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Supplementary Material
MvPOP Validity
Lemma 2. Ifl € {Sy — g}, then:

So+Px > 110

where > applies to each element of the matrices.
Proof. LetS :=Sg + P2, ie.

S[b,z] = So(x) + Y Pulb, alo(a, z)

a€A

Then, S[b, z] represents the state of variable x € V before
one of the occurrences of action b in [, because ;[b, a] = 1
iff a is before b in {. This holds for all occurrences of b in {
because there is a row in S for each such occurrence. Since
So + P > 11, then S[b, ] > (b, x) for all b occurring in
{ and all variables z € V. O

Theorem 2. For an NAP {So — g}.a, a multi-set (A, p),
and an MvPOP 3 over (A, ) with max. g:

Ifforallz € V : So + (P+ VX)L > 11
then, lin(*PB) C {So — g} a

Proof. Let ST := Sg + PBX. We have proven in Lemma 2
that in any linearization [ where all actions incomparable to
b occur after b, we get ST[b, z] > (b, ). However, we need
to ensure that the same holds for linearizations where part of
the incomparable actions to b occur before b.

Let S := So + (B + YF)Y = S + YFX. Then, for all
beAxeV:

ey

S[b,z] = ST [b, 2] + Z 0¥ b, alo(a, ) 2)
acA

There are two cases for J¥ b, al:

e Ifa ¢, band w(b,z) # —oo, then, o(a,z) > 0, ie.,
none of the incomparable occurrences of a decrements
the value of x. Therefore, if ST[b,z] > w(b,x), it also
holds after adding any number of a occurrences. This is
the case where UF [b, a] = 0.

e If a ~, b, we need to consider the worst-case lineariza-
tion, i.e., where all incomparable a’s occur before b. The
value ¥ [b, a] in this case is the maximal number of in-
comparable a’s occurrences to b.

From (1), (2), we know that

St[b, ] + Z 0¥ b, alo(a,z) > (b, x)
acA

Therefore, even the worst-case linearizations w.r.t. variable
z € V, i.e., where the effects of all violating, incompara-
ble actions Y., U7 [b, ao(a, x) are counted before b, the
precondition of b w.r.t. z still holds. Since (1) is quantified
over all variables x € V, thus, any linearization | € lin(p)
isin {Sy — g}a. O

Further Preliminaries
For a relaxed solution B over a multi-set A = (A, u), let
S?a be the state before applying a € A, i.e., forallz € V:

S?a(x) = SO(I) + Z m[aa b]a(ba :L‘)

beA

Then, the number of valid repetitions of a in *J is:
u¥(a) ;= max{i € N:i < Plg,a], 5%, +i-ak a}

where S+0-a:=S,and S+i-a:=(S+(i—1)-a)+a
for all ¢ € N>y and states S : V' — Z. Now, the maximal
(w.r.t. number of a repetitions) validly reachable state in *J3

is denoted S fa, where forall x € V:
ST, (2) = %, () + uP(a)o(a, 2)

And the number of violated repetitions of a € A in arelaxed
solution % is v¥ (a) := Blg, a] — u¥(a).

Fora € A, letU, = {z € V : o(a,z) > 0}. Ad-
ditionally, for a multi-set A = (A4, ), let A U {a} be the
multi-set with one additional sequential repetition of a, i.e.,
A U{a} = (A, ) with ¢/ (b) = u(b) forallb € A\ {a},
and ¢/ (a) = p(a) + 1. Finally, with A \ {a}, we denote the
NAD A with the action a removed.

For a € A, we call an MvPOP ‘P8 over A an a-relaxed
solution if (a, a) is the only pair that causes a threat in 9.

Maintainable NAP

Theorem 3. Fora NAP {Sy — ¢} .4, a maintainable action
a € A, and a function p* : Tip(a) — N that defines an up-
per bound for the number of sequential b repetitions needed
for all b € Tig(a). We can extend the definition set of p* to
a by:

W) =1+ S )

beTy (a)

Proof. For any two actions a,b € A, if a ¢ b, the number
of sequential repetitions needed of a does not depend on b.
If a ~ band B[b,a] = 0, then, either T¥[b,a] = P[g, a]
or 3%[b,a] = 0. In the first case, all occurrences of a are
incomparable to b in 3. Therefore, all @ occurrences can be
promoted over all b occurrences to solve a threat (a,b). Fi-
nally, for 3% [b, a] = 0, no ocurrences of @ are incomparable
to b in *3. Therefore, since a is maintainable, i.e., whenever
a is applicable once, it can be repeated arbitrarily often with
one sequential repetition, we conclude that sequential repe-
titions of a are required only to differentiate between a oc-
currences after and before each sequential repetition of an
action b only if a Zos b. O

Beneficially Maintainable NAP

Lemma 4. There exists a polynomial time reduction of PP
to bmNAP.

Proof. Remember that we can translate any PP domain to a
NAD in polynomial time. Additionally, notice that, in propo-
sitional planning, any repetition is beneficial. We can intu-
itively validate that from our understanding of PP because
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an activation effect p of a cannot be reversed by an ef-
fect —p even if it occurs many times before that a. E.g., if
{p} = eff(a) = pre(g), and {—p} = eff(b), then, after ap-
plying the propositional plan [b, b, b, a, g], the effect p of a
still satisfies the precondition for g even if b deactivates it
arbitrarily many times before. In NAP, this can be done by
using the correcting actions ¢,, c—p, €.g., [b,b,b, a, g] in PP
translates to [b, b, ¢y, b, cp, a, g] in NAP. O

In the next theorem, we prove that knowing if a mNAP
problem is unsolvable is decidable by proving that the NAP
as Search algorithm must terminate after a finite number of
steps.

Lemma 5. For an action a € A with a beneficial repetition
policy and a multi-set Ay = (A, o). Let Po be an a-relaxed
solution over Ay, and let A; D A;_1 U{a} foralli e N. If
{So — g} .4 = 0, then, there exists k € N s.1. no a-relaxed
solutions By, over Ay, exist.

Proof. Assume that for all £ € N, there exists an a-relaxed
solution B, over Ay. Notice that if {Sy — g}.4 = 0, then,
for all k£ € N, Py, is not valid; however, since it is a-relaxed,
there exists b, € Ag and z;, € Uy s.t.

¥ b < b, ) =
Lo (zr) < m(bg, 1) < beg}ggan( ,T) =1m

Remember that a has a beneficial repetition policy, i.e., we
can ensure that the states Sfc’{ are increasing with respect

to all x € U,, which contradicts that m is constant w.r.t.
keN. O

With this last result, we now how beneficial repetition
policies behave and can ensure termination of the search.

Theorem 4. bimNAP is PSPACE-complete.

Proof. Inclusion of PP proves the PSPACE-hardness. We
prove by induction over the number of non-maintainable
actions that a polynomial space algorithm solves bmNAP.
First, we proved that a polynomial space algorithm exists
if all actions are maintainable. Let a be an additional non-
maintainable action for the induction step. Given a relaxed
solution, we can transform it into an a-relaxed solution by
the induction hypothesis. It suffices to prove that a NAP
problem {Sy — g} 4 can be decomposed into problems that
can be solved with a polynomial number of sequential a rep-
etitions. Consider the following algorithm: For each i € N,
if {S; = g}a\fay = 0 but {S; — g} 4 has an a-relaxed
solution, repeat a beneficially to reach S;1; and continue,
else terminate. This search terminates if the NAP is solvable
after finding the minimal number of a repetitions needed. If
the NAP is unsolvable, the search terminates as shown in the
last lemma. O

Finitely Maintainable NAP

In this subsection, we deal with plans as words over A.
Therefore, it is important to define validity of these words.

Definition 19. For any NAD A = (A, Vo, ), and any ac-
tions a,b € A, the NAD can be extended by the action ab,
denoted by AU {ab} := (AU {ab},V,o',7"), where o', 7’

are extension of o, to the new action ab, and are defined
for every variable x € V as:
 The effects are summed.:
o'(ab,z) = o(a,x) + o(b, ).
* The preconditions are backwardly propagated:
7' (ab, x) = max{m(a,z), (b, z) — o(a,z)}.

Notice that if Sy F ab, then Sy F a, and So + a F b,
meaning that the plan ab is valid from Sp.

Let us focus on the number of violated repetitions v¥ (a)
that are produced during the search for the number of se-
quential repetitions of the non-maintainable action a € A.
Lemma 6. For non maintainable action a € A, let Py, P
be two successive a-relaxed solutions of {So — g}.a over
A = (A, u), Au{a}, respectively. I[fv¥1(a) > v¥°(a) and
[SO — g}jU{a} =, then, {SO — g}A = 0.

Proof. Leti; := u¥i(a);j € {0,1}. Notice that there exist
plans [, wo,u € A*, s.t. #4(wo) = 0,1 := woa®oloalyg,

and [ € lin(Po). If I € {So — g}.4, we have a contradiction

l e[Sy — g}ﬁu{a} = (. Otherwise, assuming that there

exists a minimal solution I’ € {Sy + wpa®™ — ga wrt. a,
then, there exists plans wy, v € A* s.t. I’ = wya"u'g, with
#4(w1) = 0. Therefore, forall z € V:

So(z) +o(wo,z)+o(wy, )+ (ig+i1)o(a,z) > m(u'g,x)

If I” = woa®™u'g € {So — g}a, then, I’ is not minimal,
therefore, I” & {Sop — g}a ,i.e., there exists x € V s.t.:

So(x) + o(wo, ) + igo(a,z) < w(u'g, z)
By combining the last two inequalities:
iro(a,z) + o(wy,x) >0
Since 3 is an a-relaxed solution:
So(x) +PBolg, alo(a, z) + o(wg, ) > m(ug,x)
By summing the last two inequalities:
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So()+(i1+PBolyg, a])o(a, z)+o(wy, x)+o (w1, x) > w(ug, x)

Notice that if I’ := woaw,a¥119%ug € lin(P;), we have
a contradiction for I/ € {Sy — g}., because in that case

= [SO N g}jU{a}

w.I.t. a:

= (. Therefore, since 7 is minimal

So(z)+(i0+PB1g, a]—1)o(a, x)+o(wy, x)+o(wy, z) < 7(ug, )

By combining the last two inequalities, we get

v¥1(a) — 1 =Pilg,a] — i1 — 1 < Polg, a] —io = v*°(a)
which contradicts v¥1 (a) > v¥°(a). O

For this reason, we can abort the search whenever the
number of violated a repetitions in the a-relaxed solution
increases after adding a sequential repetition of a.

Theorem S. fmNAP is decidable.

Proof. Notice that a de-violating repetition policy guaran-
tees termination because the number of violated copies even-
tually decreases. Since we can prune if that number in-
creases as proven in the last lemma, we ensure termination
of the search. ]
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