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Appendix

A RELATED WORK

Matrix Sensing. Matrix sensing aims to recover the low-rank matrix based on measurements.
Candes & Recht (2012); Liu et al. (2012) propose convex optimization-based algorithms, which
minimize the nuclear norm of a matrix, and Recht et al. (2010) show that projected subgradient
methods can recover the nuclear norm minimizer. Wu & Rebeschini (2021) also propose a mirror
descent algorithm, which guarantees to converge to a nuclear norm minimizer. See (Davenport &
Romberg, 2016) for a comprehensive review.

Non-Convex Low-Rank Factorization Approach. The nuclear norm minimization approach in-
volves optimizing over a n X n matrix, which can be computationally prohibitive when n is large.
The factorization approach tries to use the product of two matrices to recover the underlying matrix,
but this formulation makes the optimization problem non-convex and is significantly more challeng-
ing for analysis. For the exact-parameterization setting (k = r), Tu et al. (2016); Zheng & Lafferty
(2015) shows the linear convergence of gradient descent when starting at a local point that is close
to the optimal point. This initialization can be implemented by the spectral method. For the over-
parameterization scenario (k > r), in the symmetric setting, Stoger & Soltanolkotabi (2021) shows
that with a small initialization, the gradient descent achieves a small error that dependents on the ini-
tialization scale, rather than the exact-convergence. Zhuo et al. (2021) shows exact convergence with
O(1/T?) convergence rate in the overparamterization setting. These two results together imply the
global convergence of randomly initialized GD with an O (1 / T2) convergence rate upper bound. Jin
et al. (2023) also provides a fine-grained analysis of the GD dynamics. More recently, Zhang et al.
(2021b; 2023) empirically observe that in practice, in the over-parameterization case, GD converges
with a sublinear rate, which is exponentially slower than the rate in the exact-parameterization case,
and coincides with the prior theory’s upper bound (Zhuo et al., 2021). However, no rigorous proof
of the lower bound is given whereas we bridge this gap. On the other hand, Zhang et al. (2021b;
2023) propose a preconditioned GD algorithm with a shrinking damping factor to recover the lin-
ear convergence rate. Xu et al. (2023) show that the preconditioned GD algorithm with a constant
damping factor coupled with small random initialization requires a less stringent assumption on A
and achieves a linear convergence rate up to some prespecified error. Ma & Fattahi (2023) study the
performance of the subgradient method with L, loss under a different set of assumptions on .4 and
showed a linear convergence rate up to some error related to the initialization scale. We show that
by simply using the asymmetric parameterization, without changing the GD algorithm, we can still
attain the linear rate.

For the asymmetric matrix setting, many previous works (Ye & Du, 2021; Ma et al., 2021; Tong
et al., 2021; Ge et al., 2017; Du et al., 2018a; Tu et al., 2016; Zhang et al., 2018a;b; Wang et al.,
2017; Zhao et al., 2015) consider the exact-parameterization case (k = r). Tu et al. (2016) adds a
balancing regularization term 4 || T F — G G||% to the loss function, to make sure that F" and G are
balanced during the optimization procedure and obtain a local convergence result. More recently,
some works (Du et al., 2018a; Ma et al., 2021; Ye & Du, 2021) show GD enjoys an auto-balancing
property where F' and G are approximately balanced; therefore, additional balancing regularization
is unnecessary. In the asymmetric matrix factorization setting, Du et al. (2018a) proves a global
convergence result of GD with a diminishing step size and the GD recovers M* up to some error.
Later, Ye & Du (2021) gives the first global convergence result of GD with a constant step size. Ma
et al. (2021) shows linear convergence of GD with a local initialization and a larger stepsize in the
asymmetric matrix sensing setting. Although exact-parameterized asymmetric matrix factorization
and matrix sensing problems have been explored intensively in the last decade, our understanding
of the over-parameterization setting, i.e., & > 7, remains limited. Jiang et al. (2022) considers
the asymmetric matrix factorization setting, and proves that starting with a small initialization, the
vanilla gradient descent sequentially recovers the principled component of the ground-truth matrix.
Soltanolkotabi et al. (2023) proves the convergence of gradient descent in the asymmetric matrix
sensing setting. Unfortunately, both works only prove that GD achieves a small error when stopped
early, and the error depends on the initialization scale. Whether the gradient descent can achieve
exact-convergence remains open, and we resolve this problem by novel analyses. Furthermore, our
analyses highlight the importance of the imbalance between F and G.
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Lastly, we want to remark that we focus on gradient descent for L, loss, there are works on more
advanced algorithms and more general losses (Tong et al., 2021; Zhang et al., 2021b; 2023; 2018a;b;
Ma & Fattahi, 2021; Wang et al., 2017; Zhao et al., 2015; Bhojanapalli et al., 2016; Xu et al., 2023).
We believe our theoretical insights are also applicable to those setups.

Landscape Analysis of Non-convex Low-rank Problems. The aforementioned works mainly
focus on studying the dynamics of GD. There is also a complementary line of works that studies
the landscape of the loss functions, and shows the loss functions enjoy benign landscape properties
such as (1) all local minima are global, and (2) all saddle points are strict Ge et al. (2017); Zhu et al.
(2018); Li et al. (2019); Zhu et al. (2021); Zhang et al. (2023). Then, one can invoke a generic result
on perturbed gradient descent, which injects noise to GD Jin et al. (2017), to obtain a convergence
result. There are some works establishing the general landscape analysis for the non-convex low-
rank problems. Zhang et al. (2021a) obtains less conservative conditions for guaranteeing the non-
existence of spurious second-order critical points and the strict saddle property, for both symmetric
and asymmetric low-rank minimization problems. The paper Bi et al. (2022) analyzes the gradient
descent for the symmetric case and asymmetric case with a regularized loss. They provide the local
convergence result using PL inequality, and show the global convergence for the perturbed gradient
descent. We remark that injecting noise is required if one solely uses the landscape analysis alone
because there exist exponential lower bounds for standard GD (Du et al., 2017).

Slowdown Due to Over-parameterization. Similar exponential slowdown phenomena caused
by over-parameterization have been observed in other problems beyond matrix recovery, such as
teacher-student neural network training (Xu & Du, 2023; Richert et al., 2022) and Expectation-
Maximization algorithm on Gaussian mixture model (Wu & Zhou, 2021; Dwivedi et al., 2020).

B PROOF OF THEOREM 3.1

In this proof, we denote
X eR™F = T2 | (B.1)

where z; € R¥*1 is the transpose of the row vector. Since the updating rule can be written as
X1 = Xo —n(Xe X, — )Xy,

where we choose 7 instead of 27 for the simplicity, which does not influence the subsequent proof.
By substituting the equation (B.1), the updating rule can be written as

n

(@™ = @ =n(l=f)? —o)al — D nl(ah) 25 @)T)

J=1.g#i
where o; = 0 for ¢ > r. Denote
(x;xk)z
0 = max ;i
P e el
is the maximum angle between different vectors in z1,--- ,z,. We start with the outline of the
proof.

B.1 PROOF OUTLINE OF THEOREM 3.1

Recall we want to establish the key inequalities (3.3). The updating rule (2.3) gives the following
lower bound of ! ™! fori > r:

2 1P = el | 1= 2067 > llah)> =20 > ab0? ] (B.2)

j<r j>r
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where the quantity 07 = max; j.min{s,j}<r 0ij,+ and the square cosine 6;; ; = cos® Z(z;,z;). Thus,
to establish the key inequalities (3.3), we need to control the quantity #. Our analysis then consists
of three phases. In the last phase, we show (3.3) holds and our proof is complete.

In the first phase, we show that ||z¢|| for i < r becomes large, while ||z£||? for i > r still remains
small yet bounded away from 0. In addition, the quantity 6;; ; remains small. Phase 1 terminates

when [|z!]|? is larger than or equal to 25;.

7

After the first phase terminates, in the second and third phases, we show that 6V converges to 0
linearly and the quantity 0V ¢/ o 125 ||? converges to zero at a linear rate as well. We also keep

track of the magnitude of ||z!||* and show ||zf| stays close to o; for i < r, and ||z!||? < 2a? for
1>

The second phase terminates once 87 < O(Y > [%]|?/o1) and we enter the last phase: the
convergence behavior of 3_ .. [|#%]|*. Note with 8 < O(3_ .., [|[z4]|*/o1) and [|z}]|* < 20, for
i < r, we can prove (3.3b). The condition (3.3a) can be proven since the first two phases are quite
short and the updating formula of x; for i > r shows ||z;||? cannot decrease too much.

B.2 PHASE 1

In this phase, we show that ||z¢||? for i < 7 becomes large, while ||z!||? for i > r still remains

small. In addition, the maximum angle between different column vectors remains small. Phase 1

terminates when ||z¢||? is larger than a constant.

7

tHQ

To be more specific, we have the following two lemmas. Lemma B.1 states that the initial angle
0o = O(log?(r\/a1 /) (rk)?) is small because the vectors in the high-dimensional space are nearly
orthogonal.

Lemma B.1. For some constant c4 and c, if k >
1 — eyn®kexp(—Vk), we have

1610g4(r\/c;1/a)(m)4, with probability at least

C

b < —
log™(ry/a1/a)(rk)?

(B.3)

Proof. See §G.1 for proof. O

Lemma B.2 states that with the initialization scale «, the norm of randomized vector z¥ is ©(a?).

Lemma B.2. With probability at least 1 — 2n exp(—csk/4), for some constant ¢, we have

I221* € [o?/2,207).
Proof. See §G.2 for the proof. O

Now we prove the following three conditions by induction.

Lemma B.3. There exists a constant C1, such that Ty < Cy(log(\/o1/na)/no,) and then during

the first T\ rounds, with probability at least 1 — 2c4n’k exp(—v'k) — 2nexp(—csk/4) for some
constant c4 and cs, the following four statements always hold

lz? < 201 (B.4)
o?/4 < ||2t|]? < 2% (i >7) (B.5)
200 > 0; (B.6)
Also, if ||zt||* < 30,/4, we have
251 > (1 + now /4) 231> (B.7)

2|2 > 30, /4, and Phase 1 terminates.

Moreover, at T, rounds,
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Proof. By Lemma B.l and Lemma B.2, with probability at least 1 — 2c4n?kexp(—VEk) —
2nexp(—csk/4), we have ||2?]|? € [a?/2,2a?] for i € [n], and 6y < ToeZr Ve ja)ry? - Then
assume that the three conditions hold for rounds before ¢, then at the £ 4+ 1 round, we proof the four
statements above one by one.

Proof of Eq.(B.5) For: > r, we have

@7 = @) =Y @) !

Then, the updating rule of ||a:t ||? can be written as

123 = lill* — 20 Z((l’?)Ta:?)2 +0? () (eh) Taf(ah) Tat (2h) ") < ||zl (B.8)
j=1 Jk=1
The last inequality in (B.8) is because

(29) Taf(a) Tah (k) T (a7) < (@) Tak (@) Ta)® + ((2h) ")) /2 (B.9)

<oy ((xh) Tah)? + ((«}) " 20)?), (B.10)
and then
7> (al ) (2T @) <n? Y on((@h) "2h)? + () "2h)?)
j,k=1 j,k=1
=n*-noy Y _((xh)"ah)
j=1
<Y (=) Tath)>. (B.11)

where the last inequality holds because n < 1/noy. Thus, the ¢o-norm of sz does not increase, and
the right side of Eq.(B.5) holds.

Also, we have

2
1% > Nl ~ 2772 P | D) Tl ()T
j=1
> [laf? = il - 200 - Z 511 — 2l |* (B.12)

J#i
t\NT tN\2

Equation (B.2) is because % =05, < 0¢. Now by (B.4) and (B.5), we can get

Z \|x§H2 <7r-200 4 (n—7)-2a° < 201 + 2na?

i
Hence, we can further derive

HyctHH2 > ||2t||? - ( — 200, (2roy + 2na?) — 21 - 2a2)
> ||2H? - (1= n(86;01 + 4a?))

where the last inequality is because o < /roq/+/n. Thus, by (1 —a)(1 —b) > (1 —a — b) for
a,b > 0, we can get

211 = [|22)1%- (1 — n(86:01 + 4a?))™

2
> % (1= Tun(8 - (200)a1 + 40?)) (B.13)
a2
> (B.14)

Equation (B.13) holds by induction hypothesis (B.6), and the last inequality is because of our choice
onTi, o, and 6y < O(W\/ﬁ/a)) from the induction hypothesis. Hence, we complete the proof

of Eq.(B.5).
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Proof of Eq.(B.7) For i < r,if ||2}||?> < 30;/4, by the updating rule,

n

4 > (L= a2 — o0t 2 — 20> (@) Tal)? + (It — ) S () Tat)?
JFi =
(B.15)
n
> (1=n([lf]? = 00))? |l ]” - 2nZ — 2zt = ol - >t
J#i J#i
n
> (1= n(llz}]* — o)) |12 —%Z((ﬁfx — 4n*(no?) ||z}
i

THe last inequality uses the fact that |||}[|? — o;| < 207 and ||2*||? < 204. Then, by ((zf) "2%)? <

[|lzt||? ||$t||2 6, we can further get

n

2742 = 1= 20(ll2fl® = 00) — 20 ) [|241%0 — 20* (no?) | [l

J#i
> (14 n0i/2 — 20 (no?) —no,/16)| k|2 (B.16)
> (1+0i(n/2 —n/16 — n/16))||=}| (B.17)
> (14 no/4)||=}]%.

The inequality (B.16) uses the fact 6 < 26y < Wlm and Z?# llz;]|? < 2017 4 2na® < 4oy <
%. The inequality (B.17) uses the fact that n < D

3.
noy

Proof of Eq.(B.4) If ||z!||?> > 30,/4, by the updating rule, we can get

5 —oal < [ 1= 2nll2f1? + n? (|2} - Hth2+n22 )22 | =P = o
J#i
+20 Y (@) 2?7 [ D (@) Tl (ah) Taf (x)) ")
J#i G ki
é(l—nm)lllxtIIQ—azHSnZ 0 'ah)? (B.18)
J#i

(a)

The last inequality holds by Eq.(B.11) and

2nllfl|® — n*(Jf1® = o) l2hl® — 207 > ((«h) "ah)? (B.19)
J#i
3n 5 5.2 2
> 5 Ui n°(201) - 201 — 2n°noj (B.20)
> noi, (B.21)

where (B. 20) holds by |[z![|?> > 2%, ||z!||? < 20y for all i € [n]. The last inequality (B.21) holds
byn < C ( ) for small constant C. The first term of (B.18) represents the main converge part,
and (a) represents the perturbation term. Now for the perturbation term (a), since o < 4m2 and
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2

0 <20p < W = W,Wecanget
@= Y (@)= + D ((«h)h)? (B.22)
J#LI<r J#i,j>r
< (roy + 2na®)0; - 204 (B.23)
<2roq-0;- 20, (B.24)
= dro? - 6,
< o?/5, (B.25)

where (B.23) holds by (B.4) and (B.5). (B.24) holds by o = O(4/r01/n), and the last inequality
(B.25) holds by @ is small, i.e. §; < 20y = O(1/rx?). Now it is easy to get that (zi™1) Tz < 20,
by

3no, 3no?
et 17 = ol < (1= mo el = o)+ 225 < (1= oo+ 222 < 26)
Hence, we complete the proof of Eq.(B.4).
Proof of Eq.(B.6) Now we consider the change of 8. For i # j, denote
o ()Tl
= eI
U w2l 12
Now we first calculate the (x tH)T:B;H by the updating rule:
(If:-l—l)T §+1
=(1- (letll2 —03)) (L= n(ll5l* = 05)) () "af —nllf 1@ = n(l25]? — o)) (@) "=
A B
=21 = n(llef]® = o)) @) Taf 40 Y (a k) et () "
pe k,l#i,5
D
02 = n(|zf]* = o0) = n(ll2§1? = 03)) Y (@h) T (wf) T
ki,
E
+n? Z a] ol (2h) Taf (a},) T2l + 0P Z ap) Tal(al) ot
k#i,j k#1,5
F

Now we bound A, B, C, D, E and F respectively. First, by ||zt||? < 20 for any i € [m], we have

A< (1 =n(lf? = o) = n(llzt)* = o) + n* (|2i)1? = 03) (I25]1° = 0;))) (af)
< (L=n (l2f? + |25l1* = 0 — 0j) +0° - 407) () "af, (B.27)
Now we bound term B. We have

B +C = (—n(lll* + | «51%) +»? ((Ilaft’ll2 = op)llajl* + (l=fl* = oa)ll2l1)) (@) 5
< (=il + 1250%) +n* - (801)) (2) "5 (B.28)

J°
Then, for D, by 6, < 1, we have

D= | S kPl /OOt /0350 | ()T
k,l#1,5

< (772 2. 402 . et/\/eij,t) () Tat. (B.29)
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For E, since we have

E<2p ) |(«f ) 2h + 4o D |(ah) T (xh) Tl
k#i,j k#i,j
< {20 Y N2kl A Ok iOksa/Oiso + doin® D Nkl - \/Oinabrje /i | ()T
k#i,j k#i,j
< {20 D0 ahl® - \/Oik sOhje /0.0 + Anoan® - (201) - 00/ /B Tt (B.30)
ki,j
Lastly, for F, since (%) T2} (},) "o < [|}|]?]|2}]|* < 407, we have
F < n*8nof(zf) Tat. (B.31)
Now combining (B.27), (B.28), (B.29), (B.30) and (B.31), we can get
(IEH)TCE;H (B.32)
< (1 —n@llall® + 20|z l1* — o — 05) + 20 Y @kl - VOikiOkj,e /0,6 + 300 0in6:/ v/ 9ij,t)) () "
k#i,j
(B.33)
On the other hand, consider the change of ||z||2. By Eq.(B.15),
i 1% = (1 = n(lli)1? = ) l3]1* — 27]2 2 P (|2 = o) Y (@) Tah)?
i i#i
> (1= 2n(||zi]| — o) — 2772 251120356 — 4n*nbeot)l|; >
J#i

n
> (1= 2n(|laf]| = 0i) = 20 ) 1251170550 — 4n°nbpot) |||

Hence, the norm of 2!

[

and x§-+1 can be lower bounded by

> (1 = 2(|2}) = o3) = 2n(ll2}]1* = 05) =20 Y ll@nl® Bine + Ojne) — 20(llzs 1° + ll*)6ise

k;éij
— 4P 0m’ot + Y A (|af]? - o Z 25120 + D 20(ll2fl* = o0)n 2n29tﬁf)llxill2l\x§l\2
l=1,j l=i,g
> (1 = 2n(|l}|® = 03) = 2n(|25 1% = ;) = 20 Y Nasll® Gine + Ojne) — 20(25 1% + [|5]1%) 055
k#i,j

—4n*0,n%0? — 2-4n* - (201)n - (201)6; — 2 - 4oy - 7727129150%) ||avf||2||x§||2 (B.34)
> (1= 2001t = o) = 2001417 = 73) = 20 D Janll® Grts + Or) — 2002 + 2]12) 350
k#i,j
— 620m0? ) |2l ), (B.35)

where (B.35) holds by n > 8k > 8 and 2n(||zt||> — o;) < 4noy < 1. Then, by (B.33) and (B.35),
we have

o g @EDTa e
ijt+1 = Uijt -
! ! (xf) Tt ]2 (| 2
1-A+B
< Ot - (1 _A_O) (B.36)
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where
A= 2([l]]* = o3 + [l5]* = 04)) < dnon (B.37)
B = 2n||wk|* - \/OiniOrji/0ij¢ + 3002000,/ \/0ij 1 (B.38)
and
C =20 Y |kl *(Oike + Osx.e) + 205 |1> + 2il*)0ij1 + 6n°n*6;07 (B.39)
ki,
< (87701 + 2n(2na? + 2roy) + 6772n20%) 0;, (B.40)

where the last inequality uses the fact that

D llakl® < D0 llakll® + D llakll® < 200 + 200,

k#i,j k<r k>r

Hence, we choose 1 < m to be sufficiently small so that max{A,C} < 1/100, then by

=448 <1+ 2B + 2C for max{A, C'} < 1/100,

0. . 1-A+B
“rt\1—-A-C

<;;:(1+2B+20C)
<O+ 40 Y Nl - Ok Orabise + 60n°0in*0,/Gi
ki

+ 67 (87701 + 2n(2na® 4 2roy) + 67727120%)

+ 67 (87701 + 2n(2na® 4 2roy) + 6n2n20%)

< 0454 + 6n(2roy + 2na® 95’/2 + 60n2057729§/2 + 81107 + 6n°n*o?0?)

<031+ 980 - (r0167'%)
The last inequality holds by o < /a7/+/n, and n?01n? < 1 because n < ——

n20q "

(

< 0ij1 +4n(2ror + 2na2)9§’/2 + 60n2057729§/2
(
)

Hence,
041 < 0, + 98n(roy )02 (B.41)

The Phase 1 terminates when ||z} *[|2 > 2%, Since |[2?||? > a?/2 and
;1% > (1 + nos/4) |21, (B.42)
there is a constant C'3 such that 7} < C (log(y/o1/a)/n0o;). Hence, before round 77,
01, < 0o + 980Ty - ray - (200)%% < 0y + 98C17k(2600)>/? log (/a1 /ar) < 26y.
This is because
6o = O((log*(r/o1/a)(rx))?)
by Lemma B.1 and choosing k > co((r)?log(r+/01/a))? for large enough c» O

B.3 PHASE?2

Denote Y = MaXpyingi,j}<r Uiz ¢ In this phase, we prove that 6V is linear convergence, and the
convergence rate of the loss is at least £2(1/72). To be more specific, we will show that

07, <07 - (1—n-0./4) <0 (B.43)
6‘7€]+1 91? nor
< (1L (B.44)
Yoo 22 T s latl? ( 8 )
1
lz5]* = o3l < Joi (i <7) (B.45)
f]? < 20 (i > ) (B.46)

23



Under review as a conference paper at ICLR 2024

First, the condition (B.45) and (B.46) hold at round 77. Then, if it holds before round ¢, consider
round ¢ + 1, similar to Phase 1, condition (B.46) also holds. Now we prove Eq.(B.43), (B.44) and
(B.45) one by one.

Proof of Eq.(B.45) Fori < r,if [|2}||> > 30;/4, by Eq.(B.18)

213 = ol < (1 =na)l[laf]* — ail +3n > _((2}) "h)? (B.47)
J#i
Hence, by (B.45) and (B.46), we can get

n

Y(hTah)?< Y (@2 + Yo (@hTa))?

J#i J#i,j<r JAG>T
< (roy + 4n01a2)9§]
< 2ro,0Y (B.48)
< 2ro,0%, (B.49)
< 2roy - 200 < 0;/20. (B.50)

The inequality (B.48) is because @ < ﬁ, the inequality (B.49) holds by induction hypothesis

(B.43), and the last inequality (B.50) is because of (B.6) and 6y < ﬁ.

Hence, if |||zt||?> — 0| < 0;/4, by combining (B.47) and (B.50), we have

Nt T2 = ol < (1 =noa)lllaf]] — o3l + 300i/20 < 0:/4.
Now it is easy to get that |||zt||2 — o3| < 0.250; for t > T} by induction because of |||z7*[|? — o;| <
0.250;. Thus, we complete the proof of Eq.(B.45).

Proof of Eq.(B.43) First, we consider i < r,j # i € [n] and 6,5, > 6V /2, since (B.4) and (B.5)
still holds with (B.45) and (B.46), similarly, we can still have equation (B.36), i.e.
1-A-B
9ij,t+1 = eij,t : (M) .
where
A= 2(|ll* = o3) + 20|25 1* = o) = —29(2 - (03/4)) = ~1/100.

B =2n(|l2}1* + lz51%) = 20 D> Nawll® - \/OiniOhj.e/0ij.0 — 300’00t/ 0F [/ 0

k#i,5
> 2(||2f* + b )®) = 4n ) x| *VOU — dnna® — 40nnof (B.51)
k<r
30;
>2n- % — 8nro\/207, — 4nna® — 40n*nol (B.52)
>n- oy (B.53)

The inequality Eq.(B.51) holds by 6;;+ > 9? /2, the inequality (B.52) holds by (B.43), and (B.53)
holds by

Or, =0 <r21/£2) , a=0Go./n), n=0(1/n’koy). (B.54)

The term C' is defined and can be bounded by
C =20 larl?Oire + Ojee) + 20(llil® + |251%)04,0 + 617°0,m%0F
k#i,j

<dn Z 2,120V + 4nna’0; + 6120m>0?
k<r

< 8rno GtU + 4dnna® 4 6n*n’oi
< 8rno10r, + 4nna® + 6n2n20% (B.55)
<n-o./2. (B.56)
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The inequality (B.55) holds by (B.43), and the inequality (B.56) holds by (B.54).
Then, fori < r,j # i € [n] and 0,5, > 6 /2, we can get

1-A-B
Oijt1 < Oije - (1—A%’>

2-n.0,
<Oijs- LT o
’ 2—n-0./2
1—-n-0./2
<05t~ (1_17%/4) <1 -1—n-0./4) (B.57)
Fori <r,j € [n] and 6;;; < 0Y /2, we have

B> =20 |kl //0ise — 20 Nlakl*/ 67 /\/6ij.e — 30n°n* 07/ 6 /\/Bijc  (B.5Y)

k<r k>r
> —dnro10Y /\/0ij.0 — (4nna® + 30n*n?03)\/0Y / /0.4 (B.59)

1-A-B
Oiji+1 < Oij¢ (1—A—C>
<6+ (1—2B+20C)

< Giji + 81ro18y 0z + (Anna® + 300 o )\/% + 200,54
U

0
< é + 8nro10Y + (4nna’ + 30n*n*0?)0Y + no,.0Y

— 4 .
The last inequality is because 8nroy + 4nna? + 30n°n?cf + no, < + by n < O(1/noy) and
n < O(1/na?). Hence, by Eq.(B.57) and (B.60) and the fact that no,./4 < 1/4,

(B.60)

3
Qg_lSﬁg-max{z,l—n-a,«/él}:(1—77-crr/4)0tU. (B.61)
Thus, we complete the proof of Eq.(B.43)

Proof of Eq.(B.44) Also, for ¢ > r, denote 6;; ; = 1, then

i 17 = el =20 > ((2h) ")) + (f) " (af) "
j=1 k=1
> (212 (1 =20 Y ll51%0:5,0) (B.62)
j=1
> |lzil|?(1 = 2nre10Y — 2nna?)
> [lail|*(1 = n - 0:/8)
The last inequality holds because
07 <6y < O(1/rK) (B.63)
a<yor/n (B.64)
Hence, the term 6V /||z;||? for 7 > 7 is also linear convergence by
07 - oY Lon-on/4 _ oY .(1777&)
i T2 T sy P 1 =n-0n/8 7 3050, ]2 8

Hence, we complete the proof of Eq.(B.44).
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B.4 PHASE 3: LOWER BOUND OF CONVERGENCE RATE

Now by (B.44), there are constants cg and c7; such that, if we denote T» = T} +
c7(log(y/ro1/a)/no,) = cs(log(\/To1/a)/no,), then we will have
05, <> lf|?/ro (B.65)
i>r

because of the fact that 6% / >
we can have

/"2 < ~4; < 4/a®. Now after round T, consider i > 7,

i>r
n

17 > afP (=20 ) e ]2055,0)
j=1

> |24 (1 = 2pra16f — 20> ||2b(?)

j>r
Hence, by Eq.(B.62), we have
SR (STt (1 2ronsf - 203 a2 (B.66)
j>r j>r j>r
> STt ) {1 an S et (B.67)

j>r j>r
where the second inequality is derived from (B.65).

Hence, we can show that
T
25 ll252 %, then by

isr 2517 = Q(1/T?). In fact, suppose at round Ty, we denote Ar, =

n
212 = P (1 =20 ) l|2k]P6in))
k=1

> H:rﬂ|2(1 — 2nro0Y — 277na2)

we can get
212 >l 1*(1 = 29r016%, — 2nna®)™=—1
>l (1 = es(log(ry/ar /) /o) - (2070107, + 2ma?))
> |l )2 (1 = es log(rv/o1 /@) - (4rk6g + 2na? /o))
1
> Sl (B.68)
a2
>
- 8
where the inequality (B.68) is because
1
<O ———— B.69
0= ( logwrm/a)) (B0
2<0 VO B.70
“ = (nlog(r‘/ol/a) ( )
Hence,
a? o?
ToAp, > Ty (n— T)§ > c7(log(y/ro1/a)/no,) - 5 (B.71)
by n > r. Define A, 141 = Ary+i(1 — 4nAp,+4), by Eq.(B.67), we have
Apyyi < Ap, = Z |]2]|? < 2na®. (B.72)

i>r
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On the other hand, if (75 + i) Ar,+; < 1/8, and then
(T2 +i+ DA, pipr = (T2 i+ DAz, (1 — 4nAg, 1)

=Ty + i) Az, — (To + )40 A%, 1 + Az, i (1 — 4nAg, 1)

> (T + i) Ary4i — (To + ) AN* AT, | + nA7,1i/2 (B.73)
> (1o + i) Aryyi — NAT /2 + AT 44:/2

> n(To + 1) Aty 1,

where (B.73) holds by nAr,+; < 2nna? < 1/8.
If (T +i)Ag, i > 1/8, since nAr,+; < 1/8, we have nAr, < 2nna? < 1/8.

(1o +i+ DA, pips =2 0(Th + i) Ay yi(1 — 4nAryii) + 1A, 4i(1 — 4nAry i)
S 11 oA 1
el 8 2 n To+1i 2
1
> —.
— 16
Thus, by the two inequalities above, at round ¢ > T5, we can have
ntA; > min{nTrAr,,1/16}.
Now by (B.71),

1 2
WAz, > & Og(vgml/ @ 7 (B.74)
Or

then for any ¢ > T5, we have

2
ntA, > min { crlog(y/rar/a)a ,1/16} (B.75)

8,

~ . 2
Now by choosing o = O(,/,") so that crlog(yror/a)a” VSZ‘ZI/O‘)Q < 1/16, we can derive

2
A, > erlog(y/ror/a)a . (B.76)
8a,.nt

Since for j > 7, (X; X, — ¥);; = [|=4]|?, we have [ X; X, — %[> > 37, [J«}|* > A7 /n and

log(y/To1/a)a?\ >
||XtXtT o 2”2 > A?/n > <C7 Og( 7“0‘1/@)0( > )
8c,ny/nt

C PROOF OF THEOREM 4.1

Denote the matrix of the first  row of F', G as U, V respectively, and the matrix of the last n — r row
of F,G as J, K respectively. Hence, U,V € R"™** J K € R("=")*k_In this case, the difference
F,G/ — ¥ can be written in a block form as

T _w_ (GV, =% LV
G, Y= ( UK LK) (C.1)
where 3, = I € R"*". Hence, the loss can be bounded by
17K < IFRG =Sl < UV = Sl + 1V, + UK |+ K- (€2

The updating rule for (U, V, J, K) under gradient descent in (4.2) can be rewritten explicitly as
Up1 = U + 5. Ve = U (V,'V; + K[ Ky)
Verr = Ve + 05U = nVo(U U + JyJe)
Jipr = Ji =l (V, Vi + K K))
Kiv1 = Ky — nK(U, Uy + J," ).
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Note that with our particular initialization, we have the following equality for all ¢:
UK =0,J,V,, =0, and U; =V, (C.3)
Indeed, the conditions (C.3) are satisfied for ¢ = 0. For ¢ + 1, we have
Urpr = Up +0(8 = UV, Ve = Vi 4 (S = UV, U, = Viga, Kia = Ko — 0K J]
Ui Ky = UK + (S, — UV,OYUK] =0V LK =05, = UV,))UJ] LK =0

The last equality arises from the fact that UthT =0, JtVtT = 0 and U; = V4. Similarly, we can get
Jit1 VtI_l = (. Hence, we can rewrite the updating rule of J; and K} as

Jiv1 = Jo — I K[ K, (C4)
Ky = Ky — K J, Ty (C.5)

Let us now argue why the convergence rate can not be faster than Q((1 — 61a?)*). Denote A €

R(=7)%k a5 the matrix that (A);, = 1 and other elements are all zero. We have that .Jo = a4 and
Koy = (a/3) - A. Combining this with Eq.(C.4) and Eq.(C.5), we have J; = a; A, K; = b; A, where

ap = a,bg = a/3, (C.6a)
apr1 = ap — naghy, (C.6b)
bt+1 = bt - nafbt. (CéC)

It is immediate that 0 < a;41 < a4, 0 < b1 < by, max{ay, b} < a because of nb? < nbg =
na? < 1 and similarly na? < 1. Now by na? < 1/4,

[ Jer1 K || = aegrberr = (1= nag) (1 —nb7)abe > (1 — 2na”®)?asby > (1 — 4na®)agby.
C.7)

By Eq.(C.2) that | F;G] — X|| > ||J;K,"||, the convergence rate of || F;G,] — ¥|| can not be faster
than agbo(1 — 4na?)t > %2(1 — 4na?)t.

Next, we show why the convergence rate is exactly O((1 — ©(na?))?) in this toy case. By Eq.(C.3),
the loss |G — 2| < ||UU, — .|| + ||J: K, ||. First, we consider the norm ||U,U," — %]
Since in this toy case, X, = I, and Uy = V for all ¢, the updating rule of U, can be written as

Upr = Uy — n(UU," — U, (C.8)

Note that Uy = (al,,0) € R™** By induction, we can show that U; = (a;I,,0) and ayyq =
a; —n(a? —1)ay forall t > 0. If o, < 1/2, we have

a1 = a(l+n— 7701?) > ay(1+1n/2).

Then, there exists a constant ¢; and 77 = ¢;(log(1/a)/n) such that after T} rounds, we can get
a; > 1/2. By the fact that a1 = a4 (1+n(1 —a?)) < max{ay,2} whenn < 1, itis easy to show
ap < 2 forallt > 0. Thus, when n < 1/6, we can get 1 — (o + 1)y > 0 and then

laryr — 1 = [(ar — 1) = ez — 1) + 1)y
= oy — 1[(1 = nlas + 1)ow)
<Jap —1|(1 —n/2).

we know that |U;U,” — ¥,|| = a? — 1 converges at a linear rate
(@)
U =B < (1=0/2)"7" < (1= na?/4) 712, (C9)

where (a) uses the fact that

1—na®/4>1—-n>(1-7/2) (C.10)

Hence, we only need to show that ||.J; K" || converges at a relatively slower speed O((1—0(na?))?).
To do this, we prove the following statements by induction.

a>a; > af2, b <bi(1—na?/4) (C.11)
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Using by = /3, we see the above implies that ||.J; K, || = a;b; < O((1 — ©(na?))?).

Let us prove (C.11) via induction. It is trivial to show it holds at ¢ = 0 and the upper bound of a; by
(C.6). Suppose (C.11) holds for ¢’ < ¢, then at round ¢ + 1, we have

bipy = b7 (1 —na7)? < b (1 —na®/4)? < b (1 —na/4). (C.12)

Using a1 = a¢(1 — nb?), we have

t
a) (b)
at+1—aoH1—77b2)>a0<1—n2b2>> ( -Oé-n>>a/2. (C.13)
b) =
na?
4

(1 — (a+b))fora,b e (0,1), and

where the step (a) holds by recursively using ( )(1
1- )t and the sum formula for geometric

the step (b) is due to b? < b2 - (1 — na?/4)t < 2 - (
series. Thus, the induction is complete, and

K, || = aby < (0?/3) - (1 —na?/4)2 < (1 —na?/4)? < (1 —na?/4) T2 (C.14)
Combining (C.9) and (C.14), with || A||2 < ||A||r < rank(A) - || A]|2, we complete the proof.

D PROOF OF THEOREM 4.2

We prove Theorem 4.2 in this section. We start with some preliminaries.

D.1 PRELIMINARIES

In the following, we denote dox+1 = 2k + 1§. Also denote the matrix of the first  row of F, G
as U,V respectively, and the matrix of the last n — r row of F,G as J, K respectively. Hence,
UV eR>*k JKe R(=) %k We denote the corresponding iterates as Uy, V;, J;, and K.

Also, define F(X) = A*A(X) — X. We also denote I'(X) = A*A(X). By Lemma G.2, we can
show that || E(X)|| < d2g+1 - || X || for matrix X with rank less than 2k by Lemma G.2. Decompose
the error matrix F(X) into four submatrices by

0= (B0 Rix)):
where Fy(X) € R™*", Ey(X) € R By(X) € R"7X" Ey(X) € RM=)X("=7) Then
the updating rule can be rewritten in this form:
Upr = U + 02V —qU(V," Vi + K] Ky) + nE(BG] — S)V, + nEy(F,G] — £)K; (D.1)
Vigr = Ve + 02U = ViU, U + I i) + B (RG] — £)U; +nEf (RG] —%)J; (D.2)
Jip1 = o =Ly (V,"Vi + K[ Ky) + nB3(F,G] — S)V, + nEs(F,G] — D)K, (D.3)
Kipy = K = KU U+ I ) +nE; (RG] = £)U; +nE] (RG] —X)J;. (D4)

Since the submatrices’ operator norm is less than the operator norm of the whole matrix, the matrices
Ei(F,G] —%),i=1, ..., 4 satisfy that

IE(BG) = D) <IIB(RG] - D)|| < bl RG -3, i=1, ..., 4
Imbalance term An important property in analyzing the asymmetric matrix sensing problem is
that FTF -G'G =U"U+J"J - V'V — KTK remains almost unchanged when step size

7 is sufficiently small, i.e., the balance between two factors F' and G are does not change much
throughout the process. To be more specific, by

Fi = F —n(FG] —%)G, — BE(F,G,] —%)G,
Giy1 =Gy — (RG] —2)"F, — (E(R,G] —2)'F,
we have

|(FiFrpr — Gl Ge) — (BT F = GG || <207 - [|RG] = 3|17 - max{|| F|], |G|}
(D.5)
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In fact, by the updating rule, we have
FlFiyr — GGy
= F[F, - Gl G+ (G (RG] = 2) (RG] = 9)G, - F (RG] - )(RG] - 3)TF),

so that

|FiFiit = GLaGe — (T F = G Gy
<2P|E GG — S
<o - |RG] — 3| - max{||F|1%, | Gil?}

Thus, we will prove that, during the proof process, the following inequality holds with high proba-
bility during all £ > 0:

2
2621 > U Uy + J,) Jy — V'V, — K[ K, > %1. (D.6)
Next, we give the outline of our proof.

D.2 PROOF OUTLINE

In this subsection, we give our proof outline.

e Recall A; = FtTFt — G;'—Gt = UtTUt + Jt—'—Jt — VtTVt — Kt—'—Kt. In Section D.3, we show
that with high probability, Ay has the scale a, i.e., Ca’l > Ay > ca?l, where C' > c are two
constants. Then, we apply the converge results in Soltanolkotabi et al. (2023) to argue that the

algorithm first converges to a local point. By Soltanolkotabi et al. (2023), this converge phase takes
at most Ty = O((1/no,v)log(y/o1/na)) rounds.

e Then, in Section D.4 (Phase 1), we mainly show that M; = max{|U;V,] —
SIL UK, 1| :V;T ||} converges linearly until it is smaller than

M; < O(016 + )| LK, |- (D.7)

This implies that the difference between estimated matrix U;V,' and true matrix 3, |U,V," — X,
will be dominated by || J; K, ||. Moreover, during Phase 1 we can also show that A, has the scale a.
Phase 1 begins at Tj rounds and terminates at 7 rounds, and 7 may tend to infinity, which implies
that Phase 1 may not terminate. In this case, since M; converges linearly and M; > Q(o16 +
az) |J: K, tT , the loss also converges linearly. Note that, in the exact-parameterized case, i.e., k = r,
we can prove that Phase 1 will not terminate since the stopping rule (D.7) is never satisfied as shown
in Section E.

o The Section D.5 (Phase 2) mainly shows that, after Phase 1, the |U; — V;|| converges linearly until
it achieves

U, = Vi|| < O(0®/\/o1) + Oans1 | T K || /v/a1).

Assume Phase 2 starts at round 77 and terminates at round T5. Then since we can prove that ||U; —
V;|| decreases from * O(o1) to Q(a?), Phase 2 only takes a relatively small number of rounds, i.e.
at most To — 71 = O(log(/0,/a)/no,) rounds. We also show that M; remains small in this phase.

o The Section D.6 (Phase 3) finally shows that the norm of K; converges linearly, with a rate depen-
dent on the initialization scale. As in Section 4.2, the error matrix in matrix sensing brings additional
challenges for the proof. We overcome this proof by further analyzing the convergence of (a) part
of K, that aligns with Uy, and (b) part of K, that lies in the complement space of U;. We also utilize
that M; and |U; — V4| are small from the start of the phase and remain small. See Section D.6 for
a detailed proof.

*The upper bound O(o1) of ||U; — V4]| is proved in the first two phases.
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D.3 INITIAL ITERATIONS

We start our proof by first applying results in Soltanolkotabi et al. (2023) and provide some ad-
ditional proofs for our future use. From Soltanolkotabi et al. (2023), the converge takes at most

Ty = O((1/no,v) log(y/a1/na)) rounds.

Let us state a few properties of the initial iterations using Lemma G.3.

Initialization By our imbalance initialization Fy = o - Fy,Go = (/3) - Go, and by random
matrix theory about the singular value (Vershynin, 2018, Corollary 7.3.3 and 7.3.4), with probability
at least 1 — 2 exp(—cn) for some constant ¢, if n > 8k, we can show that [0 in (F0), Omax(F0))] C

[@: %}a [Umin(GO)a Umax(GO)] [\/(;av \f] and

3 2
%I>F FO—GOTGO:UJUO+JJJO—%T%—KOTKO2%1 (D.8)

As we will show later, we will prove the (D.6) during all phases by (D.5) and (D.8).

First, we show the following lemma, which is a subsequent corollary of the Lemma G.3.

Lemma D.1. There exist parameters (y, o, o, 1o such that, zf we choose o < o, Fy = « -
Fy,Go = (a/2) - Go, where the elements of Fy, Gy is N'(0,1),% and suppose that the operator A
defined in Eq.(1.1) satisfies the restricted isometry property of order 2r + 1 with constant 6 < &y,
then the gradient descent with step size 1 < 1o will achieve

|F,G] — 2| < min{o,/2,a"/? - ¢2/*} (D.9)

within Ty = co(1/n0,) log(y/o1/n«) rounds with probability at least 1 — {y and constant cy > 1,
where (o = c1 exp(—cak) + exp(—(k — r + 1)) is a small constant. Moreover, during t < Ty
rounds, we always have

max{[|Fy[], |G|} < 2/o1 (D.10)
4 (; 3/2
HUt—Vt”§4a+M (D.11)
5 2]
14 < O30+ P27y 108/ ) (D.12)
or
1307 > 3%1 (D.13)

Proof. Since the initialization scale & < O(,/07), Eq.(D.10), Eq.(D.11), Eq.(D.12) and Eq.(D.13)
hold for ¢ = 0. Assume that Eq.(D.9), Eq.(D.10), Eq.(D.11), Eq.(D.12) and Eq.(D.13) hold for
t'=t—1.

Proof of Eq.(D.9) and Eq.(D.10)

First, by using the previous global convergence result Lemma G.3, the Eq.(D.9) holds by
a3/5az/10 < 0,/2 because o < O(Uf/g/az/ﬁ) = O(Kk7/%,/7,). Also, by Lemma G.3, Eq.(D.10)
holds for all ¢ € [Tp].

Proof of Eq.(D.13)
Recall Ay = U, Uy + J," J; — V,"V; — KT Ky, then for all ¢ < Tp, we have
|Ai—Ao|| < 20?2507 -Ty-401 < 2¢3log(y/a1/na) (20050 /0,) = 200conko? log(y/a1/na) < /8.

The first inequality holds by Eq.(D.5) and ||F;G: — 2| < ||Fi||||G:]] + [|Z]] < 501. The last
inequality uses the fact that ) = O(a2 /ko?log(y/a1/na)). Thus, at t = Ty, we have Amin(Ag,) >

>Note that in Soltanolkotabi et al. (2023), the initialization is Fp = « - 150 and Gy = o - éo, while Lemma
G.3 uses an imbalance initialization. It is easy to show that their results continue to hold with this imbalance
initialization.
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Amin(Ag) —a?/8 > a?/2 — a?/8 = 3a?/8 and | AT, || < [|Ao]| + 3a2/2 + o?/8 = 13a?/8.
Proof of Eq.(D.11)

Now we can prove that |[U — V|| keeps small during the initialization part. In fact, by Eq.(D.1) and
Eq.(D.2), we have

[(Ues1 = Vi )|
<N = Vel = 0% = n(V," Vi + K K| + 0l Ve llU Ue + I, e = VT Ve = K[ K|
+Andors1 | FGY — Bl max{||[U|, [IVal, [l el | Kl }

< (1= nop)[|Us = Vill + 2002 - 20/a10 + dndoisr - ([ENGell + 121 - 2/01

< (1= no,)|[Uy = Vil| + 2n0? - 2/1 + 4098241 - 0}
The second inequality uses the inequality (D.6), while the third inequality holds by
max{||F¢|, ||G¢||} < 24/071. Thus, since o« = O(égkﬂaf/z/ar), we can get [|[Uy — V|| < 4a <
40+ D55 1072 I (U, — Vil < o+ 226541077, we know that

40
HUt+1 — Vthrl” S (1 - 770}) (4a + 0_52k+10f/2> + 477@2, /0’1 + 407752k+1 . U?/Q

T

40 40
S (1 — 77(77-) <40[ + 0_52k+1gf/2> —+ 477(77.04 + ;52]@4’_10?/2
40
<do+ *52k+10i)’/2

T

Hence, |U; — V|| < 4a + %52k+10‘f/2 for t < Tp by induction. The second inequality holds by

a = 0(oy/\/01)
Proof of Eq.(D.12)

Now we prove that J; and K are bounded for all ¢ < Tj. By Eq.(D.3) and max{||F;||, [|G¢||} <
2,/01, denote Cy = max{21cy, 32} > 32, we have

To—1

17l < ol +n D max{||E . 1Gell} - 262041 - (|G + IS1)
t=0

< || Joll +0To - 2003"% - Sapin

< |[Joll + 20¢2 log (/a1 /na) (dan 11 - 072 for)
< 2a + 20¢2 log(y/o1 /na) (dak+1 - Uf/2/ar)
= 20 + Oy log(y/o1/na) Bapyr - 02 Jo).

Similarly, we can prove that | K1, || < 2o + Calog(y/o1/na)(d2k+1 - cr:f/g/ar). We complete the
proof of Eq.(D.12). O

D.4 PHASE 1: LINEAR CONVERGENCE PHASE.

In this subsection, we analyze the first phase: the linear convergence phase. This phase starts at
round T}, and we assume that this phase terminates at round 77 . In this phase, the loss will converge
linearly, with the rate independent of the initialization scale. Note that 77 may tend to infinity,
since this phase may not terminate. For example, when & = r, we can prove that this phase will
not terminate (§E), and thus leading a linear convergence rate that independent on the initialization
scale. In this phase, we provide the following lemma, which shows some induction hypotheses
during this phase.

Lemma D.2. Denote M; = max{||U;V," — 3|, (UK ||, [|J:V;" ||}. Suppose Phase 1 starts at T
and ends at the first time Ty such that

nolM;_1 /6401 < (1Tno102ps1 + na®) || T 1 K, || (D.14)
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During Phase 1 that Ty <t < T4, we have the following three induction hypotheses:

max{[|U¢]], [ Vi[[} < 2¢/o1 (D.15)

1UV," =% < 0,/2. (D.16)

max{ | Jil|, | K|} < 2va0y"* + 205 log(f/na)(sz K2 \fo1) < Vo1 (D.17)
7%1 > A, > —I (D.18)

The induction hypotheses hold for ¢ = T due to Lemma D.1. Let us assume they hold for ¢’ < ¢,
and consider the round ¢. Let us first prove that the r-th singular value of U and V' are lower bounded
by poly(c,., 1/01) at round ¢, if Eq.(D.16) holds at round ¢. In fact,

201 -0, (U) > 0, (U)o (V) > 0, (UVT) > 07,/2.

which means

or(U) > 0, /4,/071. (D.19)
Similarly, o,.(V') > 0,./4,/07.

Proof of Eq.(D.16) First, since ||U;_1V,[; — 2| < 0,./2, by Eq.(D.19), we can get

min{o,(Uy-1),0-(Vi—1)} >

4\/7 (D.20)
Define M; = max{||U,V," — 3|, [|[U.K, ||, ||J:V," ||} By the induction hypothesis,
max{[|U_1], [Vi-1[|} < 2V,
maxc{|[Ji1 [, | Ki-1ll} < 2va0y* + 205 log(y/a1/na) (ar+107"% f0,).
Then, by the updating rule and C5 > 1, we can get
UiKi = (1 = U UL DU Ky a (1= K1 KLy) +9(2 = U VL) VKT
Ui J e KD+ A (D.21)

where A; is the perturbation term that contains all O(E;(FGT — X)) terms and O(n?) terms such
that

[Adl| < 4ndor 1 | PG — Sl max{[|F[|?, |Ge[I?} + 8n* | G — Z[|* max{|| [, |G}
+ P max{|| F3 ]2, |Ge[I*}? - | R Gy — 2|
< dnbopr1 | RGY — Xl max{||[F|1% |Gel*} + 80| .G — 2| - 501 - 4oy
+n? 1607 - |F,Gy — 3
< Andok41(BMy—1 + || -1 K4 ) 401 + o (BMy—1 + || Je—1 K4 )
Using the similar technique for .J;V," and U;V,” — ¥, we can finally get

M; < <1 B 1776fl> My +2nMy—y - 2/or - max{||Jy—1 ||, [ Ki—1[[}

+ 47752k+1(3Mt—1 + |1 By ) - 4o+ na® (BMy—1 + (| -1 KL )
) M1+ 2nMy_q - 2\/07 - (a + Cy 10g(ﬁ/na)52k+1af/2/or>
+ 47752k+1(3Mt L+ [T K |)) - 4oy + o (BMy—y + || -1 K4 )

(-1
<1 ) My, +0 (WE- (a + Oy log(/a1/na)dapr10° /ar)) My
<(1-7

IN

1—

IN

17770152k+1 + 102 || J—1 K |
1-—

) M1 + (1Tno10ap 41 + na®) || T K. (D.22)
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The last inequality holds by dap1 = O(03/a3log(v/a1/na)) and a = O(02/ay/?) =
O(Ja,k73/2).
During Phase 1, we have
no; M1 /6401 > (1Tno16ak41 + no?)||Je-1 K, |,
then

2
M, < (1-2% ),y (D.23)
640’1

Hence, ||Ut‘/tT - Z” < Mt < ]\4710 < ||FT0G;O - ZH < 62k+1.

Proof of Eq.(D.15) Now we bound the norm of U; and V;. First, note that
(U = VIl < (1 = 90 |Ui—1 = Vieall + 1+ 207 - 2y/7 + 400 - a1 - 07/

Hence, ||U; — Vi|| < 4o+ 4062k+10f/ ? /o, still holds using the same technique in the initialization
part.
Thus, by the induction hypothesis Eq.(D.16) and o1 > d9x41, we have
201 2 01 + 8o 2 B+ UV, =2 2 |GV = [V, + (U = V)V, |l
> ViV, || = U = Vil Vil
408044105 2)

> VAl = Vel - <4a+
> |VelI? = Vel

Then, we can get | V;|| < 2,/071. Similarly, ||U;|| < 2,/07.

Proof of Eq.(D.17) Since during Phase 1,
2
I § Mt : ! ’
6401 (170102511 + a2) 1088k2d2k+1 + 6402k /0,

by G241 < 1/128 and Eq.(D.23),

| K, || < M -

1
[y < T < AM; - max {1 }
||Fth ZH < 4max{||Jth ||7 Mt} S ¢+ - Inax s 1088[{252k+1 n 640{2/4,/0'T

< ||Pr,Gr, — || (1 = no?/6401) """ /(1088k200 11 + 640k /0,).  (D.24)

Thus, the maximum norm of J;, K; can be bounded by

t—1
el < 197l + 20 - 2/0180141 - Y |1F:Ge = S|
=T,
4n\/T102k41 640
<2 Cs log(+/ é -3/2,. MNE- Gr. =3 -
< 2a+ Cylog(/o1/na)(dap 11 - 07" Jo,) + 10881202111 T 640Zn o, | Fr G I s
3/2
g
= 2a + Cylog(y/o1/na)(d2k+1 ~a:1)’/2/o'r) + 4;202 N Fr,Gr, — X
al/25974
< 20 + Cylog(y/a1/na)(bansr - 07/ Joy) + ﬁ

< 2vao* + Colog(v/o1 /na) (Saprn - K2/1)
< 2v/aot’* + 205 log(/a1/na) (Sai1 - K2\/T7).

1/4
The last inequality uses the fact that 2« + \/&% < 2\/&ai/4 by o = O(y/o,). Similarly, ||| <
2\/&7}/4 + 205 log(y/o1 /na)(dax41 - K2 - \/o1). We complete the proof of Eq.(D.17).
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Proof of Eq.(D.18) Last, for ¢t € [Ty, T ), we have

T —1
1A= Ag | < D 20 |IF.GT = 2|7 - max{|| B, [ Ge]1}?)
t=T0o
) ) [e%¢) 770_2 2(t—To)
T
<P IFnGr - S Y (1- 7)o
t=T0o
16
<2 2507 - —2L .40,
no?

< 3200nK20?

< a?/s,
where the last inequality arises from the fact that n = O(a?/k?0?). By %I < Ag < %I , we
can have ||A;]| < 1302/8 + a?/8 < 7a?/4 and Apin(A;) > 3a2/8 — a?/8 = a? /4. Hence, the

inequality Eq.(D.18) still holds during Phase 1. Moreover, by Eq.(D.24), during the Phase 1, for a
round ¢t > 0, we will have

t
| Fesry Giom, — E|| < |1Fr, Gy — S| (1 — 0o /6401)" /(1088k%0ak41 + 640’k /0,

2 t O
o 9 t o
_ o (1= no?/640y)" (D.25)
T 128a2k - N9r/0%01) :

The conclusion (D.25) always holds in Phase 1. Note that Phase 1 may not terminate, and then the
loss is linear convergence. We assume that at round 77, Phase 1 terminates, which implies that

o2 My, 1 /6401 < (17010241 + )| I —1 K7, 1|, (D.26)

and the algorithm goes to Phase 2.

D.5 PHASE 2: ADJUSTMENT PHASE.

In this phase, we prove U — V' will decrease exponentially. This phase terminates at the first time
T5 such that

80&2./0'1 + 6452]@4_1\/0'1”(]1"2_1}{;2_1”

Ur,—1 =V, 1| <
” T>—1 T21||— o

(D.27)

By stopping rule (D.27), since ||[Upr, — V|| < O(o1), this phase will take at most
O(log(y/o,/a)/no,) rounds, i.e.

Ty =Ty = O(log(Vo, /o) /noy). (D.28)
We use the induction to show that all the following hypotheses hold during Phase 2.
max{||F—1||, [|Ge-1} < 2¢/01 (D.29)
M, < (1088k2055 41 + 6402k /0| LK, || < || T K[| (D.30)
maxc{ [T [, | Kia ]|} < 2va0y " + (205 + 16C5) log (/a1 /na) (dak 11 - £2/o1) < Ur/‘g@
no? o
T < (1 0 ) 1a KT 032)
[U: = Vall < (1 = o /2)[|Up—1 — Ve | (D.33)
% I<A, < 200° (D.34)
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Proof of (D.31) To prove this, we first assume that this adjustment phase will only take at most
C3(log(a) /no,) rounds. By the induction hypothesis for the previous rounds,

t—1
1ell € Iz, + D nbarsn - |G — 5
=T
i t—1
< 2\/&01/4 + 205 log(y/o1/na) (82k+1 'O'f/Q/O'»p) + Z N02k+1 * HFZG;F -3
i=T)

< 2Vaoy" + 203 log(Var1 /na) (Saris - 07? /o,) + Ca(log(v/o1 /na) /nov) - ndaka - 4| Jima KLy |
< 2\/&01/4 + 2C3 log(y/o1 /na)(d2k+1 - a?/Q/ar) + Cs(log(y/o1/na)/nor) - nd2k4+11601
< 2v/ao* + (205 + 16Cs) log (/o1 /na) (ak 11 - 022 o).

Similarly, due to the symmetry property, we can bound the || K;|| using the same technique. Thus,
max{|[ L[|, |||} < 2vaoy’* + (2C2 + 16C3) log(v/a1 /na) (ax11 - 732 /0.
Proof of (D.30) First, we prove that during ¢ € [T, T5),

M, < (1088200041 + 6402k /0, )|| LK || < 11K, || < darol’? + Sppyro1.  (D.35)

in this phase.
Then, by dax+1 < O(1/log(/o1/na)k?) and a < O(o,./+/771), choosing sufficiently small coef-
ficient, we can have
JK = =0y, ) I K (=K 2 K + 0 T S KD K K
— L VL Vi KLy = iU UK + Gy, (D.36)

where C; represents the relatively small perturbation term, which contains terms of O(§) and O(n?).
By (D.29), we can easily get

Ci1 > — (Mdaky1 - [|Fr—1G{_y — 2| - 4o) (D.37)
Thus, combining (D.36) and (D.37), we have

[P
T T T
> —nJima S |1 — K1 Ky ||| Je—1 Ko || — 4nMi—1 - 4oy
— Andopy1 || Je—1 Ke—1]| - 201 — 77264U§
> (1 — 2nmax{||Je—1 ||, [ Ke—1]]}* — 16 - 1088nK>ax 4101 — 1024na’k® — 8ndarr1 - o1) || Je—1 K, ||

2
oZ
> (1 - ) | Je—1 K|

1280

The second inequality is because M; | < (1088k20ax 11 + 640’k /0,)||J;—1K, ]|, and the last
inequality holds by Eq.(D.31) and

bopy1 = O(k™), a = O(k™%/%,/ay,) (D.38)

Then, note that by Eq.(D.22), we have

no.
M < (1-
t( 320,

2
[

) Moy + (1700021 + 102) | Jer K74 |
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Then, by M;_; < (1088k200x1 1 + 6402k /0,) - || Js_1 K, | and denote L = 17010511 + a2, we
have

o2
My < (1= 225 ) Moy + (1750100141 + 10| T KL |
320’1
no; T T
<(1- 390 - (1088K%891 41 + 640’k /0,)|| i1 K, || + nL||Je—1 K, ||
1
no? 64L/£
=1 [ Je K[|+ nLl|Ja K |
320, o
64Lk
< ( S —277L) -1 K, ||
64LK no?
< — oL / 1— —— ) LK,
< (% -ar) /(1 s ) 19T
64Lk
K[|
-
Hence, I
64Lk
M, < [LES || < | K]

for all ¢ in Phase 2. The last inequality is because dax11 = O(1/k?log(y/o1/nc)). Moreover, by
Sak+1 < O(1/k2%log(y/o1/na)?) and (a + b)? < 2a? + 2b we have

2
|5 < Il < (2va01" + (205 + 16C3) log(v/o1/na) (Gas1 - £2/51) ) (D.39)

< 404/{40%/2 + ok 4+101. (D.40)
We complete the proof of Eq.(D.30).

Proof of Eq.(D.32) Moreover, by the updating rule of J; and K, (D.36) and (D.37) we have
K|
<N =nJea ) T K (T =K KD ) |+ (197 (e ) T K (K K|
(D.41)
+4AnM;_1 - 4oy 4 Andop 1 || i1 K, || - 201
64Lk
<N Jea KL+ n? (Vo /2) | e K ||+ 4 .
= || Je-1 K, | - (1 + 0?07 /16 + 1024LK* + 801 Fop11) -

The last inequality uses the fact that ||J,—1]| < /01/2,||Ki—1]] < +/01/2 and My_y <
2

OLE | Ji—1 KLy || Now by the fact that L = 17018241 + a® = O(F
constant so that

[ Ji—1 K || - 4oy + 8noydapsn | Je—1 K, ||

r

3 > ), we can choose small

2 2 2

T 1024LK% < 8010051 <
3840, S R4y 87102k S g

%0t /16 <

Thus, we can have

2
JET| < W K7 1+ 22 )
T < k- (14

We complete the proof of (D.32)

Proof of (D.33) Hence, similar to Phase 1, by |U;V," — | < M; < 4a/<;4ai/2 + 24101 and
3/2
U = Vi|| < U, — V|| < 4o+ 40501 , we can show that

max{[|U[], [Ve[[} < 2v/o1
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Also, consider

Uy — Vi
= =2 =V,"Vs = K K;)(Uy—1 = Vi1) = Vi Ay
+ 0 (B1(Fa Gy = 2)Viet + Ea(F Gy — £)K; )
— - (B (Fi1Gi_y = D)V + B3 (Fia Gy = %) Ji1) -

Hence, by the RIP property and A;_; < 2021 ((D.34)), we can get

1T = VOl < (1 = 0o [Tt = Viea | + 2002 - 237 + 4ndaiss - 2031 - [ Fra Gy — 5

< (1 =00 [Us—1 = Vier |l + 200” - 20/071 + 8ndaj41 - /o1 - 4| J-1 KL |
< (L=no)||Ui—1 — Viea || + 2na® - 2/07 + 3206241 - /o1 - || Je—1 K ||

Since

8a? /a1 + 6400k 11y/01 | i1 KLy ||

Or

U1 — Viea|| >

for all ¢ in Phase 2, we can have
[0 = Vil < (1 = nor/2)|Ut—1 — Vi—a]|

during Phase 2.

Moreover, since Phase 2 terminates at round 75, such that

8042\/(3?1"’ 6452k+1\/0'>1‘|JT2—1K7T“2—1H

o

||UT2—1 - VT2—1|| <

it takes at most

Cslog(y/a,/a) o, = t; (D.42)

rounds for some constant C'3 because (a) (D.33), (b) and U; — V; decreases from ||Ur, — V|| <
4,/071 to at most |Ur, — Vg, || = Q(a?/o1/0,). Also, the changement of A; can be bounded by

To—1
1AL = Ag | < > 207 | RG] =S| - 4oy)

t=T)
<2(n*) - 10007 - (Tp — Ty)

< 2(n?) - 100073 - C3log(y/o1 /na)(1/n0,.)
< 10C3 log(v/o1 /na)(nka?)

< a?/16.

The last inequality holds by choosing < a?/160C3k07. Then, Apin (A Amin A1, —a?/16 >

¢) >
a?/4 —a?/16 = 3a?/16 and ||A]| < ||Ap || + @?/16 < 7a?/4 + o?/16 < 29a2/16. Hence,
inequality (D.6) still holds during Phase 2.

D.6 PHASE 3: LOCAL CONVERGENCE
In this phase, we show that the norm of K; will decrease at a linear rate. Denote the SVD of U, as

Up = A X W;, where 3 € R™", W, € R™* and define W; | € R*~")*F i5 the complement of
W,.
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We use the induction to show that all the following hypotheses hold during Phase 3.

maxc{ | L], [ K[|} < O(2vaoy"* + dor i1 log(y/a1/na) - k2\/51) < V/a1/2

64Lk
o < O < ]|
2
no,
o |<(1 e ) s KL
8a?,/ 649, Vol J KT
||Ut_V;EH S « 01+ 2k+1 Ul” t t”

oy
2
%-IgAt§2a21

1K < 20l W, |

no
Wil < v (12220,

(D.43)

(D.44)

(D.45)

(D.46)

(D.47)
(D.48)

(D.49)

Assume the hypotheses above hold before round ¢, then at round ¢, by the same argument in
Phase 1 and 2, the inequalities (D.44) and (D.46) still holds, then max{||U:||, ||V;||} < 2,/01 and

min{o.(U),o0.(V)} > 0. /4,/07.
Last, we should prove the induction hypotheses (D.43) , (D.47), (D.48) and (D.49).

Proof of Eq.(D.45) Similar to the proof of (D.32) in Phase 2, we can derive (D.45) again.

Proof of Eq.(D.48) First, to prove (D.48), note that we can get

M, > U K| = || AWK || = |2 W K|

|KtWtT||‘7r > ||KtWtTH\/Ur.

> 0o (U) - KW > ]

Hence,

6401Lf
15w, || < 4v/kM [ /o, < 5 17| < Rz [ e]| - v/or <

Thus,

K| < HKtWtTJ_H + || KW, |

64Lk
< KW, |+

— Kl

< lKW, L+ §||Kt|\o

N

32LK3/2 32 K2

1K)

(D.50)

The last inequality uses the fact that do511 = O(0? /0}) Hence, || KW, || > || K,||/2, and (D.48)

holds during Phase 3.
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Proof of Eq.(D.47) To prove the (D.47), by the induction hypothesis of Eq.(D.49), note that

t—1
1A = Agy || <20 > | FuGy — 3P40,
t'=Ts
t—1
<27’ > 160 [|Jp K|

t'=Ts

< 64017 - Z ([ Ter |2 [ Ko W ]I

t'=Ts
8
< 640, - 7> (01 : ||KT2W7T2,L”2 ‘ W) (D.51)
512770% 9
< P20 k|
2
. 128201 o
«
< a?/16

The Eq.(D.51) holds by the sum of geometric series. The last inequality holds by n < O(a*/a3)
Then, we have

2002 o
Al < A Ay — Ap | < — < 202
A < AT, || + (| A 1l < 16 +16_ a
302 a? a?
minA Z minA —[|Ay — A 27——:7.
Amin(80) 2 Awin(Az,) = 4 = Agy | 2 T - 2 = S

Hence, (D.47) holds during Phase 3.

Proof of Eq.(D.43) To prove the (D.43), note that

1| < 20 KW, || < 2| K, Wi, ||| < 20K || < O(0aks1 log(v/a1/na) - 07/ % fo,). (D.52)
On the other hand, by A; < 2021, we have
W J W, - W K KW, - W VTV <207 - 1
Hence, denote L; = || J;K,' || < 01 /4,
Wi J W, <2021+ Wy LK KW, + W, VTV
=20°T+ Wy L K] KW, + W, L (V, = U) T (V, = U)W,

8a2,/7 + 646211/ Le \
S2042I+Wt,LKtTKtWt,TL+( Q7YoL+ 02024101 t) T

Or

802\ /a7 + 646051/ \ >
:Wt,LKIKtWtTL+<2a+ Vo1 + 0201y t) I. (D.53)

or

Also, by inequality (D.53), we have

I FWATL 1P = W L
S+ KWL

(20& + 8(12\/171+64(1752k+1 Voi1L ) 2

1TeWe || = WL ] <

2| KW, N+ W] = B
(2a + 80&2\/H+6452k+1\/aLt>2

<
[PATAN B AN
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Thus, by L; < 01/4, we can get

8042\/0'1 + 64025+1+/01 L1
[ FWelL || < KWL ||+ 200+ -
8a?, /a1 + 649 VoL
S ||KT2||—|—2a—|— 1 2k+1 14

or
< 0@2vao”™ + Sapqr log(\/a1/na)k>/o1).
The second inequality holds by || KW, || < |[[Kz, Wy, | || < [|K7,||. On the other hand, note that
[PAES FATAN S FATAN
< | BT /or(U) + [TV, |
<N JVall for (U) + (| T:(U: = Vi)l /o (U) + | W, Ll
< My/or(U) + (| Jelll|(Ue = V)l /o (U) + HJtWtTLH
64Lk 4./0q 80[2\/01 +6452k+1,/01||JtK/TH 4./01
< (T TECe]] - —— + || T2 ]| . p + ||JtWt—,rL||

r T O—T‘ T
640°/% L 320201 + 2560044101 - 01
< ( o3 Vo + o2 B (| Jell + HJtWtTLH
< fHJtII s pAAN (D.54)

The last inequality holds because
Sopr1 = O(k log ' (Va1 /na)), o< O(o,/\/o1)
Hence, by the inequality (D.54), we can get

]| < 2|l W,L || = O@2Vasy* + da41 log(y/ar/na) - k23 /a7). (D.55)
Thus, (D.43) holds during Phase 3.

Proof of Eq.(D.49) Now we prove the inequality (D.49). We consider the changement of K;. We
have

Ki=K,(I-UU, — J'J;) + E3(F,G] —$)U; + E4(F,G] —X).J;

Now consider Ky 1 th, we can get
Kip W, | = Ki(I —qW, W, — J]J)W,[| + nBEs(RG, — S)UW,!| +nEf(F,G] — )W,
=KW, —nKJ," W, +nEy(F,G] — )W,
= KtW nKtWt J_Wt J_J JtW nKtW WtJ JtW L + 77E4(FtG E)JtWtTJ_
Hence, by the Eq.(D.SO),

64nLk>/?
[ Wil | < W, (T =W 1 T W)+ 37 T B 1T WL Tell + 4Andak-a M| J WL |
64nLk3/?
<KW, (1= qWe T I WD+ =5 IRE |- WL
Or
160177L
+ BT WLl
80nLk?

[P ol PATAN

< ||KtWtTJ_(I - nWt,LJtTJtWtTJ_)H +

T

The second inequality uses the fact that do; 11 < 1/16 and (D.50). The last inequality uses the fact
that || J¢|| < \/o71. Note that Apin(A;) > «?/8 - I, then multiply the WtTJ_, we can get

o2
WU_J JtW WtJ_V Viw, WtJ_K KtWJ_>§ I.
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Hence,

2
(6%
Wo L IS LWL = We L K KGW ) > o T

Thus, define ¢, = W; lJt JtW - Wi 1 K, KtWtTJ_, then we can get
80Lk>2

T

1K W L < KW, (1= Wt T W4T+ [ o I FAVAR

80Lk?

<KW, (1= W L KT KW, — gyl + [EA: N R PAVAN

Define loss L; = ||.J;K," . Note that
Ly =LK/
= LW, Wi L K + I W, WK
< | IW, W K+ HJtWtTWtKTH

64LK3/

THMTH (D.56)
(o

< || JW,I Wi LK ||+ o -

L
< || J:W, J_WtJ_KTH‘i‘ i

The Eq.(D.56) holds by Eq.(D.50) and ||W," || = 1, and the last inequality holds by dax1 1 = O(k*).

Hence,

W, Wi L K[| > Ly /2. (D.57)
Similarly,

W, Wy LK, || < 2Ly (D.58)
Then,

160nLk?

T

[ et Wil || < W, (T — nWo, LK KWl — )|+

If || J: WV, J_H < 10k, we can get

16077L/-@

[ Ko a W, || < IBW,T (T =Wy LK KW, —ng)|| + W, W L K[| - 1 JeW, |

16017Lf£

T

no 160nLk
< KWL (1—)+0Jt A A PATAN]

<KW LT =W L KT KW, —néy)|| + | JW, W L K| || W,

8 ,
a2 160nLx2
< Il (1= 20 ) o B 0o |
)
< lKW, - (1 ) (D.59)
nIIJt W,
< |\K,W," 1— D.
<KWy o |- ( “1600n2 (D.60)
by choosing da+1 < O(k~°). Now if || W, L|| > 10ka,

Wi J W, - W KK W, - W VTV <207 T
Wi, JW, | = Wi LK KW, <202 - T+ W, L (U — Vi) T (U — V)W,
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Hence,

If |J;W,], || > 10ka, then
[ JWe L[] = Wi, L, T, ||

8a” 646 L.\ 2
< Wi/ Ktwtl||+(2a+ 0% 1 + 64011 /71 )

Or

T 2
T T 8012,/0' —|—6452k \/O JiW N O
< H”t,‘l t Kt”t,i_” <2a - . 1” e H -

< Wi L KT KW, [+ (100 + 64005 11 5]| T W] )
< Wi L KW, ||+ (1/105 + 6460541 %) - (| T, |12
< Wi LK KW+ (1/2) - 112
Thus, [ K:W,T, || > | BW,11/vV2 > (| 7w, |/2.
160nLk>
g

T

[ K a W, || < KW, (T =W LK KW, —ng) || + W, W L K[| 1 JeWT |

160nLk?

Then, if we denote K’ = K, W, , then we know || K'(1—n(K')TK")|| < (1 *ﬂ@)”K/”- Let
K/ — A/E/W/ ’

< EW LI = nWe L KT KW,y =)l + 1 TeW, L We LT (1T

IK'(1=n(K")TK")|| = [AS' W' (I — (W) T (Z)* W)
= I='(I = (=)
Let X/, = (; fori < r,then X/ (I—n(%')?);; = (;—n¢?, then by the fact that ¢; = al(Ktth) <1,
we can have (; — n(f = maxi<i<r G — n(f’ and then
IS0 =02 = (1 = | K21
Hence,
160nLk>

T

[ K a W, || < BW,T (T =W LK KW, —ng) || + LW, W L K[| - 1 JeW |

160nLk>

r

S EWy L (T = nWe L KT KW, )|+ 1TeW, L We L KT 1T Ll

KW, 1P\ 160nLk?
SHKJW1H<1—n : S LU [/ ol (R PALAR

2

s

1TeW L IIWe LB (17

W, |2 160n L2
< HKtWtTJ_” (1 -1 b + =

8 -
[EALANR
< ||KtWtTJ_|| (1 - TI% (D.61)
< KW, || (1= 4nkPa?) . (D.62)

The fifth inequality is because doz, 1 = O(k~*). Thus, for all cases, by Eq.(D.59), (D.60), (D.62)
and (D.61), we have

2 JWT 2
| WL < W |- min { (1-75). (l - M) }

16002
2 T 12
1l LW, |l
<KW (1= 1) - LT D.
— H tWt,J_H < 8 ) ( 3200%}2 ’ ( 63)
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where we use the inequality max{a, b} < v/ab. Now we prove the following claim:
VWi o] < 1K Wi - (1 Ombaia |FWL2 /%) . (D6%)
First consider the situation that ||.J,W," || < 10kc. We start at these two equalities:
Ky = Kt+1thWt,L + K W, Wy
K = Kepi Wiy, Wiga 1 + Kept W Wi,
Thus, we have
Kot W We i Wil ) + Kepd W WaWly | = Kep Wil o
Consider
IWWr 1l = IWer LW
= [Wear LU (OO 2|
= [[Werr LU (OO 2
1Wes L Uer = Uell - 00 (0)

4,/c
VoL 1+ (2401 My + 202541 - (L + 3M) - 24/071)

ag

IN

IN

4./0
< \U/T’n’(3\/a'Mt+252k+l'Lt)

4,/04 48 LK\ /o1
< (— 1K

Or

| +2y/0102k+41 - L)
< On(Oarak’ + a2 [oy) | T K[ |-
for some constant C. Also, note that || F;G,] — 3| < Ly + 3M; < 4Ly,
[ Eea Wi || = [[(Kar — KW, ||+ 1 W |

< KU Us + T T)WiT ||+ 06aki1 - (4L¢) - 2/01 + | KW, |
64 L3/
64Lr3/2

oi?

64LkK3/2
< Ly (n- /o1 +8/o1ndak+1 + T)
Or

< |InKiJ, JW, || + 8y/ainasi1 - Ly +

< Ly|| JeW, || + 8y/a1ndak1 - Ly + L

< 1
- 4\/01
1

—|| K,
JIE

Ly

IN

and
KW, > KW = (K — KWL ||

1
> §|\Kt|| = KU Uy + J J)W, || = 8y/o1nd2k41 - L

1
> S = nLoll W, || = 8v/aindoks - Ly

1

> ||Kt||(§ =l el - (| TeW,T || = 8v/aindarsa - || ]])
1

> ||Kt||(§ —no1 — 8Nd2k+101)

1

> —|| K,

> 4H ¢l

> || KW,
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Here, we use the fact that n < 1/071, d2x41 < 1/32and ||J;|| < \/o1. Hence, we have
1B Wiy | < K W W s Wiliy 1 | K WA W Wy |
<NEepa W, |+ 1K a WL - On(Song16* + oK% o, ) Ly
<(1+ Cn(Sop 1™ + a2n2/ar)Lt) ||Kt+1WtT¢||
< (1+200(0ap1w* + K% o, ) | TW, L Wi LK) [ K WL
< (1420000216 + oK% fo ) [ TW, L [We, LK) 1 Kea WL |
The inequality on the fourth line is because Eq.(D.57).

Note that

042

Wi W, — W K KW, > 5 .

Thus,

KW, || < | 2W,[, || and
1K1 Wiy 1| < (14 200(8aaw® + 0?2 (o) | T WL We, L) (1 WL |
< (14200 (Gapi1r” + @?R% o, ) | TW,L1P) [ K WL | (D.65)
By inequalities (D.63) and (D.65), we can get
[Fiem A

< (14200 1m" + 0262 [00) [TV IP) [1Kea Wi |

4 2 2 T 2 na? 77||JtWtTl”2 T
S (]. + 2077(62k+1/‘5 + o’k /J"")HJtWt,J_H ) 11— ? 11— W HKtWt,J_H
2
e
< (15 ) 1wl
The last inequality is because
| Wil
200 (Sap+16" + 0l2’$2/0r)||JtWt1||2 < W
by choosing
Soky1 = O(k™0) (D.66)
and
a=0(K"7? o). (D.67)

Thus, we can prove | K, W,' | || decreases at a linear rate.

Now we have completed all the proofs of the induction hypotheses. Hence,
IBG =3l < 2|0k |
< 4K/l - or
< 4||KtWtTLH\/a

T na’ e
<Al v (1- 75
77042 t—To
<, v (1- %)

77@2 t—T5
<201 (1- 7 (D.68)

Now combining three phases (D.25), (D.42) and (D.68), if we denote t5 + Ty = T' = (’3(1/77@),
then for any round 7' > 47", Phase 1 and Phase 3 will take totally at least 7' — T” rounds. Now we
consider two situations.
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Situation 1: Phase 1 takes at least 3(%4/) rounds. Then, by (D.25), suppose Phase 1 starts at T
rounds and terminates at 73 rounds, we will have

o2 no Ti=To
Fr, Gl — 3| < —= 1— =
|F,Gr, =2l < 1280425( 6401>

o2 no? T/2
T 1— . D.69
~ 12802k < 6401> ( )
The last inequality uses the fact that T > 47" and
T-T
T Ty > -1 >T/2

Then, by (D.32), (D.30), (D.44) and (D.45), we know that
1FrG — S|l < 4]l JrE7 ||

no? \ T T
s4||JT1K£—z|-(1+ )

1280,
no? T—T,

<A4|Fr,Gf, =% - (1 L

<alFrGF, -2l (14 100 )

<4|Fr,Gf. —3||- (1+ nry )" (D.70)

L 1280, '

The last inequality uses the fact that 77} — Ty > (T_T") > % which implies that % >T -1

Then, combining with (D.69), we can get

2 T/2 2 \7T/2
F GT _3 < Or 1— no r 1 1o,
I1FrGr =2l < 35505 ( 640, " 1280,

2 2 \T/2
< I (1% (D.71)
12802k 1280,
0_3 na T/2
— 128a2k <1 8 ) ’ (D.72)

(D.71) uses the basic inequality (1 — 2z)(1 + =) < (1 — ), and (D.72) uses the fact that & =
O(k=2\/0,) = O(\/ro,).

Situation 2: Phase 3 takes at least TZT/ rounds. Then, by (D.68), suppose Phase 3 starts at round

T5, we have
||FTGT 2| < 20 (1 >
(T-T")/4
< 201 (]. )
o2 T/8
no
< 1-—— . D.73
- 128a2 ( 8 ) ( )

The last inequality uses the fact that « = O(k~2,/a,) = O(k~1,/0,) and > T%m >T/8.
Thus, by ||FrGf — 3|?> < n- |FrGJ. — X||?, we complete the proof by choosing 47" = T() and
Cr = 1/1282

T-T
4
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E PROOF OF THEOREM 4.3

By the convergence result in (Soltanolkotabi et al., 2023), the following three conditions hold for
t =1Tp.

I 3/2 lo no
max{ ] | Kil}} < O <2a + enoy Tos(yon/ne) ED)
max{|| U], [|[Vel|} < 2v/a1 (E.2)
and
IF,GT — 3| < a'/26%* < 5, /2. (E.3)

Then, we define M; = max{||U;V," — 3|, ||[UK, |, ||J:V;"||}, by the same techniques in Section
D.4, if we have

02M;_1 /6401 > (170100541 + )| T 1 K, 4|, (E.4)
we can prove that
2
M, < (1-2% ),y (E.5)
640’1

and
max{||J;|, | K:||} < 2v/aoy’* + 2C2 log(v/a1/na)(dars1 - £2/07) < /o1
|FG] — 2| < 0,/2
max{||U||, [[V4[[} < 2y/o1.
Now note that

oy
101 Kl > Ain(Ue—1) - 1K | = 00 (Uea) - 1K || > TyoT
Now since daz 11 = O(k~2) and o = O(k~1,/7,) are small parameters, we can derive the M;’s
lower bound by

el (E.6)

My > U1 K, ||

oy
> K~

Oy
> K, 4 -

Z 640’1 .

| Je—1]l
NG
170100511 + o2

2
oy

Hence, (E.4) always holds for ¢t > Tj, and then by (E.5), we will have

7]0'2 t—To
M, <(1- e M
b= ( 160‘1) To

770_2 t—To
1— Fr,GF,
( 16(71) || TO T()H

2 t—To
L
2 160‘1 ’
Thus, we can bound the loss by

1G] = 2| < UV, = S|+ | JV || + |UKS |+ (1T K|
<3My+ || LK ||

(E.7)

[ Je—1 K, ). (E.8)

IN

IN

4
< 3M; 4+ OQa + da41k4/01 log(y/o1 /na) - ;/UTMt

r

< 4M,; (E.9)

2 t—To
no;

<20, (1- .
=0 ( 6401)
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where Eq.(E.9) uses the fact that doy 1 < O(k2log™ ! (/a1 /na)) and a < O(0,.//71). Now we
can choose T'(? = 2Ty, and then by t — Ty > t/2 forall t > T2 we have

2\ t=To 2\ t/2
|FGT — |3 < n| FGT - S| < 200, (1—"(”) < %m0, - <1— ”“r) .

640, 6401
(E.10)

We complete the proof.
F PROOF OF THEOREM 5.1
During the proof of Theorem 5.1, we assume £ satisfy that

max{0771/6 1/3 0621431,%1/6 5/12} < B < cgyJor (F.1)
for some large constants c7, ¢ and small constant ¢s. In particular, this requirement means that
v < 0,/4. Then, since ||A*A(Fy@s) GT<3) -3 > 2||FT<3>GT(3) Y|l by RIP property and
dokt1 < 1/2, we can further derive || Fre) Gl — S| = ||FT<3)GT(3) Y <o./2.

To guarantee (F.1), we can use choose 7 to be small enough, i.e., v < o k2, so that (F.1) holds
easily. In the following, we denote d2x11 = 2k + 10.

F.1 PROOF SKETCH OF THEOREM 5.1

First, suppose we modify the matrix ﬁT(g) , éws) to Fre and G att = TG) then | Fres ||? =
Amax(Fra) T Fre) = B2 and ||Ups)||? < B2 Also, by ||Fre)|| < 24/01, we can get
that |G || < [|Gre | - M < || Goew || - 2475 s still bounded. Similarly, ||V || <
Vo || - Z‘QE and || Kpe || < HIN(T@.)H : 2\271 is still bounded. With these conditions, define
S = max{|UK |, 1K |} and Py = mas{|J.V," [l [UV;T — S}. For
can prove Amin(F,' Fy) > $%/2 for all t > T®) using induction, with the updating rule, we can
bound || K11 as the following

Kol < IKlIL = nF Bl + 200241 - |G — Sl max{ [ U], | ]} (F2)

<K - (1 - ”5) (408201 Py + 480501 | K ]) F3)

The first term of (F.3) ensures the linear convergence, and the second term represents the perturbation
term. To control the perturbation term, for P;, with more calculation (see details in the rest of the
section), we have

Py < (1 — 7703/852) P+ || K| - o (<52k+101 + aaIM) /ﬂ) . (F4)

The last inequality uses the fact that Sy < || ;|| - max{||U||, | J¢]|} < K| - |1F2l| < V28 - || K-

Combining (F.4) and (F.3), we can show that P; + /07 || K¢ || converges at a linear rate (1 —O(n3?)),
since the second term of Eq. (F.4) and Eq.(F.3) contain d21 or o, which is relatively small and can

be canceled by the first term. Hence, | F;G} — || < 2P, +2S; < 2P; + /28| K;|| converges at a
linear rate.

F.2 PROOF OF THEOREM 5.1

At time t > T®), we have opmin(Ure Vie) > omin(D) — |Ur@ Vpe — 2l = or — al/?.
o2/* > 5, /2. The last inequality holds because v = O(x~3/2 - | /G,,). Then, given that || Fpes || =
Amax((Fre)) T Fre)) = 8%, we have ||Upe |2 < 8% Hence, by 01 (U) - 0, (V) > o, (UVT), we

have
O'T(UT(:S) VT(3)) (o

+(V; > —.
or(Vre) 2 o1(Uprs) — 2B
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Also, by o} = ||Fre || < 24/a7, we can get

g1

/
2
1Gr@ || < IGre 1 BS7L | < 1Gre | - 5 < |Gre |- 5

zn'ul

Similarly. [ Vi | < Ve |- 257 and [ Ko | < | Ko |- 2457

Denote S; = max{||U, K|, |J: K, ||}, P: = max{||J;V,"||,||U:V," — X||}. Now we prove the
following statements by induction:

2 7/4
no. )Pt+7]5t'0 (10g(\/‘T1/”a)52k+1“ i ++Vao, ) (E5)

Prp1 < (1 o

832 52

56 ﬂQ t+1—-7®)
||Ft+1Gt+1 || S ) (1 - ) < U'r/2 (F6)

oy 2
max{||Fiy1|, [|Gi11ll} < 4o1/B (E.7)
2
B—I < Fl Fiq <28%0 (F.8)
2./

IKL < O@vaol/* + a1 loa(yor/na) - k2 /a7 - 22 (F9)

B

Proof of Eq.(F.5) First, since || F}||? = Amax((F}) T F}) < 2832, we have |Uy||? < 282, Then,
because omin (U Vi) > omin(X) — UV, — 3| > 0,./2,by 01(U) - 0,.(V) > 0,.(UV"), we have

O-T‘(Ut%) > Or

or(Vi) 2 P AREETR

we write down the updating rule as
UpaViyy — %
= (1= nU:U )V, =)A= qViV,") = nU K[ KV, = nUp )| JV,' + By
where B; contains the O(n?) terms and O(F;(F;G, — X)) terms
1Bt < 4082141 (FG{ = ) max{[[ ]|, |G} + O | B G/ = I max{|| F 1%, | Gel|*})
Hence, we have

1Ui41Viys — |

2
no
<@- 4BS)IIUtVf = Sl + | UL V| + all 7V T O+ 1Bl
<(1- 452)Pt + NS KV + n Pl Je [ Uel| + 1| Be |
< W)Pt +nS; - ﬁ -0 (2\/501/4 + b2k log(y/71/na) - K2V ) - 2051 + 0P8 - B
4
+47752k+1'2(Pt+St)'401 52 +O( (Pt+St)2'40'1'%)
2 1 1
. ( 7722) Pt O ( 0g(y/71/na) zkg;n 2+ vao; ) F10)
The last inequality uses the fact that
8% = 0(0,"?)
Sok1 = O(K™?)

P+ 8 <2|F,G/ - 2| < 0(07/B%) < 1/n.
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Similarly, we have
[EAsY AR
<(A-nJ"NIVIQA-nVTV)—nJK'KVT —pJUT(UVT - %)+ C,
where C; satisfies that
ICe]l < 4ndors1 (FG[ — D) max{||F|*, | Gel*} + O(P | FG[ — | max{||F|, |G l1*})

1602
7 -

01

5

< Andopt1 - 2(P + Si) - +OM* (P, +S;) 01 -

Thus, similar to Eq.(F.10), we have

P 2
nhmdms( ’”>R+w 0<

log(/o1/na)dak1K20% + \/EUI/4>
832 i

62

Hence, we have

o2 7/4
Py < (1 )Pt S, -0 <1°g(@/”a)52k+1ﬁ +\/ao, ) |

842 p?

Proof of Eq.(F.6) We have S; < || K| - max{[|U4 ], | ]|} < | K:]l - [|F:]l < V28 - [|K¢]|. So the
inequality above can be rewritten as

7/4
P < (1 8,82) P, +77‘[ﬂ 1K, - <log(\/a/na)62k;21f€20% n \/agl )
: 7/4
- ( g;2) By A || K} - <log(\/>/"a)52k;m i ++Vao, )

Also, for K;41, we have

[ Kl = 1K1 = nF Fy)|| + 200041 - [|1F2G] — S| max{||Ug]], || J¢|[}
np?

< K1 = T) + 2n0ok41 - (P + Sp) - V28
< || K|l (1 - @) + 2082141 - Pr - V2B + 20dak41 - V28| K4 - V28
_ 775 2
= 1Kl (1 = 5-) + 4ndonya - B+ 45" ndaxp1 - || K|
Thus, we can get
Piy1 + o1 K]
2
o
< max{l — 77672, 77/5 HP: + [| K]l
1 5 >/
+ nmax {(9 ( 08(/01/n) Zktﬁ Jl + vao, + 4B8%50p 41, 4B/T1 02k 11

(P + o || Kil])

2
< (1= "2 (p, 4 o),

The last inequality uses the fact that 5 < O(o. = %) and

dok+1 < O(B/+/o1 log(\/o1 /na)). (F.11)
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Hence,

2 t—T7®)
| Kl < (Pre /o1 + [[Kre ) - <1 - 776)

2
<Kzl + RG] —Zll/vor
< O(Vaoy" + b1 log(v/ar /ma) - w2\ /o1) + a7 - oyt
= O(Vao,"* + 6o log (/o1 /na) - k2,/a7)
Hence, P; + /01 ||K;|| is linear convergence. Hence, by 8 < /o7,
|Fe41Glyy — Sl € 2Py + 25041
< 2Py + V28| Kip |
< (24 V28/v/00) (Pt + Vo || Ko ]])

0B t4+1-T®
<(Pror + VAl Ko ) - (1- )

Last, note that by 8 > c7(v'/651/%) and 8 > céé,ﬁlml/ﬁai’/lz log (/a1 /na)'/®, by choosing for

some constants c7 and ¢, by choosing large ¢’ and c¢; = 2, we can get

66 3/2 /86
1< g VT Olog(Van /@i -0 - (2 ) < o

20%
and
Pre + vau |l Ko | <+ /a1 - Olog(v/ar /ava)bapi - 072 fa,) - (2y/a1/8) < 8°/0?
we have
6 2 t+17T(3)
|Fi41Glyy = 2| < (ﬁg) (1 - W) (F.12)
oy 2

Proof of Eq.(F.7) Note that we have max{||Fpa ||, |Gre ||} < 4y/01 - J/o1/8 = 401/8. Now

suppose max{||Fy ||, |Gy ||} < 4y/071 - \/o1/B = 401/ for all t' € [T, 1], then the changement
of F;11 and G441 can be bounded by

t 6 3 2
- 2 4 16 8
1Fos — Fral <n Y 2Ft/Gt/—z||||Gt/||<n-2-(ﬂ+”) 2 Ao 1O St

t=T(3) 0% 2 -7762 B8~ o1 33
t—1
16683 802
IGi~ Grol <n Y 2FuGe - Sl|Ful < S0+ 22
t'=T(3)

Then, by the fact that 5 < O(o, 1 %), we can show that

20 16433 Rg2 4o

1Feall < | Freo | + 1 Frsr — Fpo | < 220 4 1007, 801 don,
ﬁ 01 5 5
20 16¢3 Rc2 4o

1Gearll < Gl + [Grar — Greo || < 228 4 16 | 8ot Aon.
5 01 5 5

Proof of Eq.(F.8) Moreover, we have
0k (Fi41) 2 0k (Fre) — Omax(Fiq41 — Fre)
= ok(Fre) — | Fiv1 — Fre ||
3
>p-

g1

> B/V2,
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and

165°
IF < WEren | + | — Freoll < 8+ 2 < V3.

The last inequality is because § < O(oy 1/ 2). Hence, since Fy; € R™**, we have

2
%1 < F Fiq <28%0 (F.13)

Thus, we complete the proof.

G TECHNICAL LEMMA

G.1 PROOF OF LEMMA B.1

Proof. We only need to prove with high probability,

max cos? O, 2, < 5 ¢ . (G.1)
ijeln] - log®(ry/o1/a)(rk)?
In fact, since cos® O, o, = sin2(§ —0p,.2.) < (7/2 = 04, 2, )%, we have
Ve )} 2 c
P 2—0p. 2| >0 ———MmMmm >Pcosb,. ., >O
I/ sl <log(r o1/a)rK Dk logQ(r\/ﬂ/a)(rn)2
(G.2)

Moreover, for any m > 0, by Lemma G.1,

(sin(F — m))F—2
1/vVk -2

|
S

P[|m/2 = by, 0. >m] <O ( (\/k‘ - 2(Cosm)k_2) (G.3)

IN

0 (\/E(l - m2/4)k_2) (G.4)
<0 (\/%exp (—:Z)) . (G.5)

The second inequality uses the fact that cosz < 1 — x2 /4. Then, if we choose

e N
log(r\/o1/a)rk

and let k > 16/m* = 161C)gél(r‘/cc?l/O‘)(M)Al,we can have

P [cos® 0y, 2, > m?] <P[|7/2 = 04, 4, > m] (G.6)
2

<0 (k exp (—T)) (G.7)

<O (k; exp (—\/%)) (G.8)

Thus, by taking the union bound over j, k € [n], there is a constant ¢ such that, with probability at
least 1 — c4n’k exp(—V'k), we have

c

S o m ©

O
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G.2 PROOF OF LEMMA B.2

Proof. Since z; = a/\'k - #;, where each element in Z; is sampled from (0, 1). By Theorem 3.1
in Vershynin (2018), there is a constant ¢ such that

P[|127]5 — k| > t] < 2exp(—ct) (G.10)
Hence, choosing t = (1 — %)k‘, we have
P(12213 € [k/v2,V2K]] < P[||F0]I5 — k| = #] < 2exp(—ct) < 2exp(—ck/4)
Hence,
P[Il20)? € [0?/2,20%]] = P[|30|* € [k/V2, V2K]| < 2exp(~ck/4).  (G.1D)
By taking the union bound over i € [n], we complete the proof. O

Lemma G.1. Assume x,y € R™ are two random vectors such that each element is independent and
sampled from N (0, 1), then define 0 as the angle between x, vy, we have

™ m/n — 2(sin(r/2 —m))" 2
p- 3] ) ¢ BTz

Proof. First, it is known that ”77” and ﬁ are independent and uniformly distributed over the sphere

(G.12)

Sm~L. Thus, without loss of generality, we can assume z and y are independent and uniformly
distributed over the sphere.

Note that 6 € [0, 7], and the CDF of 6 is
I'(n/2)sin™2(6)

1(60) = = ©1)
VL (251)
Then, we have
T/24m . p—9 T/2—m . p—
g SN 0do =2 046
P(‘g_ﬁ‘ >m)=1- f/{r il _ ko s (G.14)
2 fo sin 0do fo sin" ™~ 0do
L2 _
L (/2 /S;n (r/2—m) (G.15)
fow cos™2 0df
2. 92 _ n—2
< (W/ﬂ (m/2—m)""%) (G.16)
Jo (@ —t2/2)n2dt
(7/2) - (7/2 —m)" >
< Lt (G.17)
3vVn—2
— : _ n—2
:3ﬂm(sm(7r/2 m)) ' (G.18)
4v2
O

Lemma G.2 (Lemma 7.3 (1) in Stoger & Soltanolkotabi (2021)). Let A be a linear measurement
operator that satisfies the RIP property of order 2k + 1 with constant §, then we have for all matrices
with rank no more than 2k

(I — A*A)(X)| < V2k - 8]| X]|. (G.19)

Lemma G.3 (Soltanolkotabi et al. (2023)). There exist parameters (o, §0, Qo, 1o such that, if we
choose o < g, Fy = - Fy, Go = (a/3) - Gy, where the elements of Fy, G is N'(0,1/n),° and

*Note that in Soltanolkotabi et al. (2023), the initialization is Fp = « - 150 and Gy = o - éo, while Lemma
G.3 uses a slightly imbalance initialization. It is easy to show that their techniques also hold with this imbalance
initialization.
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suppose that the operator A defined in Eq.(1.1) satisfies the restricted isometry property of order
2r 4 1 with constant § < &, then the gradient descent with step size n < ng will achieve

|F,G] — 3| < a3/ . g1/ (G.20)

within T = O(1/no,) rounds with probability at least 1 — (o, where {; = c1 exp(—cak) +
(cLo,v)k*TJrl is a small constant. Moreover, during T’ rounds, we always have

max{||Fi|[, |G|} <201 (G.21)

The parameters oy, 69 and ng are selected by

Ck
ao—(9< . . \/E vr—1 (G22)
k maX{Qn k} max{2n, k}
1
5o < (9 — ﬁ) (G.23)
<O ! . ! G.24
"= k501 Jog <7\2}/ﬁ ) (€29
va(Vk—yr—1

H EXPERIMENT DETAILS

In this section, we provide experimental results to corroborate our theoretical observations.

Symmetric Lower Bound In the first experiment, we choose n = 50,r = 2, three different &k =
5,3,2 and learning rate n = 0.01 for the symmetric matrix factorization problem. The results are
shown in Figure 1, which matches our €2(1/72) lower bound result in Theorem 3.1 for the over-
parameterized setting, and previous linear convergence results for exact-parameterized setting.

Asymmetric Matrix Sensing In the second experiment, we choose configuration n = 50,k =
4,7 = 2, sample number m = 700 ~ nk? and learning rate = 0.2 for the asymmetric matrix
sensing problem. To demonstrate the direct relationship between convergence speed and initializa-
tion scale, we conducted multiple trials employing distinct initialization scales o« = 0.5,0.2,0.05.
The experimental results in Figure 1.2 offer compelling evidence supporting three key findings:

e The loss exhibits a linear convergence pattern.
o A larger value of « results in faster convergence under the over-parameterization setting

e The convergence rate is not dependent on the initialization scale under the exact-parameterization
setting.

These observations highlight the influence of the initialization scale on the algorithm’s performance.

In the last experiment, we run our new method with the same n and r but two different £ = 3,4.
Unlike the vanilla gradient descent, at the midway point of the episode, we applied a transformation
to the matrices F; and G; as specified by Eq. (5.1). As illustrated in Figure 2(c), it is evident that
the rate of loss reduction accelerates after the halfway mark. This compelling observation serves as
empirical evidence attesting to the efficacy of our algorithm.

I ADDITIONAL EXPERIMENTS

In this section, we provide some additional experiments to further corroborate our theoretical find-
ings.

1.1 COMPARISONS BETWEEN ASYMMETRIC AND SYMMETRIC MATRIX SENSING

We run both asymmetric and symmetric matrix sensing with n = 50,n = 4,r = 2 with sample
m = 1200 and learning rate n = 0.2. We run the experiment for three different initialization
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scales aw = 0.5,0.2,0.05. The experiment results in Figure I.1 show that asymmetric matrix sensing
converges faster than symmetric matrix sensing under different initialization scales.

1071 4
-3 4
PR
0 -
@] . ~ S~
| —— symmetric alpha=0.5 -
107°1 ——- asymmetric alpha = 0.5
—— symmetric alpha = 0.2 \‘\\
——- asymmetric alpha = 0.2 Y
10771 —— symmetric alpha = 0.05 \\\\
——- asymmetric alpha = 0.05 S,
0 5000 10000 15000 20000 25000 30000
Iterations

Figure I.1: Comparisons between asymmetric and symmetric matrix sensing with different initializa-
tion scales. The dashed line represents the asymmetric matrix sensing, and the solid line represents
the symmetric matrix sensing. Different color represents the different initialization scales.

[.2 WELL-CONDITIONED CASE AND ILL-CONDITIONED CASE
We run experiments with different conditional numbers of the ground-truth matrix. The conditional

number x is selected as k = 1.5, 3 and 10. The minimum eigenvalue is selected by 0.66, 0.33 and
0.1 respectively. The experiment results are shown in Figure 1.2

10° A

10-1 4

1072 4

1073 5

Loss

1074 4

1075 4

0 5000 10000 15000 20000 25000 30000

Iterations

Figure 1.2: Comparisons between different conditional numbers

From the experiment results, we can see two phenomena:
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Figure I.4: Experiment Results of larger true rank » = 5 and over-parameterized rank k& = 10.

e When the minimum eigenvalue is smaller, the gradient descent will converge to a smaller error at
a linear rate. We call this phase the local convergence phase.

o After the local convergence phase, the curve first remains flat and then starts to converge at a linear
rate again. We can see that the curve remains flat for a longer time when the matrix is ill-conditioned,
i.e. k is larger.

This phenomenon has been theoretically identified by the previous work for the incremental learn-
ing (Jiang et al., 2022; Jin et al., 2023), in which GD is shown to sequentially recover singular
components of the ground truth from the largest singular value to the smallest singular value.

1.3 LARGER INITIALIZATION SCALE

We also run experiments with a larger initialization scale «. The experiment results are shown in
Figure 1.3. We find that if « is overly large, i.e. @ = 3 and 5, the algorithm actually converges
slower and even fails to converge. This is reasonable since there is an upper bound requirement Eq.
(4.7) for v in Theorem 4.2.
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10! 4 —— alpha =3
—— alpha =5
1071 4
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0 2500 5000 7500 10000 12500 15000 17500 20000
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Figure 1.3: Comparisons between different large initialization scales

1.4 LARGER TRUE RANK AND OVER-PARAMETERIZED RANK

We run experiments with larger configurations n = 50,k = 10 and r = 5. We use m = 2000
samples. The experiment results are shown in Figure I.4. We show that similar phenomena of
symmetric and asymmetric cases also hold for a larger rank of the true matrix and a larger over-
parameterized rank. Moreover, our new method also performs well in this setting.
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1.5 INITIALIZATION PHASE

If we use GD with small initialization, GD always goes through an initialization phase where the
loss is relatively flat, and then converges rapidly to a small error. In this subsection, we plot the first
5000 episodes of Figure 2(b). After zooming into the first 5000 iterations, we find the existence of
the initialization phase. That is, the loss is rather flat during this phase. We can also see that the
initialization phase is longer when « is smaller. The experiment results are shown in Figure L.5.

'\ —— alpha = 0.5
v : ——- beta= 0.2
—-- alpha = 0.05
%]
) 1071
o
|
1072 §

0 1000 2000 3000 4000 5000

Ilterations

Figure 1.5: First 5000 episodes of Figure 2(b)
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