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ABSTRACT

Mixture models are traditionally represented and learned by adding several distri-
butions as components. Allowing mixtures to subtract probability mass or density
can drastically reduce the number of components needed to model complex dis-
tributions. However, learning such subtractive mixtures while ensuring they still
encode a non-negative function is challenging. We investigate how to learn and
perform inference on deep subtractive mixtures by squaring them. We do this in
the framework of probabilistic circuits, which enable us to represent tensorized
mixtures and generalize several other subtractive models. We theoretically prove
that the class of squared circuits allowing subtractions can be exponentially more
expressive than traditional additive mixtures; and, we empirically show this in-
creased expressiveness on a series of real-world distribution estimation tasks.

1 INTRODUCTION

Finite mixture models (MMs) are a staple in probabilistic machine learning, as they offer a simple
and elegant solution to model complex distributions by blending simpler ones in a linear combination
(McLachlan et al., 2019). The classical recipe to design MMs is to compute a convex combination
over input components. That is, a MM representing a probability distribution p over a set of random
variables X = {X1, X2, . . . , XD} is usually defined as

p(X) =
∑K

i=1 wipi(X), with wi ≥ 0,
∑K

i=1 wi = 1, (1)

where wi are the mixture parameters and each component pi is a mass or density function. This
is the case for widely-used MMs such as Gaussian mixture models (GMMs) and hidden Markov
models (HMMs) but also mixtures of generative models such as normalizing flows (Papamakarios
et al., 2021) and deep mixture models such as probabilistic circuits (PCs, Vergari et al., 2019b).

The convexity constraint in Eq. (1) is the simplest sufficient condi-
tion to ensure p is a non-negative function integrating to 1,1 i.e., is a
valid probability distribution, and is often assumed in practice. How-
ever, this implies that the components pi can only be combined in an
additive manner, and thus it can greatly impact their ability to esti-
mate a distribution efficiently. For instance, consider approximating
distributions having “holes” in their domain, such as the simple 2-
dimensional ring distribution on the left (ground truth). A classical
additive MM such a GMM would ultimately recover it, as it is a uni-
versal approximator of density functions (Nguyen et al., 2019), but
only by using an unnecessarily high number of components (depicted

as red ellipsoids). A MM allowing negative mixture weights, i.e., wi < 0, would instead require
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only two components, as it can subtract one inner Gaussian density from an outer one (NGMM, see
dotted ellipsoid). We call these MMs subtractive or non-monotonic MMs (NMMs), as opposed to
their classical additive counterpart, called monotonic MMs (Shpilka & Yehudayoff, 2010).

The challenge with NMMs is ensuring that the modeled p(X) is a valid distribution, as the convex-
ity constraint does not hold anymore. This problem has been investigated in the past in a number
of ways, in its simplest form by imposing ad-hoc constraints over the mixture parameters wi, de-
rived for simple components such as Gaussian and Weibull distributions (Zhang & Zhang, 2005;
Rabusseau & Denis, 2014; Jiang et al., 1999). However, different families of components would
require formulating different constraints, whose closed-form existence is not guaranteed.

In this paper, we study a more general principle to design NMMs that circumvents the aforemen-
tioned limitation while ensuring non-negativity of the modeled function: squaring the encoded lin-
ear combination. For example, the NGMM above is a squared combination of Gaussian densities
with negative mixture parameters. We theoretically investigate the expressive efficiency of squared
NMMs, i.e., their expressiveness w.r.t. their model size, and show how to effectively represent and
learn them in practice. Specifically, we do so in the framework of PCs, tractable models general-
izing classical shallow MMs into deep MMs represented as structured neural networks. Deep PCs
are already more expressive efficient than shallow MMs as they compactly encode a mixture with
an exponential number of components (Jaini et al., 2018; Vergari et al., 2019b). However, they are
classically represented with non-negative parameters, hence being restricted to encode deep but ad-
ditive MMs. Instead, as a main theoretical contribution we prove that our squared non-monotonic
PCs (NPC2s) can be exponentially more parameter-efficient than their monotonic counterparts.

Contributions. i) We introduce a general framework to represent NMMs via squaring (Sec. 2),
within the language of tensorized PCs (Mari et al., 2023), and show how NPC2s can be effectively
learned and used for tractable inference (Sec. 3). ii) We show how NPC2s generalize not only mono-
tonic PCs but other apparently different models allowing negative parameters that have emerged in
different literatures, such as square root of density models in signal processing (Pinheiro & Vi-
dakovic, 1997), positive semi-definite (PSD) models in kernel methods (Rudi & Ciliberto, 2021),
and Born machines from quantum mechanics (Orús, 2013; Glasser et al., 2019) (Sec. 4). This al-
lows us to understand why they lead to tractable inference via the property-oriented framework of
PCs. iii) We derive an exponential lower bound over the size of monotonic PCs to represent func-
tions that can be compactly encoded by one NPC2 (Sec. 4.1), hence showing that NPC2s (and thus
the aforementioned models) can be much more expressive for a given size. Finally, iv) we provide
empirical evidence (Sec. 5) that NPC2s can approximate distributions better than monotonic PCs for
a variety of experimental settings involving learning from real-world data and distilling intractable
models such as large language models to unlock tractable inference (Zhang et al., 2023).

2 SUBTRACTIVE MIXTURES VIA SQUARING

We start by formalizing how to represent shallow NMMs by squaring non-convex combinations of
K simple functions. Like exponentiation in energy-based models (LeCun et al., 2006), squaring
ensures the non-negativity of our models, but differently from it, allows to tractably renormalize
them. A squared NMM encodes a (possibly unnormalized) distribution c2(X) over variables X as

c2(X) =
(∑K

i=1 wici(X)
)2

=
∑K

i=1

∑K
j=1 wiwjci(X)cj(X), (2)

where ci are the learnable components and the mixture parameters wi ∈ R are unconstrained, as
opposed to Eq. (1). Squared NMMs can therefore represent

(
K+1
2

)
components within the same pa-

rameter budget of K components of an additive MM. Each component of a squared NMM computes
a product of experts ci(X)cj(X) (Hinton, 2002) allowing negative parameters 2wiwj if i ̸= j, and
c2i (X) with w2

i otherwise. Fig. 1 shows a concrete example of this construction, which constitutes
the simplest NPC2 we can build (see Sec. 3), i.e., comprising a single layer and having depth one.

Tractable marginalization. Analogously to traditional MMs, squared NMMs support tractable
marginalization and conditioning, if their component distributions do as well. The distribution en-
coded by c2(X) can be normalized to compute a valid probability distribution p(X) = c2(X)/Z,
by computing its partition function Z as

Z =
∫
c2(x) dx =

∑K
i=1

∑K
j=1 wiwj

∫
ci(x)cj(x) dx. (3)
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Figure 1: Shallow MMs and squared NMMs
represented as PCs, mapped to a computa-
tional graph having input components and a
weighted sum unit as output. Squaring a mix-
ture with K = 3 components (left) can yield
more components that share parameters (right).

Computing Z translates to evaluating
(
K+1
2

)
integrals over products of components ci(X)cj(X).

More generally, marginalizing any subset of variables in X can be done in O(K2). This how-
ever implies that the components ci are chosen from a family of functions such that their product
ci(X)cj(X) can be tractably integrated, and Z is non-zero and finite. This is true for many para-
metric families, including exponential families (Seeger, 2005). For instance, the product of two
Gaussian or two categorical distributions is another Gaussian (Rasmussen & Williams, 2005) or
categorical up to a multiplicative factor, which can be computed in polynomial time.

A wider choice of components. Note that we do not require each ci to model a probability distri-
bution, e.g., we might have ci(x) < 0. This allows us to employ more expressive tractable functions
as base components in squared NMMs such as splines (see App. E for details) or potentially small
neural networks (see discussion in App. G). However, if the components are already flexible enough
there might not be an increase in expressiveness when mixing them in a linear combination or squar-
ing them. E.g., a simple categorical distribution can already capture any discrete distribution with
finite support and a (subtractive) mixture thereof might not yield additional benefits besides being
easier to learn. An additive mixture of Binomials is instead more expressive than a single Binomial,
but expected to be less expressive than its subtractive version (as illustrated in Sec. 5).

Learning squared NMMs. The canonical way to learn traditional MMs (Eq. (1)) is by maximum-
likelihood estimation (MLE), i.e., by maximizing

∑
x∈D log p(x) where D is a set of independent

and identically distributed (i.i.d.) samples. For squared NMMs, the MLE objective is
∑

x∈D log
(
c2(x)/Z

)
= −|D| logZ + 2

∑
x∈D log |c(x)|, (4)

where c(x) =
∑K

i=1 wici(x). Unlike other NMMs mentioned in Sec. 1, we do not need to derive
additional closed-form constraints for the parameters to preserve non-negativity. Although mate-
rializing the squared mixture having

(
K+1
2

)
components is required to compute Z as in Eq. (3),

evaluating log |c(x)| is linear in K. Hence, we can perform batched stochastic gradient-based opti-
mization and compute Z just once per batch, which makes NMMs efficient to learn (see App. C).

3 SQUARING DEEP MIXTURE MODELS

So far, we dealt with mixtures that are shallow, i.e., that can be represented as simple computational
graphs with a single weighted sum unit (e.g., Fig. 1). We now generalize them in the framework
of PCs (Vergari et al., 2019b; Choi et al., 2020; Darwiche, 2001) as they offer a property-driven
language to model structured neural networks which allow tractable inference. PCs enable us to
encode an exponential number of mixture components in a compact but deep computational graph.

PCs are usually defined in terms of scalar computational units: sum, product and input (see App. A).
Following Vergari et al. (2019a); Mari et al. (2023), we instead formalize them as tensorized compu-
tational graphs. That is, we group several computational units together in layers, whose advantage is
twofold. First, we are able to derive a simplified tractable algorithm for squaring that requires only
linear algebra operations and benefits from GPU acceleration (Alg. 1). Second, we can more easily
generalize many recent PC architectures (Peharz et al., 2020b;a; Liu & Van den Broeck, 2021), as
well as other tractable tensor representations (Sec. 4). Fig. A.1 illustrates how scalar computational
units are mapped to tensorized layers. We start by defining deep computational graphs that can
model possibly negative functions, simply named circuits (Vergari et al., 2021).
Definition 1 (Tensorized circuit). A tensorized circuit c is a parameterized computational graph
encoding a function c(X) and comprising of three kinds of layers: input, product and sum. Each
layer comprises computational units defined over the same set of variables, also called its scope, and
every non-input layer receives input from one or more layers. The scope of each non-input layer is
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Figure 2: Squaring tensorized structured-decomposable circuits reduces to squaring layers,
depicted as colored boxes of (input), (product), and a classic, real deep, Voltaire (sum). Connections to a sum layer
are labeled by the matrix parameterizing the layer, while connections to product layers are labeled
by the Hadamard product sign (see also Fig. A.1). A tensorized structured-decomposable circuit (b)
over three variables defined from the RG in (a) is squared in (c) by recursively squaring each layer
via Alg. 1. Squared layers contain a quadratic number of units, but still output vectors.

the union of the scope of its inputs, and the scope of the output layer computing c(X) is X. Each
input layer ℓ has scope Y ⊆ X and computes a collection of K functions fi(Y) ∈ R, i.e., ℓ outputs
a K-dimensional vector. Each product layer ℓ computes an Hadamard (or element-wise) product
over the N layers it receives as input, i.e., ℓ = ⊙N

i=1ℓi. A sum layer with S sum units and receiving
input from a previous layer ℓ ∈ RK , is parameterized by W ∈ RS×K and computes Wℓ.

Fig. 2b shows a deep circuit in tensorized form. To model a distribution via circuits we first require
that the output of the computational graph is non-negative. We call such a circuit a PC. Similarly
to shallow additive MM (Eq. (1)), a sufficient condition to ensure non-negativity of the output is
make the PC monotonic, i.e., to parameterize all sum layers with non-negative matrices and to
restrict input layers to encode non-negative functions (e.g., probability mass or density functions).
So far, monotonic PCs have been the canonical way to represent and learn PCs (App. G). In Def. 1
we presented product layers computing Hadamard products only, to simplify notation and as this
implementation choice is commonly used in many existing PC architectures (Darwiche, 2009; Liu
& Van den Broeck, 2021; Mari et al., 2023). We generalize our treatment of PCs in Def. A.6 to deal
with another popular product layer implementation: Kronecker products (Peharz et al., 2020b;a;
Mari et al., 2023). Our results still hold for both kinds of product layers, if not specified otherwise.

3.1 BUILDING TRACTABLE CIRCUITS FOR MARGINALIZATION

Deep PCs can be renormalized and marginalize out any subset of X in a single feed-forward pass
if they are smooth and decomposable, i.e., each sum layer receives inputs from layers whose units
are defined over the same scopes, and each product layer receives inputs from layers whose scopes
are pairwise disjoint, respectively (Darwiche, 2001; Choi et al., 2020). See Prop. A.1 for more
background. Sum layers in our Def. 1 guarantee smoothness by design as they have exactly one
input. A simple way to ensure decomposability is to create a circuit that follows a hierarchical
scope partitioning of variables X, also called a region graph, which is formalized next.
Definition 2 (Region graph (Dennis & Ventura, 2012)). Given a set of variables X, a region graph
(RG) is a bipartite and rooted graph whose nodes are either regions, denoting subsets R of X, or
partitions specifying how a region is partitioned into other regions.

Fig. 2a shows an example of a RG. Given a RG, we can build a smooth and decomposable tensorized
circuit as follows. First, we parameterize regions R ⊆ X that are not further partitioned with an
input layer encoding some functions over variables in R. Then, we parameterize each partitioning
{Ri}Ni=1 with a product layer having as inputs one layer for each Ri. Each product layer is then
followed by a sum layer. Figs. 2a and 2b illustrate such a construction by color-coding regions and
corresponding layers. As we will show in Sec. 3.2, this also provides us a clean recipe to efficiently
square a deep circuit. The literature on PCs provides several ways to build RGs (Peharz et al.,
2020b;a; Mari et al., 2023). In our experiments (Sec. 5), we recursively partition sets of variables
randomly until no further partitioning is possible (Peharz et al., 2020b). Moreover, we experiment
with RGs that partitions variables one by one (e.g., the one in Fig. 2a), as they are related to other
classes of models (see Sec. 4). App. F further details how to construct these RGs.
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3.2 SQUARING DEEP TENSORIZED CIRCUITS

(Squared negative) MMs as circuits. It is easy to see that traditional shallow MMs (Eq. (1)) can
be readily represented as tensorized smooth and decomposable PCs consisting of an input layer
encoding K components pi followed by a sum layer, which is parameterized by a non-negative row-
vector W ∈ R1×K

+ whose entries sum up to one. Squared NMMs (Eq. (2)) can be represented in a
similar way, as they can be viewed as mixtures over an increased number of components (see Fig. 1
and Fig. A.1), where the sum layer is parameterized by a vector with real entries, instead. Next, we
discuss how to square deep tensorized circuits as to retrieve our NPC2s model class.

Squaring (and renormalizing) tensorized circuits. The challenge of squaring a tensorized non-
monotonic circuit c (potentially encoding a negative function) is guaranteeing c2 to be representable
as a smooth and decomposable PC with polynomial size, as these two properties are necessary
conditions to being able to renormalize c2 efficiently and in a single feed-forward pass (Choi et al.,
2020). In general, even squaring a decomposable circuit while preserving decomposability of the
squared circuit is a #P-hard problem (Shen et al., 2016; Vergari et al., 2021). Fortunately, it is
possible to obtain a decomposable representation of c2 efficiently for circuits c that are structured-
decomposable (Pipatsrisawat & Darwiche, 2008; Vergari et al., 2021). Intuitively, in a tensorized
structured-decomposable circuit all product layers having the same scope Y ⊆ X decompose Y
over their input layers in the exact same way. We formalize this property in the Appendix in Def. A.3.

Tensorized circuits satisfying this property by design can be easily constructed by stacking layers
conforming to a RG, as discussed before, and requiring that such a RG is a tree, i.e., in which there is
a single way to partition each region, and whose input regions do not have overlapping scopes. E.g.,
the RG in Fig. 2a is a tree RG. From here on, w.l.o.g. we assume our tree RGs to be binary trees, i.e.,
they partition each region into two other regions only. Given a tensorized structured-decomposable
circuit c defined on such a tree RG, Alg. 1 efficiently constructs a smooth and decomposable ten-
sorized circuit c2. Moreover, let L be the number of layers and M the maximum time required to
evaluate one layer in c, then the following proposition holds.

Proposition 1 (Tractable marginalization of squared circuits). Let c be a tensorized structured-
decomposable circuit where the products of functions computed by each input layer can be tractably
integrated. Any marginalization of c2 obtained via Alg. 1 requires time and space O(L ·M2).

See App. B.2 for a proof. In a nutshell, this is possible because Alg. 1 recursively squares each
layer ℓ in c such as ℓ2 = ℓ⊗ ℓ in c2, where ⊗ denotes the Kronecker product of two vectors.2 Our
tensorized treatment of circuits allows for a much more compact version of the more general algo-
rithm proposed in Vergari et al. (2021) which was defined in terms of squaring scalar computational
units. At the same time, it lets us derive a tighter worst-case upper-bound than the one usually re-
ported for squaring structured-decomposable circuits (Pipatsrisawat & Darwiche, 2008; Choi et al.,
2015; Vergari et al., 2021), which is the squared number of computations in the whole computational
graph, or O(L2 · M2). Note that materializing c2 is needed when we want to efficiently compute
the normalization constant Z of c2 or marginalizing any subset of variables. As such, when learning
by MLE (Eq. (4)) and by batched gradient descent, we need to evaluate c2 only once per batch, thus
greatly amortizing its cost. In App. C, we investigate the time and memory costs of learning NPC2s
having different size and on different data set dimensionalities. Finally, tractable marginalization
enables tractable sampling from the distribution modeled by NPC2s, as we discuss in App. A.2.

3.3 NUMERICALLY STABLE INFERENCE AND LEARNING

Renormalizing deep PCs can easily lead to underflows and/or overflows. In monotonic PCs, this
is usually addressed by performing computations in log-space and utilizing the log-sum-exp trick
(Blanchard et al., 2021). However, this is not applicable to non-monotonic PCs as intermediate
layers can compute negative values. Therefore, we instead evaluate circuits by propagating the log-
arithm of absolute values and the sign values of the outputs of each layer. Then, sum layers are
evaluated with a sign-aware version of the log-sum-exp trick. A similar idea has been already ap-
plied to evaluate expectations of negative functions with monotonic PCs (Mauá et al., 2018; Correia
& de Campos, 2019). App. D extends it to tensorized non-monotonic circuits.

2In Alg. B.1 we provide a generalization of Alg. 1 to square Kronecker product layers (Peharz et al., 2020b).
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Algorithm 1 squareTensorizedCircuit(ℓ,R)

Input: A tensorized circuit having output layer ℓ and defined on a tree RG rooted byR.
Output: The tensorized squared circuit defined on the same tree RG having ℓ2 as output layer computing ℓ⊗ℓ.
1: if ℓ is an input layer then
2: ℓ computes K functions fi(R)
3: return An input layer ℓ2 computing all K2

4: product combinations fi(R)fj(R)
5: else if ℓ is a product layer then
6: {(ℓi,Ri), (ℓii,Rii)} ← getInputs(ℓ,R)
7: ℓ2i ← squareTensorizedCircuit(ℓi,Ri)
8: ℓ2ii ← squareTensorizedCircuit(ℓii,Rii)

9: return ℓ2i ⊙ ℓ2ii
10: else ▷ ℓ is a sum layer
11: {(ℓi,R)} ← getInputs(ℓ,R)
12: ℓ2i ← squareTensorizedCircuit(ℓi,R)
13: W ∈ RS×K ← getParameters(ℓ)
14: W′ ∈ RS2×K2

←W ⊗W
15: return W′ℓ2i

4 EXPRESSIVENESS OF NPC2S AND RELATIONSHIP TO OTHER MODELS

Circuits have been used as the “lingua franca” to represent apparently different tractable model
representations (Darwiche & Marquis, 2002; Shpilka & Yehudayoff, 2010), and to investigate their
ability to exactly represent certain function families with only a polynomial increase in model size
– also called the expressive efficiency (Martens & Medabalimi, 2014), or succinctness (de Colnet
& Mengel, 2021) of a model class. This is because the size of circuits directly translates to the
computational complexity of performing inference. As we extend the language of monotonic PCs
to include negative parameters, here we provide polytime reductions from tractable probabilistic
model classes emerging from different application fields that can encode subtractions, to (deep)
non-monotonic PCs. By doing so, we not only shed light on why they are tractable, by explicitly
stating their structural properties as circuits, but also on why they can be more expressive than
classical additive MMs, as we prove that NPC2s can be exponentially more compact in Sec. 4.1.

Simple shallow NMMs have been investigated for a limited set of component families, as discussed
in Sec. 1. Notably, this can also be done by directly learning to approximate the square root of a
density function, as done in signal processing with wavelet functions as components (Daubechies,
1992; Pinheiro & Vidakovic, 1997) or RBF kernels, i.e., unnormalized Gaussians centered over data
points (Schölkopf & Smola, 2001), as in Hong & Gao (2021). As discussed in Sec. 3, we can readily
represent these NMMs as simple NPC2s where kernel functions are computed by input layers.

Positive semi-definite (PSD) models (Rudi & Ciliberto, 2021; Marteau-Ferey et al., 2020) are
a recent class of models from the kernel and optimization literature. Given a kernel function κ
(e.g., an RBF kernel as in Rudi & Ciliberto (2021)) and a set of d data points x(1), . . . ,x(d) with
κ(x) = [κ(x,x(1)), . . . , κ(x,x(d))]⊤ ∈ Rd, and a real d × d PSD matrix A, they define an unnor-
malized distribution as the non-negative function f(x;A,κ) = κ(x)⊤Aκ(x). Although apparently
different, they can be translated to NPC2s in polynomial time.
Proposition 2 (Reduction from PSD models). A PSD model with kernel function κ, defined over
d data points, and parameterized by a PSD matrix A, can be represented as a mixture of squared
NMMs (hence NPC2s) in time O(d3).

We prove this in App. B.3. Note that while PSD models are shallow non-monotonic PCs, we can
stack them into deeper NPC2s that support tractable marginalization via structured-decomposability.

Tensor networks and the Born rule. Squaring a possibly negative function to retrieve an un-
normalized distribution is related to the Born rule in quantum mechanics (Dirac, 1930), used to
characterize the distribution of particles by squaring their wave function (Schollwoeck, 2010; Orús,
2013). These functions can be represented as a large D-dimensional tensor T over discrete vari-
ables X = {X1, . . . , XD} taking value {1, . . . ,m}, compactly factorized in a tensor network (TN)
such as a matrix-product state (MPS) (Pérez-Garcı́a et al., 2007), also called tensor-train. Given an
assignment x = ⟨x1, . . . , xD⟩ to X, a rank r MPS compactly represents T as

T [x1, . . . , xD] =
∑r

i1=1

∑r

i2=1
· · ·
∑r

iD−1=1
A1[x1, i1]A2[x2, i1, i2] · · ·AD[xD, iD−1], (5)

where A1,AD ∈ Rm×r, Aj ∈ Rm×r×r with 1 < j < D, for indices {i1, . . . , iD−1}, and de-
noting indexing with square brackets. To encode a distribution p(X), one can reparameterize ten-
sors Aj to be non-negative (Glasser et al., 2019) or apply the Born rule and square T to model
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p(x) ∝ (T [x1, . . . , xD])2. Such a TN is called a Born machine (BM) (Glasser et al., 2019). Be-
sides modeling complex quantum states, TNs such as BMs have also been explored as classical
ML models to learn discrete distributions (Stoudenmire & Schwab, 2016; Han et al., 2018; Glasser
et al., 2019; Cheng et al., 2019), in quantum ML (Liu & Wang, 2018; Huggins et al., 2018), and
more recently extended to continuous domains by introducing sets of basis functions, called TTDE
(Novikov et al., 2021). Next, we show they are a special case of NPC2s.
Proposition 3 (Reduction from BMs). A BM encoding D-dimensional tensor with m states by
squaring a rank r MPS can be exactly represented as a structured-decomposable NPC2 in O(D ·k4)
time and space, with k ≤ min{r2,mr}.

We prove this in App. B.4 by showing an equivalent NPC2 defined on linear tree RG (e.g., the one
in Fig. 2a). This connection highlights how tractable marginalization in BMs is possible thanks to
structured-decomposability (Proposition 1), a condition that to the best of our knowledge was not
previously studied for TNs. Futhermore, as NPC2s we can now design more flexible tree RGs, e.g.,
randomized tree structures (Peharz et al., 2020b; Di Mauro et al., 2017; Di Mauro et al., 2021),
densely tensorized structures heavily exploiting GPU parallelization (Peharz et al., 2020a; Mari
et al., 2023) or heuristically learn them from data (Liu & Van den Broeck, 2021).

4.1 EXPONENTIAL SEPARATION OF NPC2S AND STRUCTURED MONOTONIC PCS

Squaring via Alg. 1 can already make a tensorized (monotonic) PC more expressive, but only by a
polynomial factor, as we quadratically increase the size of each layer, while keeping the same num-
ber of learnable parameters (similarly to the increased number of components of squared NMMs
(Sec. 2)). On the other hand, allowing negative parameters can provide an exponential advantage,
as proven for certain circuits (Valiant, 1979), but understanding if this advantage carries over to
our squared circuits is not immediate. In fact, we observe there cannot be any expressiveness ad-
vantage in squaring certain classes of non-monotonic structured-decomposable circuits. These are
the circuits that support tractable maximum-a-posteriori inference (Choi et al., 2020) and satisfy an
additional property known as determinism (see Darwiche (2001), Def. A.5). Squaring these circuits
outputs a PC of the same size and that is monotonic, as formalized next and proven in App. B.6.
Proposition 4 (Squaring deterministic circuits). Let c be a smooth, decomposable and deterministic
circuit, possibly computing a negative function. Then, the squared circuit c2 is monotonic and has
the same structure (and hence size) of c.

The NPC2s we considered so far, as constructed in Sec. 3, are not deterministic. Here we prove that
some non-negative functions (hence probability distributions up to renormalization) can be com-
puted by NPC2s that are exponentially smaller than any structured-decomposable monotonic PC.
Theorem 1 (Expressive efficiency of NPC2s). There is a class of non-negative functions F over
variables X that can be compactly represented as a shallow squared NMM (hence NPC2s), but for
which the smallest structured-decomposable monotonic PC computing any F ∈ F has size 2Ω(|X|).

We prove this in App. B.5 by showing a non-trivial lower bound on the size of structured-
decomposable monotonic PCs for a variant of the unique disjointness problem (Fiorini et al., 2015).
Intuitively, this tells us that, given a fixed number of parameters, NPC2s can potentially be much
more expressive than structured-decomposable monotonic PCs (and hence shallow additive MMs).
We conjecture that an analogous lower bound can be devised for decomposable monotonic PCs.
Furthermore, as this result directly extends to PSD and BM models (Sec. 4), it opens up interesting
theoretical connections in the research fields of kernel-based and tensor network models.

5 EXPERIMENTS

We aim to answer the following questions: (A) are NPC2s better distribution estimators than mono-
tonic PCs? (B) how the increased model size given by squaring and the presence of negative pa-
rameters independently influence the expressiveness of NPC2s? (C) how does the choice of input
layers and the RG affect the performance of NPC2s? We perform several distribution estimation
experiments on both synthetic and real-world data, and label the following paragraphs with letters
denoting relevance to the above questions. Moreover, note that our comparisons between NPC2s
and monotonic PCs are based on models having the same number of learnable parameters.
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Figure 3: NPC2s are better estimators, especially with parameter-efficient input layers. Dis-
tribution estimated by monotonic PCs (MPC), squared monotonic PCs (MPC2) and NPC2s on 2D
continuous (above) and discrete (below) data. On continuous data input layers compute splines
(Eq. (11)), while on discrete data they compute either categoricals (for MPC and MPC2), embed-
dings (for NPC2s) or Binomials. Apps. H.1 and H.2 shows log-likelihoods on also additional data.
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MAF 0.24 10.08 -17.73 -12.24 154.93
NSF 0.66 13.09 -14.01 -9.22 157.31

Gaussian -7.74 -3.58 -27.93 -37.24 96.67
EiNet-LRS 0.36 4.79 -22.46 -34.21 —
TTDE 0.46 8.93 -21.34 -28.77 143.30
MPC (LT) 0.51 6.73 -22.06 -32.47 116.90
NPC2 (LT) 0.53 9.00 -20.66 -26.68 118.58
MPC (BT) 0.57 5.56 -22.45 -32.11 123.30
NPC2 (BT) 0.62 10.98 -20.41 -26.92 128.38

Figure 4: NPC2s can be more expressive than monotonic PCs (MPCs). Best average log-
likelihoods achieved by monotonic PCs (+) and NPC2s (±2), built either from randomized lin-
ear tree (LT) or binary tree (BT) RGs (see App. H.3). The scatter plots (left) pairs log-likelihoods
based on the number of units per layer K (the higher the darker), differentiating PCs with Gaussian
(G/blue) and splines (S/red) input layers. Both axes of each scatter plot are on the same scale, thus
the results above the diagonal are of NPC2s achieving higher log-likelihoods than MPCs at parity
of model size. The table (right) shows our models’ best average test log-likelihoods and puts them
in context with intractable (above) and tractable (below) models w.r.t. variable marginalization.

(A, B) Synthetic continuous data. Following Wenliang et al. (2019), we evaluate monotonic PCs
and NPC2s on 2D density estimation tasks, as this allows us to gain an insight on the learned
density functions. To disentangle the effect of squaring versus that of negative parameters, we also
experiment with squared monotonic PCs. We build circuit structures from a trivial tree RG (see
App. H.1 for details). We experiment with splines as input layers for NPC2s, and enforce their non-
negativity for monotonic PCs (see App. E). Fig. 3 shows that, while squaring benefits monotonic
PCs, negative parameters in NPC2s are needed to better capture complex target densities.

(C) Synthetic discrete data. We estimate the probability mass of the previous 2D data sets, now
finitely-discretized (see App. H.2), to better understand when negative parameters might bring little
to no advantage if input layers are already expressive enough. First, we experiment with (squared)
monotonic PCs (resp. NPC2s) having input layers computing categoricals (resp. real-valued em-
beddings). Second, we employ the less flexible but more parameter-efficient Binomials instead.
App. H.2 reports the hyperparameters. Fig. 3 shows that, while there is no clear advantage for
NPC2s equipped with embeddings instead of MPC2 with categoricals, in case of Binomials they
can better capture the target distribution. This is because categoricals (and embeddings) already
have enough parameters to capture “holes” in the probability mass function. However, Binomials
introduce a strong inductive bias that might hinder learning. We believe this is the reason why, ac-
cording to some preliminary results, we did not observe an improvement of NPC2s with respect to
monotonic PCs on estimating image distributions.
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(A, B, C) Multi-variate continuous data. Following Papamakarios et al. (2017), we evaluate
deeper PCs for density estimation on five multivariate data sets (see Table H.1). We evaluate mono-
tonic PCs and NPC2s in tensorized form built out of randomized linear tree RGs. That is, for some
variable permutation, we construct a tree RG where each partition splits a region into a set of only
one variable and recursively factorizes the rest. By doing so, we recover an architecture similar to
a BM or TTDE (see Sec. 4). Following Peharz et al. (2020b), we also experiment with binary tree
RGs whose regions are randomly split in half. App. H.3 details these RGs, as well as the hyperpa-
rameters used. We compare against: a full covariance Gaussian, normalizing flows RealNVP (Dinh
et al., 2017), MADE (Germain et al., 2015), MAF (Papamakarios et al., 2017) and NSF (Durkan
et al., 2019), a monotonic PC with input layers encoding flows (EiNet-LRS) (Sidheekh et al., 2023),
and TTDE (Novikov et al., 2021). Fig. 4 shows that NPC2s with Gaussian input layers generally
achieve higher log-likelihoods than monotonic PCs on four data sets. Fig. H.3 shows similar results
when comparing to squared monotonic PCs, thus providing evidence that negative parameters other
than squaring contribute to the expressiveness of NPC2s. Binary tree RGs generally deliver better
likelihoods than linear tree ones, especially on Gas, where NPC2s using them outperform TTDE.

(A) Distilling intractable models. Monotonic PCs have been used to approximate intractable mod-
els such as LLMs and perform exact inference in presence of logical constraints, such as for con-
strained text generation (Zhang et al., 2023). As generation performance is correlated with how
well the LLM is approximated by a tractable model, we are interested in how NPC2s can better
be the distillation target of a LLM such as GPT2, rather than monotonic PCs. Following Zhang
et al. (2023), we minimize the KL divergence between GPT2 and our PCs on a data set of sampled
sentences (details in App. H.4). Since sentences are sequences of token variables, the architecture
of tensorized circuits is built from a linear tree RG, thus corresponding to an inhomogeneous HMM
in case of monotonic PCs (see App. B.4.1) while resembling a BM for NPC2s. Fig. 5 shows that
NPC2s can distill GPT2 and scale better than monotonic PCs, as they achieve log-likelihoods closer
to the ones computed by GPT2. We observe that NPC2s fit the training data much better than the
test data, even though the results on test data are generally significant (see Table H.7). While this is
further evidence of their increased expressiveness, regularizing NPC2s deserves future investigation.

6 DISCUSSION & CONCLUSION

With this work, we hope to popularize subtractive MMs via squaring as a simple and effective model
class in the toolkit of tractable probabilistic modeling and reasoning that can rival traditional additive
MMs. By casting them in the framework of circuits, we presented how to effectively represent
and learn deep subtractive MMs such as NPC2s (Sec. 3) while showing how they can generalize
other model classes such as PSD and tensor network models (Sec. 4). Our main theoretical result
(Sec. 4.1) applies also to these models and justifies the increased performance we found in practice
(Sec. 5). This work is the first to rigorously address representing and learning non-monotonic PCs
in a general way, and opens up a number of future research directions. The first one is to retrieve a
latent variable interpretation for NPC2s, as negative parameters in a non-monotonic PC invalidate
the probabilistic interpretation of its sub-circuits (Peharz et al., 2017), making it not possible to
learn its structure and parameters in classical ways (see App. G). Better ways to learn NPC2s, in
turn, can benefit all applications in which PCs are widely used – from causal discovery (Wang et al.,
2022) to variational inference (Shih & Ermon, 2020) and neuro-symbolic AI (Ahmed et al., 2022)
– by making more compact and expressive distributions accessible. Finally, by formally connecting
circuits with tensor networks, we hope to inspire works that carry over the advancements of one
community to the other, such as better learning schemes (Stoudenmire & Schwab, 2016; Novikov
et al., 2021), and more flexible ways to factorize high-dimensional tensors (Mari et al., 2023).
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REPRODUCIBILITY STATEMENT

In App. H we include all the details about the experiments we showed in Sec. 5. The source code,
documentation, data sets and scripts needed to reproduce the results and figures, are available at
https://github.com/april-tools/squared-npcs.
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David Pérez-Garcı́a, F. Verstraete, Michael M. Wolf, and Juan Ignacio Cirac. Matrix product state
representations. Quantum Information and Computing, 7(5):401–430, 2007. ISSN 1533-7146.

Les A. Piegl and Wayne Tiller. The NURBS book. In Monographs in Visual Communication, 1995.

Aluisio Pinheiro and Brani Vidakovic. Estimating the square root of a density via compactly sup-
ported wavelets. Computational Statistics and Data Analysis, 25(4):399–415, 1997.

Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured decom-
posability. In 23rd Conference on Artificial Intelligence (AAAI), volume 8, pp. 517–522, 2008.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In IEEE
International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690. IEEE,
2011.

Guillaume Rabusseau and François Denis. Learning negative mixture models by tensor decomposi-
tions. arXiv preprint arXiv:1403.4224, 2014.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. MIT Press, 2005.

13



Published as a conference paper at ICLR 2024

Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor. Boosted decision
trees as an alternative to artificial neural networks for particle identification. Nuclear Instruments
& Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated
Equipment, 543:577–584, 2004.

Tim Roughgarden. Communication complexity (for algorithm designers). Foundations and Trends®
in Theoretical Computer Science, 11(3–4):217–404, 2016.

Alessandro Rudi and Carlo Ciliberto. PSD representations for effective probability models. In
Advances in Neural Information Processing Systems 34 (NeurIPS), pp. 19411–19422. Curran
Associates, Inc., 2021.

Bernhard Schölkopf and Alex Smola. Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond. In Adaptive Computation and Machine Learning Series. MIT
Press, 2001.

Ulrich Schollwoeck. The density-matrix renormalization group in the age of matrix product states.
Annals of Physics, 326:96–192, 2010.

Matthias Seeger. Expectation propagation for exponential families. 2005.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of prob-
abilistic models. In Advances in Neural Information Processing Systems 29 (NeurIPS). Curran
Associates, Inc., 2016.

Andy Shih and Stefano Ermon. Probabilistic circuits for variational inference in discrete graphical
models. In Advances in Neural Information Processing Systems 33 (NeurIPS). Curran Associates,
Inc., 2020.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open ques-
tions. Founddations and Trends in Theoretical Computer Science, 5:207–388, 2010.

Sahil Sidheekh, Kristian Kersting, and Sriraam Natarajan. Probabilistic flow circuits: Towards
unified deep models for tractable probabilistic inference. In 39th Conference on Uncertainty
in Artificial Intelligence (UAI), volume 216 of Proceedings of Machine Learning Research, pp.
1964–1973. PMLR, 2023.

Aleksanteri M Sladek, Martin Trapp, and Arno Solin. Encoding negative dependencies in proba-
bilistic circuits. In 6th Workshop on Tractable Probabilistic Modeling, 2023.

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. In Advances in
Neural Information Processing Systems 29 (NeurIPS), pp. 4799–4807. Curran Associates, Inc.,
2016.

Russell Tsuchida, Cheng Soon Ong, and Dino Sejdinovic. Squared neural families: A new class of
tractable density models. arXiv preprint arXiv:2305.13552, 2023.

Leslie G. Valiant. Negation can be exponentially powerful. In 11th Annual ACM Symposium on
Theory of Computing, pp. 189–196, 1979.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understanding sum-
product networks. Machine Learning, 108(4):551–573, 2019a.

Antonio Vergari, Nicola Di Mauro, and Guy Van den Broeck. Tractable probabilistic models: Repre-
sentations, algorithms, learning, and applications. Tutorial at the 35th Conference on Uncertainty
in Artificial Intelligence (UAI), 2019b.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional
atlas of tractable circuit operations for probabilistic inference. In Advances in Neural Information
Processing Systems 34 (NeurIPS), pp. 13189–13201. Curran Associates, Inc., 2021.

Allan H. Vermeulen, Richard H. Bartels, and Glenn R. Heppler. Integrating products of B-splines.
SIAM Journal on Scientific and Statistical Computing, 13:1025–1038, 1992.

14



Published as a conference paper at ICLR 2024

Benjie Wang, Matthew R. Wicker, and Marta Kwiatkowska. Tractable uncertainty for structure
learning. In 39th International Conference on Machine Learning (ICML), pp. 23131–23150.
PMLR, 2022.

Li Wenliang, Danica J. Sutherland, Heiko Strathmann, and Arthur Gretton. Learning deep kernels
for exponential family densities. In 36th International Conference on Machine Learning (ICML),
volume 97 of Proceedings of Machine Learning Research, pp. 6737–6746. PMLR, 2019.

Baibo Zhang and Changshui Zhang. Finite mixture models with negative components. In 4th In-
ternational Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM),
pp. 31–41. Springer, 2005.

Honghua Zhang, Brendan Juba, and Guy Van den Broeck. Probabilistic generating circuits. In
International Conference on Machine Learning, pp. 12447–12457. PMLR, 2021.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for au-
toregressive language generation. In 40th International Conference on Machine Learning (ICML),
volume 202 of Proceedings of Machine Learning Research, pp. 40932–40945. PMLR, 2023.

15



Published as a conference paper at ICLR 2024

W ∈ R3×3

⊙

W

Figure A.1: Computational units can be grouped into layers as to build a tensorized circuit.
Sum units each parameterized by the rows of W ∈ R3×3 (left, in purple) form a sum layer param-
eterized by W (right). Product units (left, in red) form an Hadamard product layer (right). Input
units (left, in yellow) form an input layer computing the same functions (right).

A CIRCUITS

In Sec. 3 we introduced circuits in a tensorized formalism. Here we instead present the definitions
and properties of circuits as they are usually defined in the literature, which will be used in App. B.

Definition A.1 (Circuit (Choi et al., 2020; Vergari et al., 2021)). A circuit c is a parameterized
computational graph over variables X encoding a function c(X) and comprising three kinds of
computational units: input, product, and sum. Each product or sum unit n receives as inputs the
outputs of other units, denoted with the set in(n). Each unit n encodes a function cn defined as: (i)
fn(sc(n)) if n is an input unit, where fn is a function over variables sc(n) ⊆ X, called its scope,
(ii)
∏

i∈in(n) ci(sc(ni)) if n is a product unit, and (iii)
∑

i∈in(n) wici(sc(ni)) if n is a sum unit, with
wi ∈ R denoting the weighted sum parameters. The scope of a product or sum unit n is the union
of the scopes of its inputs, i.e., sc(n) =

⋃
i∈in(n) sc(i).

Note that tensorized circuits (Def. 1) are circuits where each input (resp. product and sum) layer
consists of scalar input (resp. product and sum) units. For example, Fig. A.1 shows how compu-
tational units are grouped into layers. A probabilistic circuit (PC) is defined as a circuit encoding
a non-negative function. PCs that are smooth and decomposable (Def. A.2) enable computing the
partition function and, more in general, performing variable marginalization efficiently (Prop. A.1).

Definition A.2 (Smoothness and decomposability (Darwiche & Marquis, 2002)). A circuit is smooth
if for every sum unit n, its input units depend all on the same variables, i.e, ∀i, j ∈ in(n) : sc(i) =
sc(j). A circuit is decomposable if the inputs of every product unit n depend on disjoint sets of
variables, i.e, ∀i, j ∈ in(n) i ̸= j : sc(i) ∩ sc(j) = ∅.

Proposition A.1 (Tractability (Choi et al., 2020)). Let c be a smooth and decomposable circuit over
variables X whose input units can be integrated efficiently. Then for any Z ⊆ X and y an assignment
to variables in X \ Z, the quantity

∫
c(y, z) dz can be computed exactly in time and space Θ(|c|),

where |c| denotes the size of the circuit, i.e., the number of connections in the computational graph.

The size of circuits in tensorized form is obtained by counting the number of connections between
the scalar computational units (see App. A.1.1). Squaring circuits or their tensorized representation
efficiently such that the resulting PC is smooth and decomposable (Def. A.2) requires the satisfaction
of structured-decomposability, as showed in (Pipatsrisawat & Darwiche, 2008; Vergari et al., 2021).

Definition A.3 (Structured-decomposability (Pipatsrisawat & Darwiche, 2008; Darwiche, 2009)). A
circuit is structured-decomposable if (1) it is smooth and decomposable, and (2) any pair of product
units n,m having the same scope decompose their scope at their input units in the same way.

Note that shallow MMs are both decomposable and structured-decomposable. As anticipated in
Sec. 3, the expressiveness of squared non-monotonic PCs that are also deterministic is the same
as monotonic deterministic PCs, which are used for tractable maximum-a-posteriori (MAP) infer-
ence. We prove it formally in App. B.6 by leveraging the definition of determinism that we show in
Def. A.5. Before that, we introduce the definition of support of a computational unit.

Definition A.4 (Support (Choi et al., 2020)). The support of a computational unit n over variables
X is defined as the set of value assignments to variables in X such that the output of n is non-zero,
i.e., supp(n) = {x ∈ val(X) | cn(x) ̸= 0}, where val(X) denotes the domain of variables X.
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Definition A.5 (Determinism (Darwiche, 2001)). A circuit c is deterministic if for any sum unit
n ∈ c its inputs have disjoint support (Def. A.4), i.e., ∀i, j ∈ in(n), i ̸= j : supp(i) ∩ supp(j) = ∅.

A.1 TENSORIZED CIRCUITS

Def. 1 can be further generalized by introducing Kronecker product layers, which are the building
blocks of other tensorized circuit architectures, such as randomized and tensorized sum-product
networks (RAT-SPNs) (Peharz et al., 2020b), einsum networks (EiNets) (Peharz et al., 2020a).

Definition A.6 (Tensorized circuit). A tensorized circuit c is a parameterized computational graph
encoding a function c(X) and comprising of three kinds of layers: input, product and sum. Each
layer comprises computational units defined over the same set of variables, also called its scope, and
every non-input layer receives input from one or more layers. The scope of each non-input layer is
the union of the scope of its inputs, and the scope of the output layer computing c(X) is X. Each
input layer ℓ has scope Y ⊆ X and computes a collection of K functions fi(Y) ∈ R, i.e., ℓ outputs
a K-dimensional vector. Each product layer ℓ computes either an Hadamard (or element-wise) or
Kronecker product over the N layers it receives as input, i.e., ℓ = ⊙N

i=1ℓi or ⊗N
i=1ℓi, respectively.

A sum layer with S sum units and receiving input form a previous layer ℓ ∈ RK , is parameterized
by W ∈ RS×K and computes Wℓ.

A.1.1 SIZE OF TENSORIZED CIRCUITS

The time and space complexity of evaluating a circuit is linear in its size. The size |c| of a circuit c
(Def. A.1) is obtained by counting the number of input connections of each scalar product or sum
unit. In other words, it is the number of edges in the computational graph.

If c is a tensorized circuit, then its size is obtained by counting the number of connections in its non-
tensorized form. Fig. A.1 shows part of a tensorized circuit and its non-tensorized form. For sum
layers, the number of scalar input connections is the size of its parameterization matrix, i.e., S ·K
if it is parameterized by W ∈ RS×K . If ℓ is an Hadamard product layer computing ℓ = ⊙N

i=1ℓi,
where each ℓi outputs a K-dimensional vector, then the number of its scalar input connections is
N ·K. In case of Kronecker product layers as in the more general Def. A.6, i.e., ℓ = ⊗N

i=1ℓi where
each ℓi outputs a K-dimensional vector, then the number of its scalar input connections is KN+1.

A.2 TRACTABLE EXACT SAMPLING

Each sum unit in a monotonic PC can be interpreted as a finitely discrete latent variable that can as-
sume as many values as the number of input connections (Peharz et al., 2017). As such, a monotonic
PC can be seen as a hierarchical MM. This allows us to sample exactly from the modeled distribution
by (1) recursively sampling latent variables until input units are reached, and (2) sampling observed
variables from the distributions modeled by input units (Vergari et al., 2019a).

Such probabilistic interpretation of inner sum units for NPC2s is not possible, as they can output
negative values. However, since NPC2s are smooth and decomposable (Def. A.2), they support
efficient marginalization and hence conditioning (Proposition 1). This allows us to still sample
exactly from the modeled distribution via inverse transform sampling. That is, we choose a variable
ordering X1, X2, . . . , XD and sample them in an autoregressive fashion, i.e., x1 ∼ p(X1), x2 ∼
p(X2 | x1), . . ., xD ∼ p(XD | x1, . . . , xD−1), which is still linear in the number of variables.

B PROOFS

B.1 SQUARING TENSORIZED CIRCUITS

Proposition B.1 (Correctness of Alg. 1). Let c be a tensorized structured-decomposable circuit
(Def. 1 or its generalization in Def. A.3), then Alg. 1 recursively constructs the layers of the squared
tensorized PC c2 such that c2 is also structured-decomposable.

Proof. The proof is by induction on the structure of c. Let ℓ be a sum layer having as input ℓi and
computing Wℓi, with W ∈ RS×K and ℓi computing an output in RS . If ℓ is the last layer of c (i.e.,
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the output layer), then S = 1 since c outputs a scalar, and the squared layer ℓ2 must compute

ℓ2 = (Wℓi) · (Wℓi) = (W ⊗W)(ℓi ⊗ ℓi) = (W ⊗W)ℓ2i ,

which requires squaring the input layer ℓi. By inductive hypothesis the squared circuit having ℓ2i
as output layer is structured-decomposable, hence also the squared circuit having ℓ2 as output layer
must be. If ℓ is a non-output sum layer, we still require computing the Kronecker product of its input
layer. The squared layer ℓ2 is again a sum layer that outputs a S2-dimensional vector, i.e.,

ℓ2 = ℓ⊗ ℓ = (Wℓi)⊗ (Wℓi) = (W ⊗W)(ℓi ⊗ ℓi) = (W ⊗W)ℓ2i

via mixed-product property (L11-15 in Alg. 1). Let ℓ be a binary3 Hadamard product layer comput-
ing ℓi ⊙ ℓii for input layers ℓi, ℓii each computing a K-dimensional vector. Then, the squared layer
ℓ2 computes the Hadamard product between K2-dimensional vectors, i.e.,

ℓ2 = (ℓi ⊙ ℓii)⊗ (ℓi ⊙ ℓii) = (ℓi ⊗ ℓi)⊙ (ℓii ⊗ ℓii) = ℓ2i ⊙ ℓ2ii

via mixed-product property with respect to the Hadamard product. By inductive hypothesis ℓ2i and
ℓ2ii are the output layers of structured-decomposable circuits depending on a disjoint sets of variables.
As such, the circuit having ℓ2 as output layer maintains structured-decomposability (L6-9 in Alg. 1).
For the base case we consider the squaring of an input layer ℓ that computes K functions fi over
some variables Y ⊆ X. We replace ℓ with its squaring ℓ2 which encodes the products fi(Y)fj(Y),
1 ≤ i, j ≤ K, by introducing K2 functions gij such that gij(Y) = fi(Y)fj(Y) (L2-4 in Alg. 1).

Squaring Kronecker product layers. In the case of ℓ being a binary Kronecker product layer
instead as in the more general Def. A.6, then the squared layer ℓ2 computes the Kronecker product
between K2-dimensional vectors up to a permutation of the entries, i.e.,

ℓ2 = (ℓi ⊗ ℓii)⊗ (ℓi ⊗ ℓii) = R ((ℓi ⊗ ℓi)⊗ (ℓii ⊗ ℓii)) = R
(
ℓ2i ⊗ ℓ2ii

)
, (6)

by introducing a K4 × K4 permutation matrix R whose rows are all zeros except for one entry
set to 1, which reorders the entries of ℓ2i ⊗ ℓ2ii as to recover the equality in Eq. (6). Note that such
permutation maintains decomposability (Def. A.2), and its application can be computed by a sum
layer having R as fixed parameters. Moreover, by inductive hypothesis, the squaring circuit having
ℓ2 as output layer is still structured-decomposable. Finally, Alg. B.1 generalizes Alg. 1 as to support
the squaring of Kronecker product layers as showed above (L10-11 in Alg. B.1).

Algorithm B.1 squareTensorizedCircuit(ℓ,R)

Input: A tensorized circuit (Def. A.6) having output layer ℓ and defined on a tree RG rooted byR.
Output: The tensorized squared circuit defined on the same tree RG having ℓ2 as output layer computing ℓ⊗ℓ.
1: if ℓ is an input layer then
2: ℓ computes K functions fi(R)
3: return An input layer ℓ2 computing all K2

4: product combinations fi(R)fj(R)
5: else if ℓ is a product layer then
6: {(ℓi,Ri), (ℓii,Rii)} ← getInputs(ℓ,R)
7: ℓ2i ← squareTensorizedCircuit(ℓi,Ri)
8: ℓ2ii ← squareTensorizedCircuit(ℓii,Rii)
9: if ℓ = ℓi ⊙ ℓii then return ℓ2i ⊙ ℓ2ii

10: else return R
(
ℓ2i ⊗ ℓ2ii

)
, where R is

11: a permutation matrix (see proof of Prop. B.1)
12: else ▷ ℓ is a sum layer
13: {(ℓi,R)} ← getInputs(ℓ,R)
14: ℓ2i ← squareTensorizedCircuit(ℓi,R)
15: W ∈ RS×K ← getParameters(ℓ)
16: W′ ∈ RS2×K2

←W ⊗W
17: return W′ℓ2i

B.2 TRACTABLE MARGINALIZATION OF NPC2S

Proposition 1. Let c be a tensorized structured-decomposable circuit where the products of func-
tions computed by each input layer can be tractably integrated. Any marginalization of c2 obtained
via Alg. 1 requires time and space O(L · M2), where L is the number of layers in c and M is the
maximum time required to evaluate one layer in c (as detailed in App. A.1.1).

3Without loss of generality, we assume product layers have exactly two layers as inputs.
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Proof. Given c by hypothesis, Prop. B.1 ensures that the PC built via Alg. 1 computes c2 and is
defined on the same tree RG (Def. 2) of c. As such, c2 is structured-decomposable and hence also
smooth and decomposable (see Def. A.3). Now, we make an argument about c and c2 in their
non-tensorized form (Def. A.1) as to leverage Prop. A.1 for tractable marginalization later. The
size of c is |c| ∈ O(L · M), where L is the number of layers and M the maximum number of
scalar input connections of each layer in c (see App. A.1.1 for details). The size of c2 is therefore
|c2| ∈ O(L ·M2), since Alg. 1 squares the output dimension of each layer as well as the size of the
parameterization matrix of each sum layer. Since c2 is smooth and decomposable and the functions
computed by its input layers can be tractably integrated, then Prop. A.1 ensures we can marginalize
any subset of variables in time and space |c2| ∈ O(L ·M2).

B.3 REPRESENTING PSD MODELS WITHIN THE LANGUAGE OF NPC2S

Proposition 2. A PSD model with kernel function κ, defined over d data points, and parameterized
by a PSD matrix A, can be represented as a mixture of squared NMMs (hence NPC2s) in time
O(d3).

Proof. The PSD model computes a non-negative function f(x;A,κ) = κ(x)⊤Aκ(x), where
κ(x) = [κ(x,x(1)), . . . , κ(x,x(d))] ∈ Rd, with data points x(1), . . . ,x(d), and A ∈ Rd×d is
PSD. Let A =

∑r
i=1 λiuiu

⊤
i be the eigendecomposition of A with rank r. Then we can rewrite

f(x;A,κ) as

f(x;A,κ) = κ(x)⊤
(∑r

i=1
λiuiu

⊤
i

)
κ(x) =

∑r

i=1
λi

(
u⊤
i κ(x)

)2
,

where λi > 0 are positive eigenvalues. Therefore, such PSD model can be represented as a mono-
tonic mixture of r ≤ d squared NMMs (Eq. (2)), whose d components computing κ(x) are shared.
The eigendecomposition of A can be done in time O(d3), and materializing each squared NMMs
(e.g., as in Fig. 1) requires time and space O(d2). Note that if A = uu⊤ is a rank-1 matrix, then
f(x;A,κ) =

(
u⊤κ(x)

)
2 is exactly a squared NMM whose d components compute κ(x).

B.4 RELATIONSHIP WITH TENSOR NETWORKS

In this section, we detail the construction of a tensorized structured-decomposable circuit (Def. 1)
that is equivalent to a matrix product state (MPS) tensor network (Pérez-Garcı́a et al., 2007), as we
mention in Sec. 4. As such, the application of the Born rule as to retrieve a probabilistic model called
Born machine (BM) (Glasser et al., 2019) is equivalent to squaring the equivalent circuit (Sec. 3).

Proposition 3. A BM encoding D-dimensional tensor with m states by squaring a rank r MPS
can be exactly represented as a structured-decomposable NPC2 in O(D · k4) time and space, with
k ≤ min{r2,mr}.

Proof. We prove it constructively, by using a similar transformation used by Glasser et al. (2019)
to represent a non-negative MPS factorization as an hidden Markov model (HMM). Let X =
{X1, . . . , XD} be a set of discrete variables each taking values in {1, . . . ,m}. Let T be a ten-
sor with D m-dimensional indices. Given an assignment x = ⟨x1, . . . , xD⟩ to X, we factorize T
via a rank r MPS factorization, i.e.,

T [x1, . . . , xD] =

r∑

i1=1

r∑

i2=1

· · ·
r∑

iD−1=1

A1[x1, i1]A2[x2, i1, i2] · · ·AD[xD, iD−1] (7)

where A1,AD ∈ Rm×r and Aj ∈ Rm×r×r with 1 < j < D, for indices {i1, . . . , iD−1} and
denoting indexing with square brackets. To reduce T to being computed by a tensorized structured-
decomposable circuit c, i.e., such that c(x) = T [x1, . . . , xD] for any x, we perform the following
construction. First, we perform a canonical polyadic (CP) decomposition (Kolda & Bader, 2009) of
each Aj with 1 < j < D, i.e.,

Aj [xj , ij−1, ij ] =

k∑

sj=1

Bj [ij−1, sj ]Vj [xj , sj ]Cj [ij , sj ]
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where k ≤ min{r2,mr} is the maximum rank of the CP decomposition (Kolda & Bader, 2009),
and Vj ∈ Rm×k, Bj ∈ Rr×k, Cj ∈ Rr×k. Then, we “contract” each Cj with Bj+1 by computing

Wj [sj , sj+1] =

r∑

ij=1

Cj [ij , sj ]Bj+1[ij , sj+1]

with Wj ∈ Rk×k for 1 < j < D − 1. In addition, we “contract” CD−1 with AD by computing

VD[xD, sD−1] =

r∑

iD−1=1

CD−1[iD−1, sD−1]AD[xD, iD−1].

In addition, for notation clarity we rename B2 with W1 and A1 with V1. By doing so, we can
rewrite Eq. (7) as a sum with indices {i1, s2, . . . , sD−1} over products, i.e.,

T [x1, . . . , xD] =

r∑

i1=1

V1[x1, i1]

k∑

s2=1

W1[i1, s2]V[x2, s2] · · ·

· · ·
k∑

sD−2=1

WD−3[sD−3, sD−2]VD−2[xD−2, sD−2]·

·
k∑

sD−1=1

WD−2[sD−2, sD−1]VD−1[xD−1, sD−1]VD[xD, sD−1]

Fig. B.1 shows an example of such MPS factorization via CP decompositions. We see that we can
encode the products over the same indices using a Hadamard product layers, and summations over
indices {i1, s2, . . . , sD−1} with sum layers parameterized by the Wj , with 1 ≤ j < D − 1. More
precisely, the sum layers that sum over s2 and sD−1 are parameterized by matrices of ones. Each Vj

with 1 ≤ j ≤ D is instead encoded by an input layer depending on the variable Xj and computing k
functions fl(Xj) such that fl(xj) = Vj [xj , l], with 1 ≤ l ≤ r if j = 1 and 1 ≤ l ≤ k if j > 1. The
tensorized circuit constructed in this way is structured-decomposable, as it is defined on a linear tree
RG (e.g., Fig. 2a) induced by the same variable ordering implicitly stated by the MPS factorization
(from left to right in Eq. (7), see App. B.4 for details). Fig. B.2 shows the circuit representation
corresponding to the MPS reported in Fig. B.1c.

Finally, note that the number of parameters of such tensorized circuit correspond to the size of
all {Wj}D−2

j=1 and {Vj}Dj=1 introduced above, i.e., overall O(D · k2) with k ≤ min{r2,mr}.
Moreover, the CP decompositions at the beginning can be computed using iterative methods whose
iterations require polynomial time (Kolda & Bader, 2009). To retrieve an equivalent BM, we can
square the circuit constructed in this way using Alg. 1, which results in a circuit having size O(D·k4)
(see Prop. B.1). A similar proof can be carried out for showing a reduction of other tensor network
structures that can be squared efficiently, such as tree-shaped networks (Cheng et al., 2019).

A1 A2 A3 A4

X1 X2 X3 X4

(a)

A1

B2

V2

C2

V3

B3

V3

C3

A4

X1 X2 X3 X4

(b)

V1

W1

V2

W2

V3V3

V4

X1 X2 X3 X4

(c)

Figure B.1: Further decomposing a matrix product state (MPS) via CP decompositions. Tensor
networks are represented here using the Penrose graphical notation, where circles denote tensors
and their connections denote summations over shared indices, and with variables X1, X2, X3, X4

denoting input indices. Given a MPS (a), we perform a CP decomposition of A2 and A3 (b). Red
edges denote additional indices given by the CP decompositions. Then, we rename A1 with V1,
B2 with W1. Finally, we contract C2 with B3, and C3 with A4 resulting in tensors W2 and V4,
respectively (c). Fig. B.2 shows the tensorized circuit corresponding to such tensor network, where
V1,V2,V3,V4 and W1,W2 parameterize input layers and sum layers, respectively.
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V1[x1]

V2[x2]

V3[x3]

V4[x4]

W1

1
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⊙
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(a)

X3,X4

X4 X3

X2

X2,X3,X4 X1

X1,X2,X3,X4
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Figure B.2: Matrix product states (MPS) as structured-decomposable circuits. The decom-
posed MPS over three variables showed in Fig. B.1c can be immediately represented as a tensorized
structured-decomposable circuit (a) defined on a linear tree RG (b, matching the colors of layers)
having Hadamard product layers and sum layers parameterized by W1,W2 and a row vector of
ones 1 (for the output sum). Each input layer maps variable assignments x1, x2, x3, x4 to rows in
V1,V2,V3,V4, respectively.

B.4.1 RELATIONSHIP WITH HIDDEN MARKOV MODELS

MPS tensor networks where each tensor Ai is non-negative can be seen as inhomogeneous hidden
Markov models (HMMs) as showed by Glasser et al. (2019), i.e., where latent state and emitting
transitions do not necessarily share parameters. As such, the tensorized structured-decomposable
circuit c that is equivalent to a MPS (see App. B.4) is also an inhomogenous HMM if c is monotonic.

In Sec. 5 we experiment with a tensorized monotonic PC that is an inhomogenous HMM to distill
a large language model, as to leverage the sequential structure of the sentences. We compare it
against a NPC2 that is the squaring of a MPS (also called Born machine (Glasser et al., 2019)) or,
equivalently, the squaring of an inhomogenous HMM-like whose parameters can be negative.

B.5 EXPONENTIAL SEPARATION

Theorem 1. There is a class of non-negative functions F over variables X that can be compactly
represented as shallow squared NMMs (and hence squared non-monotonic PCs) but for which the
smallest structured-decomposable monotonic PC computing any F ∈ F has size 2Ω(|X|).

Proof. For the proof of Theorem 1, we start by constructing F by introducing a variant of the unique
disjointness (UDISJ) problem, which seems to have first been introduced by De Wolf (2003). The
variant we consider here is defined over graphs, as detailed in the following definition.

Definition B.1 (Unique disjointness function). Consider an undirected graph G = (V,E), where V
denotes its vertices and E its edges. To every vertex v ∈ V we associate a Boolean variable Xv and
let XV = {Xv | v ∈ V } be the set of all these variables. The unique disjointness function of G is
defined as

UDISJG(Xv) :=

(
1−

∑

uv∈E

XuXv

)2

. (8)

The UDISJ function as a non-monotonic circuit. We will construct F as the class of functions
UDISJG for graphs G ∈ G, where G is a family of graphs that we will choose later. Regardless
of the way the class G is picked, we can compactly represent UDISJG as a squared structured-
decomposable (Def. A.3) and non-monotonic circuit as follows. First, we represent the function
c(XV ) = 1−∑uv∈E XuXv as sum unit computing 1 · a(XV ) + (−1) · b(XV ) where

• a is a circuit gadget that realizes an unnormalized uniform distribution over the domain
of variables in XV , i.e., a(XV ) =

∏
v∈V (1{Xv = 0} + 1{Xv = 1}) where 1{Xv = 0}

(resp. 1{Xv = 1}) is an indicator function that outputs 1 when Xv is set to 0 (resp. 1);
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• b is another sum unit whose inputs are product units over the input units
1{Xu = 1} ,1{Xv = 1} if there is an edge uv in G, i.e., b(XV ) =

∑
uv∈E 1{Xu = 1} ·

1{Xv = 1}.

Note that b may not be smooth, but we can easily smooth it by adding to every product an additional
input that is a circuit similar to a that outputs 1 for any input Xuv , where Xuv = XV \ {Xu, Xv}.
Since c is structured-decomposable (Def. A.3), we can easily multiply it with itself to realize c2

that would be still a structured-decomposable circuit whose size is polynomially bounded as |c2| ∈
O(|c|2) (Vergari et al., 2021). Note that in this case we have that |c| is a polynomial in the number of
variables (or vertices) |XV | by the construction above. Furthermore, note that c2 is non-monotonic
as one of its sum unit has negative parameters (i.e., −1) to encode the subtraction in Eq. (8).

The lower bound for monotonic circuits. To prove the exponential lower bound for monotonic
circuits in Theorem 1, we will use an approach that has been used in several other works (Martens
& Medabalimi, 2014; de Colnet & Mengel, 2021). This approach is based on representing a decom-
posable circuit (and hence a structured-decomposable one) as a shallow mixture whose components
are balanced products, as formalized next.

Definition B.2 (Balanced decomposable product). Let X be a set of variables. A balanced de-
composable product over X is a function from X to R that can be written as f(Y) × h(Z) where
f and h are functions to R, × is an alias for the product (when used to multiply functions from
now on), and (Y,Z) is a balanced partitioning of X, i.e., Y ∪ Z = X, Y ∩ Z = ∅ with
|X|/3 ≤ |Y|, |Z| ≤ 2|X|/3.

Theorem B.1 (Martens & Medabalimi (2014)). Let F be a non-negative function over Boolean
variables X computed by a smooth and decomposable circuit c. Then, F can be written as a sum of
N balanced decomposable products (Def. B.2) over X, with N ≤ |c| in the form4

F (X) =

N∑

k=1

fk(Yk)× hk(Zk),

where (Yk,Zk) is balanced a partitioning of X for 1 ≤ k ≤ N . If c is structured-decomposable,
the N partitions {(Yk,Zk)}Nk=1 are all identical. Moreover, if c is monotonic, then all fk, hk only
compute non-negative values.

Intuitively, Thm. B.1 tells us that to lower bound the size of c we can lower bound N . To this end, we
first encode the UDISJ function (Eq. (8)) as a sum of N balanced products and show the exponential
growth of N for a particular family of graphs. We start with a special case for a representation in
the following proposition.

Proposition B.2. Let Gn be a matching of size n, i.e., a graph consisting of n edges none of which
share any vertices. Assume that the UDISJ function (Eq. (8)) for Gn is written as a sum of products
of balanced partitions

UDISJGn
(Y,Z) =

N∑

k=1

fk(Y)× hk(Z),

where for every edge uv in Gn we have that Xu ∈ Y and Xv ∈ Z, and fk, hk are non-negative
functions. Then N = 2Ω(n).

To prove the above result, we will make an argument on the rank of the so-called communication
matrix, also known as the value matrix, for a function F and a fixed partition (Y,Z).

Definition B.3 (Communication matrix, or value matrix (de Colnet & Mengel, 2021)). Let F be
a function over (Y,Z), its communication matrix MF is a 2|Y| × 2|Z| matrix whose rows (resp.
columns) are uniquely indexed by assignments to Y (resp. Z) such that for a pair of index5 (iY, jZ),
the entry at the row iY and column jZ in MF is F (iY, jZ).

4In Martens & Medabalimi (2014), Theorem 38, this result is stated with N ≤ |c|2. The square materializes
from the fact that they reduce their circuits to have all their inner units to have exactly two inputs, as we already
assume, following de Colnet & Mengel (2021).

5An index iY (resp. jZ) is a complete assignment to Boolean variables in Y (resp. Z). See Example 1.
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Example 1. Let us consider a simple matching on 6 vertices, where Y correspond to the first 3
vertices, and Z to the last 3, and where there is an edge between the first, second and third vertices
of Y and Z. The matrix MF is an 8-by-8 matrix, a row and a column for each assignment of the 3
binary variables associated to each vertex; it is given by

Y\Z 000 100 010 001 110 101 011 111
000 1 1 1 1 1 1 1 1
100 1 0 1 1 0 0 1 0
010 1 1 0 1 0 1 0 0
001 1 1 1 0 1 0 0 0
110 1 0 0 1 1 0 0 1
101 1 0 1 0 0 1 0 1
011 1 1 0 0 0 0 1 1
111 1 0 0 0 1 1 1 4

Note that the name UDISJ comes from the fact that MF (i, j) = 0 if and only if Y and Z share a
single entry equal to 1. In the following, we will rely on the following quantity.

Definition B.4 (Non-negative rank). The non-negative rank of a non-negative matrix A ∈ Rm×n
+ ,

denoted rank+(A), is the smallest k such that there exist k nonnegative rank-one matrices {Ai}ki=1

such that A =
∑k

i=1 Ai. Equivalently, it is the smallest k such that there exists two non-negative
matrices B ∈ Rm×k

+ and C ∈ Rk×n
+ such that A = BC.

Given a function F written as a sum over N decomposable products (see Thm. B.1) over a fixed par-
tition (Y,Z), we now show that the non-negative rank of its communication matrix MF (Def. B.3)
is a lower bound of N .

Lemma B.1. Let F (X) =
∑N

k=1 fk(Y)× hk(Z) where fk and hk are non-negative functions and
let MF be the communication matrix (Def. B.3) of F for the partition (Y,Z), then it holds that

rank+(MF ) ≤ N.

Proof. This proof is an easy extension of the proof of Lemma 13 from de Colnet & Mengel (2021).
Assume w.l.o.g. that fk(Y) × hk(Z) ̸= 0 for any complete assignment to Y and Z.6 Let Mk

denote the communication matrix of the function fk(Y) × hk(Z). By construction, we have that
MF =

∑N
k=1 Mk. Furthermore, since all values in MF are non-negative by definition, rank+(Mk)

is defined for all k and by sub-additivity of the non-negative rank we have that rank+(MF ) ≤∑N
k=1 rank+(Mk). To conclude the proof, it is sufficient to show that Mk are rank-1 matrices, i.e.,

rank+(Mk) = 1. To this end, consider an arbitrary k. Since fk(Y) × hk(Z) ̸= 0, there is a row in
Mk that is not a row of zeros. Say it is indexed by iY, then its entries are of the form fk(iY)×hk(jZ)
for varying jZ. In any other rows indexed by i′Y we have fk(i

′
Y) × hk(jZ) = (fk(i

′
Y)/fk(iY)) ×

fk(iY) × hk(jZ) for varying jZ. Consequently, all rows are non-negative multiples of the iY row,
and therefore rank+(Mk) = 1.

To complete the proof of Prop. B.2, we leverage a known lower bound of the non-negative rank of
the communication matrix of the UDISJ problem. The interested reader can find more information
on this result in the books Roughgarden (2016), Gillis (2020) and the references therein.

Theorem B.2 (Fiorini et al. (2015)). Let a UDISJ function defined as in Prop. B.2, and MUDISJ be
its communication matrix over a partition (Y,Z), then it holds that

(3/2)n ≤ rank+(MUDISJ).

Using Thm. B.2 and Lem. B.1, we directly get Prop. B.2. So we have shown that, for a fixed
partition of variables (Y,Z), every monotonic circuit c encoding the UDISJ function (Eq. (8)) of
a matching of size n has size |c| ≥ 2Ω(n). However, the smallest non-monotonic circuit encoding
the same function has polynomial size in n (see the construction of the UDISJ function as a circuit
above). Now, to complete the proof for the exponential lower bound in Theorem 1, we need to find

6If this were not the case we could simply drop the term from the summation, which would clearly reduce
the number of summands.
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a function class F where this result holds for all possible partitions (Y,Z). Such function class
consists of UDISJ functions over a family of graphs, as detailed in the following proposition.

Proposition B.3. There is a family of graphs G such that for every graph Gn = (Vn, En) ∈ G we
have |Vn| = |En| = O(n), and any monotonic structured-decomposable circuit representation of
UDISJGn

has size 2Ω(n).

Proof. We prove it by constructing a class of so-called expander graphs, which we introduce next.
We say that a graph G = (V,E) has expansion ε if, for every subset V ′ of V of size at most |V |/2,
there are at least ε|V ′| edges from V ′ to V \ V ′ in G. It is well-known, see e.g. Hoory et al. (2006),
that there are constants ε > 0 and d ∈ N and a family (Gn)n∈N of graphs such that Gn has at least n
vertices, expansion ε and maximal degree d. We fix such a family of graphs in the remainder and
denote by Vn (resp. En) the vertex set (resp. the edge set) of Gn.

Let c be a monotonic structured-decomposable circuit of size N computing UDISJGn
. Then, by

using Thm. B.1, we can write it as

UDISJGn
(Y,Z) =

N∑

k=1

fk(Y)× hk(Z) (9)

where (Y,Z) is a balanced partition of XV . Let VY = {v ∈ Vn | Xv ∈ Y} and VZ = {v ∈ Vn |
Xv ∈ Z}. Then (VY, VZ) form a balanced partition of Vn. By the expansion of Gn, it follows that
there are Ω(n) edges from vertices in VY to vertices in VZ. By greedily choosing some of those
edges and using the bounded degree of Gn, we can construct an edge set E′

n of size Ω(n) that is a
matching between Y and Z, i.e., all edges in E′

n go from Y to Z and every vertex in Vn is incident
to only one edge in E′

n. Let V ′
n be the set of endpoints in E′

n and XV ′
n
⊆ XV be the variables

associated to them. We construct a new circuit c′ from c by substituting all input units for variables
Xv that are not in XV ′

n
by 0. Clearly, |c′| ≤ |c| and hence all the lower bounds for |c′| are lower

bounds for |c|. Let Y = XV ′
n
∩Y and Z = XV ′

n
∩ Z. By construction c′ computes the function

UDISJG′
n
(Y,Z) =


1−

∑

uv∈E′
n

XuXv




2

which corresponds to solving the UDISJ problem over the graph G′
n = (V ′

n, E
′
n). From Eq. (9)

recover that

UDISJG′
n
(Y,Z) =

N∑

k=1

f ′
k(Y)× h′

k(Z),

where f ′
k (resp. h′

k) are obtained from fk (resp. hk) by setting all the variables not in XV ′
n

to 0. Since
c′ is monotonic by construction and |E′

n| = Ω(n), from Prop. B.2 it follows that N = 2Ω(n).

Prop. B.3 concludes the proof of Theorem 1, as we showed the existence of family of graphs for
which the smallest structured-decomposable monotonic circuit computing the UDISJ function over
n variables has size 2Ω(n). However, the smallest structured-decomposable non-monotonic circuit
has size polynomial in n, whose construction has been detailed at the beginning of our proof.

B.6 SQUARING DETERMINISTIC CIRCUITS

In Sec. 4.1 we argued that squaring any non-monotonic, smooth, decomposable (Def. A.2), and
deterministic (Def. A.5) circuit yields a monotonic and deterministic PC. As a consequence, any
function computed by a NPC2 that is deterministic can be computed by a monotonic and deter-
ministic PC. Therefore, we are interested in squaring structured-decomposable circuits that are not
deterministic. Below we formally prove Proposition 4.

Proposition 4. Let c be a smooth, decomposable and deterministic circuit over variables X possibly
computing a negative function. Then, the squared circuit c2 is monotonic and has the same structure
(hence size) of c.
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Proof. The proof is by induction. Let n ∈ c be a product unit that computes cn(Z) =∏
i∈in(n) cn(Zi), with Z ⊆ X and (Z1, . . . ,Z|in(n)|) forming a partitioning of Z. Then its

squaring computes c2n(Z) =
∏

i∈in(n) c
2
n(Zi). Now consider a sum unit n ∈ c that computes

cn(Z) =
∑

i∈in(n) wici(Z) with Z ⊆ X and wi ∈ R. Then its squaring computes c2n(Z) =∑
i∈in(n)

∑
j∈in(n) wiwjci(Z)cj(Z). Since c is deterministic (Def. A.5), for any i, j with i ̸= j

either ci(Z) or cj(Z) is zero for any assignment to Z. Therefore, we have that

c2n(Z) =
∑

i∈in(n)

w2c2i (Z). (10)

This implies that in deterministic circuits, squaring does not introduce additional components that
encode (possibly negative) cross-products. The base case is defined on an input unit n that models
a function fn, and hence its squaring is an input unit that models f2

n. By induction c2 is constructed
from c by squaring the parameters of sum units wi and squaring the functions fn modeled by input
units. Moreover, the number of inputs of each sum unit remains the same, as we observe in Eq. (10),
and thus c2 and c have the same size.

C EFFICIENT LEARNING OF NPC2S
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Figure C.1: Evaluating the squared circuit representation adds little overhead during training.
By learning by MLE (Eq. (4)) and batched gradient descent, the time and space required to compute
the partition function Z of c2 is constant w.r.t. the batch size (BS) (left). By fixing the batch size to
512 and varying the output dimensionality (K) of each layer (right), the resources needed to compute
Z are similar to the ones needed to evaluate c (i.e., c(X)). For the left figure, we fix K = 256 and
vary the BS, while for the right figure we fix BS = 512 and vary K. The plots share the y-axis.

In this section, we investigate the computational cost of learning NPC2s with a series of benchmarks,
showing that NPC2s add little computational overhead over traditional monotonic PCs (MPCs).

Efficient renormalization in practice. As suggested by the MLE objective (Eq. (4)), squaring the
tensorized circuit c with Alg. 1 is only required to compute the partition function Z =

∫
c2(x)dx.

In addition, we need to compute Z only once per parameter update via gradient ascent, as Z does
not depend on the training data. For these reasons, the increased computational burden of evaluating
a squared circuit (see Proposition 1) as to compute Z is negligible, and it is independent w.r.t. the
batch size. Fig. C.1 illustrates this aspect by comparing the time needed to evaluate c on a batch of
data and to compute the partition function Z. The results showed in Fig. C.1 are obtained by running
benchmarks on NPC2s that are similar in size to the ones we experiment with in Sec. 5. That is,
we benchmark a mixture of 32 NPC2s, each having an architecture built from a randomly-generated
tree RG (see App. F for details) approximating the density function of BSDS300 (the data set with
highest number of variables, see Table H.1). The input layers compute Gaussian distributions.

Training efficiency on UCI data sets. We benchmark the computational cost of learning NPC2s
on UCI data sets (Table H.1). Fig. C.2 compares time and memory required to learn the best NPC2s
and MPCs showed in Fig. 4, while Fig. C.3 compares time and memory required to learn them in
a worse scenario for NPC2s where the batch size is small and the layer dimensionality is large, as
NPC2s benefit from using large batch sizes as discussed above. NPC2s add very little overhead
during training in most configurations when compared to MPCs, as computing the partition function
Z is comparable to evaluating MPCs on a batch of samples. In particular, on Gas (|X| = 8), NPC2

takes more time and memory to compute Z (times are 6ms and 121ms, while memory allocations
are 0.6GiB and 5.8GiB), but it is only slightly more than the cost of computing c for MPCs (time
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144ms and memory 4.4GiB). Moreover, note that NPC2s achieve about a ×2 improvement on the
log-likelihood on Gas. On the much higher dimensional data set BSDS300 (|X| = 63) instead, we
found that training NPC2 is even cheaper as it requires fewer parameters while still achieving an
higher log-likelihood (128.38 rather than 123.3).

Hardware and significance of benchmarks. The benchmarks mentioned above and illustrated in
Figs. C.1 to C.3 have been run on a single NVIDIA RTX A6000 with 48GiB of memory. The
measured times are averaged over 50 independent circuit evaluations.
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Figure C.2: NPC2s add little overhead during training on real-world data sets, while improving
log-likelihoods. We evaluate time and memory required by monotonic PCs (MPCs) and NPC2s
to perform one optimization step on UCI data sets (Gas, Hepmass, MiniBooNE, BSDS300) with
number of variables |X| and using the best hyperparameters found (see App. H.3). We benchmark
the computation of c(x) by MPCs and c2(x) by NPC2s on a batch x of data (left), as well as the
partition functions Z for both models (right), and label the data points with the final log-likelihoods
achieved by the corresponding models (as also reported in Fig. 4). The plots share the y-axis. For
NPC2s, computing the partition function Z is more expensive both in time and memory (right), but
it is still very similar to the cost of evaluating c(x) or c2(x) (left).
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Figure C.3: NPC2s add little overhead during training even with relatively small batch sizes.
We evaluate time and memory required by monotonic PCs (MPCs) and NPC2s to perform one opti-
mization step on UCI data sets (Gas, Hepmass, MiniBooNE, BSDS300) with respect to the number
of variables |X| and using the same hyperparameters (512 as batch size, 512 as layer dimensionality,
and Gaussian input layers). The plots share the y-axis. The cost of computing c2(x) on a batch x
of data by NPC2s is only slightly higher than the cost of computing c(x) by MPCs (left), while the
cost of computing Z for NPC2s is comparable to evaluating c2(x) or c(x) (right).

D THE SIGNED LOG-SUM-EXP TRICK

Scaling squared non-monotonic PCs to more than a few tens (resp. hundreds) of variables without
performing computations in log-space is infeasible in 32-bit (resp. 64-bit) floating point arithmetic,
as we illustrate in Fig. D.1. For this reason, we must perform computations in the log-space even
in presence of negative values. The idea is to represent non-zero outputs y ∈ RS of each layer
in terms of the element-wise logarithm of their absolute value log |y| and their element-wise sign
sign(y) ∈ {−1, 1}S , i.e., such that y = sign(y)⊙ exp(log |y|).
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Figure D.1: Squared non-monotonic PCs cannot scale
without performing computations in log-space. Parti-
tion functions (and their natural logarithm) of squared non-
monotonic PCs having Gaussian input units, with increasing
number of variables V and having depth ⌈log2 V ⌉ computed
using 32-bit and 64-bit floating point arithmetic.

In practice, we evaluate product and sum layers according to the following evaluation rules. Given
an Hadamard product layer ℓ, then it computes and propagates both log |ℓ| = ∑N

i=1 log |ℓi| and
sign(ℓ) =

⊙N
i=1 sign(ℓi) for some inputs {ℓi}Ni=1. Given a sum layer ℓ parameterized by W ∈

RS×K and having ℓ′ as input layer, then it computes and propagates both log |ℓ| = α+ log |s| and
sign(ℓ) = sign(s) where α and s are defined as

α = 1 · max
1≤j≤S

{log |ℓ′[j]|} s = W
(
sign(ℓ′)⊙ exp(log |ℓ′| −α)

)

by assuming s ̸= 0, 1 denoting a S-dimensional vector of ones, ℓ′[j] denoting the j-th entry of the
output of ℓ′, and exp being applied element-wise. We call signed log-sum-exp trick the evaluation
rule above for sum layers, which generalizes the log-sum-exp trick (Blanchard et al., 2021) that is
used to evaluate tensorized monotonic PC architectures (Peharz et al., 2020a).

For the more general definition of tensorized circuits instead (Def. A.6), given a Kronecker product
layer ℓ, then it computes both log |ℓ| = ⊕N

i=1 log |ℓi| and sign(ℓ) =
⊗N

i=1 sign(ℓi), where
⊕

denotes an operator similar to the Kronecker product but computing sums rather than products.

E SPLINES AS EXPRESSIVE INPUT COMPONENTS
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1
Figure E.1: Splines represent a class of flexible
non-linear functions. A quadratic (k = 2) spline
(in black) over n = 4 knots chosen uniformly in
(0, 1) (i.e, 0.2, 0.4, 0.6 and 0.8) is computed by a
linear combination of n+k+1 = 7 distinct basis
functions (each colored differently).

Polynomials defined on fixed intervals are candidate functions to be modeled by components (resp.
input layers) of squared NMMs (Sec. 2) (resp. NPC2s Sec. 3). This is because they can be negative
function and their product can be tractably integrated. In particular, we experiment with piecewise
polynomials, also called splines. An univariate spline function of order k is a piecewise polynomial
defined on a variable X , and the n values of X where polynomials meet are called knots. B-splines
of order k are basis functions for continuous spline functions of the same degree. In practice, we can
represent any spline function f of order k defined over n knots inside an interval (a, b) as a linear
combination of n+ k + 1 basis functions, i.e.,

f(X) =
∑n+k+1

i=1
αiBi,k(X) (11)

where αi ∈ R are the parameters of the spline and Bi,k(X) are polynomials of order k (i.e., the basis
of f ), which are unequivocally determined by the choice of the n knots. In particular, each Bi,k(X)
is a non-negative polynomial that is recursively defined with the Cox-de-Boor formula (de Boor,
1971; Piegl & Tiller, 1995). Given two splines f, g of order k defined over n knots and represented
in terms of n+ k + 1 basis functions as in Eq. (11), we can write their product integral as

∫ b

a

f(X)g(X) dX =
∑n+k+1

i=1

∑n+k+1

j=1
αiβj

∫ b

a

Bi,k(X)Bj,k(X) dX (12)
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where αi ∈ R (resp. βj ∈ R) denote the parameters of f (resp. g). Therefore, integrating a
product of splines requires integrating products of their basis functions. Among the various way of
computing Eq. (12) exactly (Vermeulen et al., 1992), we can do it in time O(n2 ·k2) by representing
the product Bi,k(X)Bj,k(X) as the basis polynomial of another B-spline of order 2k+1, and finally
integrating it in the interval of definition. Fig. E.1 shows an example of a spline.

Since each Bi,k is non-negative, we can use B-splines as components (resp. modeled by input
layers) of traditional MMs (resp. monotonic PCs) by assuming each spline parameter αi to be non-
negative. This is the case of monotonic PCs we experimented with in Sec. 5, where non-negativity
is guaranteed via exponentiation of the parameters.

F TREE REGION GRAPHS
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Figure F.1: Different ways to construct region graphs. The left figure illustrates a linear tree (LT)
region graph (Def. 2) over four variables, which decomposes variables one by one. The right figure
shows a possible binary tree (RT) region graph over five variables, which recursively splits them.

Since we require structured-decomposability to square circuits (see Sec. 3.2), we construct their
architecture based on tree RGs (Def. 2). We choose to experiment with two kinds of tree RGs:
binary tree (BT) and linear tree (LT). Following Peharz et al. (2020b), the BT is built by recursively
partitioning variables evenly and randomly until regions with only one variable are obtained. The
LT is built by (1) shuffling the variables randomly and then (2) recursively partitioning variables
one by one, i.e., a set of variables {Xi, . . . , XD} is partitioned in {Xi} and {Xi+1, . . . , XD} for
1 ≤ i ≤ D − 1. Fig. F.1 shows examples of LT and BT RGs. Note that the LT is the same
on which the circuit representation of matrix-product states (MPS) (Pérez-Garcı́a et al., 2007) and
TTDE (Novikov et al., 2021) depend on (see also Sec. 4 and App. B.4).

G ADDITIONAL RELATED WORKS

Squared neural family (SNEFY) (Tsuchida et al., 2023) have been concurrently proposed as a
class of models squaring the 2-norm of the output of a single-hidden-layer neural network. Under
certain parametric conditions, SNEFYs can be re-normalized as to model a density function, but
they do not guarantee tractable marginalization of any subset of variables as our NPC2s do, unless
they encode a fully-factorized distribution, which would limit their expressiveness. Hence, SNEFYs
can be employed in our NPC2s to model multivariate units in input layers with bounded scopes.

The rich literature of PCs provides several algorithms to learn both the structure and the parameters
of circuits (Poon & Domingos, 2011; Peharz et al., 2017; Di Mauro et al., 2021; Dang et al., 2021;
Liu & Van den Broeck, 2021; Liu et al., 2023). However, in these works circuits are always assumed
to be monotonic. A first work considering subtractions is Dennis (2016) which generalizes the ad-
hoc constraints over Gaussian NMMs (Zhang & Zhang, 2005) to deep PCs over Gaussian inputs
by constraining their structure and reparameterizing their sum weights. Shallow NMM represented
as squared circuits have been investigated for low-dimensional categorical distributions in Loconte
et al. (2023). Concurrently, Sladek et al. (2023) investigated interleaving PSD models and PCs to
represent deep NMMs in low-dimensional settings. The resulting model can be interpreted as a
sum of squared circuits. Circuit representations encoding probability generating functions allow
negative coefficients in symbolic computational graphs (Zhang et al., 2021), differently from them
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we encode probability densities and masses. Non-monotonic PCs have been recently proven to be
able to compactly represent determinantal point processes, for which no compact monotonic circuit
representation exists (Broadrick et al., 2024).

The relationship with tensor networks and PCs has been hinted in (Glasser et al., 2019) and
(Novikov et al., 2021) for matrix-product states. However, they did neither provide a formal re-
duction nor a highlighted the structural properties needed to tractably perform the squaring and
marginalize variables. Glasser et al. (2019) showed a number of bounds over ranks of matrix-product
states and Born machines, however they do not provide a separation between NPC2s and monotonic
PCs as we do, nor their results generalize to any region graph, including tree-shaped networks as
our Theorem 1 does for structured-decomposable monotonic PCs. Born machines and squared tree-
shaped tensor networks have been explored for distribution estimation (Han et al., 2018; Cheng et al.,
2019) but, differently from our NPC2s, they were not equipped with non-linearities at the inputs and
their evaluation was limited to small scale binary data. Bailly (2011) proposed squared probabilistic
automata that are similar to Born machines but supporting inputs of any length by sharing the same
parameter tensors across steps. By applying the construction used to show Proposition 3, we can
represent such models as NPC2s where the parameters of sum and input layers are shared. Jaini
et al. (2018) draw a connection between monotonic PCs, latent tree models (Choi et al., 2011) and
hierarchical tensor mixture models (Hackbusch, 2012) with non-negative parameters, showing an
exponential separation between shallow and deep monotonic circuits.
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Figure H.1: Negative parameters increases the expressiveness of NPC2s. From left to right
(above) and for each bivariate density, we show the ground truth (GT) and its estimation by a mono-
tonic PC (MPC), a squared monotonic PC (MPC2), and a NPC2 having input layers computing
quadratic splines (App. E) and with the same number of parameters. Moreover, (below) we show
the average log-likelihoods (and one standard deviation with 10 independent runs) on unseen data
achieved by a monotonic MPC, a squared monotonic MPC2, and a NPC2 by increasing the dimen-
sionality of input layers K.

H EXPERIMENTAL SETTINGS AND COMPLEMENTARY RESULTS

H.1 CONTINUOUS SYNTHETIC DATA

Following (Wenliang et al., 2019) we experiment with monotonic PCs, their squaring and NPC2s
on synthetic continuous 2D data sets, named rings, cosine, funnel and banana. We generate each
synthetic data set by sampling 10 000/1 000/2 000 training/validation/test samples. In these ex-
periments, we are interested in studying whether NPC2s can be more expressive in practice, with-
out making assumptions on the data distribution and therefore choosing parametric distributions as
components. For this reason, we choose components computing the product of univariate spline
functions (see App. E) over 32 knots that are uniformly chosen in the data domain. In particular, for
monotonic mixtures we restrict the spline coefficients to be non-negative.

Learning and hyperparameters. Since the data is bivariate, the tree on which PCs are defined
on consists of just one region that is split in half. All models are learned by batched stochastic
gradient descent using the Adam optimizer with default learning rate (Kingma & Ba, 2015) and a
batch size of 256. The parameters of all mixtures are initialized by sampling uniformly between 0
and 1. Furthermore, monotonicity in (squared) PCs is ensured by exponentiating the parameters.

Fig. 3 shows the density functions estimated from data sets rings and cosine, when using 8 and 12
components, respectively. Moreover, Fig. H.1 report the log-likelihoods and other density functions
learned from data sets funnel and banana, when using 4 components.

H.2 DISCRETE SYNTHETIC DATA

For our experiments investigating the flexibility of input layers of NPC2s (Sec. 2) in case of discrete
data (Sec. 5), we quantize the bivariate continuous synthetic data sets reported in App. H.1. That is,
we discretize both continuous variables using 32 uniform bins each. The resulting target distribution
is therefore a probability mass function over two finitely discrete variables.

We experiment with monotonic PCs, their squaring and NPC2s with two families of input layers.
First, we investigate very flexible input layers for finitely discrete data: categoricals for monotonic
PCs and embeddings for NPC2s. Second, we experiment with the less flexible but more parameter-
efficient Binomials. The learning and hyperparameters setting are the same used for the continuous
data (see App. H.1). Fig. H.2 shows that there is little advantage in subtracting probability mass
with respect to monotonic PCs having categorical components. However, in case of the less flex-
ible Binomial components, NPC2s capture the target distribution significantly better. This is also
confirmed by the log-likelihoods on unseen data, which we show in Fig. H.2.
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(a) Mixtures with categorical or embedding components.
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Figure H.2: Negative parameters increases the expressiveness of NPC2s. From left to right
(above) and for each bivariate distribution, we show the ground truth (GT) and its estimation by a
monotonic PC (MPC), a squared monotonic PC (MPC2), and a NPC2 having input layers comput-
ing categoricals (embeddings for NPC2s) and with the same number of parameters. Moreover, we
show the average log-likelihoods (and one standard deviation with 10 independent runs) on unseen
data achieved by a monotonic MPC, a squared monotonic MPC2, and a NPC2 with either categori-
cal (a) or Binomial (b) components and by increasing the dimensionality of input layers K.

H.3 UCI CONTINUOUS DATA

Data sets. In Sec. 5 we evaluate NPC2s for density estimation on five multivariate UCI data sets
(Dua & Graff, 2017): Power (Hebrail & Berard, 2012), Gas (Fonollosa et al., 2015), Hepmass (Baldi
et al., 2016), MiniBooNE (Roe et al., 2004) and BSDS300 patches (Martin et al., 2001) by following
the pre-processing by Papamakarios et al. (2017). Table H.1 reports their statistics.

Number of samples

D train validation test

Power 6 1,659,917 184,435 204,928
Gas 8 852,174 94,685 105,206

Hepmass 21 315,123 35,013 174,987
MiniBooNE 43 29,556 3,284 3,648

BSDS300 63 1,000,000 50,000 250,000

Table H.1: UCI data set statistics. Di-
mensionality D and number of samples
of each data set split after the prepro-
cessing by Papamakarios et al. (2017).

Models. We compare monotonic PCs and NPC2s in tensorized form (Def. 1) for density estimation.
The tensorized architecture for both is constructed based on either the binary tree (BT) or linear
tree (LT) RGs (see App. F). In addition, since both RGs are randomly-constructed, we instantiate
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eight of them by changing the random seed. By doing so, our monotonic PCs consist of a mixture
of tensorized monotonic PCs each defined on a different RG. Conversely, our NPC2s consist of a
mixture (with non-negative parameters) of tensorized NPC2s, each constructed by squaring a circuit
defined on a different RG. To ensure a fair comparison, monotonic PCs and NPC2s have the exact
same structure, but NPC2s allow for negative parameters via the squaring mechanism (see Sec. 3).

Hyperparameters. We search for hyperparameters by running a grid search with both monotonic
PCs and NPC2s. For each UCI data set, Tables H.2 and H.3 report the possible value of each
hyperparameter, depending on the chosen RG. In case of input layers modeling spline functions (see
App. E), we use quadratic splines and select 512 uniformly in the domain space.

Parameters initialization. We found NPC2s to be more sensible to the choice of the initialization
method for parameters than monotonic PCs. The effect of initialization in monotonic PCs is not well
explored in the literature, and it is even more unclear for NPC2s as parameters are allowed to be
negative. In these experiments, we investigated initializing NPC2s by independently sampling the
parameters from a normal distribution. However, we found NPC2s to achieve higher log-likelihoods
if they are initialized with non-negative parameters only, i.e., by sampling uniformly between 0 and
1. However, in App. H.5 we show they still learn negative parameters when converging. Note that
our work is a first attempt to learn non-monotonic PCs at scale, thus it opens interesting future
directions on how to initialize and learn NPC2s, as well as how to regularize them.

Table H.2: Hyperparameter grid search space for each UCI data set (for BT experiments).
Each data set is associated to lists of hyperparameters: learning rate, the dimensionality of layers
in tensorized PCs (K), batch size, and whether input layers compute Gaussian likelihoods or spline
functions (see App. E).

Data set Learning rate K Batch size Input layer

Power

[0.01, 0.005]

[32, . . . , 512] [512, 1024, 2048]

[Gaussian, splines]
Gas [32, . . . , 1024] [512, 1024, 2048, 4096]

Hepmass [32, . . . , 512] [512, 1024, 2048]
MiniBooNE [32, . . . , 512] [512, 1024, 2048]

BSDS300 [32, . . . , 256] [512, 1024, 2048]

Table H.3: Hyperparameter grid search space for each UCI data set (for LT experiments).
Each data set is associated to lists of hyperparameters: learning rate, the dimensionality of layers
in tensorized PCs (K), batch size, and whether input layers compute Gaussian likelihoods or spline
functions (see App. E).

Data set Learning rate K Batch size Input layer

Power

[0.005, 0.001] [32, . . . , 512] [512, 1024, 2048] [Gaussian, splines]
Gas

Hepmass
MiniBooNE

BSDS300
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Figure H.3: Negative parameters make squared non-monotonic PCs more expressive than
squared monotonic PCs. NPC2s (±2, vertical) generally achieve higher log-likelihoods than
squared monotonic PCs (+2, horizontal) when paired with the same number of units per layer K. as
shown by the presence of more points in the upper triangle than in the lower triangle for most data
sets. Blue circles and red diamonds refer to runs with Gaussian (G) and spline (S) input layers
respectively, and darker hues indicate larger K. The dashed grey line represents the points of equal
log-likelihood for both the NPC2 and the squared monotonic PC.

32



Published as a conference paper at ICLR 2024

Table H.4: Squared non-monotonic PCs can be more expressive than monotonic PCs. Best
average test log-likelihoods and two standard errors achieved by monotonic PCs (MPC) and NPC2s
built either from randomized linear tree RGs (LT) or from randomized binary tree RGs (BT) (see
App. H.3), when compared to baselines. MPC, MPC2 and NPC2 were experimented with both
Gaussian (G) and spline (S) node input layers. † means no values were originally provided.

Power Gas Hepmass MiniBooNE BSDS300

MADE -3.08 ±0.03 3.56 ±0.04 -20.98 ±0.02 -15.59 ±0.50 148.85 ±0.28
RealNVP 0.17 ±0.01 8.33 ±0.14 -18.71 ±0.02 -13.84 ±0.52 153.28 ±1.78
MAF 0.24 ±0.01 10.08 ±0.02 -17.73 ±0.02 -12.24 ±0.45 154.93 ±0.28
NSF 0.66 ±0.01 13.09 ±0.02 -14.01 ±0.03 -9.22 ±0.48 157.31 ±0.28

Gaussian -7.74 ±0.02 -3.58 ±0.75 -27.93 ±0.02 -37.24 ±1.07 96.67 ±0.25
EiNet-LRS 0.36 ±† 4.79 ±† -22.46 ±† -34.21 ±† †
TTDE 0.46 ±† 8.93 ±† -21.34 ±† -28.77 ±† 143.30 ±†

G S G S G S G S G S

MPC (LT) 0.51 ±.01 0.24 ±.01 6.73 ±.03 -2.05 ±.02 -22.07 ±.02 -23.09 ±.02 -32.48 ±.44 -37.53 ±.46 123.15 ±.28 116.90 ±.28
MPC2 (LT) 0.49 ±.01 0.39 ±.01 7.06 ±.03 0.95 ±.01 -21.42 ±.02 -22.24 ±.02 -29.46 ±.44 -32.81 ±.47 — —
NPC2 (LT) 0.53 ±.01 0.43 ±.01 9.00 ±.02 3.03 ±.02 -20.66 ±.02 -21.53 ±.02 -26.68 ±.42 -29.36 ±.42 112.99 ±.29 120.11 ±.29
MPC (BT) 0.57 ±.01 0.32 ±.01 5.56 ±.03 -2.55 ±.02 -22.45 ±.02 -24.09 ±.02 -32.11 ±.43 -37.56 ±.46 121.92 ±.29 123.30 ±.29
MPC2 (BT) 0.57 ±.01 0.36 ±.01 8.24 ±.03 0.32 ±.02 -21.47 ±.02 -23.38 ±.02 -29.46 ±.43 -33.43 ±.47 125.56 ±.29 126.85 ±.29
NPC2 (BT) 0.63 ±.01 0.45 ±.01 10.98 ±.02 3.12 ±.01 -20.41 ±.02 -22.25 ±.02 -26.92 ±.44 -30.81 ±.54 114.47 ±.28 128.38 ±.29

Table H.5: Average test log-likelihoods and standard deviation over five independent runs with
random initialization, using the same hyperparameters that brought the results showed in Table H.4.

Power Gas Hepmass MiniBooNE BSDS300

MPC (LT) 0.46 ±0.03 7.03 ±0.18 -22.07 ±0.02 -31.79 ±0.39 126.66 ±5.46
MPC (BT) 0.53 ±0.03 6.16 ±0.56 -22.42 ±0.45 -33.30 ±0.98 122.77 ±0.71
NPC2 (LT) 0.42 ±0.11 8.97 ±0.08 -20.67 ±0.05 -29.58 ±0.29 127.58 ±4.66
NPC2 (BT) 0.62 ±0.01 10.55 ±0.39 -20.48 ±0.11 -27.64 ±0.44 128.45 ±0.52

Table H.6: Best hyperparameters found via grid search, which were used for achieving results
showed in Table H.4. For input layers, G and S respectively denote Gaussian and spline.

Model Data set K Batch size Learning rate Input layer

MPC (BT)

Power 512 512 0.01 G
Gas 1024 4096 0.01 G

Hepmass 128 512 0.01 G
MiniBooNE 32 512 0.01 G

BSDS300 512 512 0.01 S

MPC (LT)

Power 512 512 0.001 G
Gas 512 1024 0.001 G

Hepmass 512 512 0.005 G
MiniBooNE 512 1024 0.005 G

BSDS300 64 512 0.005 S

NPC2 (BT)

Power 512 512 0.01 G
Gas 1024 512 0.01 G

Hepmass 256 512 0.01 G
MiniBooNE 32 512 0.01 G

BSDS300 128 512 0.01 S

NPC2 (LT)

Power 512 512 0.001 G
Gas 512 512 0.001 G

Hepmass 256 512 0.001 G
MiniBooNE 128 2048 0.005 G

BSDS300 32 1024 0.001 S

H.4 LARGE LANGUAGE MODEL DISTILLATION

Data set. Given p∗(x) the distribution modeled by GPT2 over sentences x = [x1, . . . , xD] having
maximum length D, we aim to minimize the Kullback-Leibler divergence KL[p∗ | p], where p is
modeled by a PC. Minimizing such divergence is equivalent to learn the PC by maximum-likelihood
on data sampled by GPT2. Therefore, following the experimental setting by Zhang et al. (2023)
we sample a data set of 8M sentences using GPT2 having bounded length D = 32, i.e., with a

33



Published as a conference paper at ICLR 2024

maximum of D = 32 tokens. Then, we split such sentences into training, validation and test set
having proportions 0.85/0.05/0.10, respectively.

Models. Then, we learn a monotonic PC and a NPC2 as tensorized circuits whose architecture is
determined by a linear tree RG (Def. 2), i.e., a region graph that recursively partitions each set of
finitely-discrete variables {Xi, . . . , XD} into {Xi} and {Xi+1, . . . , XD} for 1 ≤ i ≤ D − 1 (e.g.,
see Fig. 2a). This is because we are interested in exploiting the sequential dependencies between
words in a sentence. By enforcing monotonicity, we recover that the monotonic PC is equivalent to
an inhomogenous hidden Markov model (HMM), and that that NPC2 corresponds to a Born machine
(see App. B.4.1 for details).

Hyperparameters. All PCs are learned by batched stochastic gradient descent using Adam
(Kingma & Ba, 2015) as optimizer with batch size 4096, and we continue optimizing until ei-
ther the validation loss does not improve after three consecutive epochs or the maximum budget
of 200 epochs has been reached. We perform multiple runs by exploring combinations of learn-
ing rates and initialization. For monotonic PCs, we run experiments by choosing learning rates in
{5 · 10−3, 10−2, 5 · 10−2} and initializing parameters by sampling uniformly in (0, 1), by sampling
from a standard log-normal distribution, and from a Dirichlet distribution with concentration values
set to 1. Similarly for NPC2s, we run experiments by choosing the same learning rates for mono-
tonic PCs, but using different initialization methods. Since squaring results in much larger outputs
when compared to monotonic PCs, we initialize NPC2s such that the magnitude of parameters is
relatively small. That is, in addition to sampling uniformly in (0, 10−1), we also initialize the param-
eters by sampling from a normal distribution having mean 0 and standard deviation 10−1. By doing
so, we initialize an approximately even number of positive and negative parameters. Moreover, we
also experiment by initializing parameters by sampling from a normal distribution with mean 10−1

and standard deviation 10−1, which initializes more parameters to be positive.

Results. For increasing layer dimensionality, we group runs having different learning rate and ini-
tialization method together and show the achieved log-likelihoods in Fig. 5. Moreover, for layer
dimensionalities K ≤ 256, we report the double of log-likelihood points by repeating the runs with
a different seed. Then, we perform statistical tests to assess the significance of NPC2s achieving
higher log-likelihoods than monotonic PCs on the test data, and show the p-values in Table H.7.

K = 32 64 128 256 512 1024

p-value = 1.0000 0.1071 0.0019 0.0020 < 0.0001 < 0.0001

Table H.7: Statistical significance of NPC2s achieving higher likelihoods on LLM distillation.
We perform a one-sided Mann-Whitney U test between the log-likelihoods achieved by NPC2s and
monotonic PCs on the test data (see also Fig. 5), using a total of 36 runs for layer dimensionalities
K ≤ 256 and 18 runs for K > 256. We highlight the p-values that are consistent with a 99%
confidence interval in bold.

H.5 HISTOGRAMS OF LEARNED PARAMETERS

In Fig. H.4, we show the parameters of both monotonic PCs and NPC2s learned in our experiments
(Sec. 5), i.e., distribution estimation on UCI data sets (Table H.1) and sentences sampled from
GPT2. Even though we initialize the parameters of NPC2s to be non-negative in our experiments
(i.e., by sampling from a uniform distribution located on the non-negative side), they still end up
learning negative parameters. In particular, Fig. H.4 shows the histograms of sum layers parameters
of monotonic PC and NPC2s learned on UCI data sets having the same model size, i.e., with layer
dimensionality K = 512 for Power and Gas, K = 128 for Hepmass and MiniBooNE, and K = 64
for BSDS300. For the rest hyperparameters, we choose batch size 512, learning rate 10−2, quadratic
splines as input layers, and build a mixture of tree-shaped circuits (as described in App. H.3). For
the models learned on GPT2 sentences, we use learning rate 10−2 and uniform initialization with
non-negative values (see also App. H.4). Note that for NPC2s we report the parameters of the circuit
after being squared with Alg. 1, thus resulting in a quadratic increase in the number of parameters.
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Figure H.4: NPC2s learn negative parameters with non-negative initializations. Histograms
containing the 99% interquartile range of the sum layers parameters of monotonic PCs (+, blue)
and NPC2s after being squared (±2, orange) that are learned on UCI data sets (a-e) (App. H.3) and
on sentences sampled from GPT2 (f) (App. H.4). Even if the chosen NPC2s are initialized with non-
negative parameters (see App. H.5), they converge to a model instance with negative parameters.
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