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Appendix

A RELATED WORK

Matrix Sensing. Matrix sensing aims to recover the low-rank matrix based on measurements.
Candes & Recht (2012); Liu et al. (2012) propose convex optimization-based algorithms, which
minimize the nuclear norm of a matrix, and Recht et al. (2010) show that projected subgradient
methods can recover the nuclear norm minimizer. Wu & Rebeschini (2021) also propose a mirror
descent algorithm, which guarantees to converge to a nuclear norm minimizer. See (Davenport &
Romberg, 2016) for a comprehensive review.

Non-Convex Low-Rank Factorization Approach. The nuclear norm minimization approach in-
volves optimizing over a n ⇥ n matrix, which can be computationally prohibitive when n is large.
The factorization approach tries to use the product of two matrices to recover the underlying matrix,
but this formulation makes the optimization problem non-convex and is significantly more challeng-
ing for analysis. For the exact-parameterization setting (k = r), Tu et al. (2016); Zheng & Lafferty
(2015) shows the linear convergence of gradient descent when starting at a local point that is close
to the optimal point. This initialization can be implemented by the spectral method. For the over-
parameterization scenario (k > r), in the symmetric setting, Stöger & Soltanolkotabi (2021) shows
that with a small initialization, the gradient descent achieves a small error that dependents on the ini-
tialization scale, rather than the exact-convergence. Zhuo et al. (2021) shows exact convergence with
O(1/T 2) convergence rate in the overparamterization setting. These two results together imply the
global convergence of randomly initialized GD with an O

�
1/T 2

�
convergence rate upper bound. Jin

et al. (2023) also provides a fine-grained analysis of the GD dynamics. More recently, Zhang et al.
(2021b; 2023) empirically observe that in practice, in the over-parameterization case, GD converges
with a sublinear rate, which is exponentially slower than the rate in the exact-parameterization case,
and coincides with the prior theory’s upper bound (Zhuo et al., 2021). However, no rigorous proof
of the lower bound is given whereas we bridge this gap. On the other hand, Zhang et al. (2021b;
2023) propose a preconditioned GD algorithm with a shrinking damping factor to recover the lin-
ear convergence rate. Xu et al. (2023) show that the preconditioned GD algorithm with a constant
damping factor coupled with small random initialization requires a less stringent assumption on A

and achieves a linear convergence rate up to some prespecified error. Ma & Fattahi (2023) study the
performance of the subgradient method with L1 loss under a different set of assumptions on A and
showed a linear convergence rate up to some error related to the initialization scale. We show that
by simply using the asymmetric parameterization, without changing the GD algorithm, we can still
attain the linear rate.

For the asymmetric matrix setting, many previous works (Ye & Du, 2021; Ma et al., 2021; Tong
et al., 2021; Ge et al., 2017; Du et al., 2018a; Tu et al., 2016; Zhang et al., 2018a;b; Wang et al.,
2017; Zhao et al., 2015) consider the exact-parameterization case (k = r). Tu et al. (2016) adds a
balancing regularization term 1

8kF
>
F �G

>
Gk

2
F to the loss function, to make sure that F and G are

balanced during the optimization procedure and obtain a local convergence result. More recently,
some works (Du et al., 2018a; Ma et al., 2021; Ye & Du, 2021) show GD enjoys an auto-balancing
property where F and G are approximately balanced; therefore, additional balancing regularization
is unnecessary. In the asymmetric matrix factorization setting, Du et al. (2018a) proves a global
convergence result of GD with a diminishing step size and the GD recovers M⇤ up to some error.
Later, Ye & Du (2021) gives the first global convergence result of GD with a constant step size. Ma
et al. (2021) shows linear convergence of GD with a local initialization and a larger stepsize in the
asymmetric matrix sensing setting. Although exact-parameterized asymmetric matrix factorization
and matrix sensing problems have been explored intensively in the last decade, our understanding
of the over-parameterization setting, i.e., k > r, remains limited. Jiang et al. (2022) considers
the asymmetric matrix factorization setting, and proves that starting with a small initialization, the
vanilla gradient descent sequentially recovers the principled component of the ground-truth matrix.
Soltanolkotabi et al. (2023) proves the convergence of gradient descent in the asymmetric matrix
sensing setting. Unfortunately, both works only prove that GD achieves a small error when stopped
early, and the error depends on the initialization scale. Whether the gradient descent can achieve
exact-convergence remains open, and we resolve this problem by novel analyses. Furthermore, our
analyses highlight the importance of the imbalance between F and G.
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Lastly, we want to remark that we focus on gradient descent for L2 loss, there are works on more
advanced algorithms and more general losses (Tong et al., 2021; Zhang et al., 2021b; 2023; 2018a;b;
Ma & Fattahi, 2021; Wang et al., 2017; Zhao et al., 2015; Bhojanapalli et al., 2016; Xu et al., 2023).
We believe our theoretical insights are also applicable to those setups.

Landscape Analysis of Non-convex Low-rank Problems. The aforementioned works mainly
focus on studying the dynamics of GD. There is also a complementary line of works that studies
the landscape of the loss functions, and shows the loss functions enjoy benign landscape properties
such as (1) all local minima are global, and (2) all saddle points are strict Ge et al. (2017); Zhu et al.
(2018); Li et al. (2019); Zhu et al. (2021); Zhang et al. (2023). Then, one can invoke a generic result
on perturbed gradient descent, which injects noise to GD Jin et al. (2017), to obtain a convergence
result. There are some works establishing the general landscape analysis for the non-convex low-
rank problems. Zhang et al. (2021a) obtains less conservative conditions for guaranteeing the non-
existence of spurious second-order critical points and the strict saddle property, for both symmetric
and asymmetric low-rank minimization problems. The paper Bi et al. (2022) analyzes the gradient
descent for the symmetric case and asymmetric case with a regularized loss. They provide the local
convergence result using PL inequality, and show the global convergence for the perturbed gradient
descent. We remark that injecting noise is required if one solely uses the landscape analysis alone
because there exist exponential lower bounds for standard GD (Du et al., 2017).

Slowdown Due to Over-parameterization. Similar exponential slowdown phenomena caused
by over-parameterization have been observed in other problems beyond matrix recovery, such as
teacher-student neural network training (Xu & Du, 2023; Richert et al., 2022) and Expectation-
Maximization algorithm on Gaussian mixture model (Wu & Zhou, 2021; Dwivedi et al., 2020).

B PROOF OF THEOREM 3.1

In this proof, we denote

X 2 Rn⇥k =

2

64

x
>
1

x
>
2

· · ·

x
>
n

3

75 , (B.1)

where xi 2 Rk⇥1 is the transpose of the row vector. Since the updating rule can be written as

Xt+1 = Xt � ⌘(XtX
>
t � ⌃)Xt,

where we choose ⌘ instead of 2⌘ for the simplicity, which does not influence the subsequent proof.
By substituting the equation (B.1), the updating rule can be written as

(xt+1
i )> = (1� ⌘(kxt

ik
2
� �i))x

>
i �

nX

j=1,j 6=i

⌘((xt
i)

>
x
t
j(x

t
j)

>)

where �i = 0 for i > r. Denote

✓ = max
j,k

(x>
j xk)2

kxjk
2kxkk

2

is the maximum angle between different vectors in x1, · · · , xn. We start with the outline of the
proof.

B.1 PROOF OUTLINE OF THEOREM 3.1

Recall we want to establish the key inequalities (3.3). The updating rule (2.3) gives the following
lower bound of xt+1

i for i > r:

kx
t+1
i k

2
� kx

t
ik

2

0

@1� 2⌘✓Ut
X

jr

kx
t
jk

2
� 2⌘

X

j>r

kx
t
jk

2

1

A , (B.2)
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where the quantity ✓
U
t = maxi,j:min{i,j}r ✓ij,t and the square cosine ✓ij,t = cos2 \(xi, xj). Thus,

to establish the key inequalities (3.3), we need to control the quantity ✓
U
t . Our analysis then consists

of three phases. In the last phase, we show (3.3) holds and our proof is complete.

In the first phase, we show that kxt
ik

2 for i  r becomes large, while kx
t
ik

2 for i > r still remains
small yet bounded away from 0. In addition, the quantity ✓ij,t remains small. Phase 1 terminates
when kx

t
ik

2 is larger than or equal to 3
4�i.

After the first phase terminates, in the second and third phases, we show that ✓Ut converges to 0
linearly and the quantity ✓

U
t �1/

P
j>r kx

t
jk

2 converges to zero at a linear rate as well. We also keep
track of the magnitude of kxt

ik
2 and show kx

t
ik stays close to �i for i  r, and kx

t
ik

2
 2↵2 for

i > r.

The second phase terminates once ✓
U
t  O(

P
j>r kx

t
jk

2
/�1) and we enter the last phase: the

convergence behavior of
P

j>r kx
t
jk

2. Note with ✓
U
t  O(

P
j>r kx

t
jk

2
/�1) and kx

t
ik

2
 2�r for

i  r, we can prove (3.3b). The condition (3.3a) can be proven since the first two phases are quite
short and the updating formula of xi for i > r shows kxik

2 cannot decrease too much.

B.2 PHASE 1

In this phase, we show that kxt
ik

2 for i  r becomes large, while kx
t
ik

2 for i > r still remains
small. In addition, the maximum angle between different column vectors remains small. Phase 1
terminates when kx

t
ik

2 is larger than a constant.

To be more specific, we have the following two lemmas. Lemma B.1 states that the initial angle
✓0 = O(log2(r

p
�1/↵)(r)2) is small because the vectors in the high-dimensional space are nearly

orthogonal.

Lemma B.1. For some constant c4 and c, if k �
c2

16 log4(r
p
�1/↵)(r)4

, with probability at least

1� c4n
2
k exp(�

p
k), we have

✓0 
c

log2(r
p
�1/↵)(r)2

(B.3)

Proof. See §G.1 for proof.

Lemma B.2 states that with the initialization scale ↵, the norm of randomized vector x0
i is ⇥(↵2).

Lemma B.2. With probability at least 1� 2n exp(�c5k/4), for some constant c, we have

kx
0
i k

2
2 [↵2

/2, 2↵2].

Proof. See §G.2 for the proof.

Now we prove the following three conditions by induction.
Lemma B.3. There exists a constant C1, such that T1  C1(log(

p
�1/n↵)/⌘�r) and then during

the first T1 rounds, with probability at least 1 � 2c4n2
k exp(�

p
k) � 2n exp(�c5k/4) for some

constant c4 and c5, the following four statements always hold

kx
t
ik

2
 2�1 (B.4)

↵
2
/4  kx

t
ik

2
 2↵2 (i > r) (B.5)

2✓0 � ✓t (B.6)

Also, if kxt
ik

2
 3�i/4, we have

kx
t+1
i k

2
� (1 + ⌘�r/4)kx

t
ik

2
. (B.7)

Moreover, at T1 rounds, kxT1
i k

2
� 3�i/4, and Phase 1 terminates.
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Proof. By Lemma B.1 and Lemma B.2, with probability at least 1 � 2c4n2
k exp(�

p
k) �

2n exp(�c5k/4), we have kx
0
i k

2
2 [↵2

/2, 2↵2] for i 2 [n], and ✓0 
c

log2(r
p
�1/↵)(r)2

. Then
assume that the three conditions hold for rounds before t, then at the t+ 1 round, we proof the four
statements above one by one.

Proof of Eq.(B.5) For i > r, we have

(xt+1
i )> = (xt

i)
>
� ⌘

nX

j=1

(xt
i)

>
x
t
j(x

t
j)

>

Then, the updating rule of kxt
ik

2 can be written as

k(xt+1
i )k22 = kx

t
ik

2
� 2⌘

nX

j=1

((xt
i)

>
x
t
j)

2 + ⌘
2(

nX

j,k=1

(xt
i)

>
x
t
j(x

t
j)

>
x
t
k(x

t
k)

>
x
t
i)  kx

t
ik

2
. (B.8)

The last inequality in (B.8) is because
(xt

i)
>
x
t
j(x

t
j)

>
x
t
k(x

t
k)

>(xt
i)  (xt

j)
>
x
t
k(((x

t
i)

>
x
t
j)

2 + ((xt
k)

>
x
t
i)

2)/2 (B.9)

 �1((x
t
i)

>
x
t
j)

2 + ((xt
k)

>
x
t
i)

2), (B.10)
and then

⌘
2

nX

j,k=1

(xt
i)

>
x
t
j(x

t
j)

>
x
t
k(x

t
k)

>(xt
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2
nX

j,k=1

�1((x
t
i)

>
x
t
j)

2 + ((xt
k)

>
x
t
i)

2)

= ⌘
2
· n�1

nX

j=1

((xt
i)

>
x
t
j)

2

 ⌘

nX

j=1

((xt
i)

>
x
t
j)

2
. (B.11)

where the last inequality holds because ⌘  1/n�1. Thus, the `2-norm of x>
i does not increase, and

the right side of Eq.(B.5) holds.

Also, we have

kx
t+1
i k

2
� kx

t
ik

2
� 2⌘

nX

j=1

((xt
i)

>
x
t
j)

2 + ⌘
2

������

nX

j=1

(xt
i)

>
x
t
j(x

t
j)

>

������

2

� kx
t
ik

2
� kx

t
ik

2
· 2⌘✓t ·

nX

j 6=i

kx
t
jk

2
� 2⌘kxik

4 (B.12)

Equation (B.2) is because ((xt
i)

>xt
j)

2

kxt
ik2kxt

jk2 = ✓ij,t  ✓t. Now by (B.4) and (B.5), we can get
nX

j 6=i

kx
t
jk

2
 r · 2�1 + (n� r) · 2↵2

 2�1 + 2n↵2

Hence, we can further derive
kx

t+1
i k

2
� kx

t
ik

2
·
�
1� 2⌘✓t(2r�1 + 2n↵2)� 2⌘ · 2↵2

�

� kx
t
ik

2
·
�
1� ⌘(8✓t�1 + 4↵2)

�
,

where the last inequality is because ↵ 
p
r�1/

p
n. Thus, by (1 � a)(1 � b) � (1 � a � b) for

a, b > 0, we can get
kx

T1
i k

2
� kx

0
i k

2
· (1� ⌘(8✓t�1 + 4↵2))T1

�
↵
2

2
· (1� T1⌘(8 · (2✓0)�1 + 4↵2)) (B.13)

�
↵
2

4
. (B.14)

Equation (B.13) holds by induction hypothesis (B.6), and the last inequality is because of our choice
on T1, ↵, and ✓0  O( 1

r log(
p
�1/↵)

) from the induction hypothesis. Hence, we complete the proof
of Eq.(B.5).
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Proof of Eq.(B.7) For i  r, if kxt
ik

2
 3�i/4, by the updating rule,

kx
t+1
i k

2
2 � (1� ⌘(kxt

ik
2
� �i))

2
kx

t
ik

2
� 2⌘

nX

j 6=i

((xt
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2(kxt

ik
2
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2
.

THe last inequality uses the fact that |kxt
ik

2
��i|  2�1 and kx

t
jk

2
 2�1. Then, by ((xt

i)
>
x
t
j)

2


kx
t
ik

2
kx

t
jk

2
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The last inequality holds by Eq.(B.11) and
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�
3⌘

2
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2(2�1) · 2�1 � 2⌘2n�2
1 (B.20)

� ⌘�i, (B.21)

where (B.20) holds by kx
t
ik

2
�

3�i
4 , kxt

ik
2
 2�1 for all i 2 [n]. The last inequality (B.21) holds

by ⌘  C( 1
n�1

) for small constant C. The first term of (B.18) represents the main converge part,
and (a) represents the perturbation term. Now for the perturbation term (a), since ↵ 

1
4n2 and
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where (B.23) holds by (B.4) and (B.5). (B.24) holds by ↵ = O(
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Hence, we complete the proof of Eq.(B.4).
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Now we bound term B. We have
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Now combining (B.27), (B.28), (B.29), (B.30) and (B.31), we can get
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On the other hand, consider the change of kxt
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where (B.35) holds by n > 8k � 8 and 2⌘(kxt
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there is a constant C3 such that T1  C1(log(
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First, the condition (B.45) and (B.46) hold at round T1. Then, if it holds before round t, consider
round t + 1, similar to Phase 1, condition (B.46) also holds. Now we prove Eq.(B.43), (B.44) and
(B.45) one by one.
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Hence, by (B.45) and (B.46), we can get
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The inequality Eq.(B.51) holds by ✓ij,t > ✓
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The term C is defined and can be bounded by
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The inequality (B.55) holds by (B.43), and the inequality (B.56) holds by (B.54).
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Thus, we complete the proof of Eq.(B.43)
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Hence, we complete the proof of Eq.(B.44).
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B.4 PHASE 3: LOWER BOUND OF CONVERGENCE RATE

Now by (B.44), there are constants c6 and c7 such that, if we denote T2 = T1 +
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Hence, by Eq.(B.62), we have
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where the second inequality is derived from (B.65).

Hence, we can show that
P

j>r kx
t
jk

2 = ⌦(1/T 2). In fact, suppose at round T2, we denote AT2 =
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where the inequality (B.68) is because

✓0  O
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r log(r
p
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Hence,

T2AT2 � T2 · (n� r)
↵
2

8
� c7(log(

p
r�1/↵)/⌘�r) ·

↵
2

8
. (B.71)

by n > r. Define AT2+i+1 = AT2+i(1� 4⌘AT2+i), by Eq.(B.67), we have

AT2+i  AT2 =
X

i>r

kx
T2
i k

2
 2n↵2

. (B.72)
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On the other hand, if ⌘(T2 + i)AT2+i  1/8, and then

⌘(T2 + i+ 1)AT2+i+1 = ⌘(T2 + i+ 1)AT2+i(1� 4⌘AT2+i)

= ⌘(T2 + i)AT2+i � (T2 + i)4⌘2A2
T2+i + ⌘AT2+i(1� 4⌘AT2+i)

� ⌘(T2 + i)AT2+i � (T2 + i)4⌘2A2
T2+i + ⌘AT2+i/2 (B.73)

� ⌘(T2 + i)AT2+i � ⌘AT2+i/2 + ⌘AT2+i/2

� ⌘(T2 + i)AT2+i,

where (B.73) holds by ⌘AT2+i  2n⌘↵2
 1/8.

If ⌘(T2 + i)AT2+i > 1/8, since ⌘AT2+i  1/8, we have ⌘AT2  2n⌘↵2
 1/8.

⌘(T2 + i+ 1)AT2+i+1 � ⌘(T2 + i)AT2+i(1� 4⌘AT2+i) + ⌘AT2+i(1� 4⌘AT2+i)

�
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8
·
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2
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1

2

�
1

16
.

Thus, by the two inequalities above, at round t � T2, we can have

⌘tAt � min{⌘T2AT2 , 1/16}.

Now by (B.71),

⌘T2AT2 �
c7 log(

p
r�1/↵)↵2

8�r
, (B.74)

then for any t � T2, we have

⌘tAt � min
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p
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8�r
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(B.75)

Now by choosing ↵ = eO(
p
�r) so that c7 log(

p
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2
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 1/16, we can derive
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Since for j > r, (XtX
>
t � ⌃)jj = kx

t
jk

2, we have kXtX
>
t � ⌃k2 �

P
j>r kx

t
jk
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� A

2
t/n and
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C PROOF OF THEOREM 4.1

Denote the matrix of the first r row of F,G as U, V respectively, and the matrix of the last n� r row
of F,G as J,K respectively. Hence, U, V 2 Rr⇥k

, J,K 2 R(n�r)⇥k. In this case, the difference
FtG

>
t � ⌃ can be written in a block form as

FtG
>
t � ⌃ =

✓
UtV

>
t � ⌃r JtV

>
t

UtK
>
t JtK

>
t

◆
, (C.1)

where ⌃r = I 2 Rr⇥r. Hence, the loss can be bounded by

kJtK
>
t k  kFtG

>
t � ⌃k  kUtV

>
t � ⌃rk+ kJtV

>
t k+ kUtK

>
t k+ kJtK

>
t k. (C.2)

The updating rule for (U, V, J,K) under gradient descent in (4.2) can be rewritten explicitly as

Ut+1 = Ut + ⌘⌃rVt � ⌘Ut(V
>
t Vt +K

>
t Kt)

Vt+1 = Vt + ⌘⌃rUt � ⌘Vt(U
>
t Ut + J

>
t Jt)

Jt+1 = Jt � ⌘Jt(V
>
t Vt +K

>
t Kt)

Kt+1 = Kt � ⌘Kt(U
>
t Ut + J

>
t Jt).
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Note that with our particular initialization, we have the following equality for all t:

UtK
>
t = 0, JtV

>
t = 0, and Ut = Vt. (C.3)

Indeed, the conditions (C.3) are satisfied for t = 0. For t+ 1, we have

Ut+1 = Ut + ⌘(⌃r � UtV
>
t )Vt = Vt + ⌘(⌃r � UtV

>
t )Ut = Vt+1, Kt+1 = Kt � ⌘KtJ

>
t Jt

Ut+1K
>
t+1 = UtK

>
t + ⌘(⌃r � UtV

>
t )UtK

>
t � ⌘VtJ

>
t JtK

>
t � ⌘

2(⌃r � UtV
>
t )UtJ

>
t JtK

>
t = 0

The last equality arises from the fact that UtK
>
t = 0, JtV >

t = 0 and Ut = Vt. Similarly, we can get
Jt+1V

>
t+1 = 0. Hence, we can rewrite the updating rule of Jt and Kt as

Jt+1 = Jt � ⌘JtK
>
t Kt (C.4)

Kt+1 = Kt � ⌘KtJ
>
t Jt. (C.5)

Let us now argue why the convergence rate can not be faster than ⌦((1 � 6⌘↵2)t). Denote A 2

R(n�r)⇥k as the matrix that (A)1k = 1 and other elements are all zero. We have that J0 = ↵A and
K0 = (↵/3) ·A. Combining this with Eq.(C.4) and Eq.(C.5), we have Jt = atA,Kt = btA, where

a0 = ↵, b0 = ↵/3, (C.6a)

at+1 = at � ⌘atb
2
t , (C.6b)

bt+1 = bt � ⌘a
2
t bt. (C.6c)

It is immediate that 0  at+1  at, 0  bt+1  bt , max{at, bt}  ↵ because of ⌘b2t  ⌘b
2
0 =

⌘↵
2
 1 and similarly ⌘a

2
t  1. Now by ⌘↵

2
 1/4,

kJt+1K
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2
t )(1� ⌘b

2
t )atbt � (1� 2⌘↵2)2atbt � (1� 4⌘↵2)atbt.

(C.7)

By Eq.(C.2) that kFtG
>
t � ⌃k � kJtK

>
t k, the convergence rate of kFtG

>
t � ⌃k can not be faster

than a0b0(1� 4⌘↵2)t � ↵2

3 (1� 4⌘↵2)t.

Next, we show why the convergence rate is exactly ⇥((1�⇥(⌘↵2))t) in this toy case. By Eq.(C.3),
the loss kFtG

>
t � ⌃k  kUtU

>
t � ⌃rk + kJtK

>
t k. First, we consider the norm kUtU

>
t � ⌃rk.

Since in this toy case, ⌃r = Ir and Ut = Vt for all t, the updating rule of Ut can be written as

Ut+1 = Ut � ⌘(UtU
>
t � I)Ut (C.8)

Note that U0 = (↵Ir, 0) 2 Rr⇥k. By induction, we can show that Ut = (↵tIr, 0) and ↵t+1 =
↵t � ⌘(↵2

t � 1)↵t for all t � 0. If ↵t  1/2, we have

↵t+1 = ↵t(1 + ⌘ � ⌘↵
2
t ) � ↵t(1 + ⌘/2).

Then, there exists a constant c1 and T1 = c1(log(1/↵)/⌘) such that after T1 rounds, we can get
↵t � 1/2. By the fact that ↵t+1 = ↵t(1+ ⌘(1�↵

2
t ))  max{↵t, 2} when ⌘ < 1, it is easy to show

↵t  2 for all t � 0. Thus, when ⌘ < 1/6, we can get 1� ⌘(↵t + 1)↵t > 0 and then

|↵t+1 � 1| = |(↵t � 1)� ⌘(↵t � 1)(↵t + 1)↵t|

= |↵t � 1|(1� ⌘(↵t + 1)↵t)

 |↵t � 1|(1� ⌘/2).

we know that kUtU
>
t � ⌃rk = ↵

2
t � 1 converges at a linear rate

kUtU
>
t � ⌃k  (1� ⌘/2)t�T1

(a)
 (1� ⌘↵

2
/4)(t�T1)/2, (C.9)

where (a) uses the fact that

1� ⌘↵
2
/4 � 1� ⌘ � (1� ⌘/2)2 (C.10)

Hence, we only need to show that kJtK>
t k converges at a relatively slower speed O((1�⇥(⌘↵2))t).

To do this, we prove the following statements by induction.

↵ � at � ↵/2, b
2
t+1  b

2
t (1� ⌘↵

2
/4) (C.11)
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Using b0 = ↵/3, we see the above implies that kJtK>
t k = atbt  O((1�⇥(⌘↵2))t).

Let us prove (C.11) via induction. It is trivial to show it holds at t = 0 and the upper bound of at by
(C.6). Suppose (C.11) holds for t0  t, then at round t+ 1, we have

b
2
t+1 = b

2
t (1� ⌘a

2
t )

2
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2
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2
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2
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2
/4). (C.12)

Using at+1 = at(1� ⌘b
2
t ), we have

at+1 = a0
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� ↵ ·
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1� ⌘ ·

↵
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·
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where the step (a) holds by recursively using (1� a)(1� b) � (1� (a+ b)) for a, b 2 (0, 1), and
the step (b) is due to b

2
i  b

2
0 · (1� ⌘↵

2
/4)t  ↵2

9 · (1� ⌘↵2

4 )t and the sum formula for geometric
series. Thus, the induction is complete, and

kJtK
>
t k = atbt  (↵2

/3) · (1� ⌘↵
2
/4)t/2  (1� ⌘↵

2
/4)t/2  (1� ⌘↵

2
/4)(t�T1)/2. (C.14)

Combining (C.9) and (C.14), with kAk2  kAkF  rank(A) · kAk2, we complete the proof.

D PROOF OF THEOREM 4.2

We prove Theorem 4.2 in this section. We start with some preliminaries.

D.1 PRELIMINARIES

In the following, we denote �2k+1 =
p
2k + 1�. Also denote the matrix of the first r row of F,G

as U, V respectively, and the matrix of the last n � r row of F,G as J,K respectively. Hence,
U, V 2 Rr⇥k

, J,K 2 R(n�r)⇥k. We denote the corresponding iterates as Ut, Vt, Jt, and Kt.

Also, define E(X) = A
⇤
A(X) �X . We also denote �(X) = A

⇤
A(X). By Lemma G.2, we can

show that kE(X)k  �2k+1 · kXk for matrix X with rank less than 2k by Lemma G.2. Decompose
the error matrix E(X) into four submatrices by

E(X) =

✓
E1(X) E2(X)
E3(X) E4(X)

◆
,

where E1(X) 2 Rr⇥r
, E2(X) 2 Rr⇥(n�r)

, E3(X) 2 R(n�r)⇥r
, E4(X) 2 R(n�r)⇥(n�r). Then

the updating rule can be rewritten in this form:

Ut+1 = Ut + ⌘⌃Vt � ⌘Ut(V
>
t Vt +K

>
t Kt) + ⌘E1(FtG

>
t � ⌃)Vt + ⌘E2(FtG

>
t � ⌃)Kt (D.1)

Vt+1 = Vt + ⌘⌃Ut � ⌘Vt(U
>
t Ut + J

>
t Jt) + ⌘E

>
1 (FtG

>
t � ⌃)Ut + ⌘E

>
3 (FtG

>
t � ⌃)Jt (D.2)

Jt+1 = Jt � ⌘Jt(V
>
t Vt +K

>
t Kt) + ⌘E3(FtG

>
t � ⌃)Vt + ⌘E4(FtG

>
t � ⌃)Kt (D.3)

Kt+1 = Kt � ⌘Kt(U
>
t Ut + J

>
t Jt) + ⌘E

>
2 (FtG

>
t � ⌃)Ut + ⌘E

>
4 (FtG

>
t � ⌃)Jt. (D.4)

Since the submatrices’ operator norm is less than the operator norm of the whole matrix, the matrices
Ei(FtG

>
t � ⌃), i = 1, . . . , 4 satisfy that

kEi(FtG
>
t � ⌃)k  kE(FtG

>
t � ⌃)k  �2k+1kFtG

>
t � ⌃k, i = 1, . . . , 4.

Imbalance term An important property in analyzing the asymmetric matrix sensing problem is
that F>

F � G
>
G = U

>
U + J

>
J � V

>
V � K

>
K remains almost unchanged when step size

⌘ is sufficiently small, i.e., the balance between two factors F and G are does not change much
throughout the process. To be more specific, by

Ft+1 = Ft � ⌘(FtG
>
t � ⌃)Gt � E(FtG

>
t � ⌃)Gt

Gt+1 = Gt � ⌘(FtG
>
t � ⌃)>Ft � (E(FtG

>
t � ⌃))>Ft

we have
���F>

t+1Ft+1 �G
>
t+1Gt+1

�
�
�
F

>
t Ft �G

>
t Gt

���  2⌘2 · kFtG
>
t � ⌃k2 ·max{kFtk, kGtk}

2
.

(D.5)
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In fact, by the updating rule, we have

F
>
t+1Ft+1 �G

>
t+1Gt+1

= F
>
t Ft �G

>
t Gt + ⌘

2
⇣
G

>
t (FtG

>
t � ⌃)>(FtG

>
t � ⌃)Gt � F

>
t (FtG

>
t � ⌃)(FtG

>
t � ⌃)>Ft

⌘
,

so that

kF
>
t+1Ft+1 �G

>
t+1Gt+1 � (F>

t Ft �G
>
t Gt)k

2⌘2kFtk
2
kGtk

2
kFtG

>
t � ⌃k2

2⌘2 · kFtG
>
t � ⌃k ·max{kFtk

2
, kGtk

2
}

Thus, we will prove that, during the proof process, the following inequality holds with high proba-
bility during all t � 0:

2↵2
I � U

>
t Ut + J

>
t Jt � V

>
t Vt �K

>
t Kt �

↵
2

8
I. (D.6)

Next, we give the outline of our proof.

D.2 PROOF OUTLINE

In this subsection, we give our proof outline.

• Recall �t = F
>
t Ft � G

>
t Gt = U

>
t Ut + J

>
t Jt � V

>
t Vt � K

>
t Kt. In Section D.3, we show

that with high probability, �0 has the scale ↵, i.e., C↵
2
I � �0 � c↵

2
I , where C > c are two

constants. Then, we apply the converge results in Soltanolkotabi et al. (2023) to argue that the
algorithm first converges to a local point. By Soltanolkotabi et al. (2023), this converge phase takes
at most T0 = O((1/⌘�r�) log(

p
�1/n↵)) rounds.

• Then, in Section D.4 (Phase 1), we mainly show that Mt = max{kUtV
>
t �

⌃k, kUtK
>
t k, kJtV

>
t k} converges linearly until it is smaller than

Mt  O(�1� + ↵
2)kJtK

>
t k. (D.7)

This implies that the difference between estimated matrix UtV
>
t and true matrix ⌃, kUtV

>
t � ⌃k,

will be dominated by kJtK
>
t k. Moreover, during Phase 1 we can also show that �t has the scale ↵.

Phase 1 begins at T0 rounds and terminates at T1 rounds, and T1 may tend to infinity, which implies
that Phase 1 may not terminate. In this case, since Mt converges linearly and Mt > ⌦(�1� +
↵
2)kJtK>

t k, the loss also converges linearly. Note that, in the exact-parameterized case, i.e., k = r,
we can prove that Phase 1 will not terminate since the stopping rule (D.7) is never satisfied as shown
in Section E.

• The Section D.5 (Phase 2) mainly shows that, after Phase 1, the kUt�Vtk converges linearly until
it achieves

kUt � Vtk  O(↵2
/
p
�1) +O(�2k+1kJtK

>
t k/

p
�1).

Assume Phase 2 starts at round T1 and terminates at round T2. Then since we can prove that kUt �

Vtk decreases from 4
O(�1) to ⌦(↵2), Phase 2 only takes a relatively small number of rounds, i.e.

at most T2�T1 = O(log(
p
�r/↵)/⌘�r) rounds. We also show that Mt remains small in this phase.

• The Section D.6 (Phase 3) finally shows that the norm of Kt converges linearly, with a rate depen-
dent on the initialization scale. As in Section 4.2, the error matrix in matrix sensing brings additional
challenges for the proof. We overcome this proof by further analyzing the convergence of (a) part
of Kt that aligns with Ut, and (b) part of Kt that lies in the complement space of Ut. We also utilize
that Mt and kUt � Vtk are small from the start of the phase and remain small. See Section D.6 for
a detailed proof.

4The upper bound O(�1) of kUt � Vtk is proved in the first two phases.
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D.3 INITIAL ITERATIONS

We start our proof by first applying results in Soltanolkotabi et al. (2023) and provide some ad-
ditional proofs for our future use. From Soltanolkotabi et al. (2023), the converge takes at most
T0 = O((1/⌘�r�) log(

p
�1/n↵)) rounds.

Let us state a few properties of the initial iterations using Lemma G.3.

Initialization By our imbalance initialization F0 = ↵ · eF0, G0 = (↵/3) · eG0, and by random
matrix theory about the singular value (Vershynin, 2018, Corollary 7.3.3 and 7.3.4), with probability
at least 1� 2 exp(�cn) for some constant c, if n > 8k, we can show that [�min(F0),�max(F0))] ✓

[
p
3↵
2 ,

p
3↵p
2
], [�min(G0),�max(G0)] ✓ [

p
3↵
6 ,

↵p
6
] and

3↵2

2
I � F

>
0 F0 �G

>
0 G0 = U

>
0 U0 + J

>
0 J0 � V

>
0 V0 �K

>
0 K0 �

↵
2

2
I (D.8)

As we will show later, we will prove the (D.6) during all phases by (D.5) and (D.8).

First, we show the following lemma, which is a subsequent corollary of the Lemma G.3.
Lemma D.1. There exist parameters ⇣0, �0,↵0, ⌘0 such that, if we choose ↵  ↵0, F0 = ↵ ·

F̃0, G0 = (↵/2) · G̃0, where the elements of F̃0, G̃0 is N (0, 1),5 and suppose that the operator A
defined in Eq.(1.1) satisfies the restricted isometry property of order 2r + 1 with constant �  �0,
then the gradient descent with step size ⌘  ⌘0 will achieve

kFtG
>
t � ⌃k  min{�r/2,↵

1/2
· �

3/4
1 } (D.9)

within T0 = c2(1/⌘�r) log(
p
�1/n↵) rounds with probability at least 1 � ⇣0 and constant c2 � 1,

where ⇣0 = c1 exp(�c2k) + exp(�(k � r + 1)) is a small constant. Moreover, during t  T0

rounds, we always have

max{kFtk, kGtk}  2
p
�1 (D.10)

kUt � Vtk  4↵+
40�2k+1�

3/2
1

�r
(D.11)

kJtk  O

⇣
2↵+

�2k+1�
3/2
1 log(

p
�1/n↵)

�r

⌘
(D.12)

13↵2

8
I � �t �

3↵2

8
I (D.13)

Proof. Since the initialization scale ↵  O(
p
�1), Eq.(D.10), Eq.(D.11), Eq.(D.12) and Eq.(D.13)

hold for t0 = 0. Assume that Eq.(D.9), Eq.(D.10), Eq.(D.11), Eq.(D.12) and Eq.(D.13) hold for
t
0 = t� 1.

Proof of Eq.(D.9) and Eq.(D.10)

First, by using the previous global convergence result Lemma G.3, the Eq.(D.9) holds by
↵
3/5

�
7/10
1 < �r/2 because ↵  O(�5/3

r /�
7/6
1 ) = O(7/6p

�r). Also, by Lemma G.3, Eq.(D.10)
holds for all t 2 [T0].

Proof of Eq.(D.13)

Recall �t = U
>
t Ut + J

>
t Jt � V

>
t Vt �K

>
t Kt, then for all t  T0, we have

k�t��0k  2⌘2·25�2
1 ·T0·4�1  2c2 log(

p
�1/n↵)(20�

3
1⌘/�r) = 200c2⌘�

2
1 log(

p
�1/n↵)  ↵

2
/8.

The first inequality holds by Eq.(D.5) and kFtGt � ⌃k  kFtkkGtk + k⌃k  5�1. The last
inequality uses the fact that ⌘ = O(↵2

/�
2
1 log(

p
�1/n↵)). Thus, at t = T0, we have �min(�T0) �

5Note that in Soltanolkotabi et al. (2023), the initialization is F0 = ↵ · F̃0 and G0 = ↵ · G̃0, while Lemma
G.3 uses an imbalance initialization. It is easy to show that their results continue to hold with this imbalance
initialization.
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�min(�0)� ↵
2
/8 � ↵

2
/2� ↵

2
/8 = 3↵2

/8 and k�T0k  k�0k+ 3↵2
/2 + ↵

2
/8 = 13↵2

/8.
Proof of Eq.(D.11)

Now we can prove that kU � V k keeps small during the initialization part. In fact, by Eq.(D.1) and
Eq.(D.2), we have

k(Ut+1 � Vt+1)k

 kUt � VtkkI � ⌘⌃� ⌘(V >
t Vt +K

>
t Kt))k+ ⌘kVtkkU

>
t Ut + J

>
t Jt � V

>
t Vt �K

>
t Ktk

+ 4⌘�2k+1kFtG
>
t � ⌃kmax{kUtk, kVtk, kJtk, kKtk}

 (1� ⌘�r)kUt � Vtk+ 2⌘↵2
· 2
p
�1 + 4⌘�2k+1 · (kFtkkGtk+ k⌃k) · 2

p
�1

 (1� ⌘�r)kUt � Vtk+ 2⌘↵2
· 2
p
�1 + 40⌘�2k+1 · �

3/2
1 .

The second inequality uses the inequality (D.6), while the third inequality holds by
max{kFtk, kGtk}  2

p
�1. Thus, since ↵ = O(�2k+1�

3/2
1 /�r), we can get kU0 � V0k  4↵ 

4↵+ 40
�r
�2k+1�

3/2
1 . If kUt � Vtk  4↵+ 40

�r
�2k+1�

3/2
1 , we know that

kUt+1 � Vt+1k  (1� ⌘�r)

✓
4↵+

40

�r
�2k+1�

3/2
1

◆
+ 4⌘↵2p

�1 + 40⌘�2k+1 · �
3/2
1

 (1� ⌘�r)

✓
4↵+

40

�r
�2k+1�

3/2
1

◆
+ 4⌘�r↵+

40

�r
�2k+1�

3/2
1

 4↵+
40

�r
�2k+1�

3/2
1 .

Hence, kUt � Vtk  4↵ + 40
�r
�2k+1�

3/2
1 for t  T0 by induction. The second inequality holds by

↵ = O(�r/
p
�1)

Proof of Eq.(D.12)

Now we prove that Jt and Kt are bounded for all t  T0. By Eq.(D.3) and max{kFtk, kGtk} 

2
p
�1, denote C2 = max{21c2, 32} � 32, we have

kJT0k  kJ0k+ ⌘

T0�1X

t=0

max{kFtk, kGtk} · 2�2k+1 · (kFtkkGtk+ k⌃k)

 kJ0k+ ⌘T0 · 20�
3/2
1 · �2k+1

 kJ0k+ 20c2 log(
p
�1/n↵)(�2k+1 · �

3/2
1 /�r)

 2↵+ 20c2 log(
p
�1/n↵)(�2k+1 · �

3/2
1 /�r)

= 2↵+ C2 log(
p
�1/n↵)(�2k+1 · �

3/2
1 /�r).

Similarly, we can prove that kKT0k  2↵ + C2 log(
p
�1/n↵)(�2k+1 · �

3/2
1 /�r). We complete the

proof of Eq.(D.12).

D.4 PHASE 1: LINEAR CONVERGENCE PHASE.

In this subsection, we analyze the first phase: the linear convergence phase. This phase starts at
round T0, and we assume that this phase terminates at round T1. In this phase, the loss will converge
linearly, with the rate independent of the initialization scale. Note that T1 may tend to infinity,
since this phase may not terminate. For example, when k = r, we can prove that this phase will
not terminate (§E), and thus leading a linear convergence rate that independent on the initialization
scale. In this phase, we provide the following lemma, which shows some induction hypotheses
during this phase.
Lemma D.2. Denote Mt = max{kUtV

>
t �⌃k, kUtK

>
t k, kJtV

>
t k}. Suppose Phase 1 starts at T0

and ends at the first time T1 such that

⌘�
2
rMt�1/64�1 < (17⌘�1�2k+1 + ⌘↵

2)kJt�1K
>
t�1k (D.14)
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During Phase 1 that T0  t  T1, we have the following three induction hypotheses:

max{kUtk, kVtk}  2
p
�1 (D.15)

kUtV
>
t � ⌃k  �r/2. (D.16)

max{kJtk, kKtk}  2
p
↵�

1/4
1 + 2C2 log(

p
�1/n↵)(�2k+1 · 

2p
�1) 

p
�1 (D.17)

7↵2

4
I � �t �

↵
2

4
I (D.18)

The induction hypotheses hold for t = T0 due to Lemma D.1. Let us assume they hold for t0 < t,

and consider the round t. Let us first prove that the r-th singular value of U and V are lower bounded
by poly(�r, 1/�1) at round t, if Eq.(D.16) holds at round t. In fact,

2
p
�1 · �r(U) � �r(U)�1(V ) � �r(UV

>) � �r/2.

which means

�r(U) � �r/4
p
�1. (D.19)

Similarly, �r(V ) � �r/4
p
�1.

Proof of Eq.(D.16) First, since kUt�1V
>
t�1 � ⌃k  �r/2, by Eq.(D.19), we can get

min{�r(Ut�1),�r(Vt�1)} �
�r

4
p
�1

(D.20)

Define Mt = max{kUtV
>
t � ⌃k, kUtK

>
t k, kJtV

>
t k}. By the induction hypothesis,

max{kUt�1k, kVt�1k}  2
p
�1,

max{kJt�1k, kKt�1k}  2
p
↵�

1/4
1 + 2C2 log(

p
�1/n↵)(�2k+1�

3/2
1 /�r).

Then, by the updating rule and C2 � 1, we can get

UtKt = (1� ⌘Ut�1U
>
t�1)Ut�1Kt�1(1� ⌘Kt�1K

>
t�1) + ⌘(⌃� Ut�1V

>
t�1)V K

>

+ ⌘Ut�1J
>
t�1Jt�1K

>
t�1 +At, (D.21)

where At is the perturbation term that contains all O(Ei(FG
>
� ⌃)) terms and O(⌘2) terms such

that

kAtk  4⌘�2k+1kFtG
>
t � ⌃kmax{kFtk

2
, kGtk

2
}+ 8⌘2kFtG

>
t � ⌃k2 max{kFtk

2
, kGtk

2
}

+ ⌘
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2
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2
}
2
· kFtGt � ⌃k

 4⌘�2k+1kFtG
>
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2
, kGtk

2
}+ 8⌘2kFtG

>
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+ ⌘
2
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 4⌘�2k+1(3Mt�1 + kJt�1K
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t�1k)4�1 + ⌘↵

2(3Mt�1 + kJt�1K
>
t�1k)

Using the similar technique for JtV >
t and UtV

>
t � ⌃, we can finally get
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The last inequality holds by �2k+1 = O(�3
r/�

3
1 log(

p
�1/n↵)) and ↵ = O(�2

r/�
3/2
1 ) =

O(
p
�r

�3/2).

During Phase 1, we have

⌘�
2
rMt�1/64�1 � (17⌘�1�2k+1 + ⌘↵

2)kJt�1K
>
t�1k,

then

Mt 

✓
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⌘�
2
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64�1

◆
Mt�1. (D.23)

Hence, kUtV
>
t � ⌃k  Mt  MT0  kFT0G

>
T0

� ⌃k  �2k+1.

Proof of Eq.(D.15) Now we bound the norm of Ut and Vt. First, note that

k(Ut � Vt)k  (1� ⌘�r)kUt�1 � Vt�1k+ ⌘ · 2↵2
· 2
p
�1 + 40⌘ · �2k+1 · �

3/2
1

Hence, kUt � Vtk  4↵+40�2k+1�
3/2
1 /�r still holds using the same technique in the initialization

part.

Thus, by the induction hypothesis Eq.(D.16) and �1 � �2k+1, we have

2�1 � �1 + �2k+1 � k⌃k+ kUtV
>
t � ⌃k � kUtV

>
t k = kVtV

>
t + (Ut � Vt)V
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t k

� kVtV
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� kVtk
2
� kVtk ·
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40�2k+1�
3/2
1

�r

!

� kVtk
2
� kVtk.

Then, we can get kVtk  2
p
�1. Similarly, kUtk  2

p
�1.

Proof of Eq.(D.17) Since during Phase 1,

kJtK
>
t k  Mt ·

�
2
r

64�1(17�1�2k+1 + ↵2)
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1

10882�2k+1 + 64↵2/�r
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by �2k+1 < 1/128 and Eq.(D.23),
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o
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2
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/(10882

�2k+1 + 64↵2
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Thus, the maximum norm of Jt,Kt can be bounded by

kJtk  kJT0k+ 2⌘ · 2
p
�1�2k+1 ·

t�1X
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The last inequality uses the fact that 2↵+
p
↵�1/4

1
4  2

p
↵�

1/4
1 by ↵ = O(

p
�r). Similarly, kKtk 

2
p
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1 + 2C2 log(

p
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2
·
p
�1). We complete the proof of Eq.(D.17).

34



Under review as a conference paper at ICLR 2024

Proof of Eq.(D.18) Last, for t 2 [T0, T1), we have
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T1�1X
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where the last inequality arises from the fact that ⌘ = O(↵2
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2
�
2
1). By 3↵2
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2
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2
/8 = ↵

2
/4. Hence, the

inequality Eq.(D.18) still holds during Phase 1. Moreover, by Eq.(D.24), during the Phase 1, for a
round t � 0, we will have
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. (D.25)

The conclusion (D.25) always holds in Phase 1. Note that Phase 1 may not terminate, and then the
loss is linear convergence. We assume that at round T1, Phase 1 terminates, which implies that

�
2
rMT1�1/64�1 < (17�1�2k+1 + ↵

2)kJT1�1K
>
T1�1k, (D.26)

and the algorithm goes to Phase 2.

D.5 PHASE 2: ADJUSTMENT PHASE.

In this phase, we prove U � V will decrease exponentially. This phase terminates at the first time
T2 such that

kUT2�1 � VT2�1k 
8↵2p

�1 + 64�2k+1
p
�1kJT2�1K

>
T2�1k

�r
. (D.27)

By stopping rule (D.27), since kUT1 � VT1k  O(�1), this phase will take at most
O(log(

p
�r/↵)/⌘�r) rounds, i.e.

T2 � T1 = O(log(
p
�r/↵)/⌘�r). (D.28)

We use the induction to show that all the following hypotheses hold during Phase 2.

max{kFt�1k, kGt�1}  2
p
�1 (D.29)
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>
t k  kJtK

>
t k (D.30)
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(D.31)
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kUt � Vtk  (1� ⌘�r/2)kUt�1 � Vt�1k (D.33)
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· I  �t 
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· I. (D.34)
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Proof of (D.31) To prove this, we first assume that this adjustment phase will only take at most
C3(log(↵)/⌘�r) rounds. By the induction hypothesis for the previous rounds,
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Similarly, due to the symmetry property, we can bound the kKtk using the same technique. Thus,
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p
↵�

1/4
1 + (2C2 + 16C3) log(
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Proof of (D.30) First, we prove that during t 2 [T1, T2),
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>
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in this phase.

Then, by �2k+1  O(1/ log(
p
�1/n↵)2) and ↵  O(�r/

p
�1), choosing sufficiently small coef-

ficient, we can have
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where Ct represents the relatively small perturbation term, which contains terms of O(�) and O(⌘2).
By (D.29), we can easily get
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�
4⌘�2k+1 · kFt�1G

>
t�1 � ⌃k · 4�1

�
(D.37)

Thus, combining (D.36) and (D.37), we have
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The second inequality is because Mt�1  (10882
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inequality holds by Eq.(D.31) and
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Then, note that by Eq.(D.22), we have
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1�

⌘�
2
r

32�1

◆
Mt�1 + (17⌘�1�2k+1 + ⌘↵

2)kJt�1K
>
t�1k.
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Then, by Mt�1  (10882
�2k+1 +64↵2

/�r) · kJt�1K
>
t�1k and denote L = 17�1�2k+1 +↵

2, we
have

Mt 

✓
1�

⌘�
2
r

32�1

◆
Mt�1 + (17⌘�1�2k+1 + ⌘↵

2)kJt�1K
>
t�1k



✓
1�

⌘�
2
r

32�1

◆
· (10882

�2k+1 + 64↵2
/�r)kJt�1K

>
t�1k+ ⌘LkJt�1K

>
t�1k

=

✓
1�

⌘�
2
r

32�1

◆
·
64L

�r
kJt�1K

>
t�1k+ ⌘LkJt�1K

>
t�1k



✓
64L

�r
� 2⌘L

◆
kJt�1K

>
t�1k



✓
64L

�r
� 2⌘L

◆.✓
1�

⌘�
2
r

128�1

◆
kJtK

>
t k


64L

�r
kJtK

>
t k.

Hence,

Mt 
64L

�r
kJtK

>
t k  kJtK

>
t k

for all t in Phase 2. The last inequality is because �2k+1 = O(1/2 log(
p
�1/n↵)). Moreover, by

�2k+1  O(1/2 log(
p
�1/n↵)2) and (a+ b)2  2a2 + 2b2 we have

kJtK
>
t k  kJtkkKtk 

⇣
2
p
↵�

1/4
1 + (2C2 + 16C3) log(

p
�1/n↵)(�2k+1 · 

2p
�1)
⌘2

(D.39)

 4↵4
�
1/2
1 + �2k+1�1. (D.40)

We complete the proof of Eq.(D.30).

Proof of Eq.(D.32) Moreover, by the updating rule of Jt and Kt, (D.36) and (D.37) we have

kJtK
>
t k

 k(I � ⌘Jt�1J
>
t�1)Jt�1K

T
t�1(I � ⌘Kt�1K

>
t�1)k+ k⌘

2(Jt�1J
>
t�1)Jt�1K

T
t�1(Kt�1K

>
t�1)k
(D.41)

+ 4⌘Mt�1 · 4�1 + 4⌘�2k+1kJt�1K
>
t�1k · 2�1

 kJt�1K
>
t�1k+ ⌘

2(
p
�1/2)

4
kJt�1K

>
t�1k+ 4⌘

64L

�r
kJt�1K

>
t�1k · 4�1 + 8⌘�1�2k+1kJt�1K

>
t�1k

= kJt�1K
>
t�1k ·

�
1 + ⌘

2
�
2
1/16 + 1024L2 + 8�1�2k+1

�
.

The last inequality uses the fact that kJt�1k 
p
�1/2, kKt�1k 

p
�1/2 and Mt�1 

64L
�r

kJt�1K
>
t�1k. Now by the fact that L = 17�1�2k+1 + ↵

2 = O( �2
r

�12 ), we can choose small
constant so that

⌘
2
�
2
1/16 

�
2
r

384�1
, 1024L2


�
2
r

384�1
, 8�1�2k+1 

�
2
r

384�1
.

Thus, we can have

kJtK
>
t k  kJt�1K

>
t�1k ·

✓
1 +

⌘�
2
r

128�1

◆
.

We complete the proof of (D.32)

Proof of (D.33) Hence, similar to Phase 1, by kUtV
>
t � ⌃k  Mt  4↵4

�
1/2
1 + �2k+1�1 and

kUt � Vtk  kUT1 � VT1k  4↵+ 40��3/2
1

�r
, we can show that

max{kUtk, kVtk}  2
p
�1
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Also, consider

Ut � Vt

= (I � ⌘⌃� V
>
t Vt �K

>
t Kt)(Ut�1 � Vt�1)� ⌘Vt�t

+ ⌘ ·
�
E1(Ft�1G

>
t�1 � ⌃)Vt�1 + E2(Ft�1G

>
t�1 � ⌃)Kt�1

�

� ⌘ ·
�
E

>
1 (Ft�1G

>
t�1 � ⌃)Ut�1 + E

>
3 (Ft�1G

>
t�1 � ⌃)Jt�1

�
.

Hence, by the RIP property and �t�1  2↵2
I ((D.34)), we can get

k(Ut � Vt)k  (1� ⌘�r)kUt�1 � Vt�1k+ 2⌘↵2
· 2
p
�1 + 4⌘�2k+1 · 2

p
�1 · kFt�1G

>
t�1 � ⌃k

 (1� ⌘�r)kUt�1 � Vt�1k+ 2⌘↵2
· 2
p
�1 + 8⌘�2k+1 ·

p
�1 · 4kJt�1K

>
t�1k

 (1� ⌘�r)kUt�1 � Vt�1k+ 2⌘↵2
· 2
p
�1 + 32⌘�2k+1 ·

p
�1 · kJt�1K

>
t�1k

Since

kUt�1 � Vt�1k �
8↵2p

�1 + 64�2k+1
p
�1kJt�1K

>
t�1k

�r
.

for all t in Phase 2, we can have

kUt � Vtk  (1� ⌘�r/2)kUt�1 � Vt�1k

during Phase 2.

Moreover, since Phase 2 terminates at round T2, such that

kUT2�1 � VT2�1k 
8↵2p

�1 + 64�2k+1
p
�1kJT2�1K

>
T2�1k

�r
,

it takes at most

C3 log(
p
�r/↵)/⌘�r = t

⇤
2 (D.42)

rounds for some constant C3 because (a) (D.33), (b) and Ut � Vt decreases from kUT1 � VT1k 

4
p
�1 to at most kUT2 � VT2k = ⌦(↵2p

�1/�r). Also, the changement of �t can be bounded by

k�t ��T1k 

T2�1X

t=T1

2(⌘2 · kFtG
>
t � ⌃k2 · 4�1)

 2(⌘2) · 100�3
1 · (T2 � T1)

 2(⌘2) · 100�3
1 · C3 log(

p
�1/n↵)(1/⌘�r)

 10C3 log(
p
�1/n↵)(⌘�

2
1)

 ↵
2
/16.

The last inequality holds by choosing ⌘  ↵
2
/160C3�

2
1 . Then, �min(�t) � �min�T1 �↵

2
/16 �

↵
2
/4 � ↵

2
/16 = 3↵2

/16 and k�tk  k�T1k + ↵
2
/16  7↵2

/4 + ↵
2
/16  29↵2

/16. Hence,
inequality (D.6) still holds during Phase 2.

D.6 PHASE 3: LOCAL CONVERGENCE

In this phase, we show that the norm of Kt will decrease at a linear rate. Denote the SVD of Ut as
Ut = At⌃tWt, where ⌃t 2 Rr⇥r, Wt 2 Rr⇥k, and define Wt,? 2 R(k�r)⇥k is the complement of
Wt.
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We use the induction to show that all the following hypotheses hold during Phase 3.

max{kJtk, kKtk}  O(2
p
↵�

1/4
1 + �2k+1 log(

p
�1/n↵) · 

2p
�1) 

p
�1/2 (D.43)

Mt 
64L

�r
kJtK

>
t k  kJtK

>
t k (D.44)

kJtK
>
t k 

✓
1 +

⌘�
2
r

128�1

◆
kJt�1K

>
t�1k (D.45)

kUt � Vtk 
8↵2p

�1 + 64�2k+1
p
�1kJtK

>
t k

�r
(D.46)

↵
2

8
· I  �t  2↵2

I (D.47)

kKtk  2kKtW
>
t,?k (D.48)

kKt+1W
>
t+1,?k  kKtW

>
t,?k ·

✓
1�

⌘↵
2

8

◆
. (D.49)

Assume the hypotheses above hold before round t, then at round t, by the same argument in
Phase 1 and 2, the inequalities (D.44) and (D.46) still holds, then max{kUtk, kVtk}  2

p
�1 and

min{�r(U),�r(V )} � �r/4
p
�1.

Last, we should prove the induction hypotheses (D.43) , (D.47), (D.48) and (D.49).

Proof of Eq.(D.45) Similar to the proof of (D.32) in Phase 2, we can derive (D.45) again.

Proof of Eq.(D.48) First, to prove (D.48), note that we can get

Mt � kUtKtk = kAt⌃tWtK
>
t k = k⌃tWtK

>
t k

� �r(U) · kKtW
>
t k �

kKtW
>
t k�r

4
p
�1

�
kKtW

>
t k

p
�r

4
p


.

Hence,

kKtW
>
t k  4

p
M/

p
�r 

64�1L
p


�
5/2
r

kJtK
>
t k 

32L3/2

�
3/2
r

kKtk ·
p
�1 

32L2

�r
kKtk.

(D.50)

Thus,

kKtk  kKtW
>
t,?k+ kKtW

>
t k

 kKtW
>
t,?k+

64L

�r
kKtk

 kKtW
>
t,?k+

1

2
kKtk.

The last inequality uses the fact that �2k+1 = O(�3
r/�

3
1) Hence, kKtW

>
t,?k � kKtk/2, and (D.48)

holds during Phase 3.
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Proof of Eq.(D.47) To prove the (D.47), by the induction hypothesis of Eq.(D.49), note that

k�t ��T2k  2⌘2 ·
t�1X

t0=T2

kFt0G
>
t0 � ⌃k24�1

 2⌘2
t�1X

t0=T2

16�1kJt0K
>
t0 k

2

 64�1⌘
2
·

1X

t0=T2

kJt0k
2
kKt0W

>
t0,?k

2

 64�1 · ⌘
2

✓
�1 · kKT2W

>
T2,?k

2
·

8

⌘↵2

◆
(D.51)


512⌘�2

1

↵2
· kKT2k

2


128⌘�2

1

↵2
· �1

 ↵
2
/16.

The Eq.(D.51) holds by the sum of geometric series. The last inequality holds by ⌘  O(↵4
/�

3
1)

Then, we have

k�tk  k�T2k+ k�t ��T2k 
29↵2

16
+

↵
2

16
 2↵2

.

�min(�t) � �min(�T2)� k�t ��T2k �
3↵2

16
�

↵
2

16
=

↵
2

8
.

Hence, (D.47) holds during Phase 3.

Proof of Eq.(D.43) To prove the (D.43), note that

kKtk  2kKtW
>
t,?k  2kKT2W

>
T2,?k  2kKT2k  O(�2k+1 log(

p
�1/n↵) · �

3/2
1 /�r). (D.52)

On the other hand, by �t  2↵2
I , we have

Wt,?J
>
t JtW

>
t,? �Wt,?K

>
t KtW

>
t,? �Wt,?V

>
t VtW

>
t,?  2↵2

· I.

Hence, denote Lt = kJtK
>
t k  �1/4,

Wt,?J
>
t JtW

>
t,?  2↵2

I +Wt,?K
>
t KtW

>
t,? +Wt,?V

>
t VtW

>
t,?

= 2↵2
I +Wt,?K

>
t KtW

>
t,? +Wt,?(Vt � Ut)

>(Vt � Ut)W
>
t,?

 2↵2
I +Wt,?K

>
t KtW

>
t,? +

✓
8↵2p

�1 + 64�2k+1
p
�1Lt

�r

◆2

· I

= Wt,?K
>
t KtW

>
t,? +

✓
2↵+

8↵2p
�1 + 64�2k+1

p
�1Lt

�r

◆2

I. (D.53)

Also, by inequality (D.53), we have

kJtW
>
t,?k � kKtW

>
t,?k 

kJtW
>
t,?k

2
� kKtW

>
t,?k

2

kJtW
>
t,?k+ kKtW

>
t,?k



⇣
2↵+ 8↵2p�1+64�2k+1

p
�1Lt

�r

⌘2

2kKtW
>
t,?k+ kJtW

>
t,?k � kKtW

>
t,?k



⇣
2↵+ 8↵2p�1+64�2k+1

p
�1Lt

�r

⌘2

kJtW
>
t,?k � kKtW

>
t,?k
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Thus, by Lt  �1/4, we can get

kJtW
>
t,?k  kKtW

>
t,?k+ 2↵+

8↵2p
�1 + 64�2k+1

p
�1Lt

�r

 kKT2k+ 2↵+
8↵2p

�1 + 64�2k+1
p
�1Lt

�r

 O(2
p
↵�

1/4
1 + �2k+1 log(

p
�1/n↵)

2p
�1).

The second inequality holds by kKtW
>
t,?k  kKT2W

>
T2,?k  kKT2k. On the other hand, note that

kJtk  kJtW
>
t k+ kJtW

>
t,?k

 kJtU
>
t k/�r(U) + kJtW

>
t,?k

 kJtVtk/�r(U) + kJt(Ut � Vt)k/�r(U) + kJtW
>
t,?k

 Mt/�r(U) + kJtkk(Ut � Vt)k/�r(U) + kJtW
>
t,?k


64L

�r
kJtkkKtk ·

4
p
�1

�r
+ kJtk

8↵2p
�1 + 64�2k+1

p
�1kJtK

>
t k

�r
·
4
p
�1

�r
+ kJtW

>
t,?k



 
64�3/2

1 L

�3
r

·
p
�1 +

32↵2
�1 + 256�2k+1�1 · �1

�2
r

!
kJtk+ kJtW

>
t,?k


1

2
kJtk+ kJtW

>
t,?k. (D.54)

The last inequality holds because

�2k+1 = O(�4 log�1(
p
�1/n↵)), ↵  O(�r/

p
�1)

Hence, by the inequality (D.54), we can get

kJtk  2kJtW
>
t,?k = O(2

p
↵�

1/4
1 + �2k+1 log(

p
�1/n↵) · 

2p
�1). (D.55)

Thus, (D.43) holds during Phase 3.

Proof of Eq.(D.49) Now we prove the inequality (D.49). We consider the changement of Kt. We
have

Kt+1 = Kt(I � U
>
t Ut � J

>
t Jt) + E3(FtG

>
t � ⌃)Ut + E4(FtG

>
t � ⌃)Jt

Now consider Kt+1W
>
t,?, we can get

Kt+1W
>
t,? = Kt(I � ⌘W

>
t ⌃2

Wt � J
>
t Jt)W

>
t,? + ⌘E3(FtG

>
t � ⌃)UtW

>
t,? + ⌘E4(FtG

>
t � ⌃)JtW

>
t,?

= KtW
>
t,? � ⌘KtJ

>
t JtW

>
t,? + ⌘E4(FtG

>
t � ⌃)JtW

>
t,?

= KtW
>
t,? � ⌘KtW

>
t,?Wt,?J

>
t JtW

>
t,? � ⌘KtW

>
t WtJ

>
t JtW

>
t,? + ⌘E4(FtG

>
t � ⌃)JtW

>
t,?

Hence, by the Eq.(D.50),

kKt+1W
>
t,?k  kKtW

>
t,?(I � ⌘Wt,?J

>
t JtW

>
t,?)k+

64⌘L3/2

�
3/2
r

kJtK
>
t k · kJtW

>
t,?kkJtk+ 4⌘�2k+1MtkJtW

>
t,?k

 kKtW
>
t,?(I � ⌘Wt,?J

>
t JtW

>
t,?)k+

64⌘L3/2

�
3/2
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kJtK
>
t k · kJtW

>
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+
16�1⌘L

�2
r

kJtK
>
t kkJtW

>
t,?k

 kKtW
>
t,?(I � ⌘Wt,?J

>
t JtW

>
t,?)k+

80⌘L2

�r
kJtK

>
t k · kJtW

>
t,?k

The second inequality uses the fact that �2k+1  1/16 and (D.50). The last inequality uses the fact
that kJtk 

p
�1. Note that �min(�t) � ↵

2
/8 · I , then multiply the W

>
t,?, we can get

Wt,?J
>
t JtW

>
t,? �Wt,?V

>
t VtW

>
t,? �Wt,?K

>
t KtW

>
t,? �

↵
2

8
· I.
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Hence,

Wt,?J
>
t JtW

>
t,? �Wt,?K

>
t KtW

>
t,? �

↵
2

8
· I.

Thus, define �t = Wt,?J
>
t JtW

>
t,? �Wt,?K

>
t KtW

>
t,?, then we can get

kKt+1W
>
t,?k  kKtW

>
t,?(I �Wt,?J

>
t JtW

>
t,?)k+

80L2

�r
kJtK

>
t k · kJtW

>
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 kKtW
>
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>
t KtW

>
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80L2

�r
kJtK

>
t k · kJtW

>
t,?k

Define loss Lt = kJtK
>
t k. Note that

Lt = kJtK
>
t k

= kJtW
>
t,?Wt,?K

>
t + JtW

>
t WtK

>
t k

 kJtW
>
t,?Wt,?K

>
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>
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t k
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>
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t k+

p
�1 ·

64L3/2

�
3/2
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kJtK
>
t k (D.56)

 kJtW
>
t,?Wt,?K

>
t k+

Lt

2
.

The Eq.(D.56) holds by Eq.(D.50) and kW
>
t k = 1, and the last inequality holds by �2k+1 = O(4).

Hence,

kJtW
>
t,?Wt,?K

>
t k � Lt/2. (D.57)

Similarly,

kJtW
>
t,?Wt,?K

>
t k  2Lt (D.58)

Then,

kKt+1W
>
t,?k  kKtW

>
t,?(I � ⌘Wt,?K

>
t KtW

>
t,? � ⌘�t)k+

160⌘L2

�r
kJtW

>
t,?Wt,?K

>
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>
t,?k.

If kJtW>
t,?k  10↵, we can get
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>
t,?k  kKtW

>
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>
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>
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by choosing �2k+1  O(�5). Now if kJtW>
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Hence,
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t,?k � 10↵, then

kJtWt,?k
2 = kWt,?J

>
t JtW

>
t,?k

 kWt,?K
>
t KtW

>
t,?k+

✓
2↵+

8↵2p
�1 + 64�2k+1

p
�1Lt

�r

◆2

 kWt,?K
>
t KtW

>
t,?k+

 
2↵+

8↵2p
�1 + 64�2k+1

p
�1kJtW

>
t,?k ·

p
�1

�r

!2

 kWt,?K
>
t KtW

>
t,?k+ (10↵+ 64�2k+1kJtW

>
t,?k)

2

 kWt,?K
>
t KtW

>
t,?k+ (1/10+ 64�2k+1) · kJtW

>
t,?k

2

 kWt,?K
>
t KtW

>
t,?k+ (1/2) · kJtW

>
t,?k

2
.

Thus, kKtW
>
t,?k � kJtW

>
t,?k/

p
2 � kJtW

>
t,?k/2.

kKt+1W
>
t,?k  kKtW

>
t,?(I � ⌘Wt,?K

>
t KtW

>
t,? � ⌘�t)k+

160⌘L2

�r
kJtW

>
t,?Wt,?K

>
t k · kJtW

>
t,?k

 kKtW
>
t,?kk(I � ⌘Wt,?K

>
t KtW

>
t,? � ⌘�t)k+

160⌘L2

�r
kJtW

>
t,?Wt,?K

>
t k · kJtW

>
t,?k

Then, if we denote K 0 = KtW
>
t,?, then we know kK

0(1�⌘(K 0)>K 0)k  (1�⌘
�2
1(K

0)
2 )kK 0

k. Let
K

0 = A
0⌃0

W
0

kK
0(1� ⌘(K 0)>K 0)k = kA

0⌃0
W

0(I � ⌘(W 0)>(⌃0)2W 0)k

= k⌃0(I � ⌘(⌃0)2)k

Let ⌃0
ii = ⇣i for i  r, then ⌃0(I�⌘(⌃0)2)ii = ⇣i�⌘⇣

3
i , then by the fact that ⇣1 = �1(KtW

>
t,?)  1,

we can have ⇣1 � ⌘⇣
3
1 = max1ir ⇣i � ⌘⇣

3
i and then

k⌃(I � ⌘⌃2)k = (1� ⌘kK
0
k
2)kK 0

k.

Hence,

kKt+1W
>
t,?k  kKtW

>
t,?(I � ⌘Wt,?K

>
t KtW

>
t,? � ⌘�t)k+

160⌘L2

�r
kJtW

>
t,?Wt,?K

>
t k · kJtW

>
t,?k

 kKtW
>
t,?(I � ⌘Wt,?K

>
t KtW

>
t,?)k+

160⌘L2

�r
kJtW

>
t,?Wt,?K

>
t k · kJtW

>
t,?k

 kKtW
>
t,?k

 
1� ⌘

kKtW
>
t,?k

2

2

!
+

160⌘L2

�r
kJtW

>
t,?kkWt,?K

>
t k · kJtW

>
t,?k

 kKtW
>
t,?k

 
1� ⌘

kJtW
>
t,?k

2

8

!
+

160⌘L2

�r
kJtW

>
t,?kkWt,?K

>
t k · kJtW

>
t,?k

 kKtW
>
t,?k

 
1� ⌘

kJtW
>
t,?k

2

16

!
(D.61)
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The fifth inequality is because �2k+1 = O(�4). Thus, for all cases, by Eq.(D.59), (D.60), (D.62)
and (D.61), we have
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where we use the inequality max{a, b} 
p
ab. Now we prove the following claim:
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First consider the situation that kJtW>
t,?k  10↵. We start at these two equalities:
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Here, we use the fact that ⌘  1/�1, �2k+1  1/32 and kJtk 
p
�1. Hence, we have
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The inequality on the fourth line is because Eq.(D.57).
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By inequalities (D.63) and (D.65), we can get
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Thus, we can prove kKtW
>
t,?k decreases at a linear rate.

Now we have completed all the proofs of the induction hypotheses. Hence,
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(D.68)

Now combining three phases (D.25), (D.42) and (D.68), if we denote t
⇤
2 + T0 = T

0 = eO(1/⌘�r),
then for any round T � 4T 0, Phase 1 and Phase 3 will take totally at least T � T

0 rounds. Now we
consider two situations.
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Situation 1: Phase 1 takes at least 3(T�T 0)
4 rounds. Then, by (D.25), suppose Phase 1 starts at T0
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The last inequality uses the fact that T � 4T 0 and
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The last inequality uses the fact that T1 � T0 �
3(T�T 0)

4 �
T
2 , which implies that T

2 � T � T1

Then, combining with (D.69), we can get
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(D.71) uses the basic inequality (1 � 2x)(1 + x)  (1 � x), and (D.72) uses the fact that ↵ =
O(�2p

�r) = O(
p
�r).

Situation 2: Phase 3 takes at least T�T 0

4 rounds. Then, by (D.68), suppose Phase 3 starts at round
T2, we have
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The last inequality uses the fact that ↵ = O(�2p
�r) = O(�1p

�r) and T�T 0

4 �
T�T/4

4 � T/8.

Thus, by kFTG
>
T �⌃k2  n · kFTG

>
T �⌃k2, we complete the proof by choosing 4T 0 = T

(1) and
c7 = 1/1282.
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E PROOF OF THEOREM 4.3

By the convergence result in (Soltanolkotabi et al., 2023), the following three conditions hold for
t = T0.
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Hence, (E.4) always holds for t � T0, and then by (E.5), we will have
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where Eq.(E.9) uses the fact that �2k+1  O(�2 log�1(
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We complete the proof.

F PROOF OF THEOREM 5.1

During the proof of Theorem 5.1, we assume � satisfy that
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2
p
�1

� and kKT (3)k  k eKT (3)k ·
2
p
�1

� is still bounded. With these conditions, define
St = max{kUtK

>
t k, kJtK

>
t k} and Pt = max{kJtV >

t k, kUtV
>
t � ⌃k}. For kKt+1k, since we

can prove �min(F>
t Ft) � �

2
/2 for all t � T

(3) using induction, with the updating rule, we can
bound kKt+1| as the following

kKt+1k  kKtkk1� ⌘F
>
t Ftk+ 2⌘�2k+1 · kFtG

>
t � ⌃kmax{kUtk, kJtk} (F.2)
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⌘�2k+1kKtk
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. (F.3)

The first term of (F.3) ensures the linear convergence, and the second term represents the perturbation
term. To control the perturbation term, for Pt, with more calculation (see details in the rest of the
section), we have

Pt+1 
�
1� ⌘�

2
r/8�
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Pt + ⌘kKtk ·

eO
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. (F.4)

The last inequality uses the fact that St  kKtk ·max{kUtk, kJtk}  kKtk · kFtk 
p
2� · kKtk.

Combining (F.4) and (F.3), we can show that Pt+
p
�1kKtk converges at a linear rate (1�O(⌘�2)),

since the second term of Eq. (F.4) and Eq.(F.3) contain �2k+1 or ↵, which is relatively small and can
be canceled by the first term. Hence, kFtG

>
t �⌃k  2Pt + 2St  2Pt +

p
2�kKtk converges at a

linear rate.

F.2 PROOF OF THEOREM 5.1

At time t � T
(3), we have �min(UT (3)VT (3)) � �min(⌃) � kUT (3)V

>
T (3) � ⌃k � �r � ↵
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p
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2 =
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2
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2. Hence, by �1(U) · �r(V ) � �r(UV
>), we
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�r
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.
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Also, by �
0
1 = k eFT (3)k  2

p
�1, we can get
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�
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2
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Similarly, kVT (3)k  keVT (3)k ·
2
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� and kKT (3)k  k eKT (3)k ·
2
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� .

Denote St = max{kUtK
>
t k, kJtK

>
t k}, Pt = max{kJtV >

t k, kUtV
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t � ⌃k}. Now we prove the

following statements by induction:
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Proof of Eq.(F.5) First, since kFtk
2 = �max((Ft)>Ft)  2�2, we have kUtk

2
 2�2. Then,

because �min(UtVt) � �min(⌃)� kUtV
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The last inequality uses the fact that

�
2 = O(�1/2

r )

�2k+1 = O(�2)

Pt + St  2kFtG
>
t � ⌃k  O(�2

1/�
2)  1/⌘.
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Similarly, we have
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Thus, similar to Eq.(F.10), we have
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Hence, we have
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Proof of Eq.(F.6) We have St  kKtk ·max{kUtk, kJtk}  kKtk · kFtk 
p
2� · kKtk. So the

inequality above can be rewritten as
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Also, for Kt+1, we have
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The last inequality uses the fact that �  O(�1/2
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Hence,
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Proof of Eq.(F.7) Note that we have max{kFT (3)k, kGT (3)k}  4
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Proof of Eq.(F.8) Moreover, we have
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and
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Thus, we complete the proof.

G TECHNICAL LEMMA

G.1 PROOF OF LEMMA B.1

Proof. We only need to prove with high probability,
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Moreover, for any m > 0, by Lemma G.1,
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The second inequality uses the fact that cosx  1� x
2
/4. Then, if we choose
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Thus, by taking the union bound over j, k 2 [n], there is a constant c2 such that, with probability at
least 1� c4n

2
k exp(�

p
k), we have
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G.2 PROOF OF LEMMA B.2

Proof. Since xi = ↵/
p
k · x̃i, where each element in x̃i is sampled from N (0, 1). By Theorem 3.1

in Vershynin (2018), there is a constant c such that
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By taking the union bound over i 2 [n], we complete the proof.

Lemma G.1. Assume x, y 2 Rn are two random vectors such that each element is independent and
sampled from N (0, 1), then define ✓ as the angle between x, y, we have
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Proof. First, it is known that x
kxk and y

kyk are independent and uniformly distributed over the sphere
Sn�1

. Thus, without loss of generality, we can assume x and y are independent and uniformly
distributed over the sphere.

Note that ✓ 2 [0,⇡], and the CDF of ✓ is
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Then, we have
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Lemma G.2 (Lemma 7.3 (1) in Stöger & Soltanolkotabi (2021)). Let A be a linear measurement
operator that satisfies the RIP property of order 2k+1 with constant �, then we have for all matrices
with rank no more than 2k

k(I �A
⇤
A)(X)k 

p

2k · �kXk. (G.19)

Lemma G.3 (Soltanolkotabi et al. (2023)). There exist parameters ⇣0, �0,↵0, ⌘0 such that, if we
choose ↵  ↵0, F0 = ↵ · F̃0, G0 = (↵/3) · G̃0, where the elements of F̃0, G̃0 is N (0, 1/n),6 and

6Note that in Soltanolkotabi et al. (2023), the initialization is F0 = ↵ · F̃0 and G0 = ↵ · G̃0, while Lemma
G.3 uses a slightly imbalance initialization. It is easy to show that their techniques also hold with this imbalance
initialization.
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suppose that the operator A defined in Eq.(1.1) satisfies the restricted isometry property of order
2r + 1 with constant �  �0, then the gradient descent with step size ⌘  ⌘0 will achieve

kFtG
>
t � ⌃k  ↵

3/5
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1 (G.20)

within T = eO(1/⌘�r) rounds with probability at least 1 � ⇣0, where ⇣0 = c1 exp(�c2k) +
(c3�)k�r+1 is a small constant. Moreover, during T rounds, we always have

max{kFtk, kGtk}  2
p
�1. (G.21)

The parameters ↵0, �0 and ⌘0 are selected by
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H EXPERIMENT DETAILS

In this section, we provide experimental results to corroborate our theoretical observations.

Symmetric Lower Bound In the first experiment, we choose n = 50, r = 2, three different k =
5, 3, 2 and learning rate ⌘ = 0.01 for the symmetric matrix factorization problem. The results are
shown in Figure 1, which matches our ⌦(1/T 2) lower bound result in Theorem 3.1 for the over-
parameterized setting, and previous linear convergence results for exact-parameterized setting.

Asymmetric Matrix Sensing In the second experiment, we choose configuration n = 50, k =
4, r = 2, sample number m = 700 ⇡ nk

2 and learning rate ⌘ = 0.2 for the asymmetric matrix
sensing problem. To demonstrate the direct relationship between convergence speed and initializa-
tion scale, we conducted multiple trials employing distinct initialization scales ↵ = 0.5, 0.2, 0.05.
The experimental results in Figure 1.2 offer compelling evidence supporting three key findings:

• The loss exhibits a linear convergence pattern.

• A larger value of ↵ results in faster convergence under the over-parameterization setting

• The convergence rate is not dependent on the initialization scale under the exact-parameterization
setting.

These observations highlight the influence of the initialization scale on the algorithm’s performance.

In the last experiment, we run our new method with the same n and r but two different k = 3, 4.
Unlike the vanilla gradient descent, at the midway point of the episode, we applied a transformation
to the matrices Ft and Gt as specified by Eq. (5.1). As illustrated in Figure 2(c), it is evident that
the rate of loss reduction accelerates after the halfway mark. This compelling observation serves as
empirical evidence attesting to the efficacy of our algorithm.

I ADDITIONAL EXPERIMENTS

In this section, we provide some additional experiments to further corroborate our theoretical find-
ings.

I.1 COMPARISONS BETWEEN ASYMMETRIC AND SYMMETRIC MATRIX SENSING

We run both asymmetric and symmetric matrix sensing with n = 50, n = 4, r = 2 with sample
m = 1200 and learning rate ⌘ = 0.2. We run the experiment for three different initialization
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scales ↵ = 0.5, 0.2, 0.05. The experiment results in Figure I.1 show that asymmetric matrix sensing
converges faster than symmetric matrix sensing under different initialization scales.

Figure I.1: Comparisons between asymmetric and symmetric matrix sensing with different initializa-
tion scales. The dashed line represents the asymmetric matrix sensing, and the solid line represents
the symmetric matrix sensing. Different color represents the different initialization scales.

I.2 WELL-CONDITIONED CASE AND ILL-CONDITIONED CASE

We run experiments with different conditional numbers of the ground-truth matrix. The conditional
number  is selected as  = 1.5, 3 and 10. The minimum eigenvalue is selected by 0.66, 0.33 and
0.1 respectively. The experiment results are shown in Figure I.2

Figure I.2: Comparisons between different conditional numbers

From the experiment results, we can see two phenomena:
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(a) Symmetric case (b) Asymmetric Case (c) Our new method

Figure I.4: Experiment Results of larger true rank r = 5 and over-parameterized rank k = 10.

• When the minimum eigenvalue is smaller, the gradient descent will converge to a smaller error at
a linear rate. We call this phase the local convergence phase.

• After the local convergence phase, the curve first remains flat and then starts to converge at a linear
rate again. We can see that the curve remains flat for a longer time when the matrix is ill-conditioned,
i.e.  is larger.

This phenomenon has been theoretically identified by the previous work for the incremental learn-
ing (Jiang et al., 2022; Jin et al., 2023), in which GD is shown to sequentially recover singular
components of the ground truth from the largest singular value to the smallest singular value.

I.3 LARGER INITIALIZATION SCALE

We also run experiments with a larger initialization scale ↵. The experiment results are shown in
Figure I.3. We find that if ↵ is overly large, i.e. ↵ = 3 and 5, the algorithm actually converges
slower and even fails to converge. This is reasonable since there is an upper bound requirement Eq.
(4.7) for ↵ in Theorem 4.2.

Figure I.3: Comparisons between different large initialization scales

I.4 LARGER TRUE RANK AND OVER-PARAMETERIZED RANK

We run experiments with larger configurations n = 50, k = 10 and r = 5. We use m = 2000
samples. The experiment results are shown in Figure I.4. We show that similar phenomena of
symmetric and asymmetric cases also hold for a larger rank of the true matrix and a larger over-
parameterized rank. Moreover, our new method also performs well in this setting.
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I.5 INITIALIZATION PHASE

If we use GD with small initialization, GD always goes through an initialization phase where the
loss is relatively flat, and then converges rapidly to a small error. In this subsection, we plot the first
5000 episodes of Figure 2(b). After zooming into the first 5000 iterations, we find the existence of
the initialization phase. That is, the loss is rather flat during this phase. We can also see that the
initialization phase is longer when ↵ is smaller. The experiment results are shown in Figure I.5.

Figure I.5: First 5000 episodes of Figure 2(b)
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