’5’ } yields a reasonable result
for the zero-shot RAIL approach, and thus it provides a good starting point for fine-tuning. Recall
that the zero-shot RAIL corresponds to the RAFT approach at step 0 of training, since the predictors
for each are equivalent.

Sensitivity to the grid token indices The next question we pose is about the importance of strictly
sticking to numeric tokens: what would happen if the RAFT predictor ŷRAFT(x) used non-numeric
tokens? To analyze this question, let us consider a more general form of the predictor:

ŷRAFT−NN(x) =
∑

y∈Ygrid

p(token(y) | x) · y, (15)

where token(y) ∈ V denotes a token of choice corresponding to the numerical target y.

We keep Ygrid as composed of the digits { ’1’, ’2’, ’3’, ’4’, ’5’ }, and use the predictor in
Equation 15 with the following choices for tokens:

(1) token for each digit becomes an alphabet token starting with ’a’ and ending with ’a’,

(2) each token is a digit (i.e., ’1’ becomes ’5’, ’2’ becomes ’4’),

(3) we only consider digit ’5’.

As shown in Table 14, in most settings, the choice of digits { ’1’, ’2’, ’3’, ’4’, ’5’ } is as
performant as any other choice. In certain settings, we even find a large drop in performance (e.g., the
choice of characters or months). However, by enlarge, we find the results do not worsen significantly
when different tokens are used.

E.6 CHOICES FOR LOSS, NORMALIZATION AND TOKEN INITIALIZATION IN RAFT

In Table 15 we compare the MSE loss to distillation style log loss on STSB. The target is scaled to be
between 0 and 1 for this set of experiments. The log loss is defined as−y∗ log p1−(1−y∗) log(1−p1)
where p1 is the probability of digit ’1’. We find that both the MSE loss and the log loss yield similar
results, and that scaling the range of the targets does not negatively affect the performance.

We next analyze whether enforcing the probabilities over the grid to sum to 1 (by normalizing them by
the sum of the probabilities of all numbers in Ygrid) can improve the performance of RAFT. Table 16
shows that applying normalization to the probabilities for numbers in Ygrid does not significantly
affect the results.

In Table 17, we compare three initialization methods for the embedding of numbers in autoregressive
and RAFT methods. The tokens used are of granularity of 0.1 for both autoregressive and RAFT
methods, except for RAFT ’1’-’5’, where digits from 1 to 5 are used for the grid (granularity 1.0).
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dataset model size digits ’1’–’5’ characters ’a’-’e’ reversed digits ’January’-’May’

Wireless 2B 0.47± 0.01 0.48± 0.01 0.48± 0.00 0.83± 0.01

9B 0.45± 0.00 0.46± 0.00 0.46± 0.01 0.47± 0.01

Personal care 2B 0.49± 0.00 0.48± 0.00 0.48± 0.01 0.85± 0.00

9B 0.47± 0.01 0.47± 0.00 0.48± 0.01 0.48± 0.01

Music 2B 0.50± 0.00 0.50± 0.01 0.50± 0.01 0.50± 0.00

9B 0.46± 0.00 0.48± 0.01 0.47± 0.01 0.61± 0.25

Table 14: Comparison of RMSE (mean ± std dev) across variants of RAFT where different tokens
are used for the prediction formula of RAFT. Each experiment repeated for 3 times. In most settings,
the choice of digits ’1’–’5’ is at least as performant as any other choice. In certain settings, we find
a large drop in performance compared to the choice of digits (i.e., months ’January’-’May’.

unscaled targets targets scaled to [0, 1]

model size predictive head RAFT RAFT ’0’ and ’1’ log loss

1B 0.61 ± 0.01 0.62 ± 0.01 0.63 ± 0.01 0.63 ± 0.01
24B 0.56 ± 0.00 0.53 ± 0.00 0.54 ± 0.01 0.53 ± 0.00

Table 15: Comparision of RMSE (mean ± std dev) on the STSB dataset for MSE loss and log loss
when the target is scaled to be between 0 and 1. The models are PALM-2 1B and 24B models.
The MSE loss uses digit ’0’ and ’1’ to compute the predicted value. The log loss is in the form
−y∗ log p1 − (1− y∗) log(1− p1) where p1 is the probability of digit ’1’.

Overall, we find that RAFT is less sensitive to the initialization method than the autoregressive
approach.

In Table 18, we experiment with random initialization for the tokens in the RAFT grid. We find
random initialization to lead to worse results compared to using pre-trained token embeddings.

We next analyze the impact of the choice of Ygrid in computing the RAIL predictor. To this end, we
vary the granularity of Ygrid by constructing a list of equally spaced numbers covering the range of Y.
For example, choosing granularity to be 0.1 when Y = [0, 5] yields Ygrid = {’0.0’, ’0.1’, ’0.2’,
. . . , ’4.9’, ’5.0’ }. In our implementation, all numbers in Ygrid are represented by single tokens
that we add to the vocabulary. We initialize the token embedding with either the First or the Average
method. In the First method, we initialize the embedding with the embedding of the first digit of the
number (e.g. use token ’0’ embedding for the number ’0.1’). In the Average method, we initialize
the embedding with the average of the embedding from the constituent tokens (e.g. use the average
embeding of token ’0’, ’.’ and ’1’ for the number ’0.1’.) We report the results on the STSB datasets
with PALM-2 1B model in Table 19 and find no significant difference in the results across different
choices for the granularity of Ygrid.

Additionally, in Table 19 we also include the autoregressive method utilizing additional tokens from
Ygrid as constructed with the methodology outlined above (i.e., with varying granularity). Here,
contrary to RAFT, we find the initialization method to affect the results, with First performing better
than Average. Note that the autoregressive method is equivalent to the generative classification
from (Fernandes et al., 2023), where the classes correspond to the numbers from the grid.

Lastly, we would like to note that in the case of generative classification, there is a trade-off between
how fine-grained the grid is and how many examples per token are observed during training. In
particular, if the classes are too coarse, we observe a loss in performance. On the other hand, if
the classes are too fine-grained, there may be insufficient training examples per label to learn the
embeddings for new tokens. For example, with granularity 0.05, 17 out of the 101 numbers in the
grid do not appear in the training data. This can also lead to a loss in performance.
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model size not normalized normalized

1B 0.63 ± 0.00 0.63 ± 0.02
24B 0.53 ± 0.00 0.53 ± 0.01

Table 16: The effect of normalization of grid token probabilities in RAFT on the STSB dataset. The
models are PALM-2 1B and 24B models.

initialization autoregressive RAFT RAFT ’1’-’5’

Zero 1.20 ± 0.01 0.62 ± 0.00 0.63 ± 0.00
First 0.80 ± 0.02 0.63 ± 0.00 0.62 ± 0.02
Average 0.98 ± 0.01 0.64 ± 0.01 0.61 ± 0.01

Table 17: Comparison of different initialization methods for embeddings for tokens corresponding
to numbers in autoregressive and RAFT methods on STSB dataset with PALM-2 1B model. We
consider granularity 0.1 for constructing the tokens for autoregressive and RAFT reported in the first
2 columns, whereas the final column reports RAFT with tokens 1 to 5. Zero denotes initialization with
0 values, First denotes the initialization with the embedding corresponding to the first token of the
number (e.g. use token ’0’ embedding for the number ’0.1’), and Average denotes the initialization
with the embedding corresponding to the different tokens in the number (e.g. average embeddings
for tokens ’0’, ’.’ and ’1’ when initializing the embedding for the number ’0.1’). RAFT is less
sensitive to the initialization method. We find the performance does not significantly worsen with
different initialization methods compared to using the pre-trained token embeddings at initialization
(see Table 15).

RAFT with ’1’-’5’ RAFT with ’5’
baseline random baseline random

0.63 ± 0.00 0.66 ± 0.02 0.62 ± 0.01 0.64 ± 0.01

Table 18: RMSE across different initialization (baseline and random) of the tokens in RAFT. We find
random initialization of tokens in the RAFT grid to hurt the performance. The model is the PALM-2
1B model.

autoregressive RAFT ’1’-’5’
granularity First Average First Average

0.05 0.85 ± 0.01 1.11 ± 0.01 0.61 ± 0.01 0.63 ± 0.00
0.1 0.80 ± 0.02 0.98 ± 0.01 0.63 ± 0.00 0.64 ± 0.01
0.2 0.83 ± 0.02 0.89 ± 0.01 0.64 ± 0.01 0.66 ± 0.02
0.5 0.84 ± 0.01 0.87 ± 0.01 0.63 ± 0.01 0.63 ± 0.02
1.0 0.81 ± 0.01 0.85 ± 0.01 0.62 ± 0.02 0.61 ± 0.01

Table 19: Comparison of RMSE on autoregressive and RAFT methods with different granularity
of tokens. We append tokens that represent numbers with various granularity. For example, with
granularity 0.05, the tokens are ’0.00, ’0.05, ’0.10’, . . . , ’5.00’. For autoregressive, this is equivalent
to generative classification method from (Fernandes et al., 2023). First and Average denotes different
ways to initialize the embeddings of the tokens, with details described in the caption of Table 17. The
model is the PALM-2 1B model.
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model size ’1’–’5’ ’5’ ’1’–’9’ ’b’-’f’ ’5’–’1’ ’’Jan.’-’May’’

1B 0.63 ± 0.00 0.62 ± 0.01 0.63 ± 0.01 0.61 ± 0.01 0.62 ± 0.01 0.64 ± 0.01
24B 0.53 ± 0.00 0.53 ± 0.01 0.53 ± 0.00 0.54 ± 0.02 0.54 ± 0.00 0.55 ± 0.01

Table 20: Comparison of RMSE (mean ± std dev) on the STSB dataset across variants of RAFT
where different tokens are used to construct the grid for computing the RAFT predictor. The models
are the PALM-2 24B and 1B models.

dataset model size ’1’-’5’ ’5’ ’1’,’9’ ’4’, ’5’ ’7’,’8’,’9’

Wireless 2B 1,000 3,000 2,000 1,600 2,200
9B 1,600 2,800 3,400 3,200 4,200

Personal care 2B 2,200 2,200 2,400 1,600 2,200
9B 4,200 2,000 6,200 400 2,400

Music 2B 800 1,200 1,800 1,800 1,800
9B 1,000 2,200 3,000 1,600 3,000

Table 21: Comparison of the number of steps to convergence of RAFT where different number of
numerical targets are used for the grid in RAFT. Results on the Amazon Wireless dataset.
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Figure 4: Comparison of the number of steps to convergence of RAFT and predictive head, with
different percentage of the training set.

E.7 CONVERGENCE SPEED OF RAFT

In Table 21 we report the number of training steps to convergence to the best result on the held out
validation set of different methods. We can see that RAFT with digits ’1’-’5’ it majority of cases
converges faster than other choices for the grid.

In Figure 4 we compare the number of steps to convergence of RAFT and predictive head on STSB.
The figure shows that RAFT converges with fewer number of steps across different percentages of
training data used for training.

In Figure 5 we report RMSE on the test set as a function of the training step. We find that compared to
predictive head, RAFT starts from a much lower RMSE score (as it corresponds to the RAIL method
before training), and then converges in fewer steps.
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Figure 5: RMSE on the test set as a function of the training step on Amazon Wireless for Gemma-2
2B. Compared to predictive head, RAFT starts from a much lower RMSE at step 0, and then converges
to its best RMSE in fewer steps.

Figure 6: The histogram of per-example change (after vs. before fine-tuning) in entropy over the
probabilities for the digits in the RAFT predictor. The entropy on average increases after the RAFT
fine-tuning, meaning that the probabilities are overall more spread over the digits than prior to RAFT
fine-tuning.

E.8 DISTRIBUTION OVER TOKENS IN THE RAFT PREDICTOR

We next investigate the distribution over tokens in the RAFT predictor. We find that, while the error
decreases with training, the entropy increases after RAFT training, as we show in Figure 6. This
corresponds to the model on average spreading the probabilities over tokens more than prior to fine-
tuning, as shown for specific examples in Figure 7. We posit this to be beneficial, and indeed, RAFT
fine-tuning does not restrict uncertainty of the model, contrary to the MBR fine-tuning (compare
Lemma 3 and Lemma 4).
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(a) Example #1

(b) Example #2

Figure 7: Comparison of the distribution over digit tokens in RAFT predictor (Gemma-2 2B on
STSB) before and after fine-tuning. We find the entropy over the digit token probabilities overall
increases after fine-tuning with the RAFT objective.
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