
Supplementary Material
MvPOP Validity
Lemma 2. If l ∈ {S0 → g}A, then:

S0 +PlΣ ≥ Π

where ≥ applies to each element of the matrices.

Proof. Let S := S0 +PlΣ, i.e.:

S[b, x] = S0(x) +
∑
a∈A

Pl[b, a]σ(a, x)

Then, S[b, x] represents the state of variable x ∈ V before
one of the occurrences of action b in l, because Pl[b, a] = 15

iff a is before b in l. This holds for all occurrences of b in l
because there is a row in S for each such occurrence. Since
S0 +PlΣ ≥ Π, then S[b, x] ≥ π(b, x) for all b occurring in
l and all variables x ∈ V .

Theorem 2. For an NAP {S0 → g}A, a multi-set (A,µ),10

and an MvPOP P over (A,µ) with max. g:

If for all x ∈ V : S0 + (P+VP
x )Σ ≥ Π

then, lin(P) ⊆ {S0 → g}A
(1)

Proof. Let S+ := S0 + PΣ. We have proven in Lemma 2
that in any linearization l where all actions incomparable to
b occur after b, we get S+[b, x] ≥ π(b, x). However, we need
to ensure that the same holds for linearizations where part of15

the incomparable actions to b occur before b.
Let S := S0 + (P + VP

x )Σ = S+ + VP
x Σ. Then, for all

b ∈ A, x ∈ V :

S[b, x] = S+[b, x] +
∑
a∈A

VP
x [b, a]σ(a, x) (2)

There are two cases for IPx [b, a]:

• If a ̸∼x b and π(b, x) ̸= −∞, then, σ(a, x) > 0, i.e.,20

none of the incomparable occurrences of a decrements
the value of x. Therefore, if S+[b, x] ≥ π(b, x), it also
holds after adding any number of a occurrences. This is
the case where VP

x [b, a] = 0.
• If a ∼x b, we need to consider the worst-case lineariza-25

tion, i.e., where all incomparable a’s occur before b. The
value VP

x [b, a] in this case is the maximal number of in-
comparable a’s occurrences to b.

From (1), (2), we know that

S+[b, x] +
∑
a∈A

VP
x [b, a]σ(a, x) ≥ π(b, x)

Therefore, even the worst-case linearizations w.r.t. variable30

x ∈ V , i.e., where the effects of all violating, incompara-
ble actions

∑
a∈A VP

x [b, a]σ(a, x) are counted before b, the
precondition of b w.r.t. x still holds. Since (1) is quantified
over all variables x ∈ V , thus, any linearization l ∈ lin(P)
is in {S0 → g}A.35

Further Preliminaries
For a relaxed solution P over a multi-set A = (A,µ), let
SP
<a be the state before applying a ∈ A, i.e., for all x ∈ V :

SP
<a(x) := S0(x) +

∑
b∈A

P[a, b]σ(b, x)

Then, the number of valid repetitions of a in P is:

uP(a) := max{i ∈ N : i ≤ P[g, a], SP
<a + i · a ⊨ a}

where S + 0 · a := S, and S + i · a := (S + (i− 1) · a) + a
for all i ∈ N≥1 and states S : V → Z. Now, the maximal
(w.r.t. number of a repetitions) validly reachable state in P

is denoted SP
>a, where for all x ∈ V :

SP
>a(x) := SP

<a(x) + uP(a)σ(a, x)

And the number of violated repetitions of a ∈ A in a relaxed
solution P is vP(a) := P[g, a]− uP(a).

For a ∈ A, let Ua := {x ∈ V : σ(a, x) > 0}. Ad-
ditionally, for a multi-set A = (A,µ), let A ∪ {a} be the 40

multi-set with one additional sequential repetition of a, i.e.,
A ∪ {a} = (A,µ′) with µ′(b) = µ(b) for all b ∈ A \ {a},
and µ′(a) = µ(a) + 1. Finally, with A \ {a}, we denote the
NAD A with the action a removed.

For a ∈ A, we call an MvPOP P over A an a-relaxed 45

solution if (a, a) is the only pair that causes a threat in P.

Maintainable NAP

Theorem 3. For a NAP {S0 → g}A, a maintainable action
a ∈ A, and a function µ∗ : TP(a) → N that defines an up-
per bound for the number of sequential b repetitions needed
for all b ∈ TP(a). We can extend the definition set of µ∗ to
a by:

µ∗(a) := 1 +
∑

b∈TP(a)

µ∗(b)

Proof. For any two actions a, b ∈ A, if a ̸∼ b, the number
of sequential repetitions needed of a does not depend on b.
If a ∼ b and P[b, a] = 0, then, either IP[b, a] = P[g, a] 50

or IP[b, a] = 0. In the first case, all occurrences of a are
incomparable to b in P. Therefore, all a occurrences can be
promoted over all b occurrences to solve a threat (a, b). Fi-
nally, for IP[b, a] = 0, no ocurrences of a are incomparable
to b in P. Therefore, since a is maintainable, i.e., whenever 55

a is applicable once, it can be repeated arbitrarily often with
one sequential repetition, we conclude that sequential repe-
titions of a are required only to differentiate between a oc-
currences after and before each sequential repetition of an
action b only if a ≾P b. 60

Beneficially Maintainable NAP

Lemma 4. There exists a polynomial time reduction of PP
to bmNAP.

Proof. Remember that we can translate any PP domain to a
NAD in polynomial time. Additionally, notice that, in propo- 65

sitional planning, any repetition is beneficial. We can intu-
itively validate that from our understanding of PP because



an activation effect p of a cannot be reversed by an ef-
fect ¬p even if it occurs many times before that a. E.g., if
{p} = eff(a) = pre(g), and {¬p} = eff(b), then, after ap-70

plying the propositional plan [b, b, b, a, g], the effect p of a
still satisfies the precondition for g even if b deactivates it
arbitrarily many times before. In NAP, this can be done by
using the correcting actions cp, c¬p, e.g., [b, b, b, a, g] in PP
translates to [b, b, c¬p, b, c¬p, a, g] in NAP.75

In the next theorem, we prove that knowing if a mNAP
problem is unsolvable is decidable by proving that the NAP
as Search algorithm must terminate after a finite number of
steps.

Lemma 5. For an action a ∈ A with a beneficial repetition80

policy and a multi-set A0 = (A,µ0). Let P0 be an a-relaxed
solution over A0, and let Ai ⊇ Ai−1 ∪ {a} for all i ∈ N. If
{S0 → g}A = ∅, then, there exists k ∈ N s.t. no a-relaxed
solutions Pk over Ak exist.

Proof. Assume that for all k ∈ N, there exists an a-relaxed
solution Pk over Ak. Notice that if {S0 → g}A = ∅, then,
for all k ∈ N, Pk is not valid; however, since it is a-relaxed,
there exists bk ∈ A0 and xk ∈ Ua s.t.

SPk
>a (xk) < π(bk, xk) ≤ max

b∈A,x∈Ua

π(b, x) =: m

Remember that a has a beneficial repetition policy, i.e., we85

can ensure that the states SPk
>a are increasing with respect

to all x ∈ Ua, which contradicts that m is constant w.r.t.
k ∈ N.

With this last result, we now how beneficial repetition
policies behave and can ensure termination of the search.90

Theorem 4. bmNAP is PSPACE-complete.

Proof. Inclusion of PP proves the PSPACE-hardness. We
prove by induction over the number of non-maintainable
actions that a polynomial space algorithm solves bmNAP.
First, we proved that a polynomial space algorithm exists95

if all actions are maintainable. Let a be an additional non-
maintainable action for the induction step. Given a relaxed
solution, we can transform it into an a-relaxed solution by
the induction hypothesis. It suffices to prove that a NAP
problem {S0 → g}A can be decomposed into problems that100

can be solved with a polynomial number of sequential a rep-
etitions. Consider the following algorithm: For each i ∈ N,
if {Si → g}A\{a} = ∅ but {Si → g}A has an a-relaxed
solution, repeat a beneficially to reach Si+1 and continue,
else terminate. This search terminates if the NAP is solvable105

after finding the minimal number of a repetitions needed. If
the NAP is unsolvable, the search terminates as shown in the
last lemma.

Finitely Maintainable NAP
In this subsection, we deal with plans as words over A.110

Therefore, it is important to define validity of these words.

Definition 19. For any NAD A = (A, V σ, π), and any ac-
tions a, b ∈ A, the NAD can be extended by the action ab,
denoted by A ∪ {ab} := (A ∪ {ab}, V, σ′, π′), where σ′, π′

are extension of σ, π to the new action ab, and are defined 115

for every variable x ∈ V as:
• The effects are summed:
σ′(ab, x) = σ(a, x) + σ(b, x).

• The preconditions are backwardly propagated:
π′(ab, x) = max{π(a, x), π(b, x)− σ(a, x)}. 120

Notice that if S0 ⊨ ab, then S0 ⊨ a, and S0 + a ⊨ b,
meaning that the plan ab is valid from S0.

Let us focus on the number of violated repetitions vP(a)
that are produced during the search for the number of se-
quential repetitions of the non-maintainable action a ∈ A. 125

Lemma 6. For non maintainable action a ∈ A, let P0,P1

be two successive a-relaxed solutions of {S0 → g}A over
A = (A,µ),A∪{a}, respectively. If vP1(a) > vP0(a) and
[S0 → g]

A∪{a}
A = ∅, then, {S0 → g}A = ∅.

Proof. Let ij := uPj (a); j ∈ {0, 1}. Notice that there exist
plans l, w0, u ∈ A∗, s.t. #a(w0) = 0, l := w0a

P0[g,a]ug,
and l ∈ lin(P0). If l ∈ {S0 → g}A, we have a contradiction
l ∈ [S0 → g]

A∪{a}
A = ∅. Otherwise, assuming that there

exists a minimal solution l′ ∈ {S0 + w0a
i0 → g}A w.r.t. a,

then, there exists plans w1, u
′ ∈ A∗ s.t. l′ = w1a

i1u′g, with
#a(w1) = 0. Therefore, for all x ∈ V :

S0(x)+σ(w0, x)+σ(w1, x)+(i0+ i1)σ(a, x) ≥ π(u′g, x)

If l′′ = w0a
i0u′g ∈ {S0 → g}A, then, l′ is not minimal,

therefore, l′′ ̸∈ {S0 → g}A , i.e., there exists x ∈ V s.t.:

S0(x) + σ(w0, x) + i0σ(a, x) < π(u′g, x)

By combining the last two inequalities:

i1σ(a, x) + σ(w1, x) > 0

Since P0 is an a-relaxed solution:

S0(x) +P0[g, a]σ(a, x) + σ(w0, x) ≥ π(ug, x)

By summing the last two inequalities:

S0(x)+(i1+P0[g, a])σ(a, x)+σ(w0, x)+σ(w1, x) > π(ug, x)

Notice that if l′′′ := w0a
i0w1a

P1[g,a]ug ∈ lin(P1), we have
a contradiction for l′′′ ∈ {S0 → g}A, because in that case
l′′′ ∈ [S0 → g]

A∪{a}
A = ∅. Therefore, since P1 is minimal

w.r.t. a:

S0(x)+(i0+P1[g, a]−1)σ(a, x)+σ(w0, x)+σ(w1, x) < π(ug, x)

By combining the last two inequalities, we get

vP1(a)− 1 = P1[g, a]− i1 − 1 < P0[g, a]− i0 = vP0(a)

which contradicts vP1(a) > vP0(a). 130

For this reason, we can abort the search whenever the
number of violated a repetitions in the a-relaxed solution
increases after adding a sequential repetition of a.
Theorem 5. fmNAP is decidable.

Proof. Notice that a de-violating repetition policy guaran- 135

tees termination because the number of violated copies even-
tually decreases. Since we can prune if that number in-
creases as proven in the last lemma, we ensure termination
of the search.


