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Abstract

Recently, many neural network-based image compression methods have shown
promising results superior to the existing tool-based conventional codecs. However,
most of them are often trained as separate models for different target bit rates,
thus increasing the model complexity. Therefore, several studies have been con-
ducted for learned compression that supports variable rates with single models,
but they require additional network modules, layers, or inputs that often lead to
complexity overhead, or do not provide sufficient coding efficiency. In this paper,
we firstly propose a selective compression method that partially encodes the latent
representations in a fully generalized manner for deep learning-based variable-rate
image compression. The proposed method adaptively determines essential repre-
sentation elements for compression of different target quality levels. For this, we
first generate a 3D importance map as the nature of input content to represent the
underlying importance of the representation elements. The 3D importance map is
then adjusted for different target quality levels using importance adjustment curves.
The adjusted 3D importance map is finally converted into a 3D binary mask to
determine the essential representation elements for compression. The proposed
method can be easily integrated with the existing compression models with a neg-
ligible amount of overhead increase. Our method can also enable continuously
variable-rate compression via simple interpolation of the importance adjustment
curves among different quality levels. The extensive experimental results show that
the proposed method can achieve comparable compression efficiency as those of
the separately trained reference compression models and can reduce decoding time
owing to the selective compression. The sample codes are publicly available at
https://github.com/JooyoungLeeETRI/SCR.

1 Introduction

Recently, neural network (NN)-based image compression methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13] have been actively studied and shown superior performance in terms of PSNR BD-rate to
those of the conventional tool-based compression methods, such as BPG [14] and JPEG2000 [15]. A
few recent methods [11, 12] achieved comparable results with respect to the state-of-the-arts codec,
called H.266 Intra-coding [16]. However, since most of the previous deep learning-based models
are trained separately for different target compression levels, several models with a large number of
parameters are required to support various compression levels. To address this issue, recently several
methods [1, 17, 18, 19, 20, 21, 22], which use conditional transform or adaptive quantization, have
been proposed. However, most of them require additional network modules, layers, or inputs that
may cause complexity overhead. In this paper, a novel ‘selective compression of representations’
(SCR) method is presented, which performs entropy coding only for the partially selected latent
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representations. The selection of representations is determined via a 3D binary mask generation
process in a target quality-adaptive manner. In the 3D binary mask generation of our SCR method
(see Figure 1b), (i) a 3D importance map of the same size, independent of target quality levels, is
generated for the 3D latent representations (multi-channel feature maps); (ii) the 3D importance map
is adjusted via the channel-wise importance adjustment curves for a given target quality level; and
(iii) the 3D binary mask is then generated by taking the round-off the adjusted 3D importance map.
Note that the target-quality-independent 3D importance map becomes target-quality-dependent after
the channel-wise importance adjustment. We incorporate our method with an adaptive quantization
scheme [19] into several existing deep learning-based reference compression models [6, 7], where we
jointly optimize the whole elements together with our selective compression of latent representations
and adaptive quantization in an end-to-end manner. In the architectural aspect, our SCR method
minimizes the overhead by utilizing only a single 1 × 1 convolutional layer to generate the 3D
importance map and importance adjustment curves for a finite number of target quality levels. In
addition, the SCR method also supports continuously variable-rate compression through a simple
non-linear interpolation of the importance adjustment curves between two discrete target quality
levels. Furthermore, the SCR method significantly reduces the decoding time compared to the
existing lightweight variable-rate methods [19, 20, 23] by skipping the entropy decoding process
for a substantial amount of unselected representations. Impressively, the coding efficiency of the
proposed SCR method is better or comparable to those of the separately trained reference compression
models [6, 7], for different target quality levels, and is superior to those of the existing variable-rate
compression methods [19, 20, 23, 24, 25]. The contributions of this study are summarized as follows:

• To our best knowledge, the proposed SCR method is the first NN-based variable-rate image
compression method that selectively compresses the representations in a fully generalized way
and a target quality-adaptive manner. It provides compression efficiency comparable to those of
the separately trained reference compression models.

• The proposed SCR method can be applied to various existing image compression models with-
out modifying their architectures, thus allowing for a high applicability. We incorporate very
lightweight modules for SCR, including only a single 1 × 1 convolutional layer and a small
number of importance-adjustment curves, into the existing compression models. Our SCR method
even reduces a decoding time compared to those of the existing lightweight variable-rate models
and high bit rate reference compression models owing to the selective compression.

• To enable continuously variable-rate compression, the proposed SCR method extends the existing
interpolation-based approach by additionally incorporating the interpolation of the importance
adjustment curves between discrete quality levels in which the SCR model is trained. With
experiments, we verify that our extension can stably support the continuous bit rate compression.

2 Related work

Several studies [1, 17, 18, 19, 20, 21, 22, 23, 26, 27] have been conducted for enabling a single
NN-based image compression model to support variable-rate compression. The first learning-based
variable-rate image compression model [1] progressively performs image compression in a low-to-
high quality manner by accumulating additional binary representations as the number of compression
iterations increases. For the entropy model-based approaches, Choi et al. [17] proposed a conditional
convolution that adaptively operates according to different target quality levels. Scale and shift factors
are derived from a one-hot vector representing a quality level, and are then applied to each output of
convolutional layers. Cai et al. [18] stacks representations to form a multiscale structure, and then
determine point-wise scales, representing the importance levels of representations to be compressed.
This method also uses additional modules named a multi-scale decomposition transform layer (MSD)
and an inverse multi-scale decomposition transform layer (IMSD), both of which consist of multiple
convolutional layers. Cui et al. [19] utilizes two types of vectors for the adaptive quantization and
inverse quantization, and Chen et al. [23] similarly utilizes scaling and shifting vectors. These
methods [19, 23] support variable-rate compression with negligible overhead on top of the existing
compression models ([6, 7] for Cui et al. [19] and [3, 6, 10] for Chen et al. [23]). However, as
described in our experimental results and Rippel’s work [20], the adaptive quantization alone does
not provide sufficient coding efficiency compared to those of the separately trained models. Lu et
al. [21] use an adaptive quantization layer (AQL) and an inverse adaptive quantization layer (IAQL)
to obtain quantization and inverse quantization factors for each representation. Here, the AQL and
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Figure 1: (a) Overall architecture of the proposed SCR method. In this figure, the SCR method is incorporated
into the Hyperprior [6] model. The elements for the variable-rate compression are represented as the dotted
boxes, and especially those for the selective compression are highlighted in light blue. (b) The 3D binary mask
generation process of the SCR method.

IAQL layers are separately trained for each target quality level. Rippel et al. [20] additionally feed
the information of a target quality level into each convolutional layer in the form of a "level map"
where a one-hot vector of 8 quality levels is assigned for all spatial positions. The input level map
can make each convolutional layer adaptively work according to a given target quality level. Lu et
al. [26] firstly presented an NN-based quality scalable coding scheme, named PLONQ, using nested
quantization and latent ordering. However, it could not achieve comparable results to its separately
trained base compression model [7]. Song et al. [22] supports the image compression of spatially
different qualities using a spatial quality map. Although this method provides a new functionality, the
additional module, named spatially-adaptive feature transform, that transforms the spatial quality
map into an input for each convolutional layer may increase the overall complexity.

From the perspective of partial encoding for representations, Li et al. [24] and Mentzer et al. [25]
utilize 2D importance maps to represent spatial importance of representations, which allows for
spatially different bit allocation in different regions. Their models mainly focus on the fixed-rate
compression, although Mentzer et al. [25] presented a few decoded images at multiple-rates using
the shared en/decoder networks. It should be also noted that their 2D importance maps convey
the information about how many representation elements at each spatial location should be taken
forward along the channel (See Figure 15 in Appendix F). On the other hand, our component-wise
3D importance map represents the essence of individual representations, which is adaptively adjusted
according to given target qualities in an R-D optimization sense. This brings a good generalization
with higher-coding efficiency and more stability in training, as further discussed in Appendix F.

3 Proposed method

3.1 Overall architecture

Our SCR method can be combined with adaptive quantization such as Cui et al. [19] and Chen et
al. [23], on top of several compression architectures with hyper-encoder and hyper-decoder [6] such
as the models in [6, 7, 8, 9, 10, 11, 12], as shown in Figure 1a. In this paper, we apply our SCR method
for several reference compression models, Hyperprior [6], Mean-scale [7], and Context [7], to show
its effectiveness with generality. In the architecture with hyper-encoder and hyper-decoder [6], input
image x is transformed into a representation y using an encoder network, and the hyper encoder and
decoder are used to code the distribution parameters for the quantized representation ŷ of y as a side
information, with which ŷ is entropy-coded and decoded. The representation ŷ is then reconstructed
into an image x′ through a decoder network. Upon this base compression architecture, we exploit
two additional elements: adaptive quantization and selective compression to enable variable-rate
compression. The selection of representation elements in the encoder side is expressed as follows:

ŷs
q =M(ŷq,m(ẑ, q)), with ŷq = AdaQq(y), (1)
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Figure 2: Average importance adjust-
ment curves for each target quality level
q in our SCR model (on Hyperprior [6]).
The numbers indicate the mean values
of trained γq vectors (See Section 3.2).

Figure 3: Top - sample masks for 8 target quality levels where the
dark blue indicates the selected representation elements by 3D binary
masks. Bottom - the masks averaged along the channel axis. The
higher the target quality is, the more the representation elements are
selected, especially in more complex regions.

where ŷs
q is a set of the selected elements of ŷq for a given target quality level q and AdaQq(·)

is a target quality-adaptive quantization operator where AdaQq(y) = Round(y/QVq) with a
quantization vector QVq. M(·) is an element selection operator for ŷq, and m(ẑ, q) represents a
generated 3D binary mask for q and quantized hyperprior ẑ (Sec. 3.2). The representation y is
the output En(x) of the encoder network En(·) for an input image x in Figure 1a. It should be
noted that ŷs

q is entropy-coded and entropy-decoded using an entropy model based on a target quality
dependent distribution Pq (Sec. 3.3). The image reconstruction x′

q in the decoder side is given as:

x′
q = De(AdaIQq(y̆q)), (2)

with AdaIQq(y̆q) = y̆q · IQVq and y̆q = Re(ŷs
q ,m(ẑ, q)),

where x′
q is a reconstructed image for a given target quality level q, as the output of the decoder

network De(·), AdaIQq(·) is an adaptive inverse-quantization operator that multiplies an inverse-
quantization vector IQVq to input y̆q, and Re(·) is a reshaping operator that converts the selected
elements ŷs

q in a 1D shape into the elements of a 3D-shaped representation in place by using the 3D
binary mask m(ẑ, q). For the unselected elements, the reshaping operator Re(·) places 0 values in the
corresponding positions. It should be noted that the unselected elements are filled with 0 values for
the Mean-scale [7] and Context [7] models that utilize µ estimation as well as for the Hyperprior [6]
model. Example source codes for M(·) and Re(·) are provided in Appendix A. In Eqs. 1 and 2, the
vector dimensionalities of QVq and IQVq are both Cy, the number of channels in y, so that the
quantization of y and the inverse quantization of y̆q are performed channel-wise by the respective
elements of QVq and IQVq , respectively, as in the previous adaptive quantization method [19].

3.2 3D binary mask generation

The 3D binary mask generation process consists of the three steps: (i) 3D importance map generation,
(ii) importance adjustment, and (iii) binarization, as shown in Figure 1b, which is given as:

m(ẑ, q) = B(im(ẑ)γq ) (3)

where im(ẑ) is a 3D importance map that is generated via the hyper-decoder for the hyperprior ẑ as
input, γq =

[
γ1
q , γ

2
q , ..., γ

N
q

]
is a parameter vector of dimensionality N(= Cy) where the parameters

are learned to determine the channel-wise importance adjustment curves for a given target quality q,
and B(·) is a binarization operator with the rounding-off.

3D importance map generation. The 3D importance map im(ẑ), which has values in the range
between 0 and 1, represents the underlying importance of each element in y. Note that the 3D
importance map is generated, not dependently of target quality levels but dependently of input
images, thus it represents the nature of y in perspective of element-wise importance. Without
utilizing a dedicated complex network that generates im(ẑ), we feed the outputs of the penultimate
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convolutional layer (after the activation) in the hyper decoder into a single 1× 1 convolutional layer
in the mask generation module, followed by a clipping function to obtain the importance values
between 0 and 1. To be specific, along with the the single 1 × 1 convolutional layer above, the
hyper en/decoder networks also play a role of compressing and reconstructing (generating) the 3D
importance map. However, even for the methods without hyper en/decoder networks, our method
can also be applied if a dedicated network to the compression and generation of 3D importance
map is adopted. In this case, we expect that the inherent compression efficiency due to the selective
compression can be maintained because the bitstream for the auxiliary information is relatively very
small. Since the compressed hyperprior bitstreams in the current SCR model often take about 2 ∼ 3%
of the total bit rates, the auxiliary bitstreams only for the 3D importance map are expected to be less
than this. Further study on the dedicated en/decoder structures may lead to additional performance
improvement.

Importance adjustment. The actual importance of each representation element may vary according
to various target quality levels. For example, some representation elements corresponding to the
texture of high complexity in the images may not be necessarily required in low-quality compression.
Thus, it is natural to adjust the 3D importance map, which is commonly used for all quality levels,
according to a specific target quality level. For this, we devise a scheme of adjusting the 3D importance
map im(ẑ) using importance adjustment curves for various target quality levels. The importance
adjustment curves change the element values of im(ẑ) channel-wise where their curvatures are
learned as a parameter vector γq for 1 < q < NQ where NQ is a total number of target quality levels.
Note that the target quality improves as q increases. Figure 2 shows average importance adjustment
curves for each target quality level q. In Figure 2, the horizontal and vertical axes represent the
input im(ẑ) value to be adjusted and its adjusted result, respectively, and the numbers labeled on
the importance adjustment curves indicate the average values of trained γq vectors for NQ target
quality levels. It is noted in Figure 2 that the importance adjustment curves for q > 6 tend to amplify
the elements of input im(ẑ) while attenuating them for q < 6 in an average sense. For q = 6,
there is little variation with an average γ̄q = 0.9897 before and after the importance adjustment.
Consequently, im(ẑ) is more strongly amplified in an overall sense for higher target quality levels.
Whereas, for the lower target quality levels, im(ẑ) is largely attenuated in general, so only a small
number of im(ẑ) elements whose values are close to 1 can maintain their importance. It should be
noted in Figure 2 that, although the γ̄q values are monotonic with the change in the target quality level
q, the individual elements in the γq vectors are not always the cases because some representations
are optimized in use only for a lower bit rate and can be ignored or de-emphasized in a higher bit
rate range, as shown in Figure 5. The total number of γq vectors is NQ, thus a total of NQ × Cy

parameters are learned for all γq vectors. In our implementation, NQ is set to 8 and Cy is set to that
of the original reference model.

Binarization. The 3D binary mask is finally determined by the rounding operator, denoted as B(·).
Here, "1" values in the output 3D binary mask indicate that the corresponding elements in y, at the
same coordinates, are selected for compression. Figure 3 shows examples of the generated masks
for different target quality levels from q = 1.0 to q = 8.0 when our SCR method is implemented
on top of the Hyperprior [6] model and Kodim12 image of the Kodak image set [28] is used as
an input sample, in which the components marked in dark blue indicate “1” values. When q is set
to 1.0, the lowest quality level in our SCR method, only 3.22% of the total elements are selected,
and the selection ratio gradually increases as the q value increases. For q = 8.0, 43.39% of the
representation elements are selected. In addition, as shown in the averaged masks along the channel
axis, the proposed method uses more representations in the high-complexity region. Over the whole
Kodak image set [28], the average proportions of selected elements for the target quality levels from
1.0 to 8.0 are 6.41%, 9.66%, 14.17%, 19.90%, 27.00%, 35.68%, 46.20%, and 55.81%, respectively,
where they are almost linearly proportional to the average bpp values, as shown in Figure 4.

Figure 5 shows how many representations in a low target quality level are commonly used (or selected)
for higher target quality levels. For example, the orange line indicates that 100%, 99.8%, 99.6%,
99.0%, 98.3% and 98.2% of the representation elements, which are selected for a target quality level
q = 2.0, are also reused for higher target quality levels from q = 3.0 to 8.0, respectively. It should be
noted in Figure 5 that the case with q = 8.0 tends to highly reuse 97.6% of the selected representation
elements for the case with q = 1.0. This implies that the proposed SCR method does not select the
representation elements separately for different target quality levels, but actively takes a large portion
of representation elements as common components for various target quality levels.
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Figure 4: Average proportions of selected representa-
tion elements versus average BPP. (test set: the Kodak
image set [28], base model: Hyperprior [6])

Figure 5: Average proportions of reused representa-
tion elements from low to high quality levels. (test set:
the Kodak image set [28], base model: Hyperprior [6])

3.3 Training

We train the proposed SCR model in an end-to-end manner, where the base compression model, 3D
importance map generation module, γq vectors, QVq vectors, and IQVq vectors are optimized all
together, using the total loss formulated as follows:

L =
∑

q Rq + λq ∗Dq, with Rq = Hq(ỹ
s
q | z̃) +H(z̃), (4)

where Rq and Dq represent rate and distortion terms, respectively, for the target quality level q,
and λq = 0.2 · 2q−8 is a parameter for adjusting the balance between the rate and distortion. Dq

can be either the mean squared error (MSE) or MS-SSIM between the input image x and the
reconstructed image x′

q. For the MS-SSIM-based optimization, we use the distortion term Dq =
3000(1− MS-SSIM(x,x′

q)). H(·) is a calculated cross-entropy for the quantized representations of
y and z. In the case of y, because the quantization and mask generation processes are different for
each target quality level q, we use a cross entropy Hq(·) for a target quality level q as follows:

Hq(ỹ
s
q | z̃) = 1

Nx

Ns
q∑

i=1

− log2 Pq(ỹ
s
q,i|ẑ), (5)

with ỹs
q = M(y/QVq + U(−0.5, 0.5), m̃(ẑ, q)),

where Nx is the number of pixels in a input image x, Ns
q is a total number of the selected elements

{ỹsq,i}
Ns

q

i=1 of ỹs
q . The cross entropy, Hq(ỹ

s
q | z̃), of the selected representation elements is calculated

based on an approximate probability mass function (PMF) Pq(·) to deal with the distributions of
ỹs
q that vary for different target quality levels. Specifically, we determine the estimated distribution

parameters µq and σq of Pq(·) as M(µ/QVq,m(ẑ, q)) and M(σ/QVq,m(ẑ, q)), respectively.
Here, the µ and σ values are obtained from the base compression models. For the Context [7] base
model, the position-wise parameters µ(k,l)

q and σ
(k,l)
q are obtained for each spatial coordinate (k, l)

through M(µ(k,l)/QVq,m(ẑ, q)(k,l)) and M(σ(k,l)/QVq,m(ẑ, q)(k,l)), respectively. Note that we
disregard µq when a zero-mean Gaussian-based model is used for Pq(·). As in the previous entropy
minimization-based compression models [6, 7], we adopt a Gaussian distribution model convolved
with a uniform distribution as an approximate PMF Pq(·), and use the representation with additive
uniform noise U(−0.5, 0.5), denoted as ỹs

q , for training, rather than the rounded representation ŷs
q

for inference. To handle the instability in the training phase due to learning the binary representations
of the mask, we use a stochastically generated mask m̃(·) rather than m(·) used in the test phase.
While the adjusted 3D importance map is simply rounded-off for m(·), m̃(·) is constructed with
randomly sampled binary representations, similarly to Raiko et al. [29]’s approach, by regarding each
element value of the adjusted 3D importance map im(ẑ)γq as the probability that the corresponding
component of the output mask is "1", which is given as follows:

m̃(ẑ, q) = B(im(ẑ)γq + U(−0.5, 0.5)) (6)
Note that discontinuity caused by the rounding-off operator B(·) is handled by bypassing the gradients
backward. In the actual implementation, the training can be performed without using M(·) and Re(·),
because we can exclude the unselected representations using Eq. 7 to calculate Rq , and can obtain y̆q

via AdaQq(y) · m̃(ẑ, q) to compute Dq . Other training details are described in Appendix B.

Hq(ỹ
s
q | z̃) = 1

Nx

∑
i

− log2 Pq(ỹq,i) · m̃(ẑ, q)i, with ỹq = y/QVq + U(−0.5, 0.5) (7)
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3.4 Continuously variable-rate compression

To support the continuously variable-rate compression during the test, we determine γq by interpola-
tion when q is a value between two discrete target quality levels as follows:

γq =

{
γq, if q ∈ {1, 2, ..., NQ}
γ
1−(q−⌊q⌋)
⌊q⌋ · γq−⌊q⌋

⌈q⌉ , otherwise
(8)

For example, when q is 3.8, γ3.8 is determined by the element-wise multiplication of γ0.2
3.0 and γ0.8

4.0 .
Note that the QVq and IQVq vectors are also interpolated in the same manner as above, and this
non-linear interpolation is inspired by Cui et al. [19]. The experimental results of the continuously
variable-rate are provided in Sec. 4.1.

4 Experiments

4.1 Coding efficiency measurement for various target quality levels

Experiments for discrete target quality levels. To show the effectiveness of our SCR method with
selective compression and adaptive quantization, we integrate it into the following three reference
compression models: Hyperprior [6], Mean-scale [7] and Context [7] which are denoted as SCRHyp,
SCRMS and SCRCxt, respectively. These three extended models with our SCR method are
compared with their original models in terms of PSNR (MS-SSIM) BD-rate. The BD-rate values
are measured with the target quality levels of q = 1.0, 4.0, 6.0 and 8.0 of our SCR models and the
corresponding four compression points of the original models. The experimental results of ablation
study are also provided to show the effectiveness of our selective compression where the SCRHyp,
SCRMS and SCRCxt are compared with and without the selective compression modules. Here,
the SCR variant without the selective compression is equivalent to the adaptive quantization-based
variable-rate compression method of Cui et al. [19], where Gain and Inverse-gain vectors are used,
corresponding to the QVq and IQVq vectors in our work, respectively. Note that we additionally
apply the adaptive µ and σ adjustment process described in Section 3.3 for each target quality level.
For comparisons, we train each of the SCRHyp, SCRMS and SCRCxt as two different versions, an
MSE(PSNR)-optimized model and an MS-SSIM-optimized model which are denoted as SCRpsnr

∗
and SCRssim

∗ , respectively, where ∗ represents the used reference model. We measure average
bpp-PSNR and bpp-MS-SSIM values over the Kodak image set [28].

As shown in Table 1, our SCR models achieve comparable results to all the reference models
separately trained for various target quality levels. In addition, compared with SCRpsnr

Hyp , SCRpsnr
MS ,

and SCRpsnr
Cxt without the selective compression, our SCR (full) models obtained coding efficiency

gains of −4.30%, −5.03%, and −1.18% in BD-rate, respectively. This clearly demonstrates that
the selective compression in the SCR method is effective in terms of the coding efficiency. For the
MS-SSIM-optimized models, we obtained similar results as those of MSE-optimized models. The
rate-distortion curve for SCRpsnr

Cxt and the MS-SSIM-optimized models are provided in Appendix D.
As shown in Figure 6, the coding efficiency gains of our SCR models are more noticeable for
the low bit rate, compared with the SCR variants without selective compression. This might be
because the SCR (w/o selective compression) models have to encode all the representation elements
regardless of target quality levels, although some representation elements may need to be optimized
only for a certain bit rate. Whereas, the SCR (full) model can effectively exclude those unnecessary
representation elements, especially at low-bpp range, thus leading to more efficient compression.

For the Context [7] reference model, the SCRpsnr
Cxt and SCRssim

Cxt models obtained the relatively
smaller coding efficiency gains over their variants without the selective compression. This may
come from two reasons: (i) In the autoregressive Context [7] model, the reconstructed representation
elements are utilized to predict the distribution parameters of the adjacent elements. Thus, in SCRCxt

models, the unselected representations filled with 0 values may deteriorate the prediction accuracy;
(ii) Unlike for the other two reference compression models, Hyperprior [6] and Mean-scale [7], the
SCRCxt variants without the selective compression already achieved a fairly satisfactory coding
efficiency with respect to the original Context [7] models, so there seems to be not much room for
performance improvement. Although there exist somewhat deviations in coding efficiency gain for
several reference models, it is worthwhile to note that our SCR models achieve comparable results to
all the reference models over the wide range of bit rates, as shown in Figure 6 and Appendix D.
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Figure 6: Rate-distortion curves in discrete target quality levels for the reference compression model, the SCR
variants without the selective compression, and SCR full model. Here, MSE-optimized models are used and the
results for the MS-SSIM-optimized models are provided in Appendix D.

Figure 7: Rate-distortion curves of our SCR model in continuous target quality levels. The orange dots indicate
the results for discrete target quality levels while the green dots represent the results using γq vector interpolation.

In addition, we reproduce some prior variable-rate compression methods [19, 20, 23, 24, 25] on the
Hyperprior [6] architecture and compare them with our SCR model in terms of coding efficiency and
decoding time. As described in Appendix F, our SCR model shows superior results compared with
those models. The experimental results and further discussions are provided in Appendix F.

Experiments for fine-grain target quality levels. To verify the continuously variable-rate com-
pression of the proposed SCR method, we measure the rate-distortion performance by changing q
from 1.0 to 8.0 with an increment of 0.1. As shown in Figure 7, the proposed SCR method stably
supports the continuously variable-rate compression without degrading coding efficiency. Figure 8
shows the reconstructed samples of the proposed SCR method where the quality gradually improves
as q increases. More reconstruction samples are provided in Appendix G.

Table 1: BD-rate results of our SCR models compared with the corresponding reference compression models
(top three rows) and the SCR variants without selective compression (bottom three rows) denoted as "w/o SC".
A negative BD-rate value means a coding efficiency gain.

MSE-optimized MS-SSIM-optimized

Ref. Tested BD-rate Ref. Tested BD-rate

Hyperprior [6] SCRpsnr
Hyp -3.21% Hyperprior [6] SCRssim

Hyp -0.91%

Mean-scale [7] SCRpsnr
MS 1.30% Mean-scale [7] SCRssim

MS 0.96%

Context [7] SCRpsnr
Cxt 1.23% Context [7] SCRssim

Cxt -2.00%

SCRpsnr
Hyp (w/o SC) SCRpsnr

Hyp -4.30% SCRssim
Hyp (w/o SC) SCRssim

Hyp -4.03%

SCRpsnr
MS (w/o SC) SCRpsnr

MS -5.03% SCRssim
MS (w/o SC) SCRssim

MS -3.00%

SCRpsnr
Cxt (w/o SC) SCRpsnr

Cxt -1.18% SCRssim
Cxt (w/o SC) SCRssim

Cxt -1.22%
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Figure 8: Qualitative results of the proposed SCR method (best viewed in digital format). For best viewing, we
cropped the reconstruction results. The number embedded in each sample represents the target quality level
q. The top row represents the reconstruction results of the discrete quality levels. The bottom row shows the
reconstruction results between q = 2.0 and q = 3.0 with the interpolation method in Sec. 3.4.

4.2 Decoding time

We compare the decoding times for the original reference compression models (Hyperprior [6]
and Mean-scale [7]) and their SCR extensions (SCRpsnr

Hyp , SCRpsnr
MS ) for variable bit rate image

compression. To show the effect of the selective compression in our SCR method on the decoding
time, the decoding times of the above models, SCRpsnr

Hyp and SCRpsnr
MS , are compared for the cases

with and without the selective compression in the same target quality levels. For the comparison of the
two reference compression models, Hyper [6] and Mean-scale [7], their decoding times are measured
for a high quality compression model that corresponds to our variable-rate configuration with q = 8.0.
Note that, since each of the two reference compression models has different architectures for different
target quality levels, the models corresponding to the target quality level of q = 8.0 are selected
for comparison, which have the same en/decoder network architectures as those of SCRpsnr

Hyp and
SCRpsnr

MS . We perform decoding 100 times for each image in the Kodak image set [28] and measure
the average decoding time of all the images. It should be noted that a GPU is used for the decoder
network processing, whereas we use a CPU for hyper-decoder processing to prevent the encoder and
decoder discrepancy owing to the GPU characteristic that incurs tiny errors for the same inputs even
on the same machine, because of its parallel algorithm that yields different numeric results [30].

As shown in Figure 9, SCRpsnr
Hyp and SCRpsnr

MS reduce the decoding time in the entire bit rate range
compared with their variants without the selective compression. The decoding time savings are
more noticeable for the low-quality compression owing to the reduction in the number of selected
representation elements, and this is clearly seen when comparing the entropy decoding times (denoted
in light blue color). In spite of the overheads from the reshaping (in dark blue) and 3D binary mask
generation, the time saved in the entropy decoding process is definitely larger than the overhead time.
It should be noted that the 3D binary mask generation time is included in the hyper decoder network
time (gray) because the 3D binary mask generation shares most parts of the hyper decoder. SCRpsnr

Hyp

and SCRpsnr
MS reduce the average decoding time by 11.28% and 8.32%, respectively, compared with

their variants without the selective compression. Furthermore, SCRpsnr
Hyp and SCRpsnr

MS show lower
decoding times, compared with their corresponding reference compression models with q = 8.0, over
all target quality levels except for q = 8.0 of SCRpsnr

MS . Instead, SCRpsnr
MS with q = 8.0 yielded a

slightly higher decoding time compared with the original Mean-scale [7] model (q = 8.0).

For Context [7]-based models, the SCRpsnr
Cxt reduces the average decoding time by 25.71% and

21.53% compared with the its variants without the selective compression and the reference Context [7]
model (corresponding to q=8.0), respectively. These results clearly show the effectiveness of selective
compression, but it should be noted that we use a different entropy coder for SCRpsnr

Cxt from those for
SCRpsnr

Hyp and SCRpsnr
MS . The detailed information on the entropy coders is provided in Appendix C.

Regarding the encoding time, it is also significantly reduced due to selective compression as done for
the decoder. The encoding time results are provided in Appendix E.
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Figure 9: Decoding times of the proposed SCR models, the SCR variants without the selective compression,
denoted as "W/o SC", and the reference compression models. We measured the average decoding time of each
model over the Kodak image dataset [28] with 2×Intel Xeon Gold 5122 CPUs and 1×RTX Titan GPU.

Table 2: Configuration of the parameters for the SCRHyp model

Name Description No. of parameters

Hyperprior Original model 11,813,443
QV vectors 8 levels * 320 ch. 2,560
IQV vectors 8 levels * 320 ch. 2,560
gamma vectors 8 levels * 320 ch. 2,560
Importance map generation 192 (in) * 320 (out) + 320 (out) 61,760

Total no. of parameters 11,882,883

4.3 Increasing parameters due to SCR

The increase in model parameters due to the proposed SCR method is relatively very small. For
example, the Hyperprior model has 11, 813, 443 parameters, and the SCRHyp model has 11, 882, 883.
That is, the number of parameters is increased by only 0.59%, resulting in a memory increase of
0.26MB. Similarly, the additional memory occupancy for the SCRMS and SCRCxt model is only
0.62MB. The configuration of the parameters for the SCRHyp model is shown in Table 2.

5 Conclusion

We firstly proposed a ‘selective compression of representations’ (SCR) method for NN-based variable-
rate image compression, which performs entropy coding only for the partially selected latent repre-
sentations. The proposed SCR method selects essential representation elements for compression in an
adaptive manner according to a given target quality level. For this, we first generate a 3D importance
map, which represents the importance of each representation element independently of target quality
levels, and then adjust it in a target quality-adaptive manner using the learned importance adjustment
curves to generate a 3D binary mask that represents whether or not to select each representation
element for compression. We demonstrated through experiments that the proposed SCR method could
provide comparable coding efficiency to those of the separately trained reference compression models.
Furthermore, the proposed SCR method showed less decoding time than those under comparison
for almost all the cases. We also showed that the proposed SCR method could enable continuously
variable-rate image compression through simple non-linear interpolation of the importance adjustment
curves between discrete target quality levels in which the selective compression was trained.
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A Example source codes for the representation selection and reshaping
operators

In this section, we provide some essential source code blocks to implement the selection operator
M(·) and the reshaping operator Re(·), as below:

import numpy as np
...
# representation selection operator M()
def M(rep, 3D_mask):
mask_flattened = 3D_mask.ravel()
idx_list = np.nonzero(mask_flattened)
rep_flattened = rep.ravel()
selected_rep = np.take(rep_flattened, idx_list)
return selected_rep

...
# representation reshaping operator Re()
def Re(selected_rep, 3D_mask):
reshaped_rep = np.zeros_like(3D_mask, dtype=float)
reshaped_rep[3D_mask] = selected_rep
return reshaped_rep

It should be noted that these two modules are used for the test phase. As described in Section 3.3,
these two modules are not necessarily required for training.

B Training details of the proposed SCR method

Training of a variable-rate compression model often requires a much longer time than those for
single-quality models. To alleviate this, we adopt a step-wise training including the following three
steps: (i) In the first step, a fixed-rate compression model is trained for high quality compression
corresponding to the target quality level q = 8.0 of a variable-rate model; (ii) In the second step, using
the trained fixed-rate compression model as a pretrained model, we train a SCR variant without the
selective compression in an end-to-end manner; (iii) In the third step, using the trained SCR variant
without the selective compression as a pretrained model, we train the SCR full model in an end-to-end
manner. We proceed with all the training steps until the performance of each step gets sufficiently
converged, using the ADAM [31] optimizer. The numbers of training iterations for these three steps
are 7M , 1.2M , and 1.2M , respectively. As the training data set, we use 51, 141 256 × 256-sized
patches that are cropped, in a non-overlapping manner, from the whole CLIC [32] training set, and
we set the batch size to 8. An initial learning rate is set to 5× 10−5, and then lower learning rates
are used for the final 0.2M iterations (1× 10−5 for the 0.1M iterations and then 2× 10−6 for the
following 0.1M iterations). This learning rate decaying is conducted for all the training phases.

C Implementation details of the entropy coders

For Hyperprior [6], Mean-scale [7], and their corresponding variable-rate models, we use the entropy
coding module in tensorflow-compression v1.3 package [33]. Although we didn’t implement the
parallel processing by ourselves, the tensorflow-compression package [33] partially supports the
parallel processing for entropy coding and decoding, to our knowledge. On the other hand, for the
Context [7] and their variable-rate models, we adopt the python-based entropy coder [34] to measure
a bpp value based on a stored bitstream file rather than based on a string list. When using the entropy
coder in the tensorflow-compression package [33] for the Context model, we obtain the entropy
coded bitstream (string) per each spatial point of the latent representation. With these point-wise
strings, we have to measure the bpp values based on the total summation of the string sizes. However,
when this string list is stored as a file, the saved file size must be larger than the sum of the string
sizes. This is because each string per position has a different length that has to be stored together.
To overcome this implementation issue, we adopt the entropy coder [34] for the Context [7]-based
models, although it is very slow without any parallel processing.
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Figure 10: Rate-distortion curves of the separately trained reference compression model, the SCR model without
the selective compression, and the SCR full model for discrete target quality levels. Here, MS-SSIM-optimized
models are used. MS-SSIM values are converted into decibels(−10 log10(1− MS-SSIM)) for visualization, in
the same manner as in [6].

Figure 11: Rate-distortion curves of the separately trained reference compression model, the SCR model without
the selective compression, and the SCR full model on the Context [7] base compression architecture, for discrete
target quality levels. Left: the comparison results of the MSE-optimized models. Right: the comparison results
of the MS-SSIM-optimized models

D Additional R-D curves

Figure 10 shows the rate-distortion curves for the SCRssim
Hyp and SCRssim

MS models. It should be noted
that we use the reproduced results for MS-SSIM-optimized reference compression models rather
than the results reported in the original papers because the reproduced results show substantially
higher coding efficiency. The difference between the reproduced results and those of the original
papers may be due to the different implementation of the MS-SSIM loss. On the other hand, in the
case of the MSE-optimized reference compression models, the reproduced results are almost the
same as those of the original paper, so we use the results in the original paper. Figure 11 shows the
rate-distortion curves for the Context [7]-based SCR models, SCRpsnr

Cxt and SCRssim
Cxt . Here, we also

use the reproduced results of the MS-SSIM-optimized Context [7] model for the same reason above.

E Encoding time

The proposed SCR method significantly reduces the encoding time owing to the selective compression,
as in the decoding process. The SCRpsnr

Hyp , SCRpsnr
MS , and SCRpsnr

Cxt models reduce the encoding time
by average 17.69%, 6.96%, and 20.25%, respectively, compared to their variants without selective
compression, and average 16.56%, 7.72%, and 13.90%, respectively, compared to their reference
compression models corresponding to q = 8.0. Figure 12 shows the encoding time configurations of
the proposed SCR models. It should be noted that we implemented the SCRpsnr

Cxt model with a much
slower entropy coder as we discussed in Appendix C.
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Figure 12: Encoding times of the proposed SCR models, the SCR variants without the selective compression,
denoted as "W/o SC", and the reference compression models. We measured the average encoding time of each
model over the Kodak image dataset [28] with 2×Intel Xeon Gold 5122 CPUs and 1×RTX Titan GPU.

Figure 13: Comparison results of the various variable-rate image compression methods in terms of the coding
efficiency and decoding time. For the same condition of comparison, we reproduced these variable-rate methods
on the same base architecture, Hyperprior [6]. The PSNR BD-rate values are measured using four (first, fourth,
sixth, and eighth) compression points. "SC" denotes the proposed selective compression.

F Comparison with other variable-rate compression methods

The various existing variable-rate methods [1, 17, 18, 20, 21, 22] use their dedicated architectures,
rather than the widely used models [6, 7]. In addition, the adaptive quantization-based meth-
ods [19, 23] that adopt the existing base compression architectures [6, 7] use a smaller number of
hyperparameters for the base compression models than ours, so the bit rate ranges supported by
their variable-rate models are less than half of ours. Furthermore, the 2D importance map-based
approaches [24, 25] do not provide detailed information on how to incorporate the 2D importance
maps into the variable-rate compression scheme but focus on the fixed-rate compression. These
make it difficult the direct comparison of the prior variable-rate models with our SCR in the same
condition. Therefore, we reproduce a few variable-rate compression methods [19, 20, 23, 24, 25] on
the Hyperprior [6] base architecture to compare them with our SCR model in terms of the coding
efficiency and decoding time. It should be noted that the decoding time of the Hyperprior [6] model is
measured with the high bpp model corresponding to the target quality level q = 8.0, as in Section 4.2.
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Figure 14: Rate-distortion curves of various variable-rate methods. The models were reproduced on the
Hyperprior [6] base model.

Implementation details. For all the reproduced models, we adopt the same base compression archi-
tecture, Hyperprior [6], in which the hyperparameter N and M are set to 192 and 320, respectively.
The same training set, learning rate, batch size and training steps(7.0M ) as in the training of our
SCR models are used for the training of the reproduced models, and a few models are trained in a
step-wise manner (7.0M steps for pretraining and 1.2M steps for main training). The learning-rate
decaying is also applied as in the training of the proposed SCR models. For reproducing Cui et
al.[19], Chen et al.[23] and Rippel et al.[20], we use the trained Hyperprior [6] model (corresponding
to q = 8.0) as a pretrained model and additionally train the variable-rate models for 1.2M more steps
in an end-to-end manner. In the pretraining phase for Rippel et al.[20], the level map representing
q = 8.0 is fed into the convolutional layers of the model to keep the architectural consistency with the
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main training phase. Whereas, in the main training phase, a total of 8 runs of the entire model with 8
different level maps (from q = 1.0 to q = 8.0) are conducted for each training step to cover all target
quality levels. Note that we feed the level maps into all the convolutional layers of the en/decoder
networks.

For the 2D importance map [24, 25]-based variable-rate compression, we adopt a similar architecture
to our SCR model that generates the 3D importance map using the hyper decoder and a single 1× 1
convolutional layer. As in our 3D importance map generation, a single 1 × 1 convolutional layer
generates the 2D importance maps, where 8 output channels are the importance maps for 8 different
quality levels from q = 1.0 to 8.0, respectively. It should be noted in this 2D importance map-based
scheme that there’s no importance adjustment step. Instead, the generated 2D importance maps
are directly converted into the 3D binary masks. The example 3D binary mask generated via the
2D importance map and the mask generated via our generalized 3D importance map are shown
in Figure 15. For the 2D importance map-based models, we train two different versions with and
without pretraining. In the case with pretraining, we first train the model using only one importance
map corresponding to q = 8.0, and then train the model using all the eight importance maps for
1.2M more iterations. To further clarify the effect of our generalized 3D importance map compared
with the spatial 2D importance map, we also test the model that incorporates both the 2D importance
map [24, 25] and Cui et al.[19]’s method as our SCR model utilizes both the proposed selective
compression and Cui et al.[19]’s method. In Figure 13, we include the better result among two cases
with and without pretraining for each of the 2D importance map [24, 25]-based models described
above.

Comparison results. Figure 13 shows the comparison results in terms of PSNR BD-rate and
relative decoding time. Our SCR method clearly outperforms all the other methods in terms of the
PSNR BD-rate. In perspective of the time complexity, our SCR significantly reduces the decoding
time compared with the models [19, 20, 23] that encode whole representations. Although the 2D
importance map [24, 25]-based approaches show slightly lower decoding time, our SCR method
provides significantly better coding efficiency compared with them. This coding efficiency gain,
represented with the bidirectional dotted arrow in Figure 13, might be due to that the 2D importance
map [24, 25]-based approaches inclusively select the representation components from low to high bit
rates. That is, the selected representation components in a lower bit rate are all used in a higher bit rate.
On the other hand, our 3D importance map represents the underlying component-wise importance
of feature elements, independently of different target quality levels. Since this 3D importance map
is adjusted channel-wise according to the given target quality level and then binarized into the 3D
binary mask, the selected features in a lower bit rate are not necessarily to be selected in a higher bit
rate as shown in Figure 5, which is more effective in the perspective of compression. In addition,
Figure 13 clearly shows the effect of the selective compression by comparing with the SCR variant
without the selective compression, which is Cui et al.[19]. The selective compression significantly
improves both the coding efficiency and decoding time as represented with the unidirectional dotted
arrow in Figure 13.

Interestingly, as shown in Figure 14, the 2D importance map [24, 25]-based model trained step-wise
shows much worse coding efficiency than that of the model trained from scratch. This might be due to
the channel order constraint discussed above. That is, the channel ordering for lower bit rates might
be disregarded during the pretraining of the high bit rate model, and this disorder in the pretraining
phase can lead to an ineffective main training. Even considering the better of the two results with and
without pretraining, it should be noted that the coding efficiency is still very low when only the 2D
importance map is used. In the case of using the 2D importance map with Cui et al.[19]’s approach,
our SCR model still shows significantly higher coding efficiency as shown in Figures 13 and 14.

Note that all the compared variable-rate compression models in Figure 13 are reproduced models.
When compared with the results reported in the original paper of Chen et al.[23], our SCR method
outperforms Chen et al.[23] by 13.42% (1.64%) for the MS-SSIM (MSE)-optimized model in terms
of MS-SSIM (PSNR) BD-rate on the Hyperprior [6] architecture. The original numeric results for
Cui et al.[19] are not available, but it seems that Our SCR models significantly outperform the
corresponding models in Cui et al.[19]. In addition, our SCR models support around twice the bit
rate ranges compared to those in the two prior works [23, 19]. Considering the purpose of the study,
the supported bit rate range is another key metric of the variable-rate compression performance.
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Figure 15: Example 3D binary masks generated from our 3D importance map (left) and from a 2D importance
map (right) for the KODIM12 image of the Kodak image set [28]. The masks for the target quality level q = 1.0
are shown.

G Reconstruction samples

In this section, we provide a few more supplemental reconstruction samples. Figure 16, 17, and 18
show the cropped reconstructions of the KODIM04, KODIM20, KODIM23 images of the Kodak
image set [28], respectively. Here, we used the SCRpsnr

Hyp model to generate the samples.
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Figure 16: Cropped reconstruction samples of the KODIM04 image in the Kodak image set [28] (best viewed in
digital format).The number embedded in each sample represents the target quality level q.
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Figure 17: Cropped reconstruction samples of the KODIM20 image in the Kodak image set [28] (best viewed in
digital format). The number embedded in each sample represents the target quality level q.
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Figure 18: Cropped reconstruction samples of the KODIM23 image in the Kodak image set [28] (best viewed in
digital format). The number embedded in each sample represents the target quality level q.
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