
Figure 1: Additional Iris experimental results for ReLU networks: (a) Spearman correlation vs. net-
work depth; (b) Top eigenvalue of the Hessian vs.network depth; (c) Spearman correlation between
the norm of parameter changes computed with influence function vs. re-training.

1 APPENDIX

2 ADDITIONAL EXPERIMENTAL RESULTS ON IRIS DATASET

In this section, we provide additional experimental results to understand the effect of network depth
on the correlation estimates for ReLU networks. From Fig. 1, we observe that even in case of
architectures trained with non-smooth activation functions such as ReLU, the correlation estimates
consistently decrease with depth. Similar to our findings in case of networks trained with tanh acti-
vation (as shown in the main text), we observe that the top eigenvalue of the Hessian matrix and the
Taylor’s approximation gap increases with depth. In the main text, we reported that when a network
with ReLU activation is trained with a weight-decay regularization, the correlation estimates are
significant and the Taylor’s approximation gap is less. We find a similar result even with smoother
activation functions such as tanh. From Fig. 2, we observe that when a network with tanh activation
is trained with a weight-decay regularization, the Taylor’s approximation gap is less. However when
the network is trained without a weight-decay regularization, the Taylor’s expansion gap is large
resulting in poor quality of influence estimates.

Figure 2: Additional Iris experimental results for tanh networks; (a) When trained with weight-
decay, the Taylor’s approximation gap is small; (b) When trained without weight-decay, the Taylor’s
expansion gap is large. These results are similar to our findings for ReLU networks which are
reported in the main text.
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3 WHAT DOES WEIGHT-DECAY DO?

In our experiments, we observe that with increasing network depth, the correlation
between the influence estimates and the ground-truth estimates decrease considerably.

Figure 3: Correlations with different
training samples

Additionally with increasing depth, the loss curvature
values increase. We notice that with a high-value of
weight-decay, the loss curvature for deeper networks
decrease, which also leads to improvement in corre-
lation values between the influence estimates and the
ground-truth. For e.g. in Fig. 3, with a weight-decay
value of 0.03, the Spearman correlation estimates are
0.47. With a relatively higher weight-decay factor of
0.075, the correlation values improve to 0.72. Increas-
ing the weight-decay factor from 0.03 to 0.075, also de-
creases the loss curvature values substantially. These
results highlight that the selection of weight-decay fac-
tor is crucial to obtain high-quality influence estimates,
especially for deeper overparameterized networks.

4 VISUALISATION OF TOP INFLUENTIAL POINTS

In this section, we visualise the top influential training samples corresponding to a given test-point.
In the main text, we noted that the selection of test-points has a strong impact on the quality of
influence estimates. Additionally, we also observe that the selection of test-points has an impact on
the semantic-level similarities between inferred influential training points and the test-points being
evaluated. For example, in Fig. 4, we observe that 2 out of the top 5 influential points are not
from the same class as the test-point with index 1479. However in Fig. 5, we observe that all the
top 5 influential training samples are semantically similar and from the same class as the evaluated
test-point with index 7196.

Figure 4: Top 5 influential points for the test point: 1479 (CIFAR-10). The model is a ResNet-18
trained with a weight-decay regularization; Only 3 out of the 5 points are semantically similar to the
test-point with class "Bird".

Figure 5: Top 5 influential points for the test point: 7196 (CIFAR-10). The model is a ResNet-18
trained with a weight-decay regularization; All the 5 training points are semantically similar to the
test-point from the class "Airplane".
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Architecture Influence Computation Time
(MNIST)

Influence Computation Time
(CIFAR-10)

Small CNN 141.13± 0.51 N/A
LeNet 162.6± 2.20 136.39± 3.16

VGG13 3886.23± 3.45 4416.54± 2.01
VGG14 4619.11± 5.08 4620.69± 6.11

ResNet-18 960.08± 4.67 910.58± 8.49
ResNet-50 4323.13± 8.26 3857.66± 21.6

Table 1: Computational running times for influence function across different architectures

5 RUNNING TIMES

In this section, we provide computational running times for (first-order) influence function estima-
tions. We note that in models with a large number of parameters, the influence computation is
relatively slow. However, even in large deep models, it is still faster than re-training the model
for every training example. In our implementation, for a given test-point ztest, we first compute
c = H−1

θ∗ ∇`(hθ∗(ztest)) once which is the most computationally expensive step. We then com-
pute a vector dot product i.e. cT∇`(hθ∗(zi)) ∀i ∈ [1, n]. In Table 1, we provide the computational
running times for estimating influence functions in different network architectures.

6 ADDITIONAL EXPERIMENTAL DETAILS ON IMAGENET INFLUENCE
CALCULATIONS

In this section we give further details on the influence estimation on ImageNet. To help address the
high computational cost of training and re-training, we utilize highly optimized ImageNet training
schemes such as those submitted to the DAWNBench competition (Sta, 2017). In particular we
use the scheme published from (Howard et al., 2018)1, for the ResNet-50 architecture which uses
several training tricks including progressive image resizing, weight decay tuning, dynamic batch
sizes (Goyal et al., 2017), learning rates (Smith, 2018), and half-precision floats. Although these
techniques are unorthodox, they are sufficient for our purposes since we need only to compare be-
tween the fully trained and re-trained models. We replicate this scheme and obtain a top-5 validation
accuracy of 92.302%.

We now give further details on the test points selected. The first has a test loss at the 83rd per-
centile (loss=2.634, index = 13,923, class=kit fox), the second has the test loss at the 37th percentile
(loss=0.081, index = 2,257, class =gila monster), where the indices refer to where they appear in
test_loader.loader.dataset . We visualize these test points in Figure 7.

Next, for each of these test points, we compute influence across the entire dataset and select the
top 50 training points by influence scores. We visualize 25 of these points in Figures 8 and 9. We
observe that there is qualitative similarity between the test points and some of their respective most
influential training points, but not others. Although there is qualitative similarity is some cases, the
results are still overall weak quantitatively

We plot the obtained correlations in Figure 6.

For computing the weight gradient norm, we take the mean norm in batches of size 128 over the
entire dataset for both our model and a standard PyTorch pretrained model as a baseline, both of
which are ResNet-50 models with around 25.5M parameters.

1https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
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Figure 6: ImageNet influence estimation results for the selected test points 13,923 (left) and 2,257
(right). X-axis is change in test loss after removal of a training point and retraining as described in
the text. Y-axis is the change in test loss estimated with influence function. Pearson and Spearman
correlations are shown in the caption. Correlations are low, showing the weakness of this influence
estimation.

Figure 7: Selected test points for influence estimation.

7 COMPUTING INVERSE-HESSIAN VECTOR PRODUCT

In large over-parameterized deep networks, computing and inverting the exact Hessian Hθ∗ is ex-
pensive. In such cases, the Hessian-vector product rule (Pearlmutter, 1994) is used along with
conjugate-gradient (Shewchuk, 1994) or stochastic estimation (Agarwal et al., 2016) to compute the
approximate inverse-Hessian Vector product. More specifically, to compute t = H−1

θ∗ v, we solve the
following optimization problem using conjugate-gradient: t∗ = argmint{ 12 t

THθ∗t− vT t}, where
v = ∇θ`(hθ∗(zt)). This optimization, however, requires the Hessian Hθ∗ to be a positive definite
matrix, which is not true in case of deep networks due to the presence of negative eigenvalues. In
practice, the Hessian can be regularized by adding a damping factor of λ to its eigenvalues (i.e.
Hθ∗ + λI) to make it positive definite.

In deep models, with a large number of parameters and large training set, conjugate-gradient is
often expensive as it requires computing the Hessian-vector product (Pearlmutter, 1994) for every
data sample in the training set. In those cases, stochastic estimation techniques (Agarwal et al.,
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Figure 8: Top 25 ImageNet training points by influence for test point 13,293, kit fox. Many of the
identified classes are furred mammals, e.g. red wolf, basenji, and dingo, which have visual similarity
to the test point. Other examples are questionable, e.g. the common iguana, and African elephant.
Although there is qualitative similarity is some cases, the results are still overall weak quantitatively.

2016) have been used which are fast as they do not require going through all the training samples. In
stochastic estimation, the inverse Hessian is computed using a recursive reformulation of the Taylor
expansion: H−1

j = I + (I −H)H−1
j−1 where j is the recursion depth hyperparameter . A training

example zi is uniformly sampled and ∇2`(hθ∗(zi)) is used as an estimator for computing H . This
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Figure 9: Top 25 ImageNet training points by influence for test point 2,257, gila monster. Many of
the identified classes are spotted lizards, e.g. banded gecko ad European fire salamander, which have
visual similarity to the test point. Other examples are questionable, e.g. the stingray, coral fungus,
and barrow. Although there is qualitative similarity is some cases, the results are still overall weak
quantitatively.

technique also requires tuning a scaling hyperparameter γ and a damping hyperparameter β 2. In

2It is assumed that ∀i, I − ∇2`(hθ∗(zi)) < 0; (Koh & Liang, 2017) notes that if this is not true, the loss
can be scaled down without affecting the parameters. The scaling factor is a hyperparameter which helps the
convergence of the Taylor series. The damping coefficient is added to the diagonal of the Hessian matrix to
make it invertible.
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our experiments with large deep models, we use the stochastic estimation method to compute the
inverse-Hessian Vector product.

8 EFFECT OF INITIALISATION AND OPTIMIZERS ON INFLUENCE ESTIMATES

To understand the effect of network initialisation on the quality of influence estimates, we compute
the influence scores across different random initialisations. The influence estimates are computed
for the small CNN architecture (Koh & Liang, 2017) and LeNet (Lecun et al., 1998), both trained on
the MNIST dataset. Both the architectures are trained with a constant weight-decay factor of 0.001.

Figure 10: Correlations with different network
initialisation

In Fig 10, we observe that across different net-
work initialisations, although both the Pearson
and Spearman correlations between the influ-
ence estimates and the ground-truth are incon-
sistent, the variance amongst them is particu-
larly low. Note that for both the network ar-
chitectures, we compute the influence estimates
for the test-point with the highest loss at the
optimal model parameters. The correlation be-
tween the influence estimates and leave-out re-
trainings are computed with the top 40 influen-
tial training examples. Additionally to under-
stand the impact of the selection of optimizer
on the influence estimates, we train the LeNet
architecture on MNIST with different optimiz-
ers namely Adam (Kingma & Ba, 2014), Gradi-
ent Descent (Bottou, 2010), Nesterov and RM-
SProp (Ruder, 2016). We notice that the Pearson correlation (0.72 ± 0.04) has a marginally lower
variance when compared to the Spearman rank-order correlation (0.56± 0.11).

9 EFFECT OF TRAINING SAMPLE SELECTION FOR GROUND-TRUTH
INFLUENCE

In this section, we understand the effect of selecting different number of training samples on the
correlation estimates. We investigate this with a case study for a CNN architecture trained on
small MNIST. Keeping a test-point with a high loss fixed, we sample different sets of training
examples with the highest and the lowest influence scores over different network initialisations.

Figure 11: Correlations with different training samples

Note that in this setting as shown in the
main paper, the quality of influence es-
timates are relatively good. We observe
that when the influence estimates are eval-
uated with the top influential points, both
the Pearson and Spearman correlations are
relevant. This is true across different num-
ber of training samples. However when
the evaluation carried out with respect to
the lowest influential training samples, the
correlation estimates are of poor quality.
These results highlight the importance of
the selection of the type of training sam-
ples with respect to which the correlation
estimates are computed.

10 FAITHFULNESS AND PLAUSIBILITY OF INFLUENCE FUNCTIONS

The authors (Jacovi & Goldberg, 2020) primarily tackle the importance and trade-offs between
plausibility (i.e. if the interpretations are convincing to humans) and faithfulness (i.e. how accurate
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an interpretation is to the “true reasoning process of the model”) of existing interpretation methods.
To the best of our knowledge such an analysis has not been done for influence functions. We observe
that explanations from influence functions for deep networks are sometimes plausible and sometimes
not. For instance, in Appendix Fig. 4, we observe that the selection of test-point with (class = bird)
leads to training examples with (class = deer) amongst the top influential points. On the other hand,
in Appendix Fig. 5, we observe many plausible explanations. Influence functions that work are
faithful because they answer the following question:“what would this model have done if certain data
were excluded?”. This class of questions, while not exhaustive, have special relevance because they
are counterfactuals, which hold both intuitive appeal and for their special status in causal reasoning.
However, we must be cautious because they may not be faithful when they incur approximation
errors, as highlighted in our paper.

11 CIFAR-100 INFLUENTIAL EXAMPLES

Figure 12: Top 5 influential points for the test points: 7106 and 2407 (CIFAR-100). The model
is a ResNet-18 trained with a weight-decay regularization. For the test-point with index 7106, the
influential training samples are semantically dissimilar from the test-point. However for the test-
point with index 2407, 4 out of the top 5 samples share semantic similarity with the test-point.

12 PRELIMINARY RESULTS ON GROUP INFLUENCE

Figure 13: Group Influence on Iris

Understanding model changes when a
group of training samples are up-weighted
is indeed an important research problem.
Influence functions (Cook & Weisberg,
1980; Koh & Liang, 2017) in general are
accurate when the model perturbation is
small. However when a group of samples
are up-weighted, the model perturbation
is large, which violates the small pertur-
bation assumption of influence functions.
Previously it has been shown (Koh et al.,
2019; Basu et al., 2019) that group influ-
ence functions are fairly accurate for linear
and convex models, even when the model
perturbation is substantial. In this section,
we present some preliminary results on the
behaviour of group influence functions for non-convex models. Our main observation is that group
influence functions are fairly accurate for small networks. Nonetheless for large and complex net-
works, the influence estimates are of poor quality. For e.g. in Fig. 13, we observe that the correla-
tion estimates for small group sizes are accurate, whereas for larger group sizes, the estimates are of
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Figure 14: Norm of difference in parameters obtained by training from scratch vs. re-training from
optimal parameters

poor quality. For a ResNet-18 model trained on MNIST (with a weight-decay regularization factor
of 0.001), we observe the correlation estimates across different group sizes to vary from 0.01 to
0.21. Similarly for a ResNet-18 trained on CIFAR-100, we observe the group influence correlation
estimates to range from 0.01 to 0.18. We leave the complete investigation of group influence in deep
learning as a direction for future work.

13 ADDITIONAL EXPERIMENTS WITH MULTIPLE TEST-POINTS

In our experimental setup, we evaluate the correlation estimates with respect to one test-point at a
time. Although the evaluation of the correlation estimates with multiple test-points is more robust,
it comes at the expense of high computational cost. To illustrate the quality of influence estimates
with multiple test-points, we compute the influence estimates for small MNIST with 8 different
test-points. We sample two test-points each from : (a) 100th percentile of the test-loss; (b) 75th
percentile of the test-loss; (c) 50th percentile of the test-loss; (d) 25th percentile of the test-loss. The
Pearson and Spearman correlations are 0.91 and 0.78 respectively. In a similar setting, for a complex
architecture such as ResNet-18 trained on CIFAR-100, the Pearson and Spearman correlations are
0.15 and 0.11 respectively.

14 IMPACT OF ACTIVATION FUNCTIONS

In our experiments we observe that even with non-smooth activation functions such as ReLU, we
obtain high quality influence estimates for certain networks. Understanding influence estimates
with ReLU has an additional challenge since there measure zero subsets where the function is non-
differentiable. Recently (Serra et al., 2018) has provided improved bounds on the number of linear
regions for shallow ReLU networks. Understanding the impact of the number of linear regions in
ReLU networks on the influence estimates is an interesting research direction, however we defer it
for future work.
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Figure 15: Width vs. Spearman Correlation for a one-layered network
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