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ABSTRACT

Differentially private (DP) learning algorithms inject noise into the learning process.
While the most common private learning algorithm, DP-SGD, adds independent Gaus-
sian noise in each iteration, recent work on matrix factorization mechanisms has shown
empirically that introducing correlations in the noise can greatly improve their utility. We
characterize the asymptotic learning utility for any choice of the correlation function, giv-
ing precise analytical bounds for linear regression and as the solution to a convex program
for general convex functions. We show, using these bounds, how correlated noise provably
improves upon vanilla DP-SGD as a function of problem parameters such as the effective
dimension and condition number. Moreover, our analytical expression for the near-optimal
correlation function circumvents the cubic complexity of the semi-definite program used
to optimize the noise correlation matrix in previous work. We validate our theory with
experiments on private deep learning. Our work matches or outperforms prior work while
being efficient both in terms of compute and memory.

1 INTRODUCTION

The broad adoption of deep learning using sensitive data has led to the increasing popularity of rigorous
frameworks for privacy preservation, such as differential privacy (Dwork et al., 2006). The workhorse of
private learning, a differentially private variant of stochastic gradient descent called DP-SGD (Song et al.,
2013; Bassily et al., 2014; Abadi et al., 2016), clips per-example gradients to some `2 norm and adds in-
dependent Gaussian noise. DP-SGD has been used in a range of applications from learning with medical
images (Adnan et al., 2022) to finetuning large language models withO(100B) parameters (He et al., 2023).

A recent line of work instead proposes to add correlated Gaussian noise to each clipped gradient (Smith
& Thakurta, 2013; Kairouz et al., 2021a; Denisov et al., 2022; Choquette-Choo et al., 2023b). This class
of algorithms called DP-FTRL, has been used for private federated learning at industrial scale (Xu et al.,
2023). By solving an expensive semi-definite program to find the noise correlations, Choquette-Choo et al.
(2023a) demonstrated empirically that DP-FTRL is never worse and often much better than DP-SGD in its
privacy-utility tradeoff across multiple modalities like images and text.

However, several questions remain open. Does DP-FTRL provably improve over DP-SGD in its expected
utility? Further, can we design a more computationally efficient procedure to find the noise correlations for
DP-FTRL without significantly worsening the privacy-utility tradeoff?

We answer both questions affirmatively by (1) providing a sharp theoretical characterization of the noisy
training dynamics of DP-FTRL, and (2) leveraging these analytical tools to circumvent the semi-definite
program required in past work.
∗Equal contribution; alphabetical ordering.
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Algorithm 1 The DP-FTRL/Noisy-FTRL algorithms with a noise correlation matrixB ∈ RT×T

Input: B ∈ RT×T , initial iterate θ0 ∈ Rd, `2 clip norm G, noise multiplier σdp, learning rate η, dataset D
1: for t = 0, . . . , T − 1 do

2: Obtain the next datapoint zt and compute gt =

{
∇f(θt;zt) +∇r(θ) for Noisy-FTRL,
clip (∇f(θt;zt), G) +∇r(θ) for DP-FTRL

3: Sample noisewt ∼ N (0, σ2
dpG

2Id) and calculate the correlated noise w̃t =
∑t
τ=0Bt,τwτ

4: Update θt+1 = θt − ηg̃t for the noisy gradient g̃t = gt + w̃t
Return θT

1.1 PROBLEM SETUP AND BACKGROUND

Let D = {z0, . . . ,zT−1} be a dataset of T datapoints, where each datapoint is sampled i.i.d. from an
underlying distribution Pdata. Our learning objective is to minimize:

F (θ) = Ez∼Pdata
[f (θ; z)] + r (θ) , (1)

where f(θ; z) is the loss incurred by model parameters θ ∈ Rd on a datapoint z, and r(·) is data-independent
regularization. We aim to minimize F while satisfying differential privacy with respect to the dataset D. We
assume that F has a unique minimizer denoted θ?.

We focus on variants of stochastic gradient descent with a batch size of 1 for data arriving in a stream.
The learning algorithms we study are presented in Algorithm 1; we assume throughout that the dataset D
is randomly shuffled before running the algorithm so that each datapoint zt is an i.i.d. sample from Pdata.
DP-FTRL with a noise coefficient matrixB ∈ RT×T (which is lower triangular) performs the updates1

θt+1 = θt − η
(
clip (∇f(θt; zt), G) +∇r(θt) +

∑t
τ=0Bt,τwτ

)
(2)

for Gaussian noise wt ∼ N (0, σ2
dpG

2Id), where clip (· , G) denotes projection onto an `2 ball of radius G.
We define Noisy-FTRL to be DP-FTRL without clipping. TakingB = I as the identity matrix recovers DP-
SGD (with clipping) and Noisy-SGD (without clipping), and other choices give rise to alternate algorithms.

We restate a result from prior work showing that DP-FTRL is differentially private for any choice of B,
provided the noise multiplier is scaled up appropriately.

Theorem 1.1 (Denisov et al. (2022); Bun & Steinke (2016)). DP-FTRL (Algorithm 1 with the clipping
enabled) satisfies ρ-zero concentrated differential privacy (zCDP) if the noise multiplier is taken as σ2

dp =

γ2T (B)/(2ρ) where γT (B) = maxt<T ‖(B−1):,t‖2 is the sensitivity ofB−1.2

Remark 1.2. Although Noisy-FTRL is not differentially private, it lets us analyze the noise dynamics of
DP-FTRL without technicalities associated with clipping. We sharply characterize the asymptotic utility of
Noisy-FTRL for linear regression and show later that this analysis extends to DP-FTRL under appropriate
assumptions. For mean estimation and learning with Lipschitz convex losses, we directly analyze DP-FTRL.

1.2 MOTIVATION

This work is motivated by two open questions in particular.

1Matrices (e.g. B = [Bt,τ ]t,τ≥0) and vectors (e.g. β = (β0, β1, . . .)) are zero-indexed and bold-faced.
2We give DP guarantees w.r.t. the “zero-out” notion of neighborhood (Kairouz et al., 2021a); see Appendix A for a

review. Further, a ρ-zCDP guarantee can be readily translated into (ε, δ)-DP (Bun & Steinke, 2016, Prop. 1.3).
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Provable separation between DP-SGD and DP-FTRL: The best-known separation between DP-SGD
and DP-FTRL in the literature is due to Kairouz et al. (2021a). For G-Lipschitz convex losses, DP-
FTRL at a privacy level of ρ-zCDP achieves a suboptimality of O(Gd1/4/

√
ρT ) compared to DP-SGD’s

O(Gd1/4/
√
ρ2T ). The only improvement here is in terms of the privacy parameter ρ. More recently,

Koloskova et al. (2023) analyze Noisy-FTRL but without normalizing for the sensitivity γT (B) as in The-
orem 1.1. Thus, the existing theory fails to reflect the large margin by which DP-FTRL empirically outper-
forms DP-SGD across the board (Choquette-Choo et al., 2023a), and a precise characterization is missing.

Computationally efficient DP-FTRL: Prior work on DP-FTRL utilizes the noise correlation matrixB that
minimizes the squared error in the gradient prefix sums (Kairouz et al., 2021a; Denisov et al., 2022):

ϕ(B) =
∑T−1
t=0 E

∥∥∥∑t
τ=0 g̃t −

∑t
τ=0 gt

∥∥∥2
2

(3)

where gt is the clipped gradient applied in iteration t and g̃t is its noisy counterpart (cf. Algorithm 1). This
was, in turn, obtained as an upper bound on the regret in an adversarial online learning setting (Kairouz
et al., 2021a, Thm. C.1). The most potent algorithm from the previous work gave B as the solution of
a semidefinite program with matrix variables of size O(T 2), requiring O(T 3) time (Denisov et al., 2022,
Eq. 4). This cost is prohibitive for large learning problems. Moreover, there is a mismatch between the
objective (3) used to find the noise correlations and the final learning objective F (θT ). In particular, there
exist matricesB1,B2 with equal squared error ϕ(B1) = ϕ(B2) and equal sensitivities γT (B1) = γT (B2)
such that DP-FTRL withB1 diverges while DP-FTRL withB2 converges (Koloskova et al., 2023).

Our approach: We study the suboptimality in the final objective E[F (θT ) − F (θ?)]. We work in the
asymptotic T →∞ regime to allow the use of analytic tools, but also to derive results that apply regardless
of the dataset size.3 Second, we restrict the search over B to Toeplitz matrices Bt,τ = βt−τ generated by a
sequence β = (β0, β1, . . .) of reals, but a stronger motivation is that they are anytime, i.e., they do not be
recomputed for each value of T and easily apply as T →∞. ToeplitzB were previously considered for their
computational efficiency in learning (Choquette-Choo et al., 2023b) and their near-optimal rates in linear
counting queries (Henzinger et al., 2024). Thus, our goal is to characterize the asymptotic suboptimality

F∞(β) := lim
T→∞

E [F (θT )− F (θ?)] (4)

for θT produced by Noisy-FTRL or DP-FTRL under noise correlation weights β where θ? = arg minF
is assumed unique. This limit turns out to be well-defined and finite for the settings we consider as long
as ‖β‖2 is finite. We analyze F∞ in the frequency domain using the discrete-time Fourier transform
B(ω) =

∑∞
t=0 βt exp(iωt), with i the imaginary unit. Further, we define the limiting sensitivity associated

with B as the limiting value of γT , which, using standard Fourier analysis tools, equals

γ∞ (B) := lim
T→∞

γT (B) =
(

1
2π

∫ π
−π |B (ω) |−2 dω

)1/2
. (5)

1.3 OUR CONTRIBUTIONS

The concrete contributions of this work are as follows.

ν-DP-FTRL: Analytically optimal DP-FTRL for mean estimation: We give analytical expressions for
the asymptotic suboptimality F∞ for mean estimation and the noise correlations β that minimize F∞ as a
function of the learning rate η (§2.1). We find that the optimal noise is anti-correlated, so the algorithm
subtracts out previously added noise. Inspired by the analytical expression for the optimal noise correlations
β? for mean estimation, we propose a single-parameter family of choices for β, which we call ν-DP-FTRL.
We show its favorable theoretical and empirical properties for a broader range of problems.

3Note that the DP noise multiplier σdp remains finite in the asymptotic T →∞ regime as we consider the streaming
setting: each example is processed once and the number of examples also grows to infinity.
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Table 1: Asymptotic suboptimality of Noisy-SGD/Noisy-FTRL for linear regression with Gaussian inputs x ∼
N (0,H) and noise multiplier σ2

dp = γ∞(β)2/(2ρ) based on the limiting sensitivity (5). We give the bounds in terms
of the learning rate η, dimension d, the effective dimension deff = Tr[H]

λmax(H)
and the noise variance ρ−1 representing the

privacy level. We take G = 1 and λmax (H) = 1 w.l.o.g. and only show the term depending on ρ. Since 1 ≤ deff ≤ d,
Noisy-FTRL is better than Noisy-SGD at smaller η or when deff is small (e.g., whenH is close to low rank).

Algorithm Asymptotic Suboptimality F∞ Ratio w/ Lower Bound Remark

Lower Bound Ω
(
η2ρ−1deff

)
1 for all β with finite ‖β‖1

Noisy-SGD Θ
(
ηρ−1d

)
d

ηdeff
Θ(·) denotes matching upper & lower bounds

ν-Noisy-FTRL O
(
η2ρ−1deff log2 1

ηµ

)
log2 1

ηµ Here, µ = λmin (H) and we use weights β from (7)

Strict separation for linear regression: We establish sharp bounds on Noisy-FTRL (i.e., DP-FTRL without
gradient clipping) for linear regression. Summarized in Table 1 and stated formally in §2.2, we show:
(a) ν-Noisy-FTRL, with analytical closed-form correlations, matches the lower bound up to log factors.

Both of these bounds scale with the effective dimension deff of the problem, which is no greater than the
dimension d but can be much smaller when the data is approximately low rank.

(b) ν-Noisy-FTRL is provably better than Noisy-SGD by a factor that can be as large as d/ log d (when deff

is a constant). This shows an exponential separation between Noisy-FTRL and Noisy-SGD.
Our bounds quantitatively show how the anti-correlations of ν-Noisy-FTRL help prevent noise accumulation
along eigen-directions of the Hessian with small eigenvalues. The gradients have a weak signal along these
directions and are unable to undo the effect of the previous noise and move the iterates back towards the
minimizer; the anti-correlations are essential to obtain near-optimal asymptotic suboptimality. We also
leverage these asymptotics to give bounds on the utility of ν-DP-FTRL and DP-SGD for finite T .

Numerical separation for general strongly convex functions: We bound the asymptotic suboptimality
F∞ for any noise correlation weights β as the optimal value of a convex program. We use this to show that
DP-FTRL achieves a tighter bound particularly when the condition number is large (Figure 3 in §3).

Experiments with private deep learning: We show the proposed ν-DP-FTRL outperforms other efficient
differentially private algorithms on image and text classification tasks. We also find that our approach is
competitive even with inefficient approaches that require O(T 3) computation and O(T 2) memory.

2 ANALYSIS FOR QUADRATIC OBJECTIVES

For quadratic objectives, Algorithm 1 (with no clipping) corresponds to a linear dynamical system (Gray
& Davisson, 2004), allowing us to use analytical tools. We give an exact analysis of DP-FTRL for mean
estimation and Noisy-FTRL for linear regression. The analysis of Noisy-FTRL also lets us derive guarantees
for DP-FTRL for linear regression. We do not aim to achieve the best possible rates in these stylized models.
Rather, our goal is to understand the noise dynamics of DP-FTRL and show a separation with DP-SGD.

2.1 CONCEPTUAL OVERVIEW: PRIVATE MEAN ESTIMATION IN ONE DIMENSION

We begin with the simplest objective function, the squared error for a mean estimation problem on the real
line. This setting captures the core intuition and ideas used to derive further results.

Consider a distribution Pdata with |z − E[z]| ≤ σsgd and |z| ≤ 1 a.s. for z ∼ Pdata. Our objective now is

F (θ) = 1
2 Ez∼Pdata

(θ − z)2 with f (θ; z) = z2

2 − zθ, and r (θ) = θ2

2 . (6)

We show a strict separation between DP-FTRL and DP-SGD for this simple minimization problem.
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Figure 1: Left: The ratio of the asymptotic suboptimalities of DP-FTRL to DP-SGD for mean estimation vs. the
learning rate η. DP-FTRL is never worse but is orders of magnitude better at η → 0 or η → 1. Middle & Right: Time-
and frequency-domain descriptions of the optimal noise correlations for mean estimation (defined in Theorem 2.1).

Theorem 2.1. Consider the setting above with learning rate η ≤ 1 and clip normG = 1 and σ2
dp = γ∞(B)2

2ρ .
Then, the asymptotic suboptimality of a ρ-zCDP sequence (θt)

∞
t=0 obtained via DP-SGD is F∞(βdpsgd) =

Θ(ηρ−1 + ησ2
sgd). Further, the asymptotic suboptimality of any ρ-zCDP sequence (θt)

∞
t=0 from DP-FTRL is

inf
β
F∞(β) = F∞(β?) = Θ

(
η2ρ−1 log2(1/η) + ησ2

sgd

)
.

The infimum above is attained by β?t = (−1)t
(
1/2
t

)
(1− η)t, where

(
1/2
t

)
=
∏t−1
k=0

1/2−k
t−k .

Proof Sketch. Using tools from frequency-domain analysis of linear time-invariant systems (Oppenheim
et al., 1997), we show that the asymptotic variance is an integral of |B(ω)|2. The sensitivity (5) is an integral
of |B(ω)|−2 so that F∞ is a product of these integrals. Its minimizerB? can be analytically computed in the
Fourier domain (Fig. 1, right), which yields the expression for β? (Fig. 1, center). See §B for details.

The optimal ρ−1 coefficient η2 log2(1/η) is better than DP-SGD’s η. Note that β?t < 0 for t ≥ 1: the noise
is anti-correlated and it helps by subtracting out the previously added noise. We also recover the correlations
of (Fichtenberger et al., 2023) as η → 0; these were shown to be near-optimal for linear counting queries.

ν-DP-FTRL/ν-Noisy-FTRL: Theorem 2.1 gives an analytical expression for the optimal noise correlation
weights for DP-FTRL for this simplified setting. We parameterize it with a parameter 0 < ν < 1 to define

β̂νt := (−1)t
(
1/2
t

)
(1− ν)t . (7)

We analyze this choice theoretically for the setting of Noisy-FTRL and demonstrate near-optimality for
appropriate ν. Later, for our experiments with DP-FTRL, we tune ν as a hyperparameter to tune. We call
this approach (with clipping) ν-DP-FTRL and (without clipping) ν-Noisy-FTRL.

2.2 ASYMPTOTIC SUBOPTIMALITY FOR LINEAR REGRESSION

We now give a precise analysis of F∞ for linear regression with ν-Noisy-FTRL. We will use this to derive
non-asymptotic privacy-utility bounds for DP-FTRL at the end of this section.

We consider (unregularized) linear regression with loss function f (θ; (x, y)) = 1
2 (y − 〈θ,x〉)2 so that

F (θ) = 1
2 E(x,y)∼Pdata

(y − 〈θ,x〉)2 . (8)

We assume d-dimensional Gaussian covariates x ∼ N (0,H) and independent Gaussian residuals y −
〈θ?,x〉 ∼ N (0, σ2

sgd) where θ? = arg minF . We make these assumptions for ease of presentation; we state
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Figure 2: Linear regression simulations: We plot the empirically observed asymptotic suboptimality of ν-Noisy-
FTRL/Noisy-SGD and their theoretical bounds with d = 128 (varied in the left plot) where the HessianH has eigenval-
ues λk = 1/k (varied as k−α for α ∈ [0.4, 1] in the middle plot), and learning rate η = 0.02 (varied in the right plot).
The slope of the corresponding empirical and theoretical lines are nearly equal, showing the tightness of the theory.
In particular, we observe that Noisy-SGD has a linear dependence on the dimension (slope 1.00) and is nearly constant
w.r.t. the effective dimension (slope 0.18) while Noisy-FTRL has a near-linear dependence on the effective dimension
(slope 0.94). Noisy-FTRL (slope 2.03) also has a better dependence on the learning rate than Noisy-SGD (slope 1.27).

and prove our results under weaker assumptions in the supplement. Further, we assume that F is L-smooth
and µ-strongly convex (equivalently, µI �H � LI since the input covarianceH is also the Hessian of F ).

We express the bounds on F∞ in terms of the correlation weights β and the problem parameters ρ,G which,
for DP-FTRL, denote the target privacy level and the gradient clip norm respectively. See §C for proofs.
Theorem 2.2. Let c, C1, C2 denote universal constants. For η ≤ c/Tr [H], we have

(Noisy-SGD) F∞(βsgd) = Θ
(
ηdG2ρ−1 + ησ2

sgdTr [H]
)

with βsgd = (1, 0, . . .) ,

(ν-Noisy-FTRL) F∞(β̂ν) ≤ C1

(
η2G2ρ−1 log2 1

ν + ησ2
sgd

)
Tr [H] with ν ≤ ηµ, and

(Lower bound) F∞(β) ≥ C2

(
η2G2ρ−1 + ησ2

sgd

)
Tr [H] for all β with ‖β‖1 <∞ .

This shows the near-optimality of ν-Noisy-FTRL and a provable gap between Noisy-FTRL and Noisy-SGD.

Observe that our bounds separate the contributions arising from correlated noise (ρ−1 term) and those from
the inherent noise in the linear model (σ2

sgd term). We focus on the effect of correlation because the effect of
the latter noise is the same across all choices of β. We plot the differences in Figure 2.

Exponential separation between Noisy-SGD and Noisy-FTRL: Noisy-SGD’s stationary error depends on
the ambient dimension d, while the lower bound depends on the effective dimension deff = Tr [H] /‖H‖2
of the covariance H . We have, deff ≤ d with equality when all the eigenvalues of H are equal but deff � d
when the eigenvalues ofH decay rapidly or it is nearly low rank. This is true particularly for overparameter-
ized models where the features may be highly correlated resulting in an approximately low-rank covariance.
The effective dimension is closely related to the stable rank (Rudelson & Vershynin, 2007); cf. §C.6.

For instance, if the eigenvalues of H are (1, 1/d, . . . , 1/d), then deff ≤ 2. Then, Noisy-FTRL’s error of
O(η2ρ−1 log2(d/η)) is exponentially better than Noisy-SGD’s Θ(ηρ−1d). The learning rate dependence of
Noisy-SGD is also suboptimal, similar to §2.1. This result is also confirmed empirically in Figure 2 (right).

Assuming λmax(H) = 1, the deff -dependence comes from the contribution of eigen-direction j ofH to the
asymptotic suboptimality improving from Θ(1) for Noisy-SGD to scale with the corresponding eigenvalue
λj of H for ν-Noisy-FTRL. Thus, the anti-correlated noise particularly helps in the tail eigen-directions of
H . We discuss this further in Remark C.16 of §C.

6



Published as a conference paper at ICLR 2024

Table 2: Comparison to prior work: We apply our theory to compute F∞ for linear regression given choices of
B used in prior work. Though certain choices of the noise correlation β may be optimal for finite linear counting
queries (Fichtenberger et al., 2023), our results show that they have F∞ = ∞ because the sensitivity diverges as
T →∞. ν-Noisy-FTRL effectively introduces an additional damping term (1−ν)t in the correlations of (Fichtenberger
et al., 2023) to achieve near-optimality for linear regression. Damping similarly helps for anti-PGD (Orvieto et al., 2022),
where the resulting error is the geometric mean of the lower bound and the bound of Noisy-SGD from Theorem 2.2.

Algorithm Noise Correlation
Weights β

Sensitivity in T steps
γT (β)2

Asymptotic Suboptimality
F∞(β)

(Fichtenberger et al., 2023) Eq. (7) with ν = 0 log T ∞
ν-Noisy-FTRL (Ours) Eq. (7) with 0 < ν ≤ ηµ log(1/ν) η2G2ρ−1Tr [H] log2(1/ν)

Anti-PGD (Orvieto et al., 2022) (1,−1, 0, . . .) T ∞
Anti-PGD + Damping (1,−(1− ν), 0, . . .) 1/ν η3/2G2ρ−1

√
dTr [H]

2.3 FINITE-TIME PRIVACY-UTILITY BOUNDS FOR LINEAR REGRESSION

Noisy-FTRL, which we analyzed so far, is not differentially private. Differential privacy requires gradient
clipping which significantly complicates the analysis. However, for a finite time horizon T , we can argue
using concentration that ∇f (θ; z) is bounded with high probability, and clipping can be avoided. Formal
statements and proofs for the finite-time analysis are given in §D.

Consider DP-FTRL with noise correlation β̂ν from (7) with ν = ηµ and gradients clipped to any `2-norm
G. As mentioned in §1.1, the outputs (θ1, . . . ,θT ) of DP-FTRL are ρ-zCDP. For an appropriate choice of
η, we give utility bounds in terms of the effective dimension deff and the condition number κ = L/µ:
(a) For η small enough, we have with probability at least 1− p that

max
t<T
‖gt‖2 ≤ cmax

{
Tr [H] ‖θ0 − θ?‖2, σsgd

√
Tr [H]

}
polylog (T/p) =: G . (9)

Let E denote this event. If E holds, no gradients are clipped and DP-FTRL coincides with Noisy-FTRL.
(b) For T ≥ Ω̃(κ2d2effd/ρ), we have (omitting log factors and o(1/T 2) terms and taking ‖H‖2 = 1):

E [(F (θt)− F (θ?)) · 1 (E)] .

κ deff

(
ddeff‖θ0−θ?‖22

ρT +
dσ2

sgd

ρT +
σ2

sgd

T

)
for DP-SGD,

κdeff

(
κd2eff‖θ0−θ?‖

2
2

ρT 2 +
κdeffσ

2
sgd

ρT 2 +
σ2

sgd

T

)
for ν-DP-FTRL.

Thus, the dimension d in DP-SGD’s bound effectively becomes κdeff/T for DP-FTRL, leading to a better
dimension dependence. While faster 1/(ρT 2) rates are known for DP-SGD-style algorithms for linear re-
gression (Varshney et al., 2022; Liu et al., 2023), such algorithms require sophisticated adaptive clipping
strategies. Our algorithms use a fixed clipping norm G and a fixed noise multiplier σdp independent of T ;
the bounds presented above are, to the best of our knowledge, the best known in the literature for DP-SGD in
this setting. We leave the exploration of combining adaptive clipping with correlated noise for future work.

3 ASYMPTOTIC SUBOPTIMALITY FOR GENERAL STRONGLY CONVEX FUNCTIONS

We now generalize §2.2 to general strongly convex problems. Here, we bound the asymptotic suboptimality
of DP-FTRL and DP-SGD by the value of a convex program.
Theorem 3.1. Suppose f( · ; z) is G-Lipschitz, and the stochastic gradients are uniformly bounded as
‖∇θf (θ; z)− Ez′∼Pdata

[∇θf (θ; z′)]‖2 ≤ σsgd. Then, if F is µ-strongly convex and L-smooth, the asymp-
totic suboptimality F∞ is bounded for any noise correlation B (ω) in the frequency domain by:

inf

{
Ld
2π

∫ π

−π

(
G2ρ−1|B (ω) |2γ∞(B)2 + σ2

sgd

)
ψ(ω) dω

∣∣∣∣ψ : [−π, π]→ R+ , ψ ∈ C (η, L, µ)

}
, (10)
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DP-FTRL Variant Citation Corr. matrixB Anytime? Computation Cost
Generation Training (per step)

DP-SGD (Abadi et al., 2016) Identity X O (1) O (1)

Honaker/TreeAgg (Kairouz et al., 2021a) Lower-Triangular (LT) X O (1) O (log T )

Optimal CC (Fichtenberger et al., 2023) Toeplitz & LT X O (1) O(T )

ν-DP-FTRL Ours Toeplitz & LT X O(1) O(T )

FFT (Choquette-Choo et al., 2023b) Toeplitz - O(1) O
(
T log2 T

)
Full Honaker (Honaker, 2015) Arbitrary - O(T 2) O(T 2)

Multi-Epoch (ME) (Choquette-Choo et al., 2023b) Arbitrary - O
(
T 3
)

O
(
T 2
)

Table 3: Variants of DP-FTRL: the noise correlation matrix B and whether the correlation matrix B can be cre-
ated/optimized agnostic to the time horizon T (denoted as “Anytime”), and the computation cost.

where γ∞(B) is the limiting sensitivity from Eq. (5), and C (η, µ, L) is a convex set (details and proof in §E).
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2−2

2−1

20

21

22

A
sy

m
pt

ot
ic

S
ub

op
t.
F
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ν-DP-FTRL

Optimized

Figure 3: DP-FTRL attains a
tighter bound on F∞ with the
growing condition number. Here,
“Optimized” approximately mini-
mizes (10). The plots hold for
smooth and strongly convex func-
tions (L = 1 = G, σsgd = 0).

While technically an infinite-dimensional optimization problem over the
function ψ, we can approximate the solution by discretizing ψ into k
points uniformly over [−π, π]. Further, if we discretize B similarly, we
can obtain a second-order cone program with k conic constraints and
O(k) decision variables. As k → ∞, the solution approaches the so-
lution to (10). Empirically, we observe that the values stabilize quickly
as k increases. We stop the computation when the change in bound as a
function of k drops below a threshold — this gives k = 1000.

Further, given the optimal ψ = ψ?, we can run an alternating minimiza-
tion where we minimize the objective of (10) with respect to ψ for fixedB
and with respect to B for fixed ψ. This leads to an iteratively improving
choice of B. We find empirically that this iterative procedure converges
quickly and leads to a provable theoretical gap between the upper bounds
on F∞ achievable by DP-SGD and DP-FTRL.

We numerically compare the bound (10) for DP-SGD and ν-DP-FTRL.
Figure 3 shows that the gap between DP-SGD and ν-DP-FTRL is mul-
tiplicative: the absolute gap grows with the increasing condition number
κ = L/µ. The suboptimality of “Optimized” DP-FTRL (optimized as described above) grows even more
slowly with κ.

Overall, ν-DP-FTRL significantly improves upon DP-SGD and has only a single tunable parameter ν and no
expensive computation to generate the noise correlations. We focus on ν-DP-FTRL for experiments in this
paper but leave the possibility of improving results further based on Optimized DP-FTRL for future work.

4 EXPERIMENTS

We demonstrate the practical benefits of ν-DP-FTRL for deep learning tasks. This approach has a single
tunable parameter ν that can easily be tuned based on minimizing the squared error (3) as in prior work.

Comparing Computation (Table 3): While optimized matrices (e.g. “ME” in Table 3) have the state-of-
the-art privacy-utility tradeoffs in private learning (without amplification), their computational cost scales as

8
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(a) Example-level DP on CIFAR-10 (image classification).
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(b) User-level DP on StackOverflow (language modeling).

Figure 4: The proposed ν-DP-FTRL outperforms all other efficient and anytime mechanisms. It also nearly equal
or slightly outperform the state-of-the-art “ME” mechanism that requires significantly more compute (cf. Table 3). ∗The
non-private baseline for StackOverflow uses per-user clipping as this improves performance by ≈ 0.5% pp.

O(T 3).4 For example, generating the correlation matrix B for T = 104 takes around 24 hours (Choquette-
Choo et al., 2023b). Moreover, it has aO(T 2) cost per step. We find in this section that ν-DP-FTRL achieves
near state-of-the-art privacy-utility tradeoffs at a much smaller computational cost of O(T ) per iteration.

We compare with other anytime approaches for which the matrices B can extended to any time horizon T .
The practitioner then need not specify T in advance, but rather, can train for as long as necessary to achieve
minimal model loss—it is common to, e.g., let algorithms run until certain conditions, like a maximum
difference on the train-test loss, are met (Morgan & Bourlard, 1989). Moreover, general matricesB become
prohibitive in terms of compute/memory as models scale up (Kaplan et al., 2020; Anil et al., 2023).

Experiment Setup: We use two standard benchmarks: example-level DP for image classification on the
CIFAR-10 dataset and user-level DP for language modeling on the StackOverflow dataset. We use the same
setup as (Kairouz et al., 2021a). We also stamp/restart all baselines as suggested in (Choquette-Choo et al.,
2023b). This gives the baselines the advantage of an additional tuning parameter (tuned to minimize the
squared error (3)), but does not affect their per-step training cost. We denote this by the suffix “×S” for
S > 1 in the plot. We tune all CIFAR-10 hyperparameters with a grid search, while we use hyperparameters
reported from previous works for StackOverflow. Appendix G gives the full setup.

Main Results: Across both datasets, ν-DP-FTRL outperforms all existing anytime mechanisms by a signif-
icant margin (Figure 4a). We find an average 3pp improvement that grows as ε becomes small. Indeed, the
proposed ν-DP-FTRL makes up 30-80% of the gap between previous efficient approaches and the state-of-
the-art and computationally intense ME approach. For instance, at ε = 10, we have ν-DP-FTRL at 69.26%
nearly matches ME at 70.83%. In particular, ν-DP-FTRL outperforms Optimal CC (Fichtenberger et al.,
2023), which is equivalent to ν-DP-FTRL with ν = 0; this shows the practical importance of the exponential
decay parameter ν in Eq. (7). For StackOverflow, we find that ν-DP-FTRL outperforms the state-of-the-art
ME across all ε (Figure 4b) by ≈ 0.3%-points while requiring significantly less computation.

As ε becomes small, DP-SGD can outperform DP-FTRL due to privacy amplification. We find that ν-
DP-FTRL outperforms DP-SGD for ε ≥ 4 on CIFAR-10 (63.02% vs. 62.02%) and around ε ≈ 2 for
StackOverflow (23.6% versus 22.6%), showing its broad applicability. Finally, we observe that our mech-
anism achieves near non-private baselines on StackOverflow. A model trained via ν-DP-FTRL gets 25.3%
validation accuracy at ε = 8, a mere 1%-point off from the non-private baseline.

4Note that in practice we take T to be the number of steps of minibatch gradient descent, effectively doing several
epochs over the data which differs from the theoretical setting considered in previous sections.
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A FURTHER BACKGROUND ON DP-FTRL

In this appendix, we give a more detailed background of DP-FTRL, and its exact notion of differential
privacy.

A.1 DP-FTRL: THE MATRIX MECHANISM FOR PRIVATE LEARNING

The DP-FTRL algorithm (Kairouz et al., 2021a; Denisov et al., 2022) is obtained by adapting the matrix
mechanism, originally designed for linear counting queries (Li et al., 2015), to optimization with a sequence
(g0, . . . , gT−1) of gradient vectors.

Algorithm 1 gives a detailed description of DP-FTRL. We give an alternate description of DP-FTRL with
an invertible lower-triangular noise coefficient matrix B ∈ RT×T . Denoting C = B−1, the iterates of
DP-FTRL are generated by the updateθ1...

θT

 =

 θ0
...

θT−1

− ηB
C

 g0
...

gT−1

+

 w0

...
wT−1


 (11)

where η is a learning rate and wt ∼ N (0, G2σ2
dpId) is i.i.d. Gaussian noise with a noise multiplier σdp and

G is the `2 clip norm.

Following prior work, we also refer to B as the noise correlation matrix as the effective noise that is added
to the optimization is the i.i.d. noise (w0, . . . ,wT−1) which are linearly correlated by the rows of the matrix
B. It is also common in the literature to refer to C as the encoder, whileB is referred to as the decoder.

This privacy of (11) can be seen as a postprocessing of a single application of the Gaussian mechanism.
Let G,W ∈ RT×d denote the matrix where each row is the gradient gt (and respectively the noise wt).
Then, (11) is effectively the postprocessing of one run of the Gaussian mechanism CG + W . Under a
neighborhood model that can change one row of G, it can be seen that the maximum sensitivity of this
operation is maxt ‖C:,t‖22 (Denisov et al., 2022). This sensitivity logic also holds for adaptively chosen
gradients; we postpone a formal description to Appendix A.2.

Connection to the exposition in prior work: Prior work introduced DP-FTRL differently. Letting A ∈
RT×T denote the lower triangular matrix of all ones, update (11) can also be written asθ1 − θ0...

θT − θ0

 = −ηB̃

C
 g0

...
gT−1

+

 w0

...
wT−1


 , (12)

where B̃ = AB. The equivalence between (11) and (12) can be seen by multiplying (11) by A, which is
also equivalent to taking the cumulative sum of the rows of a matrix. In this notation, the objective from (3)
used in previous work to find the matrixB can equivalently be written as

ϕ(B) = ‖B̃‖2F = ‖AB‖2F .

DP-FTRL with Toeplitz matrices: We focus on the class of lower-triangular and Toeplitz matricesB. That
is, [B]t,t′ = βt−t′ for all t ≥ t′ where β = (β0, . . . , βT−1) is the first column of B.5 In this case, (11)

5This implies thatC = B−1 is also lower-triangular and Toeplitz (Kucerovsky et al., 2016, Prop. 2.2 & Rem. 2.3).
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reduces to this simple update:

θt+1 = θt − η
(
gt +

t∑
τ=0

βτwt−τ

)
. (13)

This lets us study DP-FTRL as a time-invariant stochastic process and characterize its stationary behavior.

A.2 DIFFERENTIAL PRIVACY IN ADAPTIVE STREAMS

Neighboring streams: We consider learning algorithms as operating over streams of gradients g0, g1, . . . ∈
Rd. We consider differential privacy (DP) under the “zero-out” notion of neighborhood (Kairouz et al.,
2021a). Two streamsG = (g0, . . . , gT−1) andG′ = (g′0, . . . , g

′
T−1) of length T are said to be neighbors if

gτ = g′τ for all positions τ ≤ T − 1 except possibly one position t where one of gt or g′t is the zero vector.

The zero-out neighborhood is standard in prior works on DP-FTRL (e.g. Kairouz et al., 2021a; Denisov
et al., 2022). For a further discussion of different notions of neighborhood, we refer to (Ponomareva et al.,
2023, Sec. 2.1.1). This guide suggests that the semantics of the zero-out neighborhood are roughly the same
as that of the usual add/remove notion of neighborhood.

DP with adaptive continual release: It is customary to formalize DP with adaptive streams as a privacy
game between a mechanismM and a privacy adversary A. This is known as the adaptive continual release
setting (Jain et al., 2023). The game makes a binary choice b ∈ {0, 1} ahead of time — this remains fixed
throughout and is not revealed to eitherM or A. Each round t consists of four steps:

• M sends the current model parameters θt to the adversary A;
• A generates two gradient vectors gt, g′t (e.g. as∇f(θt; zt) for zt ∼ Pdata or simply the zero vector);
• the game accepts these inputs if the partial streams (g0, . . . , gt) and (g′0, . . . , g

′
t) are neighbors;

• M receives gt if b = 0 else g′t.
DP in this setting requires that the adversary cannot infer the value of b, i.e., the distribution of θ0:T |b = 0
to be “close” to that of θ0:T |b = 1 (where the definition of “closeness” depends on the DP variant). For
instance, (ε, δ)-DP (Dwork et al., 2006) requires for each b ∈ {0, 1} and any outcome set S that

P(θ0:T ∈ S | b) ≤ exp(ε)P(θ0:T ∈ S | 1− b) + δ .

Similarly, ρ-zCDP (Bun & Steinke, 2016) in this setting requires that the Rényi α-divergence between the
distribution P0 of θ0:T |b = 0 and the distribution P1 of θ0:T |b = 1 are close:

Dα(P0‖P1) ≤ ρα
for all α ∈ (0,∞). Following standard arguments (e.g. Balle et al., 2020), ρ-zCDP in this setting implies
(εδ, δ)-DP with

εδ ≤ inf
α>1

{
ρα+

1

α− 1
log

(
1

αδ

)
+ log(1− α−1) .

}
DP-FTRL satisfies a zCDP guarantee as described in Theorem 1.1 in §1. This guarantee is equivalent to the
one obtained by interpreting (11) as the postprocessing of one run of the Gaussian mechanism CG+W .

B ASYMPTOTICS OF DP-FTRL FOR MEAN ESTIMATION

We now prove Theorem 2.1 on mean estimation.
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Proof of Theorem 2.1. We rewrite the iterates of DP-FTRL as a linear time-invariant (LTI) dynamical sys-
tem, whose stationary variance can be analyzed in the Fourier domain directly.

Notation: Since |∇f(θ; z)| = |z| ≤ 1 and G ≥ 1, there is no gradient clipping. We consider a mean-
adjusted version of the learning dynamics: let δt = θt − E[z] and ut = zt−E[z]

σsgd
. This allows us to reason

about the deviation of the parameters θt from the true mean E[z]; indeed, it turns out that limt→∞ E[δt] = 0.
The objective we optimize for can now be succinctly written as limt→∞ E[δ2t ].

LTI System: Our next step is to write this as an LTI system (see Appendix F.1 for a review). Thus, the
sequence (δt)

∞
t=0 produced by (2) evolves as

δt+1 = (1− η)δt + ησsgdut − ησdpG

t∑
τ=0

βτwt−τ t = 0, 1, . . . . (14)

This is an LTI system with input xt = (ut;wt) ∈ R2 and output yt = [δt] ∈ R1. We can verify its
asymptotic stability by examining the dynamics under zero inputs: ut = 0 and wt = 0 for all t. This gives
δt = (1 − η)tδ0 → 0 as t → ∞. Thus, this system is asymptotically stable. Further, we can also get
from taking expectations that E[δt] = (1− η)tδ0 → 0. Thus, our objective F∞ (B) = limt→∞ E[δ2t ] is the
limiting (stationary) variance of δt.

To invoke results from the LTI literature, it is convenient to re-index time to start from t = −∞ so that the
behavior at t = 0 describes the stationary behavior. Hence, the dynamics can be replaced by

δt+1 = (1− η)δt + ησsgdut − ησdpG

∞∑
τ=0

βτwt−τ ∀ t ∈ Z (15)

where Z denotes the set of integers and the objective can be taken to be F∞(B) = E[δ20 ].

Transfer function of the LTI system: The transfer function G(ω) of the LTI system (15) is a complex
matrix of shape 1× 2 (see §F.1 for definitions), which can be written as

G(ω) =
(

−η
1−η−exp(iω)

η B(ω)
1−η−exp(iω)

)
. (16)

The transfer function has the property that for any input sequences ut and wt with DTFT U(ω) and Z(ω),

the output sequence satisfies Y (ω) = G(ω)

(
U(ω)
Z(ω)

)
.

Stationary variance of the LTI system: The stationary variance limt→∞ E[δ2t ] admits a nice closed form
expression in the Fourier domain since its inputs are white noise. In particular, ut is i.i.d. in each step
and independent of the DP noise wt, so that the power spectral density of the sum of these two noise
sources is simply the sum of the power spectral densities of the individual sources; the resulting expression
is summarized in Theorem F.2.

We first calculate the input covariance is

Σ = E[xt ⊗ xt] =

(
σ2

sgd 0
0 G2σ2

dp

)
. (17)

We can then use Theorem F.2 from §F.1 to obtain an expression for the stationary variance F∞(B) = E[δ20 ]:

F∞(B) =
1

2π

∫ π

−π
G(ω)ΣG(ω)∗ dω =

η2

2π

∫ π

−π

|B (ω) |2G2

2ρ γ
2
∞ (B) + σ2

sgd

|1− η − exp (iω) |2 dω .
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Note that aboveG(ω)∗ denotes the conjugate transpose of the complex matrixG(ω).

Optimizing for the correlation in frequency domain: The dependence of F∞ on B is via the first term:

η2

2π

∫ π

−π

|B (ω) |2G2

2ρ γ
2
∞ (B)

|1− η − exp (iω) |2 dω
(5)
=
η2G

2

2ρ

4π2

(∫ π

−π

|B (ω) |2
|1− η − exp (iω) |2 dω

)(∫ π

−π

dω

|B (ω) |2
)
. (18)

The stationary variance’s dependence on B in (18) is a product of a linear function of |B|2 and 1
|B|2 . The

former comes via the variance and the latter through the sensitivity γ∞ (B) via (5). The optimal value of B
must balance these two considerations. By the Cauchy-Schwarz inequality, the product is minimized when

|B? (ω) |2
|1− η − exp (iω) |2 =

1

|B? (ω) |2 ⇐⇒ |B? (ω) | = |
√

1− η − exp (iω)| , (19)

and the minimum value is equal to

η2G2σ2
dp

4π2

(∫ π

−π

dω

|1− η − exp (iω) |

)2

.

The proof of the error bound now follows by computing and bounding the integral
∫ π
−π dω/|1−η−exp(iω)|.

This can be bounded via reductions to standard integrals whose asymptotics are known (see Lemma F.15
and Property F.10 from §F.4). Similarly, Corollary C.5 can be used to bound the σ2

sgd term in (17).

Optimal correlation in time-domain: Next, we derive the time-domain description by taking B?(ω) =√
1− (1− η) exp(−iω) (which amounts to fixing a phase in (19) above). We use the Maclaurin series

expansion
√

1 + z =
∑∞
t=0

(
1/2
t

)
zt of the square root function to get

B?(ω) =

∞∑
t=0

(−1)t
(

1/2

t

)
(1− η)t exp(−iωt) .

Comparing this to the definition of the discrete-time Fourier transform B?(ω) =
∑∞
t=0 β

?
t exp(−iωt) gives

the claimed expression for β?.

Note also that the optimal correlations scale as |β?t | = Θ(t−3/2 exp(−ηt)).

C ASYMPTOTICS OF DP-FTRL FOR LINEAR REGRESSION

The goal of this section is to prove Theorem 2.2. The proof relies heavily on the following matching upper
and lower bounds on the stationary error of Noisy-FTRL with any noise correlations β in the frequency
domain using its discrete-time Fourier transform (DTFT) B as:

F∞(B) = Θ

(
ησ2

sgdTr [H] + η2G2ρ−1γ2∞(B)

∫ π

−π
|B(ω)|2h(ω) dω

)
, (20)

where the function h : [−π, π]→ R depends on the eigenvalues λ1, . . . , λd of the input covarianceH:

h(ω) =

d∑
j=1

λj
|1− exp(iω)− ηλj |2

. (21)

The outline of the section is
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Table 4: Asymptotic suboptimality of Noisy-SGD and Noisy-FTRL for linear regression with Gaussian inputs based
on the eigenvalues λk of the Hessian H . We give the bounds in terms of the learning rate η, dimension d, the effective
dimension deff = Tr [H] /‖H‖2, and the noise variance ρ−1 representing the privacy level. We take G = 1 and
‖H‖2 = 1 w.l.o.g. Noisy-FTRL is always better at large dimension d or small learning rate η.

Eigenvalues ofH Effective dim. deff Noisy-SGD Noisy-FTRL Ratio of Noisy-FTRL
Noisy-SGD

λk = 1 d ηdρ−1 η2dρ−1 log2( 1
η

) η log2( 1
η

)

λk = 1/
√
k

√
d ηdρ−1 η2

√
dρ−1 log2( d

η
) η√

d
log2( d

η
)

λk = k−a (a < 1) d1−a

1−a ηdρ−1 (1− a)−1η2d1−aρ−1 log2(d/η) η
(1−a)da log2

(
d
η

)
λk = 1/k log d ηdρ−1 η2ρ−1 log3( d

η
) η

d
log3( d

η
)

λk = 1/k2 constant ηdρ−1 η2ρ−1 log2( d
η

) η
d

log3( d
η

)

λk = k−a (a > 1) a
a−1

ηdρ−1
(
a2

a−1

)
η2ρ−1 log2

(
d
η

) (
a2

a−1

)
η
d

log2
(
d
η

)

• Appendix C.1: Setup, including notation, and assumptions.
• Appendix C.2: Proofs of the upper bound of (20), specifically Theorem C.15 (see also Theo-

rem C.14 for the time-domain description).
• Appendix C.3: Proofs of the lower bound of (20), specifically Theorem C.18.
• Appendix C.4: Asymptotics of ν-Noisy-FTRL.
• Appendix C.5: Asymptotics of anti-PGD (see Table 2).
• Appendix C.6: Effective Dimension and its Connection to the Stable Rank.
• Appendix C.7: Proofs of intermediate technical results.

The separation between Noisy-SGD and ν-Noisy-FTRL is further illustrated in Table 4. Following common
practice (e.g. Caponnetto & De Vito, 2007), we compare the rates for various regimes of eigenvalue decays
forH .

C.1 SETUP, ASSUMPTIONS, AND NOTATION

C.1.1 SETUP

Recall that we wish to minimize the objective

F (θ) = E(x,y)∼Pdata

[
(y − 〈θ,x〉)2

]
. (22)

Stochastic gradients: Given (x, y) ∼ Pdata, the vector

g := (x⊗ x)θ − yx = (x⊗ x)(θ − θ?)− ξx
is a stochastic gradient of F at θ, i.e., E[g] = ∇F (θ).

Noisy-FTRL Iterations: We specialize the Noisy-FTRL algorithm with Toeplitz noise correlations. Let T
denote the number of iterations and β:T = (β0, . . . , βT−1) denote the first column of the Toeplitz matrix
B = Toeplitz(β:T ) ∈ RT×T . Starting from a given θ0 ∈ Rd, Noisy-FTRL samples a fresh input-output
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pair (xt, yt) ∼ Pdata and noise wt to set

θt+1 = θt − η ((xt ⊗ xt)θt − ytxt))− η
t∑

τ=0

βτwt−τ . (23)

Recall that the sensitivity γT (β) equals to the maximum columns norm ofB−1 = (Toeplitz(β))−1:
γT (β) = max

τ=0,...,T−1

∥∥B−1eτ∥∥2 , (24)

where eτ =
(
I(j = τ)

)T−1
τ=0
∈ RT is a standard basis vector. Note that the submatrix [B−1]0:m,0:m of the

first m rows and columns of B−1 equals (Toeplitz(β0, . . . , βm−1))
−1. Thus, the sensitivity γt(β) is an

increasing function of t always.

Infinite-time limit of Noisy-FTRL: We study the Noisy-FTRL error under the limit T →∞with an infinite
sequence β = (β0, β1, . . .) of weights.

It is also convenient to re-index time to start from t = −∞ and consider the sequence (θ)∞t=−∞ produced
by analogue of Equation (23), which reads

θt+1 = θt − η ((xt ⊗ xt)θt − ytxt))− η
∞∑
τ=0

βτwt−τ . (25)

Note that this includes a summation over all previous DP noise (wτ )tτ=−∞. For this sum to have finite
variance, we require

∑∞
τ=0 β

2
τ < ∞ or that β ∈ `2, the space of all square-summable infinite sequences.

We will assume this holds throughout.

Sensitivity in the infinite limit: We define the sensitivity γ∞(β) by considering the linear operator B =
Toeplitz(β) as the convolution operator [Bw]t =

∑∞
τ=0 βτwt−τ on input w = (wτ )∞τ=−∞. Let B−1 be

the inverse operator to B, assuming it exists. Note that the column norms
∥∥B−1eτ∥∥2 from (24) become

equal for all τ as T →∞. Thus, we get that the limiting sensitivity in the infinite time limit equals
γ∞(β) =

∥∥B−1e0∥∥2 (26)

forB = Toeplitz(β) and e0 = (1 (τ = 0))∞τ=0 ∈ `2. If e0 /∈ Range(B), then we take γ∞(β) =∞.

Frequency-domain description: Our analysis relies on the frequency-domain representation B :
[−π, π]→ C of β obtained via a discrete-time Fourier transform (DTFT) and defined as

B(ω) =

∞∑
t=0

βt exp(iωt) . (27)

The sequence β can be recovered from B(ω) using the inverse Fourier transform. Note that β ∈ `2 is
equivalent to B ∈ L2, the space of square-integrable functions, by Parseval’s theorem. The sensitivity (26)
can be defined in the Fourier domain as follows.
Property C.1. Let B(ω) denote the DTFT of β ∈ `2. Then, we have

γ2∞(β) = γ2∞(B) :=
1

2π

∫ π

−π

dω

|B(ω)|2 . (28)

Proof. Let z = B−1e0 be the solution of the linear system Bz = e0. Let Z(ω) denote the DTFT of
z. Since the linear operator B is a convolution with the weights of β, this system can be expressed in the
Fourier domain as

B(ω)Z(ω) =

∞∑
τ=0

[e0]τ exp(−iωτ) = 1 .

Thus, Z(ω) = 1/B(ω). We complete the proof with Parseval’s theorem: ‖z‖22 = 1
2π

∫ π
−π |Z(ω)|2 dω.
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C.1.2 ASSUMPTIONS

We prove the stationary error bounds under a relaxation of the assumptions in §2.2.
Assumption C.2. The data distribution Pdata satisfies the following:

(A1) Input Mean and Covariance: The inputs have mean E[x] = 0 and covariance E[x ⊗ x] =: H .
Further, L = λ1 ≥ · · · ≥ λd =: µ > 0 are the eigenvalues ofH .

(A2) Noise Mean and Variance: There exists a θ? ∈ Rd such that y = 〈θ?,x〉+ξ where ξ is independent
of x with E[ξ] = 0 and E[ξ2] ≤ σ2

sgd.

(A3) Input Kurtosis: There exists R2 < ∞ such that E
[
‖x‖22 (x⊗ x)

]
� R2H . More-

over, for every PSD P ∈ Sd+ that commutes with H (i.e., PH = HP ), we have
E
[
(x⊗ x)H−1/2PH−1/2(x⊗ x)

]
� Ckurt Tr [P ] H for some Ckurt <∞.

These assumptions are fairly standard in the context of linear regression. Assumption (A1) implies that
the Hessian matrix of objective F (θ) is H � 0. Thus, F is L-smooth and µ-strongly convex. Assump-
tion (A2) implies that θ? is the unique global minimizer of F and that the linear model is well-specified.
The upper bounds we prove continue to hold in the case where the linear model is mis-specified (i.e. ξ is not
independent of x) but we still have E[ξ2 (x⊗ x)] � σ2

sgdH .

Assumption (A3) is a kurtosis (i.e. 4th moment) assumption on the input distribution; we will momentarily
show that it follows with absolute constants when x ∼ N (0,H). More generally, by taking a trace, we
get from Jensen’s inequality that Tr [H] ≤ R2. The case of P = I of the second part of Assumption (A3)
has a special significance in the literature (e.g. Hsu et al., 2014; Jain et al., 2018) as CkurtTr [I] = Ckurtd is
the number of samples that allows the spectral concentration of the empirical covariance to the population
covarianceH .
Property C.3. if x ∼ N (0,H), we have that Assumption (A3) holds with R2 ≤ 3Tr [H] and Ckurt ≤ 3.

Proof. Let z = H−1/2x be element-wise independent and distributed as a standard Gaussian. For the first
part, denoteM = H−1/2 E[‖x‖22x⊗x]H−1/2 = E[〈z,Hz〉z⊗z]. Elementary properties of the standard
Gaussian distribution give

E[zkzlz
2
j ] =


3 , if k = l = j

1 , if k = l 6= i

0 , if k 6= l ,

and E[zkzlzjzj′ ] =


1 , if k = j and l = j′

1 , if k = j′ and l = j

0 , else

for j 6= j′. Thus, we haveM = 2H + Tr [H] I . This gives

E[‖x‖22x⊗ x] = H1/2MH1/2 = 2H2 + Tr [H]H � 3Tr [H]H .

For the second part, let H = UΛU> and P = UΣU> be the eigenvalue decomposition of H,P respec-
tively (since they commute, they are simultaneously diagonalized in the same basis given by the columns of
U ). Since U>z has the same distribution as z by the spherical invariance of Gaussians, we have,

H−1/2E
[
(x⊗ x)H−1/2PH−1/2(x⊗ x)

]
H−1/2 = E [(z ⊗ z)P (z ⊗ z)] = U E [(z ⊗ z)Σ(z ⊗ z)] U> .

(29)

Each off-diagonal entry of E [(z ⊗ z)Σ(z ⊗ z)] is zero since it involves expected odd powers of Gaussians.
Its jth diagonal entry equals (denoting σj := [Σ]j,j)

E

[
z2j

d∑
k=1

σkz
2
k

]
= σjE[z4j ] +

∑
k 6=j

σk E[z2j z
2
k] = 2σj + Tr [Σ] .
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This gives E [(z ⊗ z)Σ(z ⊗ z)] = 2Σ + Tr [Σ] I � 3Tr [Σ] I since Σ � 0. Plugging this back into (29)
and rearranging completes the proof.

C.1.3 NOTATION

We set up some notation, that we use throughout this section.

• It is convenient to rewrite the Noisy-FTRL recursion in terms of the difference θ′t := θt − θ?. We
can rewrite the Noisy-FTRL recursion (25) as

θ′t+1 =
(
I − η(xt ⊗ xt)

)
θ′t + η ξtxt − η

∞∑
τ=0

βτwt−τ . (30)

We will analyze this recursion.
• We describe the asymptotic suboptimality in terms of the self-adjoint linear operator T : `2 → `2

defined by

[Tβ]t =
∞∑
τ=0

βτ

d∑
j=1

(1− ηλj)|t−τ | . (31)

This operator is positive semi-definite, as we show in Lemma C.6 below. In the finite time setting,
we could represent T by the matrix

T =


d

∑d
j=1(1− ηλj)

∑d
j=1(1− ηλj)2 · · ·∑d

j=1(1− ηλj) d
∑d
j=1(1− ηλj) · · ·∑d

j=1(1− ηλj)2
∑d
j=1(1− ηλj) d · · ·

...
...


We only consider step-size 0 < η < 1/R2, which implies that 1− ηλj ∈ (0, 1) for all j.

• For j = 1, . . . , d, define Tj : `2 → `2 as the linear operator

[Tjβ]t =

∞∑
τ=0

βτ (1− ηλj)|t−τ | . (32)

Note that [Tjβ]t <∞ always since
∞∑
τ=0

βτ (1− ηλj)|t−τ | ≤
2‖β‖∞
ηλj

<∞ ,

since 0 < ηλ < 1. Thus, we have that T =
∑d
j=1 Tj by the bounded convergence theorem.

Further, we show in the upcoming Lemma C.6 that each Tj is PSD.
• DefineΣβ,Pβ ∈ Sd as

Σβ := diag
(
(〈β,Tjβ〉)dj=1

)
, and Pβ = UΣβU

> , (33)

where U is the eigen-basis of H = UΛU>. By definition, Pβ commutes with H since PβH =
HPβ = U(ΛΣβ)U>. Further, since each Tj is PSD (Lemma C.6), we have that Σβ and Pβ are
PSD as well. We also have

Tr [Pβ] = Tr [Σβ] = 〈β,Tβ〉 . (34)
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• Define the matrixMω ∈ Cd×d as

Mω =
(
(1− exp(iω))I − ηH

)−1
. (35)

Throughout, we assume that Assumption C.2 holds.

Preliminary lemmas: This lemma helps us move back and forth between the time-domain and frequency-
domain representations. See Appendix C.7 for a proof.
Lemma C.4. Consider β ∈ `2 and its DTFT B(ω). If 0 < η < 1/λj , we have

1

2
〈β,Tjβ〉 ≤

ηλj
2π

∫ π

−π

|B(ω)|2 dω

|1− ηλj − exp(iω)|2 ≤ 〈β,Tjβ〉 .

Setting B(ω) = 1 and β = (1, 0, . . .) gives the next corollary.
Corollary C.5. If 0 < η < 1/λj , we have,

1

2
≤ ηλj

2π

∫ π

−π

dω

|1− ηλj − exp(iω)|2 ≤ 1 .

Lemma C.6. The operators Tj defined in (32) and T defined in (31) are both positive semi-definite for
η < 1/maxj∈[d] λj .

Proof. Consider any β ∈ `2 and its DTFT B(ω). We have from Lemma C.4 that

0 ≤
∫ π

−π

|B(ω)|2 dω

|1− ηλj − exp(iω)|2 ≤
2π

ηλj
〈β,Tjβ〉 ,

or that 〈β,Tjβ〉 ≥ 0.

C.2 PROOF OF THE UPPER BOUND ON THE ASYMPTOTIC SUBOPTIMALITY

The key tool in the warm-up analysis of mean estimation (Appendix B) is the use of linear time-invariant
(LTI) input-output systems to relate the output covariance to the input covariance using its transfer function
(see Appendix F.1 for a summary). The Noisy-FTRL recursion is not trivial to characterize in this manner
because the update (25) is not LTI. Instead, we decompose it into an infinite sequence of LTI systems and
carefully analyze the error propagation.

This consists of the following steps:

Part 1: Decompose the Noisy-FTRL recursion into a sequence of LTI systems.
Part 2: Compute the transfer function of each LTI system.
Part 3: Compute the stationary covariance for each LTI system from the previous one.
Part 4: Combine the stationary covariances to get the stationary error of the original iterate.

C.2.1 PART 1: DECOMPOSITION INTO A SEQUENCE OF LTI SYSTEMS

A challenge in analyzing the stationary error of Equation (30) in the frequency domain is that it is not
an LTI system. Replacing xt ⊗ xt by H in Equation (30) results in an LTI update; this system is quite
similar to fixed design linear regression. However, this leads to an error in the general case, which satisfies a
recursion of the same form as (30). We can repeat the same technique of replacing xt⊗xt byH and repeat
this process indefinitely. This proof technique has been used in (Aguech et al., 2000) to analyze stochastic
tracking algorithms and (Bach & Moulines, 2013) to analyze iterate-averaged SGD for linear regression. We
adopt this technique to analyze the stationary covariance of DP mechanisms with correlated noise.
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We define sequences (θ
(r)
t )∞t=−∞ and (δ

(r)
t )∞t=−∞ for r ≥ 0 as follows:

θ
(0)
t+1 = (I − ηH)θ

(0)
t + ηξtxt − η

∞∑
τ=0

βτwt−k ,

θ
(r)
t+1 = (I − ηH)θ

(r)
t + η(H − xt ⊗ xt)θ(r−1)t for r > 0 ,

δ
(r)
t+1 = (I − ηxt ⊗ xt)δ(r)t + η(H − xt ⊗ xt)θ(r)t .

(36)

These recursions are assumed to start at t = −∞ from θ
(0)
t = θ′t, δ

(r)
t = 0 for r ≥ 0 and θ(r)t = 0 for

r > 0. These recursions are a decomposition of (30) as we define below.

Property C.7. For each iteration t and any integer m ≥ 0, we have θ′t =
∑m
r=0 θ

(r)
t + δ

(m)
t .

Proof. We prove this by induction. The base case at t = −∞ holds by definition. Assume that this is true
for some integer t. Then, we have

m∑
r=0

θ
(r)
t+1 + δ

(m)
t+1 = (I − ηxt ⊗ xt)

(
m∑
r=0

θ
(r)
t + δ

(m)
t

)
+ ηξtxt − η

∞∑
τ=0

βτwt−τ

= (I − ηxt ⊗ xt)θ′t + ηξtxt − η
∞∑
τ=0

βτwt−τ = θ′t+1 .

The idea behind the proof is to show that E
[
δ
(m)
0 ⊗ δ(m)

0

]
→ 0 as m →∞. Then, we can use the triangle

inequality to bound

‖θ′t‖ ≤
∞∑
r=0

∥∥∥θ(r)t ∥∥∥ ,
where the stationary error of the right side can be obtained from analyzing the LTI systems defined in (36).

C.2.2 PART 2: CHARACTERIZE THE TRANSFER FUNCTION OF EACH LTI SYSTEM

There are two LTI systems. First, θ(r)t for r > 0 is an LTI system

zt+1 = (I − ηH)zt + ηut (37)

with input ut ∈ Rd and output zt ∈ Rd. Second, θ(0)t satisfies satisfies an LTI system

zt+1 = (I − ηH)zt + ηut − η
∞∑
τ=0

βtwt−τ (38)

with inputs (ut,wt) ∈ Rd × Rd and output zt ∈ Rd where the weights β ∈ `2 are assumed to be given.

We now characterize the transfer functions of these LTI systems; see Appendix F.1 for a review.
Property C.8. The LTI system (37) is G(ω) = −ηMω ∈ Cd×d, where Mω is defined in Equation (35).
Moreover, this system is asymptotically stable as long as 0 ≺ ηH ≺ I .

Proof. Let U(ω) ∈ Cd and Z(ω) ∈ Cd be the Fourier transforms of ut and zt respectively. The transfer
function must hold for any input-output sequences, so we can choose some sequences and solve for the
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transfer functions. It is convenient to consider the delta spike on a standard basis (up to scaling), i.e.,
U = 2πδωej , where δω is the Dirac delta at ω, and ej is the jth standard basis vector in Rd. This gives
Z = 2πgjδω where gj(·) is the jth column ofG(·).

To move back to the time domain, we take an inverse Fourier transform to get ut = exp(iωt)ej and zt =
gj(ω) exp(iωt). Plugging this into the update (37) gives and solving for gj(ω) gives gj(ω) = −ηMωej .
Stacking these into a matrix gives the expression.

If ut ≡ 0 for all t, then ‖zt+1‖2 ≤ ‖I − ηH‖2‖zt‖2 < ‖zt‖2 since ‖I − ηH‖2 < 1. Hence, ‖zt‖2 → 0,
giving the asymptotic stability of the system.

Property C.9. The transfer function of the LTI system (38) is

G̃(ω) = [G(ω) G′(ω)] ∈ Cd×2d

where G(ω) = −ηMω and G′(ω) = ηB(ω)Mω with B(ω) as the DTFT of β. Moreover, this system is
asymptotically stable as long as 0 ≺ ηH ≺ I .

Proof. The expression for G(ω) is the same as in Property C.8. To find G′, we set the Fourier transforms
U ≡ 0,W = 2πδωej so that Z = 2πδωg

′
j , where g′j(·) is the jth column ofG′(·).

An inverse Fourier transform gives the time domain versionswt = exp(iωt), ut ≡ 0, zt = exp(iωt)g′j(ω).
Plugging these into (38) and plugging in the definition ofB(ω) gives the expression for the transfer function.
Its asymptotic stability holds similar to Property C.8.

C.2.3 PART 3: COMPUTE THE STATIONARY COVARIANCE OF EACH LTI SYSTEM

The stationary covariance of an LTI system driven by white noise can be concisely described in the frequency
domain. A sequence (ut) is said to be a white noise process if it is mean zero and E[utuτ ] = 0 for t 6= τ .
This is true for both θ(0)t as well θ(r)t for r > 0. Since we care about the stationary distribution and we start
at t = −∞, we have reached the steady state at t = 0. So, we compute E[θ

(r)
0 ⊗ θ

(r)
0 ].

Stationary covariance of the base recursion: We first start with θ(0)t .

Proposition C.10. We have that E
[
θ
(0)
t ⊗ θ(0)t

]
is equal for all t > −∞ and is bounded as

E
[
θ
(0)
t ⊗ θ(0)t

]
� ησ2

sgdI + ησ2H−1/2PβH
−1/2 ,

where Pβ is defined in Equation (33) and we denote σ2 = G2γ2∞(β)/(2ρ).

Proof. The input (ξtxt,wt) forms a white noise sequence, since for t 6= τ , we have E[ξtxtξτxτ ] =
E[ξtxt]E[ξτxτ ] = 0 (since ξtxt for each t is i.i.d.) and E[wtwτ ] = 0. The covariance of the input
is

E[(ξtxt,wt)⊗ (ξtxt,wt)] =

[
E[ξ2txtxt] 0

0 E[wt ⊗wt]

]
= E[(ξτxτ ,wτ )⊗ (ξτxτ ,wτ )]

for all t, τ . This is further bounded by Assumption (A1) as

E[(ξtxt,wt)⊗ (ξtxt,wt)] �
[
σ2

sgdH 0
0 σ2I

]
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The output covariance of the asymptotically stable LTI system (38) can be given in terms of the trans-
fer function G̃(ω) = [G(ω) G′(ω)] characterized in Property C.9 using Theorem F.2. This gives that

E
[
θ
(0)
t ⊗ θ(0)t

]
is equal for each t > −∞ and is bounded as

E
[
θ
(0)
t ⊗ θ(0)t

]
� 1

2π

∫ π

−π

(
η2σ2

sgdMωHM
∗
ω + η2σ2|B(ω)|2MωM

∗
ω

)
dω . (39)

With the eigenvalue decomposition H = UΛU>, we get Mω = U
(
(1 − exp(iω))I − ηΛ

)−1
U>. This

gives
MωHM

∗
ω = U diag

((
λj/|1− exp(iω)− ηλj |2

)d
j=1

)
U> .

We invoke Corollary C.5 to say∫ π

−π
MωHM

∗
ωdω = U diag

((∫ π

−π
dω λj/|1− exp(iω)− ηλj |2

)d
j=1

)
U>

� U diag
((

2π/η
)d
j=1

)
U> =

2π

η
I . (40)

Similarly, we invoke Lemma C.4 to compute∫ π

−π
|B(ω)|2MωM

∗
ωdω = U diag

((∫ π

−π
dω |B(ω)|2/|1− exp(iω)− ηλj |2

)d
j=1

)
U>

� U diag
((

2π〈β,Tjβ〉/(ηλj)
)d
j=1

)
U>

=
2π

η
UΛ−1/2ΣβΛ

−1/2U> =
2π

η
H−1/2PβH

−1/2 , (41)

where Σβ and Pβ are defined in (33). Plugging in (40) and (40) into (39) completes the proof of the upper
bound.

Stationary covariance of the higher-order recursion: Next, we turn to θ(r)t .
Proposition C.11. For any r ≥ 1, we have

E
[
θ
(r)
0 ⊗ θ

(r)
0

]
� η

(
ηR2

)r (
σ2

sgd +
Ckurtσ

2

R2
〈β,Tβ〉

)
.

Proof. Follows from combining Proposition C.10 with the more general Lemma C.12 below.

Lemma C.12. For some r ≥ 1, suppose that E
[
θ
(r−1)
t ⊗ θ(r−1)t

]
is equal for each t and is bounded as

E
[
θ
(r−1)
t ⊗ θ(r−1)t

]
� aI + bH−1/2PβH

−1/2 for some scalars a, b ≥ 0. Then, we have the following.

(a) We have that ζ(r)t := (H − xt ⊗ xt)θ(r−1)t is a white-noise process with

E
[
ζ
(r)
t ⊗ ζ(r)t

]
�
(
aR2 + bCkurt 〈β,Tβ〉

)
H .

(b) We have that E
[
θ
(r)
t ⊗ θ(r)t

]
is equal for each t and is bounded as

E
[
θ
(r)
t ⊗ θ(r)t

]
� η

(
aR2 + bCkurt 〈β,Tβ〉

)
I .
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Proof. Note that E
[
ζ
(r)
t ⊗ ζ(r)τ

]
= 0 for t 6= τ since xt is independent of xτ and E[xt ⊗ xt] = H . Since

xt is independent of θ(r−1)t , we get from the tower rule of expectations that

E
[
ζ
(r)
t ⊗ ζ(r)t

]
= E

[
(H − xt ⊗ xt)

(
θ
(r−1)
t ⊗ θ(r−1)t

)
(H − xt ⊗ xt)

]
= E

[
(H − xt ⊗ xt)E

[
θ
(r−1)
t ⊗ θ(r−1)t

]
(H − xt ⊗ xt)

]
,

or that (ζ
(r)
t ) is a white noise process. Its covariance can further be bounded as

E
[
ζ
(r)
t ⊗ ζ(r)t

]
� E

[
(H − xt ⊗ xt)

(
aI + bH−1/2PβH

−1/2
)

(H − xt ⊗ xt)
]

� aE
[
‖xt‖22 (xt ⊗ xt)

]
+ bE

[
(xt ⊗ xt)H−1/2PβH−1/2(xt ⊗ xt)

)
� aR2H + bCkurt Tr [Pβ]H ,

where the last inequality followed from Assumption (A3). Further, note that Tr [Pβ] = 〈β,Tβ〉 from (34).

The output covariance of the asymptotically stable LTI system (37) can be given in terms of the transfer
functionG(ω) = −ηMω using Theorem F.2 as

E
[
θ
(r)
t ⊗ θ(r)t

]
� η2

(
aR2 + bCkurt〈β,Tβ〉

)
2π

∫ π

−π
MωHM

∗
ω dω

(40)
� η

(
aR2 + bCkurt〈β,Tβ〉

)
I .

Remainder Term: It remains to show that the remainder term δt can be neglected by taking m→∞.

Proposition C.13. We have limm→∞ E
[
δ
(m)
t ⊗ δ(m)

t

]
= 0.

Proof. Let ζ(m+1)
t := (H − xt ⊗ xt)θ(m)

t . By Lemma C.12 and Proposition C.11, we have ζt is a white-
noise process with

E
[
ζ
(m+1)
t ⊗ ζ(m+1)

t

]
� (ηR2)m+1

(
σ2

sgd +
Ckurtσ

2

R2
〈β,Tβ〉

)
H → 0

as m→∞ since η < 1/R2. Note that the update for δ(m)
t exactly matches that of SGD (without added DP

noise), and the noise covariance is 0. The statement of this result is equivalent to showing that the stationary
covariance of SGD with zero residuals is zero. This observation is formalized in Lemma 4 of (Jain et al.,
2017a) (see also Theorem F.3 of Appendix F), which gives for any t that

0 � E[δ
(m)
t ⊗ δ(m)

t ] � η

1− ηR2

[
(ηR2)m+1

(
σ2

sgd +
Ckurtσ

2

R2
〈β,Tβ〉

)]
I → 0

as m→∞.

C.2.4 PART 4: COMBINING THE ERRORS

Time-domain description: We now state and prove a time-domain description of the upper bound of Equa-
tion (20).
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Theorem C.14. Suppose Assumption C.2 holds. Consider the sequence (θt)
∞
t=−∞ produced by the

Noisy-FTRL update in Equation (25) with some given weights β ∈ `2 and noise variance wt ∼
N (0, G2γ2∞(β)/(2ρ)I). If the learning rate satisfies η < 1/R2, we have

F∞(β) ≤
(

1 +
(

1−
√
ηR2

)−2)
ηR2σ2

sgd +

(
1 + Ckurt

(
1−

√
ηR2

)−2) ηG2γ2∞(β)

2ρ
〈β,Tβ〉 .

Proof. We use shorthand σ2 =
G2γ2

∞(β)
2ρ . First, note that η < 1/R2 also implies that ηλj < 1 for each

eigenvalue λj ofH . The right side is well-defined since Lemma F.17 gives

|〈β,Tβ〉| ≤
d∑
j=1

∣∣∣∣∣
∞∑
t=0

∞∑
τ=0

βtβτ (1− ηλj)|t−τ |
∣∣∣∣∣ ≤ ‖β‖22

d∑
j=1

2

ηλj
<∞ (42)

for β ∈ `2. Next, using Proposition C.10, Tr [H] ≤ R2, and Tr [Pβ] = 〈β,Tβ〉, we get

E
∥∥∥θ(0)0

∥∥∥2
H

= Tr
[
HE

[
θ
(0)
0 ⊗ θ

(0)
0

]]
≤ ηR2σ2

sgd + ησ2〈β,Tβ〉 . (43)

Similarly, using Proposition C.11, we get for r ≥ 1 that

E
∥∥∥θ(r)0

∥∥∥2
H
≤ (ηR2)r+1

(
σ2

sgd +
Ckurtσ

2

R2
〈β,Tβ〉

)
.

We can ignore the remainder term since E
∥∥∥δ(m)

t

∥∥∥2
H
→ 0 as m→∞, from Proposition C.13. Thus, we get

using Property C.7 and the triangle inequality on the norm u 7→
√
E〈u,Hu〉 of a random vector u to get√

E‖θ′0‖2H ≤
∞∑
r=0

√
E
∥∥∥θ(r)0

∥∥∥2
H
.

To complete the proof, we plug in Equations (42) and (43) and sum up the infinite series. We simplify the
result using ‖x+ y‖2H ≤ 2‖x‖2H + 2‖y‖2H and use F (θ)− F (θ?) = (1/2)‖θ − θ?‖2H .

Frequency-domain description: We now state and prove the frequency domain description of the upper
bound (20).

Theorem C.15. Consider the setting of Theorem C.14. If B ∈ L2, i.e.,
∫ π
−π |B(ω)|2 dω <∞, we have

F∞(B) ≤
(

1 +
(

1−
√
ηR2

)−2)
ηR2σ2

sgd

+

(
1 + Ckurt

(
1−

√
ηR2

)−2) η2G2γ2∞(B)

2πρ

∫ π

−π
|B(ω)|2 h(ω) dω .

Proof. We again use the shorthand σ2 =
G2γ2

∞(β)
2ρ . First note that

h(ω) ≤
d∑
j=1

λj
1 + (1− ηλj)2 − 2(1− ηλj)

=

d∑
j=1

1

η2λj
=

Tr
[
H−1

]
η2

.
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Thus, the right side is well-defined since∫ π

−π
|B(ω)|2 h(ω)dω ≤ Tr

[
H−1

]
η2

∫ π

−π
|B(ω)|2 dω <∞

by assumption. We use Lemma C.4 to get

〈β,Tβ〉 =

d∑
j=1

〈β,Tjβ〉 ≤
d∑
j=1

ηλj
π

∫ π

−π

|B(ω)|2dω

|1− exp(iω)− ηλj |2
=
η

π

∫ π

−π
|B(ω)|2 h(ω) dω .

Remark C.16 (Contribution per eigendirection). The expression of Theorem C.15 contains a sum over the
eigenvalues λ1, . . . , λd of the Hessian matrix H through the function h(ω), defined in Eq. (21). Thus, the
contribution of eigenvalue λj to the error is proportional to (ignoring problem-dependent constants)

Errj :=

∫ π

−π

λj |B(ω)|2 dω

|1− exp(iω)− ηλj |2
. (44)

For Noisy-SGD, we have that B(ω) = 1, and the error Errj = Θ(1) evaluates to an absolute constant
(details in Corollary C.5). In other words, each eigendirection contributes a constant amount to the error,
leading to a O(d) dimension dependence in the asymptotic error.

On the other hand, as we discuss further in Remark C.23 (Appendix C.4), we have Errj ≤ Õ(λj) for ν-
Noisy-FTRL. Thus, the contribution of an eigendirection reduces proportional to the eigenvalues, leading to
an effective dimension dependence for ν-Noisy-FTRL.

These quantitative results can be connected intuitively to the signal in the gradients. Let λ1, . . . , λd be the
eigenvalues of H with λ1 = 1. The negative gradient at each step pushes the iterates back towards the
minimizer, thus mitigating the effect of the past noise. However, the signal in the gradient along tail eigen-
directions is small, making it ineffective in such directions. This leads to Errj = Θ(1) for Noisy-SGD, which
can be much larger than λj . On the other hand, the anti-correlations of ν-DP-FTRL “subtract out” the
previous noise, leading to Errj ∝ λj for ν-Noisy-FTRL, i.e., an improved effective dimension dependence.

C.3 PROOFS OF LOWER BOUNDS ON THE ASYMPTOTIC SUBOPTIMALITY

We now state and prove the lower bound part of (20) on the asymptotic suboptimality.
Assumption C.17. In addition to Assumption C.2, the data distribution Pdata satisfies the following:

(A2’) Worst-Case Residuals: For (x, y) ∼ Pdata, the residual ξ := y−〈θ?,x〉 has variance E[ξ2] = σ2
sgd.

Note that the variance of ξ2 holds with equality under Assumption C.17.
Theorem C.18. Suppose Assumption C.17 holds. Consider the sequence (θt)

∞
t=−∞ produced by the Noisy-

FTRL update in Equation (25) with some given weights β ∈ `1. If the learning rate satisfies η < 1/R2, we
have

F∞(β) ≥
ησ2

sgd

2
Tr [H] +

η2G2γ2∞(B)

4πρ

∫ π

−π
|B(ω)|2 h(ω) dω ≥

ησ2
sgd

2
Tr [H] +

ηG2γ2∞(β)

4ρ
〈β,Tβ〉 ,

where h(ω) is defined in (21) and T is defined in (31). Furthermore, the minimal stationary error over all
choices of β is bounded as

inf
β

F∞(β) ≥ 1

4

(
2ησ2

sgd +
η2G2

2ρ

)
Tr [H]

where the infimum is attained by β? whose DTFT B? verifies |B?(ω)|2 = 1/
√
h(ω).
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Note that we assume β ∈ `1, i.e., ‖β‖1 =
∑∞
τ=0 |βτ | <∞ for technical reasons. This implies that β ∈ `2,

which we assumed for the upper bounds.

The key idea behind the proof is that the variance of θ′t is no smaller than that of an LTI system with xt⊗xt
replaced by its expectationH . We can quantify this latter covariance with equality under Assumption C.17.
We set up some notation and develop some preliminary results before proving this theorem.

Formally, consider the sequences (θ
(0)
t )∞t=−∞ and (δ

(0)
t )∞t=−∞ as defined in (36) (cf. Appendix C.2.1). They

start at t = −∞ from θ
(0)
t = θ′t and δ(0)t = 0. By Property C.7, we these satisfy θ′t = θ

(0)
t + δ

(0)
t .

We use a technical result that θ(0)t and δt are uncorrelated. It is proved at the end of this section.

Proposition C.19. Consider the setting of Theorem C.18. We have for all t that

E
[
θ
(0)
t ⊗ δ(0)t

]
= 0 .

We now give the proof of Theorem C.18.

Proof of Theorem C.18. We use shorthand σ2 =
G2γ2

∞(β)
2ρ . Since θ′t = θ

(0)
t + δ

(0)
t , we have

E [θ′t ⊗ θ′t] = E
[
θ
(0)
t ⊗ θ(0)t

]
+ E

[
δ
(0)
t ⊗ δ(0)t

]
� E

[
θ
(0)
t ⊗ θ(0)t

]
(45)

where the cross terms disappear from Proposition C.19 for the first equality. We can get an expression for
this term by following the proof of Proposition C.10: under Assumption C.17, we have that Equation (39)
holds with equality. Thus, we get for all t > −∞ that

F∞(B) = Tr [H E [θ′t ⊗ θ′t]] � Tr
[
H E

[
θ
(0)
t ⊗ θ(0)t

]]
=

1

2π

∫ π

−π

(
η2σ2

sgdTr
[
H1/2MωHM

∗
ωH

1/2
]

+ η2σ2|B(ω)|2 Tr
[
H1/2MωM

∗
ωH

1/2
])

dω .

(46)

We invoke Corollary C.5 to obtain∫ π

−π
Tr
[
H1/2MωHM

∗
ωH

1/2
]

dω =

d∑
j=1

λ2j

∫ π

−π

dω

|1− exp(iω)− ηλj |2

≥
d∑
j=1

πλj
η

=
π

η
Tr [H] .

Similarly, we invoke Lemma C.4 to compute∫ π

−π
|B(ω)|2 Tr

[
H1/2MωM

∗
ωH

1/2
]

dω =

∫ π

−π

 d∑
j=1

|B(ω)|2 λj
|1− exp(iω)− ηλj |2

dω

=

∫ π

−π
|B(ω)|2 h(ω) dω ≥ π

η
〈β,Tβ〉 .

This establishes the lower bound for specific choices of β.

30



Published as a conference paper at ICLR 2024

Now, we turn to the universal lower bound. Using the expression for γ∞(B) from Property C.1, we get that
the lower bound from the theorem statement is

F∞(B) ≥
ησ2

sgd

2
Tr [H] +

η2G2

8π2ρ

(∫ π

−π

dω

|B(ω)|2
)(∫ π

−π
|B(ω)|2h(ω)

)
. (47)

The Cauchy-Schwarz inequality gives us that(∫ π

−π

dω

|B(ω)|2
)(∫ π

−π
|B(ω)|2h(ω)

)
≥
(∫ π

−π

√
h(ω) dω

)2

,

with equality attained for |B(ω)|2 = 1/
√
h(ω). This gives the universal lower bound on (47) over all

possible choices of B (or equivalently, all possible choices of β). To further lower bound this, we use
cos(ω) ≥ −1 to get

h(ω) =

d∑
j=1

λj
1 + (1− ηλj)2 − 2(1− ηλj) cos(ω)

≥
d∑
j=1

λj
(2− ηλj)2

≥ 1

4

d∑
j=1

λj =
Tr [H]

4
.

Thus, we get that (47) can be further lower bounded as

F∞(B) ≥
ησ2

sgd

2
Tr [H] +

η2G2

8π2ρ

(∫ π

−π

√
Tr [H]

2
dω

)2

=
ησ2

sgd

2
Tr [H] +

η2G2

8ρ
Tr [H] .

Missing technical proofs in the lower bound: We now give the proof of Proposition C.19, which first relies
on the following intermediate result.
Proposition C.20. Consider the setting of Theorem C.18. We have for all t, τ that

E
[
wτ ⊗ δ(0)t

]
= 0 .

Proof. For this proof, we start the sequences at t = 0 rather than t = −∞. We drop the superscript to write
δ
(0)
t as δt. Define shorthandQt := I − ηxt ⊗ xt andRt := H − xt ⊗ xt. We expand out the recursion to

get

δt = Qt−1δt−1 + ηRt−1θ
(0)
t−1

= Qt−1(Qt−2δt−2 + ηRt−2θ
(0)
t−2) + ηRt−1θ

(0)
t−1

= Qt−1Qt−2 · · ·Q0δ0 + η
(
Rt−1θ

(0)
t−1 +Qt−1Rt−2θ

(0)
t−2 + · · ·+Qt−1 · · ·Q1R0θ

(0)
0

)
.

The first term is zero because δ0 = 0 at initialization. Since Rτ is mean zero and independent of θ(0)τ and
Rt for t > τ , we have

1

η
E[δt ⊗wτ ] = E[Rt−1]E

[
θ
(0)
t−1 ⊗wτ

]
+ E[Qt−1]E[Rt−2]E

[
θ
(0)
t−2 ⊗wτ

]
+ · · ·+ E[Qt−1 · · ·Q1]E[R0]E

[
θ
(0)
0 ⊗wτ

]
= 0 ,

giving us the desired result.
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Proof of Proposition C.19. We drop the superscript to write δ(0)t as δt. We prove the claim by induction.
At initialization, we have δ−∞ = 0 so the hypothesis holds. Now assume that it holds at time t, i.e.,
E
[
θ
(0)
t ⊗ δt

]
= 0.

Next, we expand out E
[
θ
(0)
t+1 ⊗ δt+1

]
using their respective recursions. Note thatwt,H−xt⊗xt and ξt are

each zero mean and independent of all quantities appearing up to iteration t (formally, they are independent
of the σ-algebra generated by (θ

(0)
t and δt). This gives

E
[
θ
(0)
t+1 ⊗ δt+1

]
=(I − ηH)E

[
θ
(0)
t ⊗ δt

]
(I − ηH)− ηE

[ ∞∑
τ=0

βτ

(
wt−τ ⊗ δ(0)t

)]
(I − ηH) .

(48)

The first term is zero by the induction hypothesis. For the second term, we can interchange the expectation
and the infinite sum by the Fubini-Tonelli theorem since

∞∑
τ=0

|βτ | E
∣∣∣〈wt−τ , δ(0)t

〉∣∣∣ ≤ ‖β‖1 max
τ=0,...,∞

E
∣∣∣〈wt−τ , δ(0)t

〉∣∣∣ <∞
since β1 ∈ `1 and E

∣∣∣〈wt−τ , δ(0)t

〉∣∣∣ <∞ because

E
〈
wt−τ , δ

(0)
t

〉
= Tr

[
E
[
wt−τ ⊗ δ(0)t

]]
= 0

by Proposition C.20. By Proposition C.20 again, we thus get

E

[ ∞∑
τ=0

βτ

(
wt−τ ⊗ δ(0)t

)]
=

∞∑
τ=0

βτ E
[(
wt−τ ⊗ δ(0)t

)]
= 0 .

C.4 ASYMPTOTICS OF ν-NOISY-FTRL

We now state and prove the upper bound for ν-Noisy-FTRL. Note that ν-Noisy-FTRL can be described in
the frequency domain as |B̂ν(ω)|2 = |1− ν − exp(iω)|.
For the proof, we define I : (0, 1)2 → R+ as the integral

I(a, b) :=

∫ π

−π

|1− a− exp(iω)|
|1− b− exp(iω)|2 dω . (49)

The crux of the proof relies on a precise characterization of this integral, as we will shortly see below.

Lemma C.21. Consider the integral I from (49). It satisfies the following properties:

(i) For all a ∈ (0, 1), we have
I(a, a) ≤ 5 log(8/a) .

(ii) For all a ≤ b ≤ 1/4, we have

I(a, b) ≤ 128

49
log(8/a)

(
1 +O(a)

)
.
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Proof. The strategy is to reduce this integral to the standard elliptic integrals and leverage their properties
to get the result. We start with the first part I(a, a). We use Lemma F.15 to rewrite in terms of the elliptic

integral of the first kind K(k) =
∫ π/2
0

dω/
√

1− k2 sin2(ω) (denoted as (a)). Then, we use Property F.10

which says that K(k) = O(− log
√

1− k2) (denoted as (b)). This gives,

I(a, a)
(a)
=

4

2− aK
(√

1− a
1− a/2

)
(b)
≤ 5

2− a log

(
4

a
(2− a)

)
≤ 5 log

(
8

a

)
. (50)

Similarly, we can express I(a, b) for a 6= b in terms of the elliptic integral of the third kind Π(α2, k), whose
definition is given in (96). From Lemma F.16, we have for a, b ∈ (0, 1) that

I(a, b) =
2a2

b2(1− a/2)
Π(α2, k) where α2 =

b2(1− a)− a2(1− b)
b2(1− a/2)2

and k =
√

1− a/(1 − a/2). We invoke Property F.11 to bound the behavior of Π(α2, k) as k → 1− (i.e.
a→ 0+) to get

I(a, b) ≤ 2a2

b2(1− a/2)

1√
1− α2

log
4√

1− k2
(1 +O(a))

=
2(1− a/2)

(1− b/2)2
log

(
4

a
(2− a)

)
(1 +O(a)) ≤ 128

49
log(8/a) (1 +O(a)) ,

where the last inequality holds for a ≤ b ≤ 1/4.

We are now ready to prove the bounds for ν-Noisy-FTRL.
Proposition C.22. Consider the setting of Theorem C.15 with σ2

sgd = 0. Then, ν-Noisy-FTRL with ν ≤ ηµ
satisfies

F∞(β̂ν) ≤ C max{1, Ckurt} η2G2ρ−1 Tr [H] log2

(
8

ν

)
+ Õ(η3R2µG2ρ−1) ,

for a universal constant C > 0, and Õ(·) suppresses polylogarithmic terms in the problem parameters.

Proof. We use C to denote a universal constant that can change from line to line. We can express the bound
of Theorem C.15 with our specific choice of B(ω) as

F∞(B̂ν) ≤ C max{1, Ckurt} I(ν, ν)

d∑
j=1

λjI(ν, ηλj) . (51)

For the I(ν, ν) term, we plug in Lemma C.21(i). We plug a = ν and b = ηλj into Lemma C.21(ii) to get
(note that its conditions are satisfied)

I(ν, ηλj) ≤ C log

(
8

ν

)
(1 +O(ν)) . (52)

The last term is O(ν) ≤ O(ηµ). Plugging in (50) and (52) into (51) and using Tr [H] =
∑n
j=1 λj ≤ R2

completes the proof.

Remark C.23 (Contribution per eigendirection). We continue the discussion of Remark C.16. The proof
of Proposition C.22 shows that the contribution of the jth eigendirection to the asymptotic suboptimality is
proportional to

Errj = λjI(ν, ηλj) .

As long as ν ≤ ηµ, we get from Lemma C.21 that Errj ≤ O
(
λj log(1/ν)

)
. Thus, the error contributed

drops proportional to λj , leading to an effective dimension dependence for ν-Noisy-FTRL.
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C.5 ASYMPTOTICS OF ANTI-PGD

As we discussed in Table 2, anti-PGD (Orvieto et al., 2022) is a special case of Noisy-FTRL with β =
(1,−1, 0, . . .). Then, we have that (Toeplitz(β))−1 is the lower triangular matrix of all ones, so we have
γT (β) = T , or that its limiting sensitivity is infinite.

We can circumvent the infinity by damping β = (1,−(1 − ν), 0, . . .) for some 0 < ν < 1 to be decided
later. In this case, we have B(ω) = 1− (1− ν) exp(−iω), so that |B(ω)|2 = |1− ν − exp(iω)|2, which is
the analogue of ν-Noisy-FTRL with a square.
Proposition C.24. Consider the setting of Theorem C.15 with σ2

sgd = 0 and β = (1,−(1− ηλ), 0, . . .) for
some λ ∈ (0, 1/η]. Then, we have,

F∞(β) = Θ

(
ηG2ρ−1

(
νd+

ηTr [H]

ν

))
.

Further, if the learning rate satisfies η = c/Tr [H] and we take β = (1,−(1−
√

1/d), . . .), we get

F∞(β) = Θ
(

(c1/2 + c−1/2)η3/2σ2
√
dTr [H]

)
.

Proof. Let σ2 = G2/(2ρ). From Theorems C.15 and C.18, we get that

F∞(β) = Θ

η2σ2

(∫ π

−π

dω

|1− ν − exp(iω)|2
) d∑

j=1

λj

∫ π

−π

|1− ν − exp(iω)|2
|1− ηλj − exp(iω)|2 dω

 . (53)

Using Lemma F.12, we have∫ π

−π

dω

|1− ν − exp(iω)|2 =
2π

ν(2− ν)
= Θ

(
1

ν

)
.

For the second integral, we expand out the numerator and invoke Lemma F.12 again to get

1

2π

∫ π

−π

|1− ν − exp(iω)|2
|1− ηλj − exp(iω)|2 dω =

1 + (1− ν)2

ηλj(2− ηλj)
− 2(1− ν)

1− ηλj
ηλj(2− ηλj)

= Θ

(
ν2

ηλj
+ 1

)
,

where we use 1 ≤ 2 − ν ≤ 2 and the same for λj instead of λ. Plugging the two integrals back into (53)
completes the proof.

C.6 EFFECTIVE DIMENSION AND THE STABLE RANK

The stable/numerical rank srank(A) of a matrixA is defined as

srank(A) =
‖A‖2F

σmax(A)2
,

i.e., the squared ratio of the Frobenius norm of a matrix to its largest singular value (Rudelson & Vershynin,
2007). By comparing this to our definition of the effective dimension, we find that deff(H) = srank(H1/2).
Note that the effective dimension is also called the “intrinsic dimension” by Martinsson & Tropp (2020).

The stable rank of a matrix is a continuous function while the true rank is discontinuous. Thus, it is highly
desirable for the error of a numerical algorithm to scale with the stable rank of its matrix input rather than the
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true rank (Rudelson & Vershynin, 2007; Martinsson & Tropp, 2020). The stable rank is thus a fundamental
quantity appearing in various fields such as randomized linear algebra (Cohen et al., 2016; Martinsson &
Tropp, 2020) and matrix concentration (Hsu et al., 2011; Minsker, 2017).

Our results show that ν-DP-FTRL’s error has the desirable property of scaling with the stable rank (i.e.
effective dimension) of the HessianH rather than its true rank (i.e. the problem’s dimension).

C.7 PROOFS OF TECHNICAL LEMMAS

We now prove Lemma C.4.

Proof of Lemma C.4. Denote

I =

∫ π

−π

|B(ω)|2 dω

|1− ηλj − exp(iω)|2 .

The denominator is simply

|1− exp(iω)− ηλj |2 = 1 + (1− ηλj)2 − 2(1− ηλj) cosω . (54)

We expand the numerator as

|B(ω)|2 =

∞∑
t=0

β2
t +

∞∑
t=0

t−1∑
τ=0

βtβτ
(

exp(iω(t− τ)) + exp(−iω(τ − t))
)

=

∞∑
t=0

β2
t + 2

∞∑
t=0

t−1∑
τ=0

βtβτ cos(ω(t− τ))

=

∞∑
t=0

∞∑
τ=0

βtβτ cos(ω(t− τ)) . (55)

This is bounded since the Cauchy-Schwarz inequality gives

|B(ω)|2 ≤ ‖β‖22 <∞ .

Thus, we can apply Fubini’s theorem to exchange the sum and integral to give

I =

∞∑
t=0

∞∑
τ=0

βtβτ

∫ π

−π

cos(ω(t− τ))dω

1 + (1− ηλj)2 − 2(1− ηλj) cos(ω)

=

∞∑
t=0

∞∑
τ=0

2π

1− (1− ηλj)2
(1− ηλj)|t−τ | =

2π〈β,Tjβ〉
ηλj(2− ηλj)

,

where we evaluated the integral using Lemma F.12. We use 1 ≤ 2− ηλj ≤ 2 to complete the proof.

D FINITE-TIME PRIVACY-UTILITY TRADEOFFS FOR LINEAR REGRESSION

The goal of this section is to establish the finite time convergence of DP-FTRL. The key idea of the proof is
to establish high probability bounds on the `2 norm of the iterates of Noisy-FTRL and use that to deduce a
clip norm that does not clip any gradients with high probability.

The outline of this section is as follows:

• Appendix D.1: Preliminaries, including setup, notation and assumptions.
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• Appendix D.2: High probability bounds the iterates of Noisy-FTRL.
• Appendix D.3: Expected bounds on the iterates of Noisy-FTRL.
• Appendix D.4: Connecting DP-FTRL to Noisy-FTRL for the final bound privacy-utility bounds

(Corollary D.14 for DP-SGD and Corollary D.15 for DP-FTRL).

D.1 SETUP, ASSUMPTIONS, AND NOTATION

In this section, we fix the precise notation and assumptions. We also give some preliminary results.

D.1.1 ASSUMPTIONS

We make the following assumptions throughout this section.
Assumption D.1. The data distribution Pdata satisfies the following:

(B1) Input Distribution: The inputs have mean E[x] = 0 and covariance E[x ⊗ x] =: H . We have
µI � H � LI for µ,L > 0. Further, H−1/2x is element-wise independent and sub-Gaussian
with variance proxy 1, e.g. H−1/2x ∼ N (0, I).

(B2) Noise Distribution: There exists a θ? ∈ Rd such that y = 〈θ?,x〉+ ξ, where ξ is independent of x
and is zero-mean sub-Gaussian with variance proxy σ2

sgd, e.g. ξ ∼ N (0, σ2
sgd).

These assumptions are a strengthening of Assumption C.2 which are necessitated by concentration argu-
ments to follow below.

D.1.2 NOTATION

• As in Assumption C.2, we denote R2 as the smallest number such that the fourth moment of x is
bounded as

E
[
‖x‖22 x⊗ x

]
� R2H . (56)

Under Assumption (B1), we have R2 = Θ(Tr [H]) always. While Tr [H] ≤ R2 directly follows
from (56) using Jensen’s inequality, we show that R2 ≤ 3Tr [H] in Property C.3 in Appendix C.1.

• It is convenient to rewrite the Noisy-FTRL recursion (23) in terms of the difference θ′t := θt − θ?
as

θ′t+1 =
(
I − η(xt ⊗ xt)

)
θ′t + η ξtxt − η

t∑
τ=0

βτwt−τ . (57)

We will show in the upcoming Property D.2 that θ′t = θ̂t+ θ̃
sgd + θ̃ dp, where θ̂t captures the effect

of the initial iterate, θ̃ sgd captures the effect of the SGD noise, and θ̃ dp captures the effect of the
additive DP noise. We will define these quantities now and state and prove Property D.2 later. Note
that these recursions are defined for the same sequences of input realizations (x0,x1, . . .) drawn
from Pdata, linear model noise realizations (ξ0, ξ1, . . .), and DP noise realizations (w0,w1, . . .).

• We define the noise-free version of the DP-FTRL recursion as θ̂0 = θ′0 and

θ̂t+1 =
(
I − η(xt ⊗ xt)

)
θ̂t . (58)

• The effect of the SGD noise in the Noisy-FTRL process can be quantified by creating a process
starting from θ̃ sgd

0 = 0 with no DP noise (i.e. wτ ≡ 0):

θ̃ sgd
t+1 =

(
I − η(xt ⊗ xt)

)
θ̃ sgd
t + η ξtxt . (59)
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• The effect of the DP noise in the Noisy-FTRL process can be quantified by creating a process
starting from θ̃ dp

0 = 0 with no SGD noise (i.e., ξt ≡ 0):

θ̃ dp
t+1 =

(
I − η(xt ⊗ xt)

)
θ̃ dp
t − η

t∑
τ=0

βτwt−τ . (60)

• For an input xt drawn from Pdata We define the matrix

Qt := I − ηxt ⊗ xt . (61)

Note that E[Qt] = I − ηH .
• Define the linear operator P : Sd+ → Sd+ that operates on the cone of PSD matrices given by

PM = E[(I − ηx⊗ x)M(I − ηx⊗ x)] , (62)

where x is an input drawn from Pdata. By definition, we have E[QtMQt] = PM and by inde-
pendence,

E[QtQt−1MQt−1Qt] = P(PM) = P2M . (63)

This extends to higher powers of P as well. Finally, we will heavily use the fact that Tr [PM ] ≤
(1− ηµ)Tr [M ] for PSD matricesM (see Lemma F.18 for a proof).

• For each iteration t, we define the PSD matrixΣsgd
t as

Σsgd
t = xt−1 ⊗ xt−1 +Qt−1(xt−2 ⊗ xt−2)Qt−1 + · · ·+Qt−1 · · ·Q1(x0 ⊗ x0)Q1 · · ·Qt−1 ,

(64)

• For each iteration t, we define the PSD matrixΣdp
t as

Σdp
t =

t−1∑
τ=0

Vt,τV
>
t,τ where

Vt,τ =

{
βτI + βτ−1Qt−1 + · · ·+ β0Qt−1 · · ·Qt−τ , if 1 ≤ τ ≤ t− 1 ,

β0I , if τ = 0 .

(65)

D.1.3 PRELIMINARY RESULTS

The first result is a decomposition of the Noisy-FTRL process into three processes: (a) gradient descent
without additive noise, (b) a noise process with only noise from the linear model, and (c) a noise process
with only the DP noise.

Property D.2. For the sequences θ′t, θ̂t, θ̃
sgd
t , θ̃ dp

t defined in Equations (57) to (60), we have the following:

θ′t = θ̂t + θ̃ sgd
t + θ̃ dp

t (66)

θ̂t = Qt · · ·Q0θ
′
0 (67)

θ̃ sgd
t = η (xtξt +Qtxt−1ξt−1 + · · ·+Qt · · ·Q1x0ξ0) (68)

θ̃ dp
t = −η

(
t∑

τ=0

βτwt−τ +Qt

t−1∑
τ=0

βτwt−1−τ + · · ·+Qt · · ·Q1(β0w0)

)
= −η

(
β0wt−1 + (β1I + β0Qt−1)wt−2 + · · ·+ (βt−1I + βt−2Qt−1 + · · ·+ β0Qt−1 · · ·Q1)w0

)
.

(69)
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Proof. The expressions follow from unrolling their respective updates. By unrolling the DP-FTRL update
(57), we get,

θ′t+1 = Qtθ
′
t + ηxtξt − η

t∑
τ=0

βτwt−τ

= QtQt−1θ
′
t−1 + η (xtξt +Qtxt−1ξt−1)− η

(
t∑

τ=0

βτwt−τ +Qt

t−1∑
τ=0

βτwt−1−τ

)
= Qt · · ·Q0θ

′
0 + η (xtξt +Qtxt−1ξt−1 + · · ·+Qt · · ·Q1x0ξ0)

− η
(

t∑
τ=0

βτwt−τ +Qt

t−1∑
τ=0

βτwt−1−τ + · · ·+Qt · · ·Q1(β0w0)

)
.

Unrolling Equations (58) to (60) respectively gives Equations (67) to (69), and comparing them with the
expression above gives Equation (66).

D.2 HIGH-PROBABILITY BOUNDS ON NOISY-FTRL

The goal of this subsection is to prove a high probability bound on norms of the iterates of Noisy-FTRL. We
require a technical convergence condition on the weights β.

Definition D.3. A sequence β = (β0, β1, . . .) is said to satisfy Half-Expo Decay with parameter ν ∈ (0, 1)
if for all nonnegative integers τ , we have

|β0|(1− ν)τ/2 + |β1|(1− ν)(τ−1)/2 + · · ·+ |βτ | ≤ C(1− ν)τ/2 (70)

for a universal constant C > 0.

Theorem D.4. Fix a constant 0 < p < 1 and suppose the Assumption D.1 holds. Consider the sequence
(θt)

T−1
t=0 of iterates and the sequence (gt)

T−1
t=0 of gradients when running Noisy-FTRL for T iterations with

noise coefficients β = (β0, . . . , βT−1), DP noise wt ∼ N (0, σ2I) of a given variance6 σ2, a learning rate
η ≤

(
cR2 log(T/p)

)
for a universal constant c ≥ 1. Further, suppose that β satisfies Half-Expo Decay with

parameter ν for some ν ≤ ηµ. Then, with probability at least 1− p, we have

‖θ′t‖
2
2 ≤ C

(
‖θ′0‖

2
2 +

ηR2σ2
sgd

µ
+
η2σ2d ‖β‖21

ν

)
log3

(
T

p

)
and

‖gt‖22 ≤ CR4

(
‖θ′0‖

2
2 +

ηR2σ2
sgd

µ
+
σ2

sgd

R2
+
η2σ2d‖β‖21

ν

)
log5

(
T

p

)
.

for a universal constant C.

We prove this theorem over a sequence of intermediate results.

D.2.1 PROOF SETUP: DEFINITION OF EVENTS

The proof strategy relies on defining some events (that hold with high probability from concentration of
measure) and proving the required boundedness under those events. Consider 0 < p < 1 and a universal
constant C from statement of Theorem D.4. We define the following events.

6In the context of this paper, we have σ2 = G2γ(β)2/(2ρ).
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• Define the event where the inputs are bounded in norm as:

E1 :=

T−1⋂
t=0

{
‖xt‖22 ≤ CR2 log

(
T

p

)}
. (71)

• Define an event where the noise in the linear model is bounded as:

E2 :=

T−1⋂
t=0

{
|ξt|2 ≤ 2σ2

sgd log

(
2T

p

)}
. (72)

• Define the event where the norm of θ̃ sgd defined in (59) is bounded

E sgd
1 :=

T−1⋂
t=0

{∥∥∥θ̃ sgd
∥∥∥2
2
≤ Cη2σ2

sgd Tr
[
Σsgd
t

]
log

(
T

p

)}
, (73)

where we define the random matrix Σsgd
t = xt−1 ⊗ xt−1 + Qt−1(xt−2 ⊗ xt−2)Qt−1 + · · · +

Qt−1 · · ·Q1(x0⊗x0)Q1 · · ·Qt−1 (see also (64)). When this event holds, we have that 0 � Qt �
I for t = 0, . . . , T − 1 as long as η ≤ 1/

(
CR2 log(T/p)

)
. Indeed, in this case, we have

I − ηxt ⊗ xt �
(

1− η‖xt‖22
)
I � 0 . (74)

• The components of the sum definingΣsgd
t are the PSD matricesWt,τ , defined for τ ≤ t− 1 as

Wt,τ =

{
Qt−1 · · ·Qτ+1(xτ ⊗ xτ )Qτ+1 · · ·Qt−1 , if τ < t− 1,

xt−1 ⊗ xt−1 , if τ = t− 1 .
(75)

Define the event where these are bounded in trace as

E sgd
2 :=

T−1⋂
t=0

t−1⋂
τ=0

{
Tr [Wt,τ ] ≤ T 2R2

p
(1− ηµ)t−1−τ

}
. (76)

• Define the event where the norm of θ̃ dp defined in (60) is bounded as

Edp
1 :=

T−1⋂
t=0

{∥∥∥θ̃ dp
t

∥∥∥2
2
≤ Cη2σ2 Tr

[
Σdp
t

]
log

(
T

p

)}
, (77)

whereΣdp
t is defined in (65).

• Define the event where the matrix Vt,τ defined in (65) is bounded in trace:

Edp
2 :=

T−1⋂
t=0

t−1⋂
τ=0

{
Tr
[
Vt,τV

>
t,τ

]
≤ T 2d

p

(
τ∑
k=0

|βk|(1− ηµ)(τ−k)/2

)}
. (78)

We show that all these events hold with high probability.
Proposition D.5. Consider the setting of Theorem D.4. We have,

P
(
E1 ∩ E2 ∩ E sgd

1 ∩ E sgd
2 ∩ Edp

1 ∩ Edp
2

)
) ≥ 1− 6p .

Proof. We will show that each of the events holds with probability at least 1 − p and a union bound gives
the desired result.

39



Published as a conference paper at ICLR 2024

Event E1: Since zt = H−1/2xt is element-wise independent and 1-sub-Gaussian, we have from the
Hanson-Wright inequality (Lemma F.6) that

P(‖xt‖22 > CTr [H] log(1/p)) = P(〈zt,Hzt〉 > CTr [H] log(1/p)) ≤ p .
Taking a union bound over t = 0, 1, . . . , T − 1 gives that P(E1) ≥ 1− p.

Event E2: Since ξt is sub-Gaussian with mean zero and variance proxy σ2
sgd, we have,

P(|ξt| > s) ≤ 2 exp

(
− s2

2σ2
sgd

)
.

Setting the right side equal to p/T and taking a union bound over t = 0, 1, . . . , T − 1 gives P(E2) ≥ 1− p.

Event E sgd
1 : From the expression for θ̃ sgd

t from (68), we can say that θ̃ sgd
t conditioned on x0, . . . ,xt−1 is

mean zero and satisfies

θ̃ sgd
t = η [xt−1 Qt−1xt−1 · · · (Qt−1 · · ·Q1x0)]︸ ︷︷ ︸

=:Mt

ξt−1...
ξ0

 .
Using the assumption that each ξτ is independent and sub-Gaussian with variance proxy σ2

sgd, we get from
the Hanson-Wright inequality (Lemma F.6) again that

P
(∥∥∥θ̃ sgd

t

∥∥∥2
2
> Cη2σ2

sgd Tr
[
MtM

>
t

]
log(1/p)

)
= P

(〈
ξ:t,MtM

>
t ξ:t

〉
> Cη2σ2

sgd Tr
[
MtM

>
t

]
log(1/p)

)
≤ p .

Next, we confirm that

Tr
[
MtM

>
t

]
= ‖xt−1‖22 + ‖Qt−1xt−1‖22 + · · ·+ ‖Qt−1 · · ·Q1x0‖22 = Tr

[
Σsgd
t

]
.

Finally, a union bound over t = 0, 1, . . . , T − 1 gives that P(E sgd
1 ) ≥ 1− p.

Event E sgd
2 : Markov’s inequality gives

P (Tr [Wt,τ ] > s) ≤ 1

s
E [Wt,τ ] ≤ (1− ηµ)t−1−τ

R2

s

where the calculations for the expected bound are deferred to Lemma D.9. Taking a union bound over all
T (T + 1)/2 ≤ T 2 choices of (t, τ) gives P(E sgd

2 ) ≥ 1− p.

Event Edp
1 : From the expression for θ̃ dp

t from (69), we deduce that

θ̃ dp
t |x0, . . . ,xt−1 ∼ N (0, η2σ2Σdp

t ) .

Invoking the Hanson-Wright inequality (Lemma F.6) and union bounding over t = 0, . . . , T − 1 gives
P(Edp

1 ) ≥ 1− p.

Event Edp
2 : Markov’s inequality gives

P
(
Tr
[
Vt,τV

>
t,τ

]
> s
)
≤ 1

s
E
[
Vt,τV

>
t,τ

]
≤
(

τ∑
k=0

|βk|(1− ηµ)(τ−k)/2

)
d

s

where we defer the technical calculations involved in bounding the expectation above to Lemma D.10.
Taking a union bound over all T (T + 1)/2 ≤ T 2 choices of (t, τ) gives P(Edp

2 ) ≥ 1− p.
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D.2.2 HIGH PROBABILITY BOUNDS ON COMPONENT RECURSIONS

Bound on the noise-less iterates: We start with θ̂t from (58).

Proposition D.6. Under event E1 and if η ≤ (CR2 log(T/p))−1, we have that
∥∥∥θ̂t∥∥∥

2
≤ ‖θ′0‖2.

Proof. Using the fact that 0 � Qt � I under E1 (cf. Equation (74)), we get∥∥∥θ̂t∥∥∥
2

= ‖Qt−1 · · ·Q0θ
′
0‖2 ≤ ‖Qt−1‖2 · · · ‖Q0‖2‖θ′0‖2 ≤ ‖θ′0‖2 .

Bound on θ̃ sgd
t : We turn to θ̃ sgd

t from (59).

Proposition D.7. Under events E1, E sgd
1 , E sgd

2 , and η ≤ (CR2 log(T/p))−1, we have∥∥∥θ̃ sgd
t

∥∥∥2
2
≤ C

(
ηR2

µ

)
log3

(
T

p

)
.

Proof. Under E sgd
1 , we have ∥∥∥θ̃ sgd

∥∥∥2
2
≤ Cη2σ2

sgd Tr
[
Σsgd
t

]
log

(
T

p

)
. (79)

We bound Tr [Σt] =
∑t−1
τ=0 Tr [Wt,τ ] forWt,τ defined in (75). We have two bounds for Tr [Wt,τ ]:

(a) Using 0 � Qt � I under E1 (cf. Equation (74)), we bound

Tr [Wt,τ ] = ‖Qt−1 · · ·Qτ+1xτ‖22 ≤ ‖Qt−1‖22 · · · ‖Qτ+1‖22‖xτ‖
2
2 ≤ CR2 log(T/p) .

(b) Under event E sgd
2 , we have the bound

Tr [Wt,τ ] ≤ T 2R2

p
(1− ηµ)t−1−τ .

Using the first bound for the last τ ≤ t− 1 iterations and the second bound for the rest, we get

Tr
[
Σsgd
t

]
≤
t−τ−1∑
k=0

T 2R2

p
(1− ηµ)t−1−τ1 (τ < t− 1) + τ

(
CR2 log(T/p)

)
≤ T 2R2

p
(1− ηµ)τ

t−τ−1∑
k=0

(1− ηµ)k1 (τ < t− 1) + τ
(
CR2 log(T/p)

)
≤ T 2R2

p

exp(−ηµτ)

ηµ
1 (τ < t− 1) + τ

(
CR2 log(T/p)

)
.

Choosing τ = min
{
t− 1, 1

ηµ log
(

T 2

Cp log(T/p)

)}
as per Lemma F.20 gives

Tr
[
Σsgd
t

]
≤ CR2 log(T/p)

ηµ

(
1 + log

(
T 2

p log(T/p)

))
≤ C ′R2

ηµ
log2(T/p)

for some absolute constants C,C ′. Plugging this back into (79) completes the proof.
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Bound on θ̃ dp
t : We turn to θ̃ dp

t from (60).

Proposition D.8. Consider the setting of Theorem D.4. Under events E1, Edp
1 , Edp

2 , and η ≤
(CR2 log(T/p))−1, we have ∥∥∥θ̃ sgd

t

∥∥∥2
2
≤ C

(
ηR2

µ

)
log3

(
T

p

)
.

Proof. Based on the bound on
∥∥∥θ̃ dp

t

∥∥∥
2

from Edp
1 , we bound Tr

[
Σdp
t

]
=
∑t−1
τ=0 Tr

[
Vt,τV

>
t,τ

]
. We bound

each trace on the right side in two ways:

(a) We have Tr
[
Vt,τV

>
t,τ

]
≤ ‖β‖21d from Lemma D.10.

(b) Under Edp
2 and the assumption (∗) of Half-Expo Decay of β with parameter ν ≤ ηµ, we also have

Tr
[
Vt,τV

>
t,τ

]
≤ T 2d

p

(
τ∑
τ=0

|βk|(1− ηµ)(τ−k)/2

)2

≤ T 2d

p

(
τ∑
τ=0

|βk|(1− ν)(τ−k)/2

)2

(∗)
≤ CT 2d

p
(1− ν)τ .

Using the first bound for the first τ iterations and the second bound for the rest, we get

Tr
[
Σdp
t

]
≤ τ

(
‖β‖21d

)
+

t−1∑
k=τ

CT 2d

p
(1− ν)k1 (τ > t− 1)

≤ τ
(
‖β‖21d

)
+
CT 2d

p
(1− ν)τ

∞∑
k=0

(1− ν)k1 (τ > t− 1)

≤ τ
(
‖β‖21d

)
+
CT 2d exp(−ντ)

pν
1 (τ > t− 1) .

Choosing τ ≤
{
t− 1, 1ν log(CT 2/p‖β‖21)

}
as per Lemma F.20, we get,

Tr
[
Σdp
t

]
≤ ‖β‖

2
1d

ν

(
1 + log

(
CT 2

p‖β‖21

))
≤ C ′ ‖β‖

2
1d

ν
log

(
T

p

)
,

where we used ‖β‖1 ≥ |β0| = 1 and C,C ′ are some universal constants. Combining this with the bound on∥∥∥θ̃ dp
t

∥∥∥
2

asserted by Edp
1 completes the proof.

D.2.3 COMPLETING THE PROOF OF THE HIGH PROBABILITY BOUNDS

We are now ready to prove Theorem D.4.

Proof of Theorem D.4. Under events E1, E sgd
1 , E sgd

2 , Edp
1 , Edp

2 , we have bounds on the norms of θ̂t, θ̃
sgd
t , θ̃ dp

t
respectively from Propositions D.6 to D.8. We combine them with the triangle inequality and Equation (66)
of Property D.2 to the claimed bound on ‖θ′t‖2.

42



Published as a conference paper at ICLR 2024

Next, for the gradients, we use the triangle and Cauchy-Schwarz inequalities on the definition gt =
xt〈xt,θ′t〉 − xtξt to get

‖gt‖22 ≤ 2 ‖xt‖42‖θ′t‖
2
2 + 2‖xt‖22|ξt|22 .

Plugging in the bounds on ‖xt‖2 and |ξ|t from E1 and E2 respectively gives the claimed bound on ‖gt‖22.

Finally, all the events above hold with probability at least 1− 6p from Proposition D.5. Substituting p/6 for
p and adjusting the constants completes the proof.

D.2.4 HELPER LEMMAS

Lemma D.9. Consider the setting of Theorem D.4 and consider the PSD matricesWt,τ , defined for τ ≤ t−1
as

Wt,τ =

{
Qt−1 · · ·Qτ+1(xτ ⊗ xτ )Qτ+1 · · ·Qt−1 , if τ < t− 1,

xt−1 ⊗ xt−1 , if τ = t− 1 .

We have that E[Tr [Wt,τ ]] ≤ R2(1− ηµ)t−1−τ .

Proof. For τ = t−1, we have E[Wt,t−1] = Tr [H] ≤ R2. For τ < t−1, we have by independence of each
xt that

Tr [E[Wt,τ ]] = Tr [E[Qt−1 · · ·Qτ+1HQτ+1 · · ·Qt−1]] = Tr [E[Qt−1 · · ·Qτ (PH)Qτ · · ·Qt−1]] = · · ·
= Tr

[
Pt−1−τH

]
.

Recursively bounding Tr [PτH] = Tr
[
P(Pτ−1H)

]
≤ (1− ηµ)Tr

[
Pτ−1H

]
from Lemma F.18 completes

the proof.

Lemma D.10. Consider Vt,τ as defined in (65). We have that

E
[
Tr
[
Vt,τV

>
t,τ

]]
≤ d

(
τ∑
k=0

|βk|(1− ηµ)(τ−k)/2

)
.

Further, if the event E = ∩tτ=1{Qt � 0} holds, then we also have

Tr
[
Vt,τV

>
t,τ

]
≤ d

(
τ∑
k=0

|βk|
)2

.

Proof. Since t is fixed throughout, we simply write Vt,τ as Vτ . We define a sequence of matrices
A0, . . . ,Aτ asA0 = β0I and

Ak+1 = βk+1I +Qt−τ+kAk

for k = 0, . . . , τ − 1. We first prove the expected bound followed by the absolute bound.

Expected bound: Then, we successively deduce the following.

(a) We have Ak = βkI + βk−1Qt−τ+k−1 + · · · + β0Qt−τ+k−1 . . .Qt−τ by simply unrolling the
recursions.

(b) We immediately recognize that Vτ = Aτ .
(c) By independence of eachQt, taking an expectation of the expression in (a) gives

E[Ak] =

k∑
l=0

βl(I − ηH)k−l .
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(d) We establish a recursion

ETr
[
Ak+1A

>
k+1

]
≤ dβ2

k+1 + 2d|βk+1|
k∑
l=0

|βl|(1− ηµ)k−l+1 + (1− ηµ)ETr
[
AkA

>
k

]
.

Indeed, by expanding out the square of the recursion and using the independence of the xt’s, we
get

ETr
[
Ak+1A

>
k+1

]
= β2

k+1Tr [I] + 2βk+1Tr [(I − ηH)E[Ak]] + Tr
[
P(E[AkA

>
k ])
]

≤ dβ2
k+1 + 2|βk+1|

k∑
l=0

|βl| Tr
[
(I − ηH)k−l+1

]
+ (1− ηµ)ETr

[
AkA

>
k

]
,

where we plugged in the expression for E[Ak] from item (c) and used Lemma F.18 to bound the
last term. Using 0 � I − ηH � (1− ηµ)I gives the claimed expression.

(e) Using induction and the recursion from part (d), we prove that

ETr
[
AkA

>
k

]
≤ d

(
k∑
l=0

|βl|(1− ηµ)(k−l)/2

)2

.

Together with part (b), this gives the desired result.
Indeed, the base case holds because ETr

[
A0A

>
0

]
= β2

0d. Supposing the induction hypothesis
holds for some k < τ − 1, we use the recursion of item (d) to get

1

d
ETr

[
Ak+1A

>
k+1

]
≤ β2

k+1 + 2|βk+1|
k∑
l=0

|βl|(1− ηµ)k−l+1 +

(
k∑
l=0

|βl|(1− ηµ)
k−l+1

2

)2

≤ β2
k+1 + 2|βk+1|

k∑
l=0

|βl|(1− ηµ)
k−l+1

2 +

(
k∑
l=0

|βl|(1− ηµ)
k−l+1

2

)2

=

(
k+1∑
l=0

|βl|(1− ηµ)
k−l+1

2

)2

,

where the second inequality used 1− ηµ ≤ 1.

Absolute bound: Next, we prove the absolute bound, assuming that E holds. Again, we successively
deduce:

(a) We starting withAk = βkI + βk−1Qt−τ+k−1 + · · ·+ β0Qt−τ+k−1 . . .Qt−τ .
(b) Then, we get

|Tr [Ak] | ≤ |βk|d+ |βk−1| |Tr [Qt−τ+k−1]|+ · · ·+ |β0| |Tr [Qt−τ+k−1 · · ·Qt−τ ]| ≤ d
k∑
l=0

|βl| ,

where we bound each of the traces by d using Lemma F.19 (since we haveQk � I under E).
(c) By a similar logic, we get∣∣∣Tr [Qt−τ+kAk +A>kQt−τ+k

] ∣∣∣
≤ 2|βk|Tr [Qt−τ+k] + 2|β1| |Tr [Qt−τ+kQt−τ+k−1] |+ · · ·+ 2|β0| |Tr [Qt−τ+k · · ·Qt−τ ] |

≤ 2d

k∑
l=0

|βl| .
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(d) We prove by induction that Tr
[
AkA

>
k

]
≤ d

(∑k
l=0 |βl|

)2
.

The base case holds since Tr
[
A0A

>
0

]
= dβ2

0 . Supposing the induction hypothesis holds for some
integer 1 ≤ k < t− 1, we use the recursion ofAk+1 to calculate

Tr
[
Ak+1A

>
k+1

]
= dβ2

k+1 + βk+1Tr
[
Qt−τ+kAk +A>k Qt−τ+k

]
+ Tr

[
Qt−τ+kAkA

>
kQt−τ+k

]
≤ dβ2

k+1 + 2d|βk+1|
k∑
l=0

|βl|+ Tr
[
AkA

>
k

]
≤ d

(
k+1∑
l=0

|βl|
)2

.

Finally, item (d) together withAτ = Vt,τ completes the proof.

D.3 EXPECTED BOUNDS ON NOISY-FTRL

Our goal in this section is to prove the following finite-time convergence guarantee of Noisy-FTRL in terms
of the asymptotic suboptimality.

Theorem D.11. Consider problem (22) and suppose Assumption C.2 holds. For a given a starting iterate
θ0 ∈ Rd, weights β ∈ `2, learning rate η < 1/R2, consider the sequence (θt)

∞
t=0 produced by the iteration

(23) where wt ∼ N (0, σ2I) with σ2 = G2γ2∞(β)/(2ρ). Then, for any t ≥ 0, we have,

E [F (θt)− F (θ?)] ≤
(√

L
µ exp(−ηµt) (F (θ0)− F (θ?)) +

√
F∞(β)

)2
.

We start with some preliminary lemmas. The first lemma is about the covariance of the noise process and is
a generalization of (Jain et al., 2017a, Lemma 3) to linearly correlated additive noise.

Lemma D.12. Consider the sequence (θ̃t)
∞
t=0 generated by Noisy-FTRL starting from θ̃t = θ? with noise

correlations β ∈ `2 and learning rate η ≤ 1/R2. Under Assumption C.2, we have that its covariance

St := E
[(
θ̃t − θ?

)
⊗
(
θ̃t − θ?

)]
satisfies: (a) St � St+1 for all t ≥ 0, and (b) the sequence (St)

∞
t=0 converges element-wise as t→∞.

Proof. Recall the notationQt = I−ηx⊗xt and PM = E[QtMQt]. We use the shorthand θ̃′t := θ̃t−θ?.
We first prove that the covariance is increasing in a PSD sense and argue that its limit exists.

Part 1: Non-decreasing noise: By unrolling the update equation and using θ̃′t = 0, we get

θ̃′t = η (xt−1ξt−1 +Qt−1xt−2ξt−2 + · · ·+Qt−1 · · ·Q1x0ξ0)

− η
(
β0wt−1 + (β1I + β0Qt−1)wt−2 + · · ·+ (βt−1I + βt−2Qt−1 + · · ·+ β0Qt−1 · · ·Q1)w0

)
.

(80)

Next, we calculate E
[
θ̃′t ⊗ θ̃′t

]
. By independence, all the cross terms cancel out, so it suffices to write out

the second moment of each of the terms above. For the SGD noise terms that contain xτξτ , we get for
τ = 0, . . . , t− 1 that

E [(Qt−1 · · ·Qt−τ+1xt−τξt−τ )⊗ (Qt−1 · · ·Qt−τ+1xt−τξt−τ )] = Pτ
(
E[ξ2x⊗ x]

)
=: Tτ . (81)
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Since it is a second-moment term, we have Tτ � 0. For the DP noise terms, denote x⊗2 = x⊗ x = xx>.
Then, we have for τ = 0 to t− 1 that

1

σ2
E ((βτI + βτ−1Qt−1 + βτ−2Qt−1Qt−2 + · · ·+ β0Qt−1 · · ·Qt−τ )wt−τ−1)

⊗2

= E (βτI + βτ−1Qt−1 + βτ−2Qt−1Qt−2 + · · ·+ β0Qt−1 · · ·Qt−τ )
⊗2

= β2
τI + 2βτ

τ−1∑
k=0

βk(I − ηH)τ−k +

τ−1∑
k=0

τ−1∑
l=0

βkβl E [Qt−1 · · ·Qt−τ+kQt−τ+l · · ·Qt−1]

= β2
τI + 2βτ

τ−1∑
k=0

βk(I − ηH)τ−k + 2

τ−1∑
k=0

k∑
l=0

βkβl E
[
Qt−1 · · ·Qt−τ+l(I − ηH)k−lQt−τ+l · · ·Qt−1

]
= β2

τI + 2βτ

τ−1∑
k=0

βk(I − ηH)τ−k + 2

τ−1∑
k=0

k∑
l=0

βkβl Pτ−k
(
(I − ηH)k−l

)
=: T ′τ . (82)

By this being a second moment, we have that T ′τ � 0. Plugging in (81) and (82) into the second moment of
(80), we get,

E
[
θ̃′t+1 ⊗ θ̃′t+1

]
= η2

t∑
τ=0

(Tτ + σ2T ′τ )

= E
[
θ̃′t ⊗ θ̃′t

]
+ η2(Tt + σ2T ′t ) � E

[
θ̃′t ⊗ θ̃′t

]
.

This shows that the noise is non-decreasing in a PSD sense.

Part 2: Convergence of the covariance: Next, we show that the noise sequence converges. From the
update equation θ̃′t+1 = Qtθ̃

′
t + ηxtξt − η

∑t
τ=0 βτwt−τ , we get

St+1 = PSt + η2E[ξ2x⊗ x] + η2σ2
t∑

τ=0

β2
τI

− η(I − ηH)

t∑
τ=0

βτE
[
θ̃′t ⊗wt−τ

]
− η

t∑
τ=0

βτE
[
wt−τ ⊗ θ̃′t

]
(I − ηH) .

For τ = 0, the term E[θ̃′t ⊗wt−τ ] and its transpose are both 0. For τ > 0, we have from (80) that

−E
[
θ̃′t ⊗wt−τ

]
= ηE [βτ−1I + βτ−2Qt−1 + · · ·+ β0Qt−1 · · ·Qt−τ+1] E[wt−τ ⊗wt−τ ]

= ησ2
(
βτ−1I + βτ−2(I − ηH) + · · ·+ β0(I − ηH)τ−1

)
.

Plugging this back in gives

St+1 = PSt + η2E[ξ2x⊗ x] + η2σ2
t∑

τ=0

β2
τI + 2η2σ2

t∑
τ=1

τ−1∑
k=0

βτβk(I − ηH)τ−k

= PSt + η2E[ξ2x⊗ x] + η2σ2
t∑

τ=0

t∑
k=0

βτβk(I − ηH)|τ−k| . (83)
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Next, we take a trace of (83). For the first term, we get

Tr [PSt] = Tr [St]− 2ηTr [HSt] + η2Tr
[
StE[‖xt‖22xt ⊗ xt]

]
≤ Tr [St]− ηTr [HSt] (2− ηR2)

≤ (1− ηµ)Tr [St] ,

where we use (a) E[‖xt‖22xt ⊗ xt] � R2H , (b) η ≤ 1/R2, and (c) H � µI . By assumption, we also get
that Tr

[
E[ξ2x⊗ x]

]
≤ σ2

sgdTr [H] ≤ σ2
sgdR

2. Finally, we have using Lemma F.17 that

t∑
τ=0

t∑
k=0

βτβk

d∑
j=1

(1− ηλj)|τ−k| ≤ ‖β‖22
d∑
j=1

(
2− ηλj
ηλj

)
≤ 2‖β‖22Tr

[
H−1

]
η

.

Thus, we get
Tr [St+1] ≤ (1− ηµ)Tr [St] + 2ησ2‖β‖22 Tr

[
H−1

]
+ η2R2σ2

sgd .

By unrolling this out, we get a uniform bound for all t:

Tr [St] ≤
1

µ

(
2σ2‖β‖22 Tr

[
H−1

]
+ ηR2σ2

sgd

)
<∞

since β ∈ `2. For any fixed vector v, 〈v,Stv〉 thus has a limit from the monotone convergence theorem.
From this, it follows that every diagonal entry of St converges (take v as a standard basis vector) and then
every off-diagonal entry of St also converges (take v as the sum of two standard basis vectors). This shows
that St converges element-wise.

We are now ready to prove Theorem D.11.

Proof of Theorem D.11. Define F ?∞(β) as the asymptotic suboptimality of a process that starts from θ0 =
θ?. We will prove the desired result with F ?∞(β) in the place of F∞(β). Finally, we will show that F∞(β)
is independent of its starting iterate so F∞(β) = F ?∞(β).

We first separate the effects of the noise and the initial iterate using Property D.2. We invoke Lemma D.12
for the former and directly bound the latter. Lastly, we combine them both with a triangle inequality. Recall
that use the shorthand θ′t := θt − θ? andQt := I − ηxt ⊗ xt.

Effect of the initialization: We first calculate

E[Q2
t ] = I − 2ηH + η2E

[
‖xt‖22xt ⊗ xt

]
� I − 2ηH + η2R2H � I − ηH � (1− ηµ)I ,

where the first inequality follows from (56), the second since η ≤ 1/R2, and the third since H � µI .
Letting Ft denote the sigma algebra generated by x0, . . . ,xt−1, we get

E
[∥∥∥θ̂t+1

∥∥∥2
2

∣∣∣∣Ft] =
〈
θ̂t,E[Q2

t ]θ̂t

〉
≤ (1− ηµ)

∥∥∥θ̂t∥∥∥2
2
≤ exp(−ηµ)

∥∥∥θ̂t∥∥∥2
2
.

Taking an unconditional expectation and unrolling this and using µI �H � LI (Assumption (B1)) gives

E
∥∥∥θ̂t∥∥∥2

H
≤ LE

∥∥∥θ̂t∥∥∥2
2
≤ L exp(−ηµt) ‖θ′0‖

2
2 ≤

L

µ
exp(−ηµt) ‖θ′0‖

2
H . (84)

Effect of the noise: Define θ̃′t := θ̃ sgd
t + θ̃ dp

t . We get from Lemma D.12 that there exists a PSD matrix S∞
such that

0 = E
[
θ̃′0 ⊗ θ̃′0

]
� E

[
θ̃′1 ⊗ θ̃′1

]
� · · · � lim

t→∞
E
[
θ̃′t ⊗ θ̃′t

]
=: S∞ .
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Multiplying byH and taking a trace, we get,

0 ≤ E
∥∥∥θ̃′0∥∥∥2

H
≤ E

∥∥∥θ̃′1∥∥∥2
H
≤ · · · ≤ lim

t→∞
E
∥∥∥θ̃′t∥∥∥2

H
= Tr [HS∞] . (85)

Thus, θ̃t = θ̃′t + θ? is a process that starts from θ̃0 = θ? and satisfies the conditions of Lemma D.12. This
in turn gives

0 ≤ E
[
F (θ̃0)− F (θ?)

]
≤ E

[
F (θ̃1)− F (θ?)

]
≤ · · · ≤ lim

t→∞
E
[
F (θ̃t)− F (θ?)

]
=

1

2
Tr [HS∞] ,

(86)

which equals F ?∞(β) by definition.

Combining both processes: From the triangle inequality of the norm u 7→
√
E‖u‖2H , we get√

E‖θ′t‖2H ≤
√
E
∥∥∥θ̂t∥∥∥2

H
+

√
E
∥∥∥θ̃′t∥∥∥2

H
.

Plugging in (84) and (85) gives

√
E [F (θt)− F (θ?)] ≤

√
L

2µ
exp(−ηµt)

∥∥∥θ̂′0∥∥∥2
H

+

√
1

2
Tr [HS∞]

=

√
L

µ
exp(−ηµt) (F (θ0)− F (θ?)) +

√
F ?∞(β) ,

where the last equality followed from (86). This establishes the required statement with F ?∞ in place of F∞.
Taking t→∞, we see that√

F∞(β) = lim
t→∞

√
E [F (θt)− F (θ?)] =

√
F ?∞(β) ,

for any fixed η or that F∞ = F ?∞ irrespective of θ0.

D.4 PRIVACY-UTILITY GUARANTEES OF DP-FTRL

We now state a general privacy-utility bound for DP-FTRL in terms of the asymptotics of Noisy-FTRL run
with the same parameters.
Theorem D.13. Fix a constant 0 < p < 1 and suppose the Assumption D.1 holds. Fix
some noise coefficients β = (β0, . . . , βT−1) that satisfy Half-Expo Decay with parameter ην̃ for
some ν̃ ≤ µ. Consider the sequence (θt)

T−1
t=0 of iterates and the sequence (gt)

T−1
t=0 of gradi-

ents when running DP-FTRL for T iterations with noise coefficients β, gradient clip norm G =

cR2 max
{
‖θ0 − θ?‖2,

√
ηR2σ2

sgd/µ, σsgd/R
}

log5/2
(
T
p

)
, and a learning rate

η ≤ min

{
1

CR2 log(T/p)
,

ν̃ρ

8C2R4dγ2∞(β)‖β‖21 log5(T/p)

}
,

and DP noise wt ∼ N (0, σ2
dpG

2I) with squared noise multiplier σ2
dp = γ(β)2/(2ρ). Then, we have the

following:

(a) (θt)
T
t=0 is ρ-zCDP.
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(b) Let E denote the event where no gradients are clipped, i.e, E = ∩T−1t=0 {‖gt‖2 ≤ G}. We have,
P(E) ≥ 1− p.

(c) We have,

E [(F (θt)− F (θ?)) · 1 (E)] ≤ 2L

µ
exp(−ηµt) (F (θ0)− F (θ?)) + 2 F̂∞(β) ,

where F̂∞(β) is the asymptotic suboptimality of Noisy-FTRL run with the same parameters.

Proof. Part (a) follows from Theorem 1.1. For part (b), we bound the gradient norms from Theorem D.4 as

‖gt‖2 ≤ CR2

‖θ′0‖2 +

√
ηR2σ2

sgd

µ
+
σsgd

R
+G

√
ησ2d‖β‖21

ν̃

 log5/2

(
T

p

)

≤ CR2

‖θ′0‖2 +

√
ηR2σ2

sgd

µ
+
σsgd

R

 log5/2

(
T

p

)
+
G

4

≤ 4 max

CR2 max

‖θ′0‖2,
√
ηR2σ2

sgd

µ
,
σsgd

R

 log5/2

(
T

p

)
,
G

4

 ≤ G
where the second inequality follows from the condition on the learning rate and we take c = 4C in the
definition of G for the last inequality. Thus, E holds whenever the bound of Theorem D.4 holds, so we have
P(E) ≥ 1− p.

For part (c), consider the sequence (φt)
T
t=0 produced by running Noisy-FTRL with φ0 = θ0 and the same

realizations (xt, ξt,wt) of random inputs, linear model noise, and DP noise. On E , we have that φt = θt
for all t. Thus, we have,

E [(F (θt)− F (θ?)) · 1 (E)] = E [(F (φt)− F (θ?)) · 1 (E)] ≤ E [F (φt)− F (θ?)] ,

since 1 (E) ≤ 1. This can now be bounded using Theorem D.11 to complete the proof.

We can instantiate these rates for DP-SGD and DP-FTRL. Recall that we have κ = L/µ, deff = Tr [H] /L,
and R2 = Θ(Tr [H]).

Corollary D.14. Consider the setting of Theorem D.13 with T large enough that T/ log5(T/p) ≥
cκ2d2effd/ρ. The final suboptimality of DP-SGD at an appropriate choice of the learning rate is (ignor-
ing absolute constants),

E [(F (θT )− F (θ?)) · 1 (E)] ≤ L

µ
exp

(
− ρT

cκ2d2effd log5(T/p)

)

+ κ deff

(
dTr [H] ‖θ0 − θ?‖22

ρT
+
dσ2

sgd

ρT
+
σ2

sgd

T

)
polylog (T ) .

Proof. We plug in the asymptotic suboptimality bound of Noisy-SGD into the bound of Theorem D.13. We
get two terms depending on the learning rate η: the first exp(−ηµT ) term and the second O(η) term coming
from the asymptotic suboptimality. We balance both the terms subject to the maximum bound on η using
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Lemma F.21 to get

E [(F (θT )− F (θ?)) · 1 (E)] ≤ L

µ
exp

(
− ρµ2T

cR4d log5(T/p)

)
+

polylog (T )

µT

(
dR4‖θ0 − θ?‖22

ρ
+
dσ2

sgdR
2

ρ
+ σ2

sgdR
2

)
.

Rearranging the constants completes the proof.

Corollary D.15. Consider the setting of Theorem D.13 with T large enough that T/ log7(T/p) ≥
cκ2d2effd

ρ log
(
cκ2d2effd

ρ

)
. For ν-DP-FTRL with an appropriate choice of the parameter ν and learning rate

η, we have (ignoring absolute constants),

E [(F (θT )− F (θ?)) · 1 (E)] ≤ L

µ
exp

(
− ρT

cκ2d2eff d log7(T/p) log(κ2d2eff d/ρ)

)

+ κdeff

(
κdeffTr [H] ‖θ0 − θ?‖22

ρT 2
+
κdeffσ

2
sgd

ρT 2
+
σ2

sgd

T

)
polylog (T ) .

Proof. We plug in the asymptotic error for ν-Noisy-FTRL from Proposition C.22 into Theorem D.13 to get
that

E [(F (θT )− F (θ?)) · 1 (E)] ≤ L

µ
exp(−µηT ) + ησ2

sgdR
2 + η2

R2G2

ρ
log2 1

ηµ
, (87)

where G2 is as given in the statement of Theorem D.13. For our choice of β, we have ‖β‖21 ≤ 4 always and
γ(β)2 ≤ 5 log(1/ηµ) from Equation (50) (from the proof of Proposition C.22). Thus, the largest learning
rate permitted must satisfy

η log2 1

ηµ
≤ ηρ

cR2d log5(T/p)
.

From Lemma F.22, we can ensure with a more stringent condition

η ≤ µρ

cR4d log5(T/p) log2(cR4d log( T/p)/(µ2ρ))
.

Finally, this is implied by imposing the requirement

η ≤ µρ

cR4d log7(T/p) log
(
R4d
µ2ρ

) =: ηmax .

We now tune η to minimize the bound (87) subject to η ≤ ηmax using Lemma F.21. Thus gives,

E [(F (θT )− F (θ?)) · 1 (E)] ≤ L

µ
exp

(
− ρµ2T

cR4d log7(T/p) log R4d
ρµ2

)

+
polylog (T )

µT

(
R6‖θ0 − θ?‖22

ρµT
+
R4σ2

sgd

ρµ2T 2
+ σ2

sgdR
2

)
.

Rewriting the constants completes the proof.
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E PROOFS FOR GENERAL STRONGLY CONVEX FUNCTIONS

We prove the results from Theorem 3.1. Under the assumptions of the theorem, clipping does not occur in
DP-FTRL so the updates can be written as

θt+1 = θt − η ((Bw)t + (gt + ŵt)) (88)

where
gt = ∇F (θt) , ŵt = ∇f (θt; zt)− Ez∼Pdata

[∇f (θt; z)]

and ŵt is a random variable that, conditioned on θt, is bounded by σsgd with probability 1. Below, Id
denotes the d× d identity matrix.
Theorem E.1. λ = {λt}∞t=−∞ be such that λt ≥ 0 ∀t ∈ Z,

∞∑
t=−∞

λt ≤ 2λ0

and let Λ denote the Discrete-time Fourier transform (DTFT) of λ. Let

Mλ (ω) = A (ω)
∗>
M̃λ (ω)A (ω) (89a)

A (ω) =

(
ηId 0

(1− exp (iω)) Id −ηId

)
(89b)

M̃λ (ω) =

(
−µL

(
Λ (ω) + Λ (ω)

∗)
Id µΛ (ω) Id + LΛ (ω)

∗
Id

µΛ∗ (ω) Id + LΛ (ω) Id −
(
Λ (ω) + Λ (ω)

∗)
Id

)
(89c)

Then, for any non-negative valued function ψ : [−π, π] 7→ R+ such that

Mλ (ω) �
(
−η2Id 0

0 ψ (ω) Id

)
∀ω ∈ [−π, π] (90)

We have that

lim
t→∞

E

[∑T
t=−T ‖θt − θ?‖

2
2

2T + 1

]
≤ 2d

2πη2

∫ π

−π

(
|B (ω) |2G2ρ−1γ2∞ (B) + σ2

sgd

)
ψ (ω) dω

where Ssgd is the power spectral density of w̃. In particular, if the density of θt converges to a stationary
distribution, the expected value of

lim
t→∞

E
[
‖θt − θ?‖22

]
under the stationary distribution is bounded as above.

Proof. We assume without loss of generality that ∇F (0) = 0 so that the origin is the global optimum of F
(else we can translate the origin to achieve this). Since g = ∇F (θ) satisfies

〈g − Lθ, µθ − g〉 ≥ 0 ∀θ, g .

Then, we can write down the following family of integral quadratic constraints relating g =
(. . . , g0, g1, g2, . . .) and θ = (. . . ,θ0,θ1,θ2, . . .) in terms of their Fourier transforms Θ (ω) , G (ω) (Heath
& Wills (2005) Eq. 27-29):∫ π

−π

(
Θ (ω)
G (ω)

)∗( −µL (Λ (ω) + Λ (ω)
∗)
Id µ (Λ (ω)) Id + L

(
Λ (ω)

∗)
Id

µ (Λ∗ (ω)) Id + L (Λ (ω)) Id −
(
Λ (ω) + Λ (ω)

∗)
Id

)(
Θ (ω)
G (ω)

)
dω ≥ 0 . (91)
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Noting that from (88), we have that

Θ (ω) (exp (iω)− 1) = −η (G (ω) + Z (ω)) =⇒ G (ω) =

(
1− exp (iω)

η

)
Θ (ω)− Z (ω)

where Z denotes the DTFT of ζ = Bw + ŵ. Plugging this into the above quadratic constraint and multi-
plying by η2, we obtain ∫ π

−π

(
Θ (ω)
Z (ω)

)∗
Mλ (ω)

(
Θ (ω)
Z (ω)

)
dω ≥ 0 . (92)

Since Mλ (ω) �
(
−η2Id 0

0 ψ (ω) Id

)
we obtain that

∫ π

−π

(
Θ (ω)
Z (ω)

)∗(−η2Id 0
0 ψ (ω)

)(
Θ (ω)
Z (ω)

)
dω ≥ 0 =⇒

E
[∫ π
−π ‖Θ (ω)‖2

]
E
[∫ π
−π

∥∥∥√ψ (ω)Z (ω)
∥∥∥2] ≤ 1

=⇒
limT→∞ E

[∑T
t=−T ‖θt‖

2

2T+1

]
limT→∞ E

[∑T
t=−T ‖√ψ[ζ](t)‖2

2T+1

] ≤ 1

η2

where
√
ζ[z] denotes the LTI operator with transfer function

√
ζ (ω) applied to the signal ζ.

The denominator of the final line above is the power spectral density of
√
κ[ζ] (since

√
κ[ζ] is a wide-sense

stationary stochastic process). By the Cauchy-Schwarz inequality for random variables, this is bounded
above by

2d
(
|B (ω) |2ρ−1γ2∞ (B) + σ2

sgd

)
ψ (ω)

where the first term in brackets is the power spectral density of the Gaussian random process Bw and the
second term is an upper bound on the power spectral density of ŵ. Hence, by Theorem F.2, we have the
desired result.

E.1 PROOF OF THEOREM 3.1

Given the above theorem and smooth convexity parameter L, we know that the asymptotic suboptimality
F∞ is bounded above by

2Ld

2πη2

∫ π

−π

(
|B (ω) |2ρ−1γ2∞ (B)G2 + σ2

sgd

)
ψ (ω) dω .

Now, the constraint (90) can be rewritten as

(
−η2 0

0 ψ (ω)

)
−(

η 0
1− exp (iω) −η

)∗>(−µL (Λ (ω) + Λ (ω)
∗)

µΛ (ω) + LΛ (ω)
∗

µΛ∗ (ω) + LΛ (ω) −
(
Λ (ω) + Λ (ω)

∗))( η 0
1− exp (iω) −η

)
� 0

(93)

since all the matrices involved are Hadamard products of the 2× 2 matrices above and the identity matrix.
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Thus, for each ω, ψ (ω) must satisfy a 2× 2 PSD constraint which can be rewritten as a Second Order Cone
Program (SOCP) constraint. Furthermore, the constraint on λ from theorem E.1 is a linear constraint. Since
the projection of a convex set in ψ, λ to ψ is convex, ψ belongs to a convex set. Furthermore, if we take λ
such that λτ = 0 for |τ | > Tmax for some Tmax > 0, the constraint on λ can be written as

2λ0 ≥
Tmax∑

τ=−Tmax

λt .

Further, if we discretize ω to a uniform grid on [−π, π], the constraints (93) can be written as a finite
collection of SOCP constraints linking ψ (ω) and λ.

F TECHNICAL DEFINITIONS AND LEMMAS

We review several relevant technical definitions and lemmas here:

• Appendix F.1: Fourier Analysis of Linear Time-Invariant Systems.
• Appendix F.2: Stationary covariance of SGD.
• Appendix F.3: Concentration of Measure.
• Appendix F.4: Review of definitions and useful properties of elliptic integrals.

F.1 LINEAR TIME-INVARIANT (LTI) SYSTEMS

We first review the definition and some useful properties of discrete-time Linear Time-Invariant (LTI) sys-
tems. We refer to the textbook (Oppenheim et al., 1997) for a more detailed description.
Definition F.1. An input-output system yt = At(x) with an input sequence x = (xt)

∞
t=−∞ in some input

spaceX and an output sequence (yt)
∞
t=−∞ in an output spaceY is said to be LTI if it satisfies two properties:

• Linearity: For any X -valued sequences x(1),x(2), . . . and scalars α1, α2, . . ., we have

At

 ∞∑
j=1

αjx
(j)

 =

∞∑
j=1

αjAt(x(j)) .

• Time-Invariance: For any t0 ∈ Z, the sequence x′ defined as x′t := xt−t0 satisfies At(x′) =
At−t0(x).

Throughout this paper, we consider LTI systems in the Euclidean space X = Rd.

LTI systems can be viewed as linear operators defined on the Hilbert space of signals in Rd:

`d2e =

{
(xt)

∞
t=−∞ : xt ∈ Rd and

t∑
τ=−t

‖xτ‖22 <∞ ∀t ∈ Z

}
.

We use the notation −→x = (xt)
∞
t=−∞ ∈ `d2e to denote an entire sequence. The Hilbert space `d2e is endowed

with the inner product
〈−→x ,−→y 〉 =

∑∞
t=−∞ xt

>yt.

Asymptotic stability: An LTI system is said to be asymptotically stable if its output decays to zero for any
input sequence that is bounded, i.e., for which there exists T > −∞ such that xt = 0 ∀t > T .

LTI systems in 1D: We highlight some key properties of LTI systems in d = 1 dimension, i.e. X = R. This
conveys the key ideas before we describe the extension in higher dimensions. LTI systems can be described

53



Published as a conference paper at ICLR 2024

in linear algebraic notation by the action of an infinite Toeplitz matrix H = Toeplitz(h) (i.e., the first
column ofH is h) on an element −→x ∈ `2e:

−→y = H−→x ⇐⇒ yt =

∞∑
τ=−∞

Ht,τxτ =
(
h ?−→x

)
t
∀t ∈ Z

where ? denotes the convolution operator. This property is represented more elegantly in the Fourier domain.
Consider the discrete-time Fourier transform (DTFT) X : [−π, π]→ C of −→x , defined by

X(ω) =

∞∑
t=−∞

xt exp(−iωt) .

Similarly, let Y (ω) denote the DTFT of −→y and G(ω)7 denote the DTFT of h. Then, we have Y (ω) =
G(ω)X(ω). Here, h is known as the impulse response and G(ω) is known as the transfer function.

Multivariate LTI systems: The previous concepts can be directly extended to higher dimensions and mul-
tivariate LTI systems admit a clean representation in the Fourier domain.

Let xt ∈ Rd be the input and yt ∈ Rp be the output of an LTI system. The DTFT X(ω) =∑∞
t=−∞ xt exp(−iωt) ∈ Cd outputs a d-dimensional complex vector, and Y (ω) ∈ Cp similarly.

The transfer function G(ω) in this case can be represented as a complex matrix in Cp×d. Similar to the
scalar case, the Fourier domain description of this LTI system is given as Y (ω) = G(ω)X(ω), where the
latter product is the standard matrix-vector product over complex numbers.

Variance of LTI systems driven by white noise: The Fourier-domain analysis of an LTI system (particu-
larly its transfer function) helps us characterize the covariance of the output yt as a function of the covariance
of the input xt. The following theorem presents the result for multivariate LTI systems driven by white noise.
Theorem F.2. Consider an asymptotically-stable LTI system with Rd-valued inputs (xt)

∞
t=−∞ and Rp-

valued outputs (yt)
∞
−∞ and a transfer function G(ω) ∈ Cp×d. Suppose that xt is a stationary white noise

sequence with covariance matrix Σ ∈ Rd×d, i.e., E[xt] = 0 and E[xt ⊗ xτ ] = Σ if t = τ and 0d×d
otherwise for all t, τ . Then, we have for all t > −∞ that

E[yt ⊗ yt] =
1

2π

∫ π

−π
G(ω)ΣG(ω)∗ dω .

F.2 STATIONARY COVARIANCE OF STOCHASTIC GRADIENT DESCENT FOR LINEAR REGRESSION

We now give a result characterizing the stationary covariance of SGD for linear regression (Bach &
Moulines, 2013; Défossez & Bach, 2015; Jain et al., 2017b;a).
Theorem F.3 (Lemma 5 of (Jain et al., 2017a)). Consider the recursion δ0 = 0 and

δt+1 = (I − ηxt ⊗ xt) δt + ηζt ,

for all t ≥ 0 where

• xt are i.i.d. with mean 0, covarianceH , and
• ζt are i.i.d. with mean 0, covariance E[ζt ⊗ ζt] � σ2H .

Further, if E
[
‖xt‖22 (xt ⊗ xt)

]
� R2H and η < 1/R2, then we have for all t ≥ 0.

E[δt ⊗ δt] �
ησ2

1− ηR2
I .

7The transfer function G(ω) here is not to be confused with the clip norm G used in the rest of the manuscript; this
section is a self-contained technical reference.
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F.3 CONCENTRATION OF MEASURE

We recall the definition of sub-Gaussian random variables and list some useful concentration inequalities.
Definition F.4. A real-valued random variable X is said to be sub-Gaussian with variance proxy σ2 if for
all λ ∈ R, we have

E[exp(λ(X − µ))] ≤ exp(λ2σ2/2) ,

where µ = E[X]. If in addition, the variance of X exactly equals σ2, it is said to be strictly sub-Gaussian.

The cumulants of strict sub-Gaussian random variables are closely related to those of a Gaussian (Arbel
et al., 2020, Prop. 3.2).
Property F.5. If X is strictly sub-Gaussian with mean zero and variance σ2, we have E[X3] = 0 and
E[X4] ≤ 3σ4 = E[Y 4] for Y ∼ N (0, σ2).

Next, we state the Hanson-Wright inequality for the concentration of quadratic forms; see e.g. (Rudelson
& Vershynin, 2013).
Lemma F.6. Let ξ = (ξ1, . . . , ξd) be such that each ξj is independent and sub-Gaussian with mean zero
and variance proxy σ2. Then, we have for any matrixA ∈ Rd×d,

P(〈ξ,Aξ〉 − E[〈ξ,Aξ〉] > t) ≤ exp

(
−cmin

{
t2

σ4‖A‖2F
,

t

σ2‖A‖2

})
,

for a universal constant c. Consequently, for any ρ < 1/3 and symmetric PSD matrix A, we have with
probability 1− ρ that

〈ξ,Aξ〉 ≤ Cσ2

(
Tr [A]

√
log

1

ρ
+ ‖A‖2 log

1

ρ

)
≤ C ′σ2Tr [A] log

1

ρ
,

for universal constants C,C ′.

The second part follows from the first one under the simplifications ‖A‖2 ≤ ‖A‖F ≤ Tr [A] and
E[〈ξ,Aξ〉] ≤ σ2Tr [A] forA PSD.
Remark F.7. Explicit values for the constant c in Lemma F.6 (and thus for C,C ′) are known for the case
when ξ1, . . . , ξd ∼ N (0, σ2): c ≈ 0.1457 ≥ 1/8, C ≤ 8, C ′ ≤ 16 (Moshksar, 2021).

F.4 REVIEW OF ELLIPTIC INTEGRALS

We recall some definitions and useful properties of elliptic integrals. We refer to (NIS, §19) and (Byrd &
Friedman, 2013) for details.

The three canonical elliptic integral forms are:

(i) The complete elliptic integral of the first kind K : (0, 1)→ [0,∞) is

K(k) :=

∫ π/2

0

dω√
1− k2 sin2(ω)

. (94)

(ii) The complete elliptic integral of the second kind E : (0, 1)→ [0,∞) is

E(k) :=

∫ π/2

0

√
1− k2 sin2(ω) dω . (95)
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(iii) The complete elliptic integral of the third kind Π : (R\{±1})×(0, 1)→ R is denoted conventionally
as Π(α2, k) where α2 is allowed to take negative values. It is defined as

Π(α2, k) :=

∫ π/2

0

dω

(1− α2 sin2(ω))
√

1− k2 sin2(ω)
. (96)

The corresponding integrals where 1 − k2 sin2(ω) is replaced with 1 + k2 sin2(ω) can also be expressed
using the elliptic integrals (NIS, Eq. (19.7.2), (19.7.5)).

Property F.8. For any m ∈ (0, 1), we have∫ π/2

0

dω√
1 +m sin2(ω)

=
1√

1 +m
K

(√
m

1 +m

)
. (97)

Property F.9. For any m ∈ (0, 1) and any α2 ∈ R \ {±1} such that α2 +m 6= 0, we have∫ π/2

0

dω

(1− α2 sin2(ω))
√

1 +m sin2(ω)

=
m

(m+ α2)
√

1 +m
K

(√
m

1 +m

)
+

α2

(m+ α2)
√

1 +m
Π

(
m+ α2

1 +m
,

√
m

1 +m

)
.

(98)

The next few properties are about the asymptotics of the elliptic integrals; see e.g. (NIS, Eq. (19.9.1)) for
K(·) and (NIS, Eq. (19.12.4)) for Π.

Property F.10. For all k ∈ (0, 1), we have

log

(
4√

1− k2
)
≤ K(k) ≤

(
1 +

1− k2
4

)
log

(
4√

1− k2
)
≤ 5

4
log

(
4√

1− k2
)
.

Property F.11. For all k, α2 ∈ (0, 1), we have

Π(α2, k) ≤ 1

1− α2
log

(
4√

1− k2
)(

1 +O
(√

1− k2
))

.

F.5 USEFUL INTEGRALS

We list several useful definite integrals in this section.

Direct Evaluation: The first one is a cosine integral divided by a quadratic form.8

Lemma F.12. For reals 0 < |b| < a and an integer l, we have∫ π

−π

cos(lω)dω

a2 + b2 − 2ab cosω
=

2π

a2 − b2
(
b

a

)|l|
.

The next lemma is also about rational cosine functions.9

8See https://math.stackexchange.com/a/816253.
9See https://math.stackexchange.com/a/1235309.
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Lemma F.13. For scalar a, we have∫ π

−π

dω

1 + a cos(ω)
=

{
2π

1−a2 , if |a| < 1,

+∞, if |a| = 1 .

The next one is similar to the previous one.

Lemma F.14. We have that ∫ π

−π

dω√
1− cos(ω)

= +∞ .

Proof. We successively deduce∫ π

−π

dω√
1− cos(ω)

=
1√
2

∫ π

−π

dω

| sin(ω/2)| = 2
√

2

∫ π/2

0

dω

sin(ω)
= +∞ ,

where we used that
∫

dω/ sin(ω) = − log | csc(ω) + cot(ω)|+ C.

Reductions to Elliptic Integrals: We now list several cosine integrals that can be reduced to elliptic inte-
grals (see Appendix F.4 for their definitions).

Lemma F.15. For any a ∈ (0, 1), we have∫ π

−π

dω

|1− a− exp(iω)| =
4

2− a K
(√

1− a
1− a/2

)
, (99)

where K(·) is the complete elliptic integral of the first kind, cf. (94).

Proof. Using cos(ω) = 1− 2 sin2(ω/2) and the substitution ω′ = ω/2, we successively deduce∫ π

−π

dω

|1− a− exp(iω)| = 2

∫ π

0

dω√
1 + (1− a)2 − 2(1− a) cos(ω)

= 2

∫ π

0

dω√
a2 + 4(1− a) sin2(ω/2)

=
4

a

∫ π/2

0

dω′√
1 + 4

(
1−a
a2

)
sin2(ω′)

.

Applying Property F.8 to reduce this to the standard elliptic integral completes the proof.

The next lemma handles a more general case. Note that it recovers Lemma F.15 when a = b since Π(0, k) =
K(k) by definition.

Lemma F.16. For any a, b ∈ (0, 1), we have∫ π

−π

|1− a− exp(iω)|
|1− b− exp(iω)|2 dω =

2a2

b2(1− a/2)
Π

(
b2(1− a)− a2(1− b)

b2(1− a/2)2
,

√
1− a

1− a/2

)
, (100)

where Π is the complete elliptic integral of the third kind, cf. (96).
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Proof. We assume that a 6= b to begin and handle the case of a = b by continuity. Denote h(a, ω) =√
1 + (1− a)2 − 2(1− a) cos(ω)∫ π

−π

|1− a− exp(iω)|
|1− b− exp(iω)|2 dω =

∫ π

−π

|1− a− exp(iω)|2
|1− a− exp(iω)| |1− b− exp(iω)|2 dω

=
1 + (1− a)2

h(a, ω)h(b, ω)2
− 2(1− a)

cos(ω)

h(a, ω)h(b, ω)2
.

We next add and subtract terms to make the numerator of the second term read h(b, ω)2 to give∫ π

−π

|1− a− exp(iω)|
|1− b− exp(iω)|2 dω =

∫ π

−π

1 + (1− a)2 − 1−a
1−b

(
1 + (1− b)2

)
h(a, ω)h(b, ω)2

dω +
1− a
1− b

∫ π

−π

dω

h(a, ω)
. (101)

From Lemma F.15, the second term above can be written as

1− a
1− b

∫ π

−π

dω

h(a, ω)
=

4(1− a)

(1− b)(2− a)
K

(√
1− a

1− a/2

)
. (102)

The first term of (101) can similarly be reduced to the elliptic integral form with cos(ω) = 1− 2 sin2(ω/2)
and the substitution ω′ = ω/2 as∫ π

−π

dω

h(a, ω)h(b, ω)2
=

2

ab2

∫ π

0

dω√
1 + 4(1−a)

a2 sin2(ω/2)
(

1 + 4(1−b)
b2 sin2(ω/2)

)
=

4

ab2

∫ π/2

0

dω′√
1 + 4(1−a)

a2 sin2(ω′)
(

1 + 4(1−b)
b2 sin2(ω′)

) .
This can be written in terms of elliptic integrals using Property F.9 as∫ π/2

0

dω′√
1 + 4(1−a)

a2 sin2(ω′)
(

1 + 4(1−b)
b2 sin2(ω′)

)
=

a

2− a

(
b2(1− a)

b2(1− a)− a2(1− b)

)
K(k)− a3(1− b)

(2− a)(b2(1− a)− a2(1− b)) Π(α2, k) ,

(103)

with k =
√

1− a/(1− a/2) and

α2 =
b2(1− a)− a2(1− b)

b2(1− a/2)2
.

Plugging in (102) and (103) into (101), we find that the K(·) term cancels out, completing the proof.

F.6 OTHER HELPER RESULTS

We list several other miscellaneous useful results.

Lemma F.17. For a sequence β = (β0, β1, . . .) ∈ `2 and a constant 0 ≤ c < 1, we have

∞∑
t=0

∞∑
τ=0

βtβτ c
|t−τ | ≤

(
1 + c

1− c

)
‖β‖22 .
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Proof. We break the sum into powers of c and use the Cauchy-Schwarz inequality (∗) to get

∞∑
t=0

∞∑
τ=0

βtβτ c
|t−τ | = ‖β‖22 + 2

∞∑
k=1

ck

( ∞∑
t=0

βtβt+k

)
(∗)
≤ ‖β‖22 + 2

∞∑
k=1

ck‖β‖22 .

Summing up the geometric series with a multiplier 0 ≤ c < 1 completes the proof.

Lemma F.18. Consider a random vector x that satisfies E[x] = 0, E[x ⊗ x] = H � µI for some µ > 0

and E
[
‖x‖22x⊗ x

]
� R2H . Then, we have for all η ≤ 1/R2 and all PSD matricesM that

Tr [(I − ηx⊗ x)M(I − ηx⊗ x)] ≤ (1− ηµ)Tr [M ] .

Proof. The left side above (call it “LHS”) is bounded by

LHS = Tr [M ]− 2ηTr [MM ] + η2Tr
[
E
[
‖x‖22x⊗ x

]
M
]

≤ Tr [M ]− 2ηTr [HM ] + η2R2Tr [HM ]

≤ Tr [M ]− ηTr [HM ]

≤ (1− ηµ)Tr [M ] ,

where we used (a) E
[
‖x‖22x⊗ x

]
� R2H , (b) η ≤ 1/R2, and (c)H � µI .

Lemma F.19. For PSD matrices 0 � A1, . . . ,Ak � I of shape d× d, we have |Tr [A1 · · ·Ak] | ≤ d.

Proof. Recall the inner product 〈A,B〉 = Tr
[
AB>

]
on the space of real d × d matrices. Using Hölder’s

inequality on the Schatten p-norms, we get

|Tr [A1 . . .Ak] | = |〈A1,Ak · · ·A2〉| ≤ ‖A1‖S1
‖Ak · · · ,A2‖S∞ .

Here, the Schatten 1-norm ‖·‖S1
is the `1 norm of the singular values (i.e. the nuclear norm); this is just the

trace for a PSD matrix. Thus,
‖A1‖S1

= Tr [A1] ≤ Tr [I] = 1 .

The ‖·‖S∞ is the `∞ norm of the singular values, i.e. the operator norm ‖·‖2. We get,

‖Ak · · ·A2‖2 ≤ ‖Ak‖2 · · · ‖A2‖2 ≤ 1 .

Lemma F.20. For some fixed integer t ≥ 1 and constants a > 0, ρ ∈ (0, 1), define the function

f(τ) = τ +
1

ρa
exp(−aτ)1 (τ < t− 1) .

For τ̂ = min{t− 1, a−1 log(1/ρ)}, we have,

f(τ̂) = min

{
t− 1,

1

a
(1 + log(1/ρ))

}
≤ 1

a
(1 + log(1/ρ)) .
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Proof. The convex function τ 7→ τ+ 1
ρa exp(−aτ) is minimized at τ? = a−1 log(1/ρ) > 0 with a minimum

value of a−1(1+log(1/ρ)). If t−1 ≤ τ̂?, we take τ̂ = t−1 and f(τ̂) = t−1 ≤ τ̂ ≤ a−1(1+log(1/ρ)).

The next lemma is from (Pillutla et al., 2023, Lemma 13).
Lemma F.21. Consider a function ϕ : [0, ηmax]→ R+ given by

ϕ(η) = A exp(−µηT ) +Bη + Cη2 log2

(
1

ηµ

)
,

given some constants ηmax, µ,A,B,C > 0. If T ≥ (µηmax)−1, then we have

ϕ(η?) ≤ A exp(−µηmaxT ) +
3B

µT

(
1 ∨ log

AµT

B

)
+

3C

µ2T 2

(
1 ∨ log

Aµ2T 2

C

)2

log2(T ) ,

for some η? ≤ ηmax depending on A,B,C, µ, T .
Lemma F.22. For 0 < c < 1/4, we have,

0 < x ≤ c

9 log2(9/c)
=⇒ x log2(1/x) ≤ c .

G EMPIRICAL DETAILS

We train image-classification models using the CIFAR10 dataset and language models using the Stack Over-
flow Next Word Prediction (SONWP) dataset available on tensorflow-datasets.

G.1 IMAGE CLASSIFICATION

Image classification has long been studied in DP ML. For example, the original DP-SGD work of Abadi
et al. (2016) focused on this task. We use CIFAR10 which has 50,000 training and 10,000 test examples.
We evaluate and compute test accuracies on the entire test set, following the open-sourced code of Kairouz
et al. (2021a). We reuse the network architecture, dataset processing, and initialization strategies presented
in Kairouz et al. (2021a); in particular, the architecture we use can be found in their Table 2 (b).

Setup and Tuning: We train all mechanisms for 2000 steps using a batch size of 500 and a clip norm
of 1. This leads to ML training dynamics of 20 epochs and 100 steps per epoch. We performed some
initial small grid searches which showed nearly ubiquitously that momentum of 0.95 (searched over the grid
0, 0.85, 0.9, 0.95) and a linear learning rate cooldown 0.05× the initial learning rate over the last 500 steps
of training improved model utility for all privacy levels. Thus, we fix these settings for all mechanisms
except DP-SGD, for which no momentum performed best. For each mechanism, we then run a tuning grid
search for the learning rate on coefficients in {1, 2, 5} on powers in [-2, 3], selecting the best mechanism for
each privacy level from this interval. Final experiments are repeated 12 times in each setting and show 95%
bootstrapped confidence intervals.

Some mechanisms include additional hyperparameters that specify the exact mechanism’s structure. For
example, ME is specified by both the number of steps n and the max number of participations k. We include
such parameters in the mechanism name. For all mechanisms, n = 2000.

G.2 LANGUAGE MODELING

Language modeling has been prominently studied in user-level DP contexts, usually in conjunction with fed-
erated learning (e.g. McMahan et al., 2018). DP training is important for real-world applications of language

60



Published as a conference paper at ICLR 2024

models trained on user data as these models can memorize their training data if appropriate mitigations are
not applied (Carlini et al., 2019; 2021; 2022; Ippolito et al., 2022; Anil et al., 2023; Kudugunta et al., 2023).
Indeed, DP already plays an important role in this application, as evidenced by Google’s use of DP for train-
ing on-device language models (McMahan & Thakurta, 2022; Xu et al., 2023). StackOverflow Next Word
Prediction contains over 108 examples contributed non-identically from 342,477 users. The goal of this task
is to predict the next word given a sequence of words. We use the same setup as Choquette-Choo et al.
(2023b).

Setup and Tuning: We consider a version of DP-FTRL that works with “generalized gradients”, i.e., the
client update resulting from multiple local gradient steps on a client’s data; this is a common strategy to “lift”
learning algorithms to the federated learning setting (Kairouz et al., 2021b). We refer to (Reddi et al., 2020)
for details. All mechanisms use an `2 clip norm of 1, a server momentum of 0.95, and a client learning rate of
1.0. They also use a server learning rate cool-down over the last 25% rounds. Initial tuning showed that these
were favorable parameter settings. We train all mechanisms for 2052 steps and report the final evaluation
accuracy of the model as reported on a held-out set of 10, 000 examples. We zero out large updates whose
`∞ norm exceeds 100. We use the tuned server learning rates from Choquette-Choo et al. (2023b) for all
existing mechanisms. For the proposed ν-DP-FTRL mechanisms, we do not perform extensive tuning due
to computational costs and instead tune the parameter to minimize the `2 error (3) of the total noise added
due toB (cf. Choquette-Choo et al., 2023a, Figure 11).
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