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ABSTRACT

We study the problem of fixed budget pure exploration in reinforcement learning.
The goal is to identify a near-optimal policy, given a fixed budget on the number
of interactions with the environment. Unlike the standard PAC setting, we do
not require the target error level € and failure rate § as input. We propose novel
algorithms and provide, to the best of our knowledge, the first instance-dependent
e-uniform guarantee, meaning that the probability that e-correctness is ensured
can be obtained simultaneously for all € above a budget-dependent threshold. It
characterizes the budget requirements in terms of the problem-specific hardness of
exploration. As a core component of our analysis, we derive a e-uniform guarantee
for the multiple bandit problem—solving multiple multi-armed bandit instances
simultaneously—which may be of independent interest. To enable our analysis,
we also develop tools for reward-free exploration under the fixed-budget setting,
which we believe will be useful for future work.

1 INTRODUCTION

Reinforcement Learning (RL) theory |Agarwal et al.|(2019) has been studied under two main objec-
tives: regret minimization and policy identification, also known as pure exploration. While the former
focuses on maximizing cumulative reward during learning, the latter aims to identify a near-optimal
policy without concern for rewards gained during learning. A substantial body of work on policy
identification has focused on the fixed-confidence setting [Kearns and Singh| (2002). This line of
research, often referred to as Probably Approximately Correct (PAC) RL, requires the algorithm to
spend as many samples as possible until it can find an e-optimal policy with probability at least 1 — 4.
Specifically, the algorithm is required to verify itself that the returned arm is indeed e-optimal policy —
otherwise, it is not a fixed confidence algorithm. Due to the verification requirement, both ¢ and § are
input to the algorithm. Thus, the analysis must be done for the correctness of the verification (i.e.,
proving that the returned arm is indeed an e-optimal policy) as well as the sample complexity (i.e.,
proving how many samples are taken before stopping).

However, the fixed-confidence setting is not the only way to perform policy identification. The
fixed-budget setting has been popular in multi-armed bandits (Even-Dar et al., 2006; Bubeck et al.,
2009). In this setting, the learner is given a fixed number of interactions with the environment as a
budget and is required to output a good policy after exhausting the budget. This setting has numerous
merits. First, this setting is arguably more practical because the user of the algorithm can control
the budget explicitly. In contrast, the fixed confidence setting assumes that the algorithm can use as
many samples as possible (though less is preferred). When stopped forcefully to satisfy practical
constraints, it is hard to guarantee the quality of the returned policy. Second, the fixed budget setting
has potential to guarantee a better sample complexity because there is no verification requirement
(i.e., the algorithm itself certifies that the returned policy is e-optimal). This was true for multi-armed
bandits where instant-dependent accelerated rates can be obtained as a function of how many good
arms there are, and also a data-poor regime guarantee can be obtained, meaning that where a nontrivial
performance guarantee is obtained even if the sampling budget is smaller than the number of arms,
depending on the problem instance [Zhao et al.|(2023)). These bounds are not likely to be obtained in
the fixed confidence setting due to the verification requirement unless extra knowledge about the best
arm is known such as|Chaudhuri and Kalyanakrishnan|(2017). While the e-correctness verification
from the fixed-confidence setting can be necessary in mission-critical applications, there are many
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applications that do not require such a guarantee, in which case the parameters € and § becomes a
cumbersome hyperparameter.

Despite the desirable properties of the fixed-budget setting in bandit problems, its counterpart in
MDPs remains largely unexplored to our knowledge. In this paper, we take the first step at studying
fixed-budget policy identification in MDPs, providing new theoretical insights and algorithms that
bridge this gap. Specifically, a fixed budget algorithm is required to take in a episode budget B and
return a policy 7 at the end of B-th episode. Our central interest is to upper bound the probability
that the algorithm fails to return an e-optimal policy as an exponentially decaying function of the
budget B and instance-dependent quantities, simultaneously for all € > ¢’ for some budget dependent
threshold &’. We refer to this type of theoretical guarantee as an e-uniform guarantee. In other words,
the degree of suboptimality of the learned policy 7 is a random variable, and we are characterizing its
distribution, in particular its tail behavior.

Contributions. Our main contributions are as follows:

* We propose a novel algorithm, BREA (Backward Reachability Estimation and Action
elimination), which is, to the best of our knowledge, the first fixed-budget pure exploration
algorithm for episodic MDPs with instance-dependent e-uniform guarantees. The algorithm
only requires the episode budget B as an input, and does not assume the uniqueness of the
optimal action.

* For the first time, we establish an e-uniform guarantee for the SAR algorithm (Bubeck et al.|
2013)) for the muliple bandit problem. This may be of independent interest.

* We develop algorithmic and analytical tools for fixed-budget reward-free exploration by
carefully adapting a fixed-confidence reward-free exploration algorithm, L2E (Wagenmaker
et al., [2022), to the fixed-budget setting. We prove an e-uniform guarantee for our fixed-
budget reward-free algorithms.

2 PRELIMINARIES

Finite-horizon MDP. We consider a finite-horizon non-stationary Markov Decision Process (MDP)
defined by the tuple M = (S, A, H, { Py}, {Rn}IL ), where S is a finite set of states of size
S, A is a finite set of actions of size A, H € N is the horizon, Py € A(S) is the initial distribution,
P : 8§ x A — A(S) is the transition kernel, and Ry, : S x A — A(][0, 1]) is the random rewards
with B[Ry, (s, a)] = ri(s,a). {Py}—, and {Rp,}IL | are unknown to the learner.

The initial state s; is drawn from the initial distribution Fy. At each step h, taking action ay in
state sy, results in a next state sp1 sampled from the transition kernel Py, (- | sp, ap). A trajectory
{(shyan, Rn(sn,an)) HL , is called an episode, and when the learner reaches the end of the episode,
a new episode begins.

A policy m = (71,...,m) is a sequence of decision rules 7, : S — A(A) for each step h € [H].
The Q-value function of a policy  at step h € [H] is defined as
H
Q% (s,a) == E”[Z Ry (spryap)|sn = s, ap = a]
h'=h

and it represents the expected reward obtained by choosing action a in state s at step h and choosing
the subsequent actions according to the policy 7. The value function of 7 at step h is defined as

Vir(s) = Ex[QR (s, mn(s))]

and it represents the expected reward obtained by choosing actions according to the policy 7 starting
in state s at step h. We also define V' := E,.p,[V{"(s)]. The optimal Q-value function, optimal
value function are defined as

Qi (s,a) =sup Q7 (s,a), Vi'(s)=sup V) (s), Vi =supVy.

Throughout the paper, we do not assume that the optimal action or policy is unique.
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Pure exploration under the fixed budget setting. In pure exploration under the fixed budget
setting, the goal is to identify an optimal policy 7* (or near-optimal) based on a limited interaction
budget. Specifically, the learner is allowed to execute a total of B episodes and must return a single
policy 7 at the end. The performance is measured by the simple regret, which is defined as

Vo = Vi

A policy 7 is called e-good if Vj — V{© < e. In this paper, we propose an algorithm and prove their
performance guarantee by showing some instance-dependent upper bounds of the failure probability

P(Vy = Vg > e).

Instance-dependent quantities. To capture the instance-dependent complexity of the problem, we
need the notion of suboptimality gaps defined as

Ah(sva) = V;:K(S) - QZ(Sv a)a
A7 (5,a) = max QF (s ) — Qf(s.).

For our analysis, we also denote

s,a’), if Q5 (s,a) = V" and ' is the second best action,

A Ap(s,a), if Q% (s,a) < V(s
Ap(s,a) = {AZE ) Q. (s,a) < Vii(s)
A'fr(s a) L A;;(&(l), if QZ(S,G) < maxXg/ QZ(&a/)
MU AL(s,a), i Q(s,a) = maxy QF (s, ) and @ is the second best action with respect to 7.

Thus, if the optimal action in s € S at step h is unique, Ay, (s,a) > 0 for all @ € A. In contrast, if
there are multiple optimal actions in s € S at step h, Ap(s, @) = 0 for all optimal actions a. Similar
results hold for Ay (s, a) as well.

In MDP, the probability of reaching each state or action is important. Let 7 be a policy, s € S,a €
A,h € [H|,Z CS x A, we use the following notations:

wf (8) = Px[sp = s8], wh (8,a) = Pr[sp = s,a = a], wi (Z) =Pr[(sh,apn) € Z],

Wa(s) = supwi(s) = supwi(s.a),  Wi(Z) = supuwf(Z).

We refer to w] (+) as the occupancy measure and W, (-) as the reachability. Using these notions, we
define the controllability of MDP at step h as

Cp, := sup Z w (s)

T s, Wh (s)>0 Wh (S)

Then, we have

1 =sup Z wh (8) < Cp = sup Z wh (5) < Z sup wi(s) < S.

4 8, W (s)>0 g 5,Wh(s)>0 Wh(s) 8, Wh(s)>0 g Wh(s)

We can see that Cj, = 1if W},(s) = 0 or 1 for any state s i.e. the learner can reach s;, = s with
probability 1 by some policy for any reachable state s. On the other hand, C}, = S if w](s) =
Wh,(s) > 0 for any state s € S, any policy 7 i.e. the learner cannot control the occupancy measure
by varying policy and all states are reachable. Therefore, intuitively, a larger C}, indicates that the
MDP is more difficult to control at step h.

3 THE BREA ALGORITHM

There are inherent difficulties in achieving instance-dependent e-uniform guarantee for fixed budget
setting. First, while it is relatively straightforward to analyze algorithms in the fixed confidence setting
using concentration bounds such as Hoeffding or Bernstein bound with a prespecified confidence
level 4, it is much more challenging in the fixed budget setting, where neither the confidence level §
nor the accuracy level ¢ is known in advance. Second, whereas the fixed-confidence setting typically
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allows for a potentially excessive number of samples before termination (depending on the confidence
level), the fixed-budget setting strictly limits the algorithm to a finite number of samples. Third, it is
hard to simply convert the fixed-confidence algorithms since it requires the knowledge of nontrivial
instance-dependent terms. Even if it is possible, the conversion of fixed-confidence algorithm would
require not only the budget B but also one of the confidence § and the accuracy . Also, theoretical
guarantee of this conversion would only applies to prespecified € (or ¢), which is much weaker
than e-uniform guarantee. In this section, we present how we design and analyze our algorithm to
overcome the aforementioned difficulties.

At step h, each state s can be treated as a bandit problem, where the expected reward of each action a
is given by Q; (s, a). If we aim to learn the exact optimal policy maximizing Q;; (s, a), we need to
sample trajectories Sp11,ap+1,- - -, SH, ag generated under the optimal policy {7}, }i{:h 41> Which
is unknown. Fortunately, since our goal is to learn an approximately optimal policy, the following
proposition shows that it suffices to use a suitably accurate policy {74/ }5_, 1 for sampling in order
to learn 7y,.

Proposition 1. (Wagenmaker et al.| 2022, Lemma B.1) Assume that some deterministic policy &
satisfies AT (s, 7(s)) < en(s) forany k' < h < H and any s € S. Then, for any policy 7',

th' (Vh’ s) = Vi (s )7 Zsuprh

h=h' T

Note that A7 (s, a) depends only on the future policies {7, } 7 _,, 1, implying that we must determine
them before learning 7, (s). By this observation, our learning proceeds backward from H to 1.

If we assume that the hypothesis of the previous proposition holds with A’ = 1 and e,(s) =

m, then the proposition says

h=1 s
- £
= sup Y wi(s)
—~ - CrLHW(s)
H
= Z £ (definition of C,)
H
h=1
=e.

Therefore, we design our algorithm to identify a @(m)—good action for each relevant state s.

The precise definition of “relevant state” will be given in the analysis. We again emphasize that ¢ is
not an input to our algorithm and can be chosen arbitrarily for the purpose of analysis. Our algorithm
consists of two key components: estimating the reachability W, (s) and eliminating actions. We
introduce the following notation, which will be used in the statements of upcoming results.

log(2)B | _g.6321
= (1 :
€B 1+ o(B) )
denotes an error threshold that depends on the budget B. The factor
Cran(B) = O(poly(S, A, H)),
is formally defined in Appendix [C} equation[5| We denote Cro5(B) = SH?¢(B).

3.1 REACHABILITY ESTIMATION

The first part of our algorithm is greatly influenced by [Wagenmaker et al.| (2022)). Through the
first part, we estimate the reachability W}, (s) of each state s at step h. To this end, we execute a
fixed-budget reward-free exploration. One notable benefit of reward-free exploration is that it only
needs to be run once, after which the collected data can be applied to a variety of downstream reward
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Algorithm 1 Fixed Budget Learn to Explore (FB-L2E)

1: function FB-L2E(X C S x A, step h, budget B)

2 if |X'| = 0 then

3 return {(0,0,0)}

4: end if

50 J < [0.63211og,(1 + “&2E)] (c(B) is defined in Appendix|C)
6

7

8

for ) =1to J do
Lj — 2J—j’ 5]’ — 1 0.6321L; loglog(8SAH)

8SAH
: K; + K;(8;,SAHS;) (K is defined in Appendix [C)

10: (X;,1I;) < FINDEXPLORABLESETS(X, h, 0, K, N;)
11: X — X\ &

12: end for
13: return {(X;,11;, N;)}7_,
14: end function

16: function FINDEXPLORABLESETS(X C S X A, step h, confidence ¢, epochs K, samples N)
17: 1 (s,a) < 1if (s,a) € X, else 0

18: N(s,a,h) <0, Y+ 0, T+ 0,5« 1

19: for k =1to K do

20: /I StrongEuler is as defined in|Simchowitz and Jamieson| (2019))

21: Run STRONGEULER() on reward r7, to get trajectory {(sF, af, )}/, and policy my,
22: N(sk,af) « N(sF,af)+1, I+ ITU{m}

23: if N(sF,a¥) > N, (s,af) € X and (s§,af) ¢ J then

24: y %yu(sﬁ,aﬁ)

25: rIt(s,a) < 1if (s,a) € X'\ Y, else 0

26: j—i+1

27: Restart STRONGEULER(Y)

28: end if

29: end for

30: return ), I1
31: end function

1, if(s',a',h') = (s,1,h),
0, otherwise.

where we arbitrarily fix an action and denote it by 1. With this reset reward, an optimal policy
maximizes the visitation probability of (s, 1) at step h. Therefore, V" = Wj,(s,1) = Wj,(s). To
approximate such an optimal policy, we employ STRONGEULER (Simchowitz and Jamieson, [2019).

functions. More specifically, we reset the reward as Ry (s',a’) =

b}

More generally, the reachability W},(X) of any subset X C S x A can be estimated in the same
manner. We formalize this in Algorithm |1} which we refer to as FB-L2E, short for Fixed-Budget
Learn2Explore. 1t is a careful adaptation of Learn2Explore algorithm introduced in [Wagenmaker
et al.[(2022), which itself is inspired by Zhang et al.|(2021); [Brafman and Tennenholtz (2003)).

Algorithm|T] satisfies the following guarantee:
Theorem 3.1. Consider running Algorithmwith B > ¢(B). Then, the following statements hold.

1. The total budget used is at most B.
2. For any € > 2SH?c, with probability at least 1 — exp <—é (CL;B(B))>

(1) The reachability of each set X; satisfies

x, ‘ 4 2S5H?
||)(|| 27 < W (X)) <27 foralli <. = |log, ( - > y
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(2) The remaining elements, X := X\ UZ;lXZ- satisfy

. €
s&p Z 7wh(s,a) < Yk
(s,a)eXx

(3) Moreover, for any i < i., if each policy in I1; is executed A times, then every state-
action pair (s, a) € X is visited at least %ANZ» times.

Here, the probability accounts for both the randomness in execution and resampling.

The proof of Theorem [3.1]is deferred to Appendix [C]

Remark 2. Theorem|3.1|crucially relies on the fact that STRONGEULER (Simchowitz and Jamieson|
2019) achieves a high probability regret bound with log % dependence. However, when the target
set is X = {(s,a)}, similar results can be obtained by applying a boosting technique even if we use
other algorithms with worse dependence. Although we only present Algorithm[l|in the main text for
the simplicity, the algorithm with boosting technique is described in Appendix|C] Algorithm|0}

3.2 ACTION ELIMINATION

In the second part of our algorithm, we iteratively sample trajectories, compute empirical Q-function
of state-action pairs, and eliminate suboptimal actions. For the purpose of efficient elimination, we
employ a multiple bandit algorithm, Successive Accepts and Rejects (SAR), proposed by Bubeck et al.
(2013)), and, for the first time, provide an e-correctness guarantee for this algorithm. By employing
this algorithm to our main algorithm, we are able to reduce the dependency on S compared to applying
its multi-armed bandit counterpart. For a more detailed explanation, see Appendix [D} Remark [27]

Multiple bandit problem. Consider M instances of multi-armed bandit problems, each with K
arms. Each arm ¢ in instance m yields stochastic rewards supported on [0, o], with mean Homis
ordered such that i, 1 > -+ > i, . We denote each bandit-arm pair by (m, i), where m € [M]
and i € [K]. The objective is to identify a good arm in each instance m € [M] under a total budget
of B pulls.

We now define some notations. Let fi,, ;(n) denote the empirical mean reward of arm 7 in instance
m after n pulls. Define the suboptimality gap as

A e Hm,1 — Hm, 2, ifi =1,
e Hm,1 — Hm,i, leG{Q,,K}
We enumerate all gaps A,,, ; over all (m, i) € [M] x [K] in increasing order as
Ay <Ap) < < Ak
Let
9(e) = [{(m,) € M) X [K]: pima = pimi < €}
for any € > 0, and define the harmonic log term

| =

log(MEK) :=

DN =
~

MK
+> 0=
=2

For each k € [M K — 1], define

ey

1 B- MK
m(B, M, K) = Log(MK) "MK +1 —k-‘ '

The SAR algorithm (Bubeck et al.,[2013)) is summarized in Algorithm[2} By leveraging the ranking
of empirical gaps, SAR adaptively distributes the budget across bandit instances, solving the multiple
bandit problem efficiently. We present a theoretical guarantee for its ability to identify e-good arms.
Theorem 3.2. If we run Algorithm|2|with B > M K, then the total number of budget used is at most
B and

B—- MK
PEm € [M] : fim,1 — [im,j(m) > €) < 2M*K? exp (- ) .

1280210g(MK) - Y- icarey (A Ve) 72
foranye > 0.

The proof of Theorem [3.2]is deferred to Appendix D}

6



Under review as a conference paper at ICLR 2026

Algorithm 2 Successive Accept and Reject (SAR) for the multiple bandit
1: input: Budget B
2 A< {(1,1),...,(M,K)},ng+< 0
3: fork=1to MK —1do

4 ni,  ni(B, M, K) (as defined in equation|[T)

5: Y(m,i) € Ag, pull (m,7) for ng — ng_q times

6: VYm, 1, « arg MAX;. (1, i) A, Hm,i () (Break ties arbitrarily)
7: if 3m such that 1,,, is the last active arm in m then

8: Jm = L, (Accept)

9: A1 < A\ {(m, im)} (Deactivate)

10: else

11: (M, k) = argmax,, ;ea, (ﬂm,im(”k) - ﬂmﬂ-(nk)) (Break ties arbitrarily)
12: Agy1 — Ap \ {(mg, i)} (Reject and deactivate)

13: end if

14: end for

15: Jp i for Ay = {(m,4)}
16: return {(m, an)}%:l

3.3 OVERVIEW OF THE BREA ALGORITHM

We combine the two mechanisms described above to construct our main algorithm. The algorithm
proceeds in a backward manner over steps h = H, H — 1,...,1. At each step h, the first half of
the budget is devoted to estimating the reachability W} (s) for each state s, while the second half
applies the SAR mechanism to eliminate suboptimal actions. Although the logic by which our
algorithm eliminates actions is entirely different, the structure of eliminating actions after reward-free
exploration was also used in the fixed-confidence algorithm, MOCA (Wagenmaker et al.| 2022).

In general MDPs, the stochasticity of the transition kernel prevents us from freely collecting arbitrary
state-action samples. However, Theorem [3.1] ensures that, with high probability, the policies stored
during the reachability estimation phase yield sufficient samples for each relevant state-action pair.
Under this event, the SAR mechanism is expected to perform reliably. We now present our main
theorem and its corollary; their proofs are provided in Appendix [E]

Theorem 3.3. If we run Algorithm[3|with

B 1
B> max{QSHc(ﬁ), 25Ae _p_log, 573}’

25

then the total number of budget used is at most B. Moreover, for any € > 2SH?%c 5,

3SH
P (VO* -Vi> 5) <exp (—(:) (@))

+ exp (—@

B
(H5 maXpe[H] C}ZL ZSES W}L(S)_l ZaeA(Ah(S’ a) \ Wf(s))_Q)) .

Corollary 3. In addition to the hypothesis of Theorem assume further that 2S H?e JB < e* =

min{min, Wj(s),2H min}_ , C,W,(s)An(s,a)} and the optimal action in each state s at each

step h is unique. Then, we obtain a guarantee of the best policy identification, given by

P (VO* —VE > 0) < exp (—é (Ch‘;(l:&)))

~ B
+ exp (—@ (Hg maxye (] ZSES Wh(s)~t ZaEA Ah(s,a)—2)) .

Remark 4. From Theroem|3.3} we can derive the sample complexity required by BREA to identify an
e-correct policy with probability at least 1 — 6, given by

(Cun(ef) 1 1 1
Tes =0 | ————=+H maXC’hZ Z logg.

- 2
- helu) " = Wh(s) oA (Ah(s,a) V ﬁ(g))
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Algorithm 3 Backward Reachability Estimation and Action elimination (BREA)
1: input: Budget B

2 B+ 58], J ¢ [0.6321log, (1 + 2525y

3: B”(—%
4: forh=H H—-1,...,1do

5: Z},, < @
6 for s € S do {(th, Hjh, th)}j:1 < FB-L2E({(s,1)}, h, B") (1 is an arbitrary action)
7: if X" = {(s,1)} for some j € [J] then
8: Wi(s) « 27941 2, « Z, U {s}
9: end if
10: end for
11: fori=1to J do -
12: Zpi {S € Zy: Wh(s) = 27i+1}, Al Zpi X A,
13: V(s,a) € Ay, N(s,a) + 0, T(s,a)+ 0, To(s,a)=0, Q(s,a)+ 0
14: for k =1to|Z};]A—1do
15: ny, < ny(|B"27772],| 24|, A) (as defined in equation][l)
16: for (s,a) € Ay do
17: Ti(s,a) < |37 ]
18: Rerun each policy in TI3" for Ty (s,a) — T_1(s, a) times
19: for each time t = T'(s,a) + 1 to Ti(s, a) do
20: if (s, a) is visited at step & then
21: Take action a and extend a trajectory using {7x } 7 _,
22: N(s,a) + N(s,a)+1
23 Q(s,a) = Q(s,@) + Lji_p By (s, afy)
24: end if
25: end for
26: Q7 (s,a) < Q(s,a)/N(s,a)if N(s,a) > 0 else 0
27: T(s,a) + T(s,a) + Tk(s,a)
28: end for
29: if 3 state s with unique surviving pair (s, a) in Ay then
30: n(s) < a, Art1 <+ A\ {(s,a)}
31: else o o o
32: V(S, a’) € Ag, A‘}fzr(sa Cl) <_/fnaxa:(s,a)€Ak QZ(& CL) - Q;{(Sa CL)
33: (s',a’) < argmax, ,)c 4, A (s,a) (Break ties arbitrarily)
34: Apy1 — A\ {(s,ad")}
35: end if
36: end for
37: 7i(s) < afor Az, 14 = {(s,a)}
38: end for
39: For each s € S\ Z}, set () as any action
40: end for

41: return 7

The first term inside © is a lower-order term. The second term inside © becomes Y oacA m

for multi-armed bandits (S = H = 1). This is consistent with known results in the bandit literature
((Even-Dar et al.| 2006} Audibert et al.| 2010; | Karnin et al.||2013)). It is also noteworthy that our
sample complexity is deterministic while the sample complexity of PAC RL algorithm typically is
guaranteed with probability at least 1 — 6.

Remark 5. Our sample complexity involves H® maxy, term, in contrast to the H* > ,, dependence
that appear in PAC RL literature ((Wagenmaker et al.| |2022; \Wagenmaker and Jamieson, |2022;
Tirinzoni et al.}|2023))). This difference stems from the inherent difficulty of the fixed budget setting,
where the algorithm does not know in advance how to distribute the budget across different h. A
similar issue regarding the dependency on S could be resolved by employing a multiple bandit
algorithm instead of a multi-armed bandit algorithm.
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3.4 INCORPORATING TARGET ACCURACY

If an accuracy level ¢ is provided as input, we can modify Algorithm[3]to include a third part and obtain

a different form of probabilistic guarantee. While Algorithm [3|allocates % budget to each of its two

parts, the modified algorithm assigns % to the first and the second part and assgins g to the last part.

In the third part, for each multiple-bandit instance Zy;, let g7;(c) denote the number of pairs

(s,a) € Zp; such that ﬁ;{ (s,a) < W;LE oL After the second part, we gather the last g7, () surviving

pairs and perform an additional refinement step.

Theoretical guarantees for this variant are presented in the next theorem. The full algorithm and its
analysis are provided in Appendix [

Theorem 3.4. (Informal) There exists a variant of Algorithm[3|that, when given a sufficiently large
budget B and an accuracy level ¢ > 2SH?c_5_ as input, it uses at most budget B and satisfies the

following:

28
N ~ eB
xR < _
]P)(VO Vo >€) _exp( 6(poly(5,A,H,10gB)>)

~ B
+exp | -6 A £
<H3 maxpe[H) Zseg Wi(s)~! ZaEA(Ah(S7 a)V VV}L(S))_2>

+e (:) EQB
X - )
P H® maxpe(p) | OPTy(e)]

where OPT),(¢) = {(s,a) € S x A: Ap(s,a)W,(s) < e}

Remark 6. From Theorem we can derive the sample complexity required by the modified
algorithm to identify an e-correct policy with probability at least 1 — 0, given by

H% max | OPTy(¢)|

~ 1 A, H log B 1 1 1
ros =0 (PG AIIBE) | o 5L + =4 log .
, € helH] £ Wh(s) — (Ah(s )V )2 g2 )
s e ’ Wi (s)

It is interesting that even though the logic of action elimination is very different, this expression is
closely aligned with the sample complexity

H* Y |OPTh(e)]

. CLOT<5) ~ 2 1 1 he[H] 1
Teo=— _ +0(H Z Z Wi(s) Z + = logg

_ 2
he[H] s€S acA (A}L(S, Cl) V ﬁ(s))

of MOCA algorithm (Wagenmaker et al.| 2022), where Cr,oT = poly(S, A, H, log %, log %)

4 CONCLUSION

In this paper, we have explored the fixed-budget setting of the pure exploration MDP, which is
surprisingly underexplored in RL theory. While our results establish the first fully instance-dependent
guarantee in the fixed budget setting, these are just beginning. First, it would be great to see what
kind of instance-dependent acceleration can be proven in MDP, which should be possible given that
accelerated rates were possible in bandits as a function of the number of good arms [Katz-Samuels
and Jamieson| (2020); |Zhao et al.|(2023). Second, similarly, it would be interesting to explore what
kind of data-poor regime guarantees are attainable — again, such bounds are available in the bandit
setting |[Katz-Samuels and Jamieson! (2020); Zhao et al.[(2023). Third, we believe the factor H 2in
the sample complexity may be improved by leveraging variance-dependent concentration bounds.
Finally, it would be interesting to extend our setting to the function approximation setting.
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REPRODUCIBILITY STATEMENT

We have carefully specified all details of the algorithms presented in this paper. Moreover, we clearly
state all assumptions required for the theoretical guarantees of our methods. We believe that this level
of detail ensures the reproducibility of our results.
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Notation. For a positive integer n, we write [n] == {1,2,...,n}. We use f = O(g) to de-
note that the ratio 5 is bounded both above and below by polylogarithmic functions. We define

min_y f(x) := minge x: y(z)>0 f(2). We use poly(-) to denote a polynomial in the variables inside
the parentheses. We write log for natural logarithm and log, for binary logarithm.

A RELATED WORK

Given the breadth of the literature on each topic, we focus on introducing only the most recent and
relevant works.

Instance-dependent regret minimization in episodic MDPs. |[Zanette and Brunskill| (2019) pro-

posed the EULER algorithm and proved a regret bound of \/SAK min{Q, H, G2}, where Q,,G
are instance dependent term. Soon after, |[Simchowitz and Jamieson| (2019) proposed STRONGEULER
algorithm and proved a gap-dependent regret bound for episodic tabular MDPs, showing that opti-

mistic algorithms can achieve O( Yosah Alf’(gsTa)) regret. This result, obtained via a novel “clipped”

regret decomposition, smoothly interpolates between instance-dependent O(log T') growth and the

worst-case O(ﬁ ) rate, without requiring simplifying assumptions like a bounded mixing time.
Dann et al.| (2021)) further refined these bounds by defining value-function gaps that ignore states
never visited by an optimal policy. Finally, we note that any low-regret algorithm can be converted
into a high-probability guarantee on near-optimal performance via an online-to-batch conversion.
For detailed explanations, see Jin et al.|(2018)). However, recent studies ((Wagenmaker et al., 2022}
Tirinzoni et al. [2023))) suggest that algorithms for minimizing regret cannot be instance-optimal
for identifying good policies, motivating specialized algorithms that explore more strategically than
standard optimism.

Instance-dependent episodic PAC RL. The history of instance-dependent episodic PAC RL is not
very long. Wagenmaker et al.|(2022) proposed a planning-based algorithm, MOCA, and analyzed its
instance-dependent sample complexity. |Tirinzoni et al.|(2022) provided an instance-dependent lower
bound for deterministic MDPs and proposed the EPRL algorithm, which has an upper bound of sample
complexity matching the lower bound up to a H? factor and logarithmic terms. Wagenmaker and
Jamieson| (2022) considered finite horizon linear MDPs, a superset of tabular MDPs. They proposed
the PEDEL algorithm, which takes a policy set as an input, and analyzed its sample complexity.
Tirinzoni et al.| (2023)) proved, for the first time, an instance-dependent sample complexity of an
optimistic algorithm, BPI-UCRL.

Instance-dependent pure exploration in multi-armed bandits. The problem of pure exploration
in multi-armed bandits (a special case of RL with S = H = 1) has a rich history and is typically
studied in two frameworks: the fixed-confidence ((e, §)-PAC) setting and the fixed-budget setting.

In the fixed-confidence setting, the goal is to identify an arm whose mean reward is within € of
the optimal arm’s mean with probability at least 1 — §, while minimizing the number of samples
(pulls). [Even-dar et al.| (2002) initiated this line of work by proposing the Successive Elimination
algorithm, which guarantees an optimal arm with probability 1 — ¢ using distribution-dependent
samples ((e, §)-sample complexity). Mannor and Tsitsiklis| (2004) later provided a distribution-
dependent lower bound on the (g, §)-sample complexity. [Kalyanakrishnan et al.| (2012) proposed
the LUCB algorithm and analyzed their sample complexity. [Karnin et al.| (2013)) introduced the
Exponential-Gap Elimination algorithm, removed unnecessary log factors and attained near-optimal
sample complexity in the fixed-confidence regime. |Garivier and Kaufmann|(2016)) gave a tighter lower
bound and proposed an algorithm, Track and Stop, which exactly hits the lower bound asymptotically.

In the fixed-budget setting, the learner is given a total sampling budget 7" and aims to maximize
the probability of identifying the best arm by time 7'. Here, the results are often characterized by
the exponential rate at which the failure probability decays with T'. |Audibert et al.|(2010) studied
this setting and proposed the Successive Rejects algorithm, proving that its error probability decays
at an optimal rate, up to logarithmic factors in the number of arms. [Karnin et al.|(2013)) proposed
the Sequential Halving algorithm, proving that its error probability has an improved rate, which
is optimal up to doubly logarithmic factors in the number of arms. [Zhao et al.| (2023) provided a
tighter analysis of the Sequential Halving algorithm and obtained an accelerated decay rate of -error
probability.
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B PROPERTIES OF MDP

Although the statements and proofs of the lemmas in this section are nearly identical to those in the
appendix of [ Wagenmaker et al.|(2022)), we include them here for completeness.

Lemma 7. Assume that some deterministic pollcy 7 satisfies AT (s, 7r(s)) < en(s) forany h' <
h < H and any s € S. Then, for any policy 7',

th' (Vh’ s) — Vh’( )7 ZSUPth

h=h' T

Proof. The proof proceeds by backward induction on h’. When i’ = H, the statement trivially holds.

Assume that
th (Vh’ ) ‘/h ( ) > Z 5upz:wh 5h

h=h/
holds for step A’ > 1 and any policy . Assume further that

Ay (s,7(s)) < ew—1(s).
By definition,
Vio_1(8) = Vii_1(s) = Qi1 (5,1 (8)) — QR 1 (5, ftnr—1(s))
= Qh_1(s,mp_1(s)) — QZ'A(& Th—1(s)) +Q2/71(8, Th—1(8)) — max QZ'A(& a)
1) 2)
o max Q. (5, @) — Qi (5, 7 -1(5)).

(3)

It is obvious that (2) < 0 and (3) = AT, (s, 7p—1(s)) < ep/—1(s) by our assumption. Further-
more,
)= Pua(s'ls, w1 () (Vi (s) = Vi (s).

Then, for any policy 7/,

th/ 1(8) (Vi _1(s) = Vhfs—l( ) < Zzwh’ 1(8) Prr—1(8'[s, 1 (8)) (Vi (8) *Vh@(sl))
+th’ 1(8)en—1(s)
= th/” )(Vii(s) = Vi (s +th/ 1(s)en—1(s)

< Z suprh

h=h'—1 T

where 7’ is a policy that is equal to 7’ in step 1, ..., 7" — 2 and equal to 7* insteph’ — 1,..., H,
the last inequality follows by the induction hypothesis. O

Lemma 8. Assume sup, 32, wfl,1(5) (Viry1(s) = Vi1 (5)) < & Then
[An(s,a) = Af(s,a)| < e/Wh(s).
Proof.
[An(s,a) = Af(s,a)| = [V (s) = Qj(s,a) — (HZB}XQZ(&Q’) - Qh(s,a))|
< max{|V;’(s) — H}l&}XQZ(&a’)L Q7 (s,a) — Qj(s,a)[},

14



Under review as a conference paper at ICLR 2026

where the last inequality follows since

Vi (s) = Qh(s, @) — (max Qf (s, a') = Q7 (s,)) < Vi (s) — max Qji (s, a’)
and X X X

= (Vi (s) = Qi (s, 0) — (max Qji (s, a) — Q5 (s,a))) < Qj(s,a) — Qp(s, a).
We can write ’

Qn(s,a) =ra(s,a) + > Pu(s']s,a)Viy 1 (s),
Qh(s,a) =7a(s,a) + > Pu(s']s,a)Viiy 1 (s).
Then we have

Q. (s,a) — Qf (s, a) th Is,a) (Vi (s )—fo+1(3/))

s/

- 5 WA ALl ) Vi () = Vi)
W s

su wj )V, — Vi L(8) € ———. 2
< Wh pz r (S Via (81 = Vi () < W (s) (2
Let a; := arg max, Q.(s,a). Then
Vi (s) — max Q7 (s, a’) = max Q} (s,a’) — max Q} (s,a’) = Qj,(s,a1) — max @} (s,a’)
X ) X €
= Qh(s,01) = Qp(s,a1) + @ (s,a1) — max Qj(s,a’) < - (3
a’ VVﬁ(S)

By @), (3). the lemma follows. O

C ANALYSIS OF FB-L2E

C.1 ANALYSIS OF FINDEXPLORABLESETS

The overall analysis is similar to that of [Wagenmaker et al.| (2022). However, the details should
be changed as we use STRONGEULER instead of EULER. We begin with a regret bound of
STRONGEULER. Throughout this section, let M := (SAH?)2.

Lemma 9. If we run STRONGEULER with confidence parameter § for K episodes, with probability
at least 1 — 6,

K K MHK
SV V™ < e \/ SAH?V K log(HK) log(— )+cse S AHS log(HK ) log(
k=1 k=1

MHK)
5 )

where M = (SAH?)? and cs. is a universal constant.

Proof. In|Simchowitz and Jamieson| (2019} Theorem 2.4), the regret bound up to a universal constant
is presented as

mH
A )}

An(s,a), T = HK, m = (SAH)?, and Hy < % & log(T). Here, Gis a

constant such that the reward of one episode of our MDP is bounded by G. We can reduce thlS

_ T T
\/ SAH7T log( mT) + SAHY(SV H) log(ng )mln{log(n; ), log(

where Ain = min, ah

term to 9- by using the argument used in the proof of Jin et al.| (2020, Lemma 3.4) and Wagenmaker
et al. (2022 Lemma D.4). Thus, the regret bound (up to a universal constant) of STRONGEULER is
given as

mH
A )}

T T T
\/ SAVy T log(T) log(mT) + SAHY(S v H) log(mT) min{log(mT), log(
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The second term is derived from their |Simchowitz and Jamieson| (2019, Claim C.3). In the proof of
Simchowitz and Jamieson| (2019, Claim C.3), we can just bound

N A neng

log(1 + ) <log(1+1T)

no
since N < T, ng > 1. By using this bound, we get a regret bound of

T T
\/ SAVy T log(T) 1og(mT mT) log(T).
Although this bound only applies to stationary MDPs, stationary MDPs can represent non-stationary

MDPs by augmenting states s to (s, k). In this case, the effective number of states is S H. Thus, by
substituting SH in to S, H K into T, the lemma follows. O

)+ SAH*(S v H)log(

We now define the important quantities

Ck (8, 0samp, ) := max {432c§eS3A2H6(z' +6)2log®(2- 2 - 4322, S A2HT M (i + 6),

1 1
432¢% S3 A2 HS log(g)(i + 3)log(2 - 432¢2, 52 A?H” log(g)(i + 3)), @

24 log(é), 21182 A% log(

K’L(57 5samp) = [QZCK(& 5sampa Z)-| .
and prove the following property.

%;;mma 10. Let Cr := 2c:S3A2HO log(HK;) log(2MEE+) + 21og 4 and K; = K;(6, dsamp)-
en,

4SAH)},

5samp

, 2IMHK;
K; > 2" max{4Cg, 144c2, S* A H? log(H K;) log(TZ)}.

Proof. Foranyi,j > 0and C > 0, if 2 > C%(i 4+ 35)7 log? (C(i + 3j)), then 2 > " log” z since
C'log? z = C'log? [C (i + 37)" log? (C (i + 37))] < C*log? [C*F (i 4 35)¥]
< CU(i + 35) log? [C(i + 37)]
=2
Since
OIMHEK; > 2" -2-432c¢2.S3A’H" M (i + 6)?log®(2 - 2 - 432¢2. S3A>H" M (i + 6),

we have _
K; >20-2-432¢2, S3 A2 HS log? QM HK;).

Since
HEK; > 2"-432¢% S3A*H” log(%)(i + 3)log(2 - 432¢2, S A’ HT log(%)(i +3)),

we have

. 1
K; > 2 43265,5° A2HC log(H K log(5).

We also have K; > 2 - 241og(%). Combining these three, we have
i 2 03 A2 176 (1002 1 4
K; > 2" | 144¢,,S° A*H® (log“(2M HK;) Jrlog(HK,;)log(g) +8log(5) ,

which easily implies
2MHK;
5 )

OMHK, 4
)+ 810g(5)> = 4Cx.

K; > 2" 144¢2, S? A’ H? log( HK;) log(

K;>§8' <2cseS3A2H6 log(HK;) log(

16



Under review as a conference paper at ICLR 2026

Throughout the rest of this subsection, we consider running

K;
FINDEXPLORABLESETS(X, h, d, K; := K;(0, dsamp), N; 1= 4|X|2i)

(defined in Algorithm[I)) with some X C S x A satisfying
Wi(X) <277

Let X; C X, II; be the output. We introduce the following notations. Let K;; denote the total number

of episodes taken for j, where the index j changes when the reward ri is reset. Let m; denote the
number of j. Thus, we have

m;

> K =K.

j=1

Let VO*’ij denote the optimal value function on the reward function rfl, Vok’ij denote the value function
for the policy 71, on the reward function r; . Then,

Vo <V < sup Ex[I{(s, an) € X}] = Wi (X) < 27070,

Now we define some events.

mi K Ky - , MHK:
o= {> (v -3 V) < 2cse\/ S A2 B2V K log(HKG) log(———)

=1 k=1 k=1

MHEK,
—&—2(23653142H6log(HKi)log(T)}7

m; Kij H o ‘ m; Kij y D) 9
C :{ RI (7 qi ) — VR < J4K,2-log 2 4+ 210g 2V,
{2 A 33 Vi < o 5 25

K; K;
- u 2 2

D —{V ,a EX, e N — I . < 21(1[/[/ 1 -+ 2lo *}
1,6 (S ) I; 1: Wy, (S a) ]; ‘ {(sF,ak)=(s,0)}| = \/ h(s) og 5 g 5

for the process during the algorithm,

“o : 2 2
Dys = {V(s, a) € X, | 3w (5,0) = Y Liiup afy=(e.a)| < |/ 2KiWi(s) log 5 + 2log 5}

k=1 k=1

for the process during the replay.

Freedman’s inequality is stated below for use in subsequent analysis.

Lemma 11 (Freedman’s inequality). Let (2, F,P) be a probability space and Fo C F1 C Fa C
-+ F be a filtration of o-algebra. Let { X, }; be random variables such that X; is F;-measurable,

|X;| < M,
E[Xﬂu:nfl] =0,
E[X2|Fno1] < Vy
for constants V,,. Then, for any 6 > 0, with probability at least 1 — 0,

i 2
X;| < 2Mlog =
|; | og < +

We state properties of the events defined above.
Lemma 12. If§ € (0, 1) is the third argument of FindExplorableSets,

P(Ci5/2) 21—6/2.
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Proof. For any fixed K and 7,

K K
( SV -y VO‘W) Fi < cse\/SAHﬂ/O*’ﬂKlog(HK) log(MHE
k=1 k=1
+ e S?AH® log(HK ) log( M?K)

with probability at least 1 — &, where F;_ is the filtration up to iteration j, and we used V" < Vo*’l1
for all j since the reward function can only decrease as j increases. FindExplorableSets stops
and restarts STRONGEULER if the relevant condition is met, but this is a random stopping condition.
Thus, to guarantee that the regret bound holds for any possible value of this stopping time, we union
bound over all possible values. Since FindExplorableSets runs for at most K; episodes, we
union bound over K; stopping times. We then have

K K
xij ij *i 2MHK,;
(Z I N 7 ﬂ) IFiy < 2050\/SAH2V0 K log(H ) log(———)
k=1 k=1
2MHK;
+ 2¢50S? AHS log(HK;) log(T)
for all K € [K;] with probability at least 1 — 25%. Since m; < S A, union bounding over all j we
then have that, with probability at least 1 — §/2,
m; Ky Kij m;
*,1] k,ij *,11 QMHK,L
> (Z Verd =S v J) <y 2cse\/SAH2VO Ky log(H ;) log(——5—)
j=1 k=1 k=1 j=1
2MHK;
+ 2¢4.9% A2HS log( HK;) log(T)
; 2MHK,;
< 2¢e \/SQA2H2VO*’“K1- log(HK;) log(T)
2MHK,;
+ 2¢505° A2 HO log(HK;) log(T),
where the last inequality follows from Jensen’s inequality. O

Lemma 13. Forany 6 € (0,1),
P(Ca,5) > 1 — 0.

Proof. For each k € [K;], we have that X, := Y./ Ry(sk,ak) ~ Bernoulli(Vy™). Then
| X — Vi < 1, E[(Xg — Vg*)2 | Frea] = Vg (1 = Vi*) < Vg™ < Wy (X) < 2741 Thus, if
we apply Lemma|[TT] we obtain the statement. O

Lemma 14. Forany 6 € (0,1),
P(Di15) >1—|X|6 >1— SAs.
Proof. Since Xi := Iy (gk aky—(s,0)} ™ Bernoulli(w;* (s, a)),

E[(Xy — wi*(s,a))?|Fr-1] = wi*(s,a) (1 — wi*(s,a)) < wp*(s,a) < Wi(s).
By Lemma[IT] we have that

a & / 2 2
Zwiﬂ;k (87(1) - ZH{(sﬁ,aﬁ):(s,a)} < QKZWh(S) 1Og5 + 210g5
k=1 k=1

with probability at least 1 — §. Union bounding over X" leads to the statement. O
Lemma 15. Forany 6 € (0,1),
P(Dys) > 1—|X;|0 > 1— SAG.

18
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Proof. Since X}, := H{(S;C’aic

E[(Xy — wi*(s,a))?|Fr—1] = wi*(s,a) (1 — wi*(s,a)) < wp*(s,a) < Wiy(s).
By Lemma@] and union bound over X, the statement follows. O

)=(s,a)} ~ Bernoulli(wp* (s, a)),

Lemma 16. If0 € (0, 1) is the third argument of FindExplorableSets, the event Cy 5/2MCa 5/2
implies .
Wih(X\ X)) <27

Proof. Putting Lemma [I2] T3] and union bounding over these events, we have that with probability at
least 1 — 6,

m; Kij H m; Kij 1
Rj gk gk > V*Jj _ 4Ki2—z'1 =
ZZ n(sn 7ah)—jz:: ‘ 0 \/ 85

j=1 k=1 h=1 1 k=
— 20 \/ S2A2H2V) " K, log(HK) log(%) —Cr
where we denote
Cr = 2¢eS2 A H% log( HK;) 1@%) + 2log %
Assume that V;""™ > 2%, Using that the reward decreases monotonically so V;"*"" < V;* for

any j < m,;, we can lower bound the above as

. / , 4 ; 2MHK;
> 2_ZK1' — 4Ki2_l log g — che\/SQA2H2‘/O*’“Ki log(HKl) log(Tl) — CR

2MHK;
T) - OR

where the second inequality follows since Vo*’i1 <27 land \/4K;2 " log % will then be dominated
by the regret term. Lemmal([I0] gives

> 27K, — 3cee \/52A2H22iKi log(H K;) log(

, 2MHK;
K; > 2" max {4CR, 144¢2,5% A? H? log(H K;) log( 7’)}

)

which implies

1,
12711{1‘ - CR Z 0
and
1. _ 2MHK;
ZQ*lKZ- - SCSC\/52A2H22ZKZ- log(HK;) log(T)
- 20 - 144¢2,5? A H? log(H K; ) log (2M 21K )
- 4.2
, 2MHK; . 2MHK;
— 3Cse \/S2A2H22—Z log(HK;) log(TZ) -29144¢2,52 A2H? log(H K;) log(Tz)
=0.
Thus, we can lower bound the above as
. _ 2MHK; 1,
27'K; — 3056\/S2A2H221K1- log(HK;) log(T) —Cr > 52*7{14.
Note that we can collect a total reward of at most |X'| N;. However, by our choice of
Ni = K;/(4]%]-2"),
we have that
1 1
4.2 2.2
This is a contradiction. Thus, we must have that W}, (X \ &;) < Vg™ < 277, O
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Lemma 17. The event Cs/p with 6 > i;jﬁ implies

||
Whr(X) > — .
(&) = 23| X |

Proof.

i . K
NAXHSZZJRJ sh ,ah Siz k”—&—y/4K2 Z10g§—|—2log;l

j=1k=1 =1 k=1

/ ) 4 4
< KZWh(X)'f‘ 4Ki2—1logg+2logg

K, K,

< KW (X) 4+ — i i

< KiWn(X) + 5iag 1 + g0g
K;

2z’+35’A’

where the forth inequality follows from K; > 27115242 Jog 4545 Thep,

< KiWy(X) +

Wi(X) > — — = — — — - .
W) = TR T s T A 254 - A

O

Lemma 18. The event D1 s N Dy 5 with 6 > 5 ga;;‘}; implies that after rerunning each policy in 11;

once, the number of samples collected for each (s, a) € X; is at least iNi.

Proof. Let I', 12 denote the indicator of an event during FindExplorableSets, and an event
during rerunning policies respectively. For a pair (s, a) € X;, we have

2 2
D Lok aby=(s.a)) th $,0) <\ 2K;Wi(s)log % + 2log
k=1

Ki K1

Dowit(s.a) = D T ab)(oayy S |/ 2KiWa(s) )log > —|—2log6
k=1 k=1

Then the number of samples of (s, a) collected during the rerunning satisfies

1
ZH{(% a)=(ssa} > Z]I{ (o5 k)= (5,0)) — 24/ 2K, Wy (s logg—ﬁllogé

k=1

> N; — 24/ 2K W (s )logg —410g(5
> N; —2¢/272K; log§ —410g§

?

- N K; K;
=T 943564 2it9G2 A2
K;
> N — 2i+2.55 A
K; 1 1
>N, — — ' — Ni(1— >N,
= 225 x| ( \/5) =3
where the forth inequality follows from 6 > 4;‘{‘1{’1 and log Qi‘if < 27¢+§§2 Tz O
Lemma 19. The event Dy 5 with § > 2;“2‘1{} implies
Wils) > s for each (s,0) € X, Wi(X) > IS
S — . Jor eac S,a 1 .
h 23| X| ' & h 203 [ X

20
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Proof. In the proof of the previous lemma, we showed that

2
{27 2K, log(S + 2log —

%’unp : :
when § > soarr- Using this, we have

[ 2 2 N;
Ni < ZH{(éh,ah) (s,a)} = th (s,a) 272K log F + 210g5 < KiWh(s) + 2

for each (s,a) € X;. Thus,

[\

Ni<&
2

&

N; 1
n(8)> 95 = sy
On the other hand,
K; K;
- /| 2 2 X;|N;
|XZ|N'L < Z ZH%(SZ,G} (s,a)} — Z ‘X ‘ ( 272+2Ki IOg g + 210g 5) < Kth(X’L) + | 2| .
(s,a)eX; k=1 k=1
Thus,
|XilN: |
X
Wal) > S BT

We finally give a guarantee of FindExplorableSets.

Theorem C.1. If we run

4|x|2¢
for a subset X C S x Awith Wy,(X) < 27+ and returns subset X; C X, policy set 11;, then

FindExplorableSets(X,h,d, K; = K;(0,dsamp = SAHO),N; =

1. Wi (X \ &X;) < 2% with probability at least 1 — §.
2. With probability at least 1 — S A9,

(1) If we rerun each policy in 11; once, the number of samples collected for each (s, a) € X;
is at least %Ni.

(2) Wi(s) > 2H%‘leor each (s,a) € X; and Wi (X;) > T‘*Xfl\‘/‘f\

Proof. By Lemma|12] [T3] [T4] [T3] [T6] [T8] and[T9] the theorem follows. O

C.2 PROOF OF THEOREM[3.1]

Before proving Theorem 3.1} we introduce a useful lemma related to the Lambert W -function. The
Lambert function W (s) : [0, 00) — [0, 00) is defined by

x=W(zx)exp(W(zx)), forz>0.
Then the following holds.
Lemma 20. (Orabona and Pall 2016 Lemma 17)

0.63211log(1l 4+ z) < W(z) < log(l + z) for z > 0.
We define
1 1
=4 = pol A, H,log(B
c(B) = 4JC (g g g0 J) = poly(S, 4, H, log(B)),
Crou(B) = SH?¢(B). )
Recall that Cx was defined in equationd] We now give a proof of Theorem 31|
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Theorem C.2 (Theorem . Consider running Algorithmwith B > ¢(B). Then, the following
statements hold.

1. The total budget used is at most B.
2. For any € > 2SH?cp, with probability at least 1 — exp (—(:) (CL;B(B))>,
(1) The reachability of each set X; satisfies

x ‘ } 25H?
||X|| 27 < W (X) <277 foralli <. = |log, ( SE ) ’

(2) The remaining elements, X := X\ Uﬁ;lé\,’i satisfy
” €
sup Z _wh(s,a) < ISHE
(s,a)eX

(3) Moreover, for any i < i, if each policy in I1; is executed A times, then every state-
action pair (s, a) € X; is visited at least %AN,; times.

Here, the probability accounts for both the randomness in the execution of the algorithm

and the resampling process.

Proof. We first prove that the total budget used is at most B. Let § = By the definition of 4;,

_1
8SAH"
1 1 1
log — = 0.6321L; log = - loglog =
og(si 0.63 ‘Ogé ogog5
1 1
<1+0.6321L; log 5 -log logg
1 1
<(1+L; logg -log log 5)0'6321

1 1
< exp(W(L;log 5 log log g))
Thus,

1 1 1 1 1 1 1 1
log 5 log log 5 < W(L;log 5 log log g) exp(W(L; log 5 log log 5)) = L;log 5 loglog 5
(6)

The total budget used is

J
> K55, SAHS;) <

j=1

21 C (85, SAHS;, J)

e

<
Il
—

1 1
<sgam s
log(2)B o 6321 1 1
1 1 29 \Z/20. -

B 1 1
Ox(ggam s’

2J+1

<
Il
—_

“-

IA
)

<2J(1+ C(B))

where the second inequality follows from equation@and that C has log(}) log log(§) dependence.
If B > ¢(B), then the above is bounded by
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We now prove the second part. By union bounding Theorem|[C.TJover i = 1,2,. .., (1) hold with
probability at least

1= 6 >1—id;,.
i=1
Here, §;. = exp(—O(L;_)) by the definition and

L =277 > € IOg(2>B)O.6321 > ¢ 1 g(2>B) > _ & 1 g(Q)B_

o 0
140.6321 0.6321
(1+ ¢ ¢(B)

Z m o(B) = 4SH? = 4SH?

Thus, (1) holds with probability at least 1 — exp (—(1) (CngB))). Similarly, (2) holds with

probability at least

1— SAidi.
i=1

Since S A becomes log(SA) when moving into the exponential, (2) also holds with probability at

least 1 — exp (—(:) (@%)) . We next compute the probability that (3) holds. For simplicity,

let’s consider the level ¢ = i., in which the failure probability S AJ;_ is dominant. For the collection
of samples via rerunning policies to be successful, we need both Dy 5, and Dy 5,_ to hold. Dy s,_

holds with probability at least 1 — &2&5. On the event Dy 5,_, consider rerunning each policy in
II;_ for A times. By Lemma with probability 1 — exp(—3 A log(-g4s—)), at least for 4 trials

of repetition, we collect % samples of each (s,a) € X;_, which means we collect at least %
samples of each (s,a) € X;_. Thus, the probability that there exists some (s,a) € X;_, the sample

s AN;_ .
number of which is less than —g= s

o (v ) = -0 (a7 ) )

However, the failure probability of Dy 5,_ is already exp ( e (CL;f(B))) , which is more dominant.

Thus, (3) also holds with probability 1 — exp <—(:) ( )) . The theorem is proven. O

B
CL2i(B)
C.3 BOOSTING TECHNIQUE

In this subsection, we develop an alternative algorithm of FB-L2E. The core mechanism of this
alternative is the boosting technique, which repeatedly executes independent trials. The number of
repetitions and the failure probability is in the exponential relationship as we can see in the following
lemma.

Lemma 21. Let € be an event from a random trial such that P(€) < 0 Let a € (0,1). Let N be the
number of trials where £ is true out of L trials. Assume o > 6. Then,

P(% > a) < exp (—aL In (;))

Proof. Recall the KL divergence based concentration inequality where fi,, is the sample mean of n
Bernoulli i.i.d. random variables with head probability p:

P(fin — p > €) < exp(—nkl(u + ¢, 1)) .
Note that N/ L can be viewed as the sample mean of Bernoulli trials with p := P(€). Then,

P(N > al) = ]P’(% > a)

N
=By —pza-—yp
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Algorithm 4 Fixed Budget Learn to Explore with Boosting for Singleton (FB-L2E-BS)
function FB-L2E-BS(X = {(s,a)} C S x A, step h, budget B)

if | X'| = 0 then
return {(0,0,0,)}
end if

J « 0.6321 log, (1 + “52IE)]

fory=1,...,Jdo
Kj < K;(ggam>5): Nj« Kj/(4X]-2), Lj 277
form=1,...,L;do

Yjm, L m =FindExplorableSets(X,h, 85‘%’ K;,N;)
end for
Calculate the votes: V(s,a) € X, 054 ¢ Sri_ 1{(s,a) € Vj.m}.
Filter out only if chosen at least half the time: X; < {(s,a) | vs,o > L;/2}
L

I = U, 1 m
X x\x;

end for

return {(X;,11;, Nj)}7_,

end function

< exp(—Lkl(a, p))

exp (—L (aln(a/u) +(1-a)h 1 = z>>

(%) exp (fL (aln(o/p) — oz))

< exp (—L (aln(a/d) — a))

where (a) is by the following derivation:

l—a 1—p
(1—a)1n17u— (1 a)lnlia
- (11— QK
=—(1 a)1n<1+ 1_@)
> —(a—p)
> —«

O

The alternative algorithm, FB-L2E-BS is described in Algorithm [0] Although it only applies to
singleton subsets (subset of size 1), one can flexibly change the regret minimization algorithm in
FINDEXPLORABLESETS. It was crucial for our result that the regret bound of STRONGEULER has
1og(%) dependence. However, for FB-L2E-BS, we can use algorithms such as EULER, which has

1og3(%) dependence in the lower order term.

We briefly argue that the statements of Theorem [3.1]also hold for FB-L2E-BS used for singleton
subset. The total budget used is

J

) 1 1
J=ir. — J+1 -
jE:12 K; =J2 CK(SSAH’S’J)
log(2) B 0.6321 1 1
< O\ 0. —
<2J(1+ (B ) Cx(gaam g )
log(2)B 1 1
< 2J(1 —. J).
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If B > ¢(B), then the above is bounded by

4JB 1 1
22 (= = J) = B.
B *55am s’

Letd = ﬁ, dsamp = %. The crucial part for other statements in Theorem was to make the
failure probability of the j-th iteration in the form of

(c10)2" (N
for some constant ¢y, co, which was done by defining §; as this form in FB-L2E. Once we get equa-
tion , the dominant term becomes (c18)°2Lé = exp <—C:) (CL;f(B))> . We show that equation
can also be obtained for FB-L2E-BS.

Assume W),(s) € (27%, 27" for i < J. Let’s call i as the reachable index of s at h. Let N; be the
event that (s, a) is not filtered in j-th boosted FES. By Lemmal16]

P ((s, a) is not filtered in i-th step by a single FES]| ﬂ;;ll j) <.

If we apply Lemma 2T} we obtain the form of equation[7]as

P (ﬂ;zlA/}) <P (./\/\ ﬂ’ LW, ) < exp (—2L log 215>

We say that (s, a) is upper well-filtered at h if (s, a) is filtered in the index j for some j < i.
Now we consider the j-th boosted FES for some j < i — 4. By Lemma([I4] [T9]

1)
IP’( fil h le FES| i~ ) < samp_
(s, a) is filtered in j-th step by a single FES| N} _; N}, ) < 5GAH"

Thus, by Lemma[2T] we obtain the form of equation [7]as
AH
(m{c N, N°)<]P>(N°|m )<exp< Llogb; )
€0samp

We say that (s, a) is lower well-filtered at h if (s a) is not filtered in the indices j with j < i —4. We
also say that (s, a) is well-filtered at h if (s, a) is both upper and lower well-filtered at 4. We have

1—4
SAH 1 SAH
P ((s, a) is not lower well-filtered at h < Zexp ( —L;log —— ) < iexp (—2Li log ) .
Jj=1

e5samp e(Ssamp

Thus, we have

1 1 AH
P ((s,a) is well-filtered at h) >1—exp ( —L;log 5 6> —iexp <2Li log S ) .

665amp

Recall that e > 25 H?ep and i, := Dogg(QSH )]. We define the set
S. = {(s,h) : the reachable index of s at h < i.}

and the event

M. = {(s, a) is well-filtered at h for all (s, h) € S.}.
By using the monotonicity of L; and union bound, we have the following.
Lemma 22.

e(Ssamp

P(M.)>1—- SHexp (;Li* log i) — SHi. exp (;Li* log SAH )
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Let Wj,(S) € (27%,27%"!] and assume that D; 5 happened for at least 4, where 7 is the index that
(s, a) is filtered. We denote the number of (s, a) samples at horizon h when running each policy in a
policy set IT A times as Nj (s, a, h). Let I C [L;] be the set of indices that D; s happened, which
means |I| > L;/2. Assume m € I. If we rerun each policy in IT; ,,, once,

5samp

H

by Lemma|[I8] Now consider rerunning each policy in II;,,, A times. Since running policies are
independent, we can think of the process as A repetition of running each policy in 11, ,,, once. Thus,
we get

1
P(# of (s, a) samples at horizon h < ZNj) <

A
P(Ng, . (s,a,h) < %ANJ-) <P >
=1

N s

A
{Nh, | (s.a,h)<iN;} ) < EXP(*gln(H/Qecssamp))a

where I is the indicator function for i-th repetition of running each policy in I1; ,,, and the second
inequality follows from Lemma |21} If we rerun each policy in IT; A times,

1 1| y A
P(Nfi, < 33 A4N; L) < P(Y Iing  (sam<iany) 2 5) < exp(=5 In(1/2eexp(—7 In(H/2e6samp))))
mel

< exp(—% In(1/2e exp(—g In(H/2€edsamp))))

< exp (—é (ALj))

by Lemma If this happens, let’s say that (s, a) is well-collected at horizon h for A repetition.
However, the failure probability

L; -
P(D; s happened less than ?J) < exp (7@ (Lj)) ,

which is more dominant. Thus, the following holds.

Lemma 23. Consider s whose reachable index at h is i < i.. If we replay policies saved for (s, a)
A times, the number T of (s, a) samples we get satisfies

ANsz ~ eB
< — —_— .
P(Ths< 16 )_exp( @(CLQE(B)>>

D ANALYSIS OF SAR

Fix ¢ > 0. We say that an arm ¢ of a bandit m is e-good if 1,1 — ftm,; < €. An arm is e-
bad if it is not e-good. Let g, (¢) denote the number of e-good arms in bandit m. We write

k* := max {k : A(KM-i—l—k) > 5} and define the following two key events:

& = {Vk € [k*], 5-good pairs are not rejected at the end of phase k}
E ={Vke[(k*+1),...,K], forevery active bandit m containing an e-bad arm
at the beginning of phase k, an 5-good arm in bandit m is not rejected}
We first show that the intersection of these two events leads to a successful good arm identification

for every bandit.
Lemma 24. Suppose 1 N E; holds. Then for every m € [M], the accepted arm is e-good.

Proof. Suppose the conclusion is not true; i.e., there exists a bandit m for which an e-bad arm (m, b)
has been accepted. Then, there exists a phase k € [XM — 1] where the best arm (m, 1) is rejected
from bandit m. Due to £; and the fact that arm (m, 1) is an %-good arm, we know k£ > k* 4+ 1. Now,
at the beginning of phase k, the bandit m must contain both (m, b) and (m, 1). However, due to &,
the arm (m, 1) cannot be rejected, which contradicts our supposition. [
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Furthermore, consider the following event

. . 1 - _
50 = {Vm c [M],VZ € [K],Vk S [MK — 1], |,LLm7i(7’Lk) — Nm,i| < g(A(MK-I—l—k) vV A(g(5)+1))}
Lemma25. & — £1N&,

Proof. Assume &. To show &y, it suffices to show that, for every k € [k*], if no %—good arm was
rejected before phase & then no §-good arm will be rejected in phase  (i.e., either accepts an arm or
rejects a non-35-good arm).

So, let k € [k*], which implies that A( MK+1—k) > € by definition, and assume that no 5-good arm
was rejected before phase k. Furthermore, & is trivially true if the phase k accepts an arm. Thus, it
suffices to assume that the phase k& does not accept an arm.

We claim that, at the beginning of phase k, there exists an arm (1, 7) € S such that
L — Bani = D(MK4+1—k) -

Hereafter, we omit (ny,) from fi. .(ny). To prove this claim, first note that there exists (m/,i’) € S
such that

Amrir > Aaik41-k) -

(To see this, first, confirm that this is true with equality if the arm (MK + 1 — k) is rejected or
accepted at each phase k; now, notice that if an arm other than (M K + 1 — k) was rejected or
accepted, then it only makes the equality into >.) Then, we have the following two cases:

o If i’ # 1, then A,/ s = fymr 1 — Hms i+ by definition, so we can take m = m' and i = i’ to
prove the claim.

e If i/ = 1, then, since phase k does not accept an arm, there must exist another surviving arm
i # 1in bandit m’. Since A,/ v = fiyms 1 — fm i and

A i 2 Ao = By 1 = Dy ir 2 Ak 41—k) »

we can choose m = m’ and 7 = 3" to prove the claim.

Assume that & is false; i.e., an §-good arm in bandit m is rejected. This implies that there exists an
active bandit m such that

Elg € [gm(%)] : p’m,im - I&"Lag 2 IELﬁL,im - ﬂﬁlﬂi .
Note that, using & and Pon i, = Pm,g < fm,1 — Hm,g < 5 < %A(MK-H—/C),

(LHS) = i, 3, = B ,, T Fmi,, — Pm,g + Hm,g — flm,g

B>

Avikti-r)  Drksi-k)

(MK+1—Fk)
< 8 + 2 8
3_
= ZA(MK-Q—I—IC) .
On the other hand,
(RHS) > fim,1 — flgzz ((m,1) € S since no 5-good arm rejected before phase k)

= fm,1 — m,1 T Pl = Hni g — B
1

_ 1-
> A1k T AMKL1-k) — gA(MK—H—k)

3
> ZA(MKH%) .

oo

This is a contradiction.
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We now prove £;. Suppose not; there exists a phase k£ > k* + 1 and a bandit m active at the beginning
of phase & where an $-good arm (g, m) is rejected even if there was a surviving bad arm (b, m). This
means that

,am,g < ,am b
On the other hand, note that & > k* 4+ 1 implies A(MK_H k) < A(g(e )41)» SO A(MK_H k) V
Ag(e)+1) = A(g(e)+1)- Thus,

,um,g - ,U'm,b = ,um,g — Km,g + Hm,g — Hm,b + Hm.b — p'm,b

1~ 1-
~ 520+ T img = fmy = g Bg(e)+1) (o)
*A(g(e +1) + A(g(E 11) fA(g(E )+1) (definition of g and b)
>0
This is a contradiction. O
Let
Hy(e) = Affil Hy(e) := max L
ne P (A Ve)? SRR A%i)'

We present a relation between these two gap-dependent quantities.

Lemma 26. Hs(c) < Hy(e) < 42 + log (275 ) Ha(e).

— 52 (E)

Proof. Leti* = arg max;>g()41 iA;Q. Note that

g(e)
Hi(e) =) (Aive) =Y A2+ Y A7
i>1 i=1 i>g(e)+1
g(e) i*
=z Z Ag(E 1 Z
i=g(e)+1
= Z Ag(a o+ (@ —g(e)AR?
9(8)

- ZAg(E 41+ Ha(e) - g(e)A?

g (8)
22 A+ (o) —9()AL
i=1
2 H2 (E)
For the right inequality,

Hy(e) =) li(Ai Ve) 2=

i>1

<Zfz€_2+ Z fHQ

i= g(a)—i—l
g(E) MK
< =~ 4 log(——)Hz(¢).
<S5 og(ge)) 2(¢)

We are now ready to prove Theorem[3.2]
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Theorem D.1 (Refinement of Theorem[3.2). If we run Algorithm 2with B > M K, then the total
number of budget used is at most B and

B- MK
PEm € [M] : fim,1 — fim, jp(m) > €) < 2M°K?exp <— — __2>
’ 12802 log(M K) - maX;>g(c)41 A
B- MK
< 2M?K?exp (— T — 2)
12802 log(MK) - 3 icinri) (B VE) ™

Proof. For the first part, the total budget used is bounded as
MK-1 MK-1

B-MK (1 1
B, M,K)+ 1(BM,K) < MK4+— | = + ———— | =B,
; nk( ) MK 1( ) log(MK) (2 g::l MK+1—k>

where we used [z] < 1 + z For the second part, it suffices to bound P(€y) by Lemma 24| and
Lemma 23] Fix a bandit m and an arm 4. Then,

) 1, .
P (3 € (KM — 1] | i) = pim] = <(Boarrcinny V Bgierin) )

-8
KM—1 A A 2
me | (Borrti-r V Age)+)
<> 2o (g @
k=1
< Kfl 2 exp (_ B- MK (A1) V A(g(e)+1))2)
= oo 2
s log(MK) - (MK +1— k) 1280
B-MK
< 2MK exp <— — — = )
12802 IOg(MK) - MaX;ec[2. MK] Z(A(i) V A(g(e)+1))72
B-MK
§2MKeXp<— — — 2).
12802 10g(MK) . maXizg(E)+1 ZA(:)
Taking a union bound over m € [M] and i € [K] and Lemma 26| completes the proof. O

Note that when € = 0, this theorem recovers the best arm identification result of Bubeck et al.| (2013).

Remark 27. Ifwe set M = 1, SAR becomes a single bandit algorithm. Consider running this single
bandit SAR to each bandit m € [M] with budget B/M. Then, we have

X B/M
P m,l = Mm,J(m S -6 x
(b = b ) > ) £ 3P (zimm,iva)—%)

for each bandit m € [M]. This yields

- B/M
P(3 M] : m,l — Mm,J(m S -0 A ’
(Fm € [M]: mum,1 = fim,j(m) > €) < €xp (maxm ) VAVSERY 5)_2)>

which is worse than the result of Theorem|3.2]since
Z Z(Am,i Ve)7?) < M max Z(Am’i Ve)T?).
. m .
m K3 3
Due to this difference, if we use single bandit algorithm in BREA, we get the term

exp (_@

B
<H5 maxpe[q] C?Smaxges Wi (s)~! ZaeA(Ah(s, a) Vv th(s))_g)) ’

which is worse than the actual term

exp (7@

B
(7 maxpe () CF 2 yes Wil(s) 1 2 pca(Bn(s,a) Vv wf<s>>‘2>)
of Theorem 3.3
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E PROOF OF THEOREM [3.3] AND COROLLARY [3]

In this section, we provide an analysis of BREA. Recall that £ > 25H? g and i. = [log, (222 2 )]

We define the events

My, ¢ :{For any s € S,

FB-L2E({(s,1)}, h, B') outputs X; = {(s,1)} forsome i <i. == 2773 < W),(s) <27
FB-L2E({(s,1)}, h, B') outputs X; = @ forall i € [i.] = Wj(s) <

Ms = UhH:1 Mh,57
Lhe :{For any i < 7. and any phase k € [|Z,;]4 — 1],
sh

N;hJ 8

35 )

®)

each (s,a) € Ay, is collected at least | times},
Lo=U) Lhe

. R £ i
5h :{AZ(S,Wh(S)) S m forall s € Ulez}”}

Before proving Theorem[3.3] we provide lemmas that will give us a relation between the suboptimality
gap and its empirical estimate.

Lemma 28. Ler 0 < a < b and assume f1, fo > 0 satisfy | f1 — fa| < b. Then

(fiva)™? < (2%15 Va)?

Proof. 1If f; < a, then (f1 V a)~2? = a~2. On the other hand, f> < f; +b < a + b < 2b. Thus,
(Aiva)?=a?=(5fVa)~

If fi >athen (fiva)2=fr2<a2Also, fo<fi+tb< fi+Lb=fi(1+28) <2y,
Thus,

(hva)?=f < (glVa)

]
Lemma 29. On OZ,J;lHEh/ N M. N L., we have
. € 2e
A7 V—— )2<16C?H?*(A V—)"2.
( h(S,Cl) QChHWh(S)) = h ( h(S,Cl) Wh(S))

Proof. By LemmalJ] for any policy 7/

H
th+1 (Vi1 (9) = Vita () < ) sup Y wii(s)en(s)
h=h+1 T s
H
S Y Y i H Y S swanl
T = 20, HW),(s) HWh x
h/’=h+1 1<ic SEZp; =h+1s¢€U;<;. Zni
L. u €
< — SH——
< > gt 2 SHygm
h'=h+1 B =h+1
<e.
By Lemmal(g]
R €
Ap(s,a) — A7 (s,a)| < .
A(sv0) = A0 < s
By applying Lemmawith fi = A%(s,a), fo = Ap(s,a),a = S AW ) P = (s the proof
is done. &
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Theorem E.1 (Theorem[3.3). If we run Algorithm[3|with

1
B 10g2 }a

SH B
QSH

B > max{2SHc(=—+ B ), 25A¢ 5

25H

then the total number of budget used is at most B. Moreover, for any € > 2S5 H?¢e B

P (VO* — Vi > s) <exp (—C:) (CL2E€(‘Z§H)))

+ exp (—(:) ( B

H5 maxpe () Cﬁ Y ses Wa(s)™t ZaeA(Ah(s, a) v ﬁ(s))* ) ’

Proof. The budget used from the first part is

B B
H <=
s LQSHJ -2
by Theorem [3.1] For the second part, we use
[Znhi|A—1
Z Ti(sﬂ a’) + T\Z}u:\A—l(Sv a)
i=1
1 |Zni|A-1
< Z Ni + Nz, A-1
Ni i=1
B L, B
Szz‘T <B"= SHT (Theorem[3.2))

for each multiple bandit Zj,;. Thus, the budget used in the second part is at most g, the total budget
used is at most B.

We now prove the probability bound. By Theorem and that B > 2S5 H c(w%), we have

POME) < $H exp [ —6 (B> o6 (B> ,

Cron(557) Cror(z57)
- B ~ eB
P(LS) < SPA’Hexp [ -0 | ———— | | =exp [ -0 ———]]. ©
CL2E<%) CL2E(2§H)

We can decompose the probability as

P(Vy — Vg > ) SP(VS = V5 > e, M., Le) + P(ME) + P(LY)

; - B
PV — Vi > e, Mo, L) +exp | -0 ————]]. @0
Croe(557)

Assume that M., L., {€,}L | holds. Then, by Lemma'

B ZsiprZ(S)ﬁh(s)

H
S S S S S R VP DR
h=1 1<ie SEZp; h=1s5¢U;<; Zni
H
= hz:: o O 25H2
€L E_,
— 2 2 )
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where the second inequality follows from the definition of C},. Thus, we have
P(Vy — Vi >e,M., L) < Z]P’ (ES, Mo, Lo, O &), (11)

We try to bound P(E5, M., L., OZ,EHSM).
On the event L., every multiple bandit instance Zj,; effectively collects samples so that SAR with

budget ©(55527""2) is run. On the event M., this is @(BVZI’}(S)) = @(BV(;?(S) ). To be precise,

Be_p_
the minimum budget of SAR is mingc z, B;}V};(S) > —57°#- and this is more or equal to SA by the

hypothesis of Theorem[3.3] Thus, by Theorem we have

F P S
(A ( ( W for some s € Zh“Mg, EE, ﬂh' gh/|fh+1>

B

< exp ~ -
H Z(sa GZ}“X.A Wh( ) (Ah (S a) \/ QChHEWh(S)) 2)

< exp

B
= exp = - —
<H 2sezy, Wils) 71 00 (A5(5, ) V semwy) 2)

B
Y on Wi(s) S uaa(Bn(5,0) v W;(s))—2>
& B
CszH5 E(s,a)EZh,q‘,X.AWh(s>_1(Ah(S’a’> v ﬁ(s))_2 7

where the second inequality follows from Lemma[29] Fj, 1 is a filtration up to learning in step h + 1.
Thus, we have

< exp

12)

~ B
(8 7MEaLEaﬂ r— gh/) < ZE exp -0 — e —
" = CpH? Z(s,a)GSX.A Wh(s)~ (An(s,a) v Wh,(s)) 2

~ B
=exp | —© = — —
<CZHO 2sayesxa Wals) " (An(s, ) V 5) 2)
If we plug this into equation[TT]and equation[I0] we get the probability bound of the theorem.  [J
Corollary 30 (Exact statement of Corollary3). If

+ + _
QSHQEQéSH <eghi= min{mihn Wi (s),2H min Cp, Wy, (s)Ap(s,a)},

s,a,
we obtain a guarantee of the best policy identification, given by

P (Vi ~ Vi >0) <exp (-0 (CL;(ZSH)))

+exp(fé< = 3 Bl = o 5 )
H? maxpen) Cf Yo es Wa(s) ™ X gea(Bn(s,a) V W(s))i

Furthermore, if the optimal action in each state s at each step h is unique, then

(54 20) <o (-0 7Ty )
- B
+exp (—@ (Hg maXne () Sees Wi(s) L >nen Ah(57a)—2)) :
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Proof. Let’s take any - < £ < €* and assume that the events Mg,ﬁgmh 1€p hold. By
the definition of M, in equation |8, ¢ < 2SH? mln:h Wi, (s) implies that any state s with
Wh(s) > 0 lies in Z), for any h € [H]. Since Af;(s,a) = Ap(s,a), the event £y and that
e < 2Hmin]  , C,Wy(s)An(s,a) implies that 7z (s) is an optimal action for all s € Zg. Then
this implies that AH 1(s,a) = Ap_1(s,a) holds for all s,a. Again, the event £y_, and that
e < 2H rmn5 ah CrnWh(s )Ah(_s, a) implies that 7 _1(s) is an optimal action for all s € Zp_1.

Repeating this procedure, we can conclude that 7 is optimal. The first probability bound follows by
limiting the result of Theorem[3.3|as ¢ — ¢*—.

s,a,h

Next, we further assume the uniqueness of the optimal actions. In equation ['1;2] of the proof of Theo-
rem , we may apply tha fact that A7 (s,a) = Ay (s,a) and e < 2H min!_, C,, Wy (s)An(s, a)
instead of Lemma 29] so that we obtain

s,a,h

(Aﬂ'( T ( m fOr some s € Z}“‘, MEa £5, ﬂZj_:ngh/ |fh+1>
< B
= €Xp G z -
H2 Y (s ayeznxa Wh(s)THAL(s,0) V semsy ) 2
_6 B
= exp - —
H3Y ez, Wa(s) ™! 20z (A7(5,0) V sy ) >
B
= exp — z —
H3 Y ez, W)™ a2 (Bn(s,0) V semmey) 2
o B
=exp | —
H? Zsez;n n(s)~ Za>2 Ap(s,a)~2
~ B
< -0 = .
<o (-6 (47 > aes Wa(8) T2 gen Anls, a>—2>)

Union bound over h, combining with the exploration term and taking the limit as ¢ — *— give the
second probability bound. O

F PROOF OF THEOREM [3.4]

We present a modified algorithm, BREAP in Algorithm 3]

BREAP additionally refine the policy. Intuitively, BREAP gathers good arms from the second part,
additionally collects samples of them, and picks the empirically best actions.

Consider the situation where we run SAR with the set Z;,; x A. Let
Afi(s,a) == max Q (s, a) — Q7 (s, a)
and X =
Gri(e) :={(s,a) € Zp; x A: Af(s,a) < e}

We define the set (TPTTh(a) as the last gy, (===~ surviving pairs.

Wi (s ))
Let £* be

max{k : Az, ja+1-r) <},
where A(l) > A(g) >...> A(‘ZM‘A) and define the events

3

Go.e(Zni) = {Vk,¥(s,a) € Zni x A, |QF(s,a,n1) — QF (s,a)| < (A (1 ZnilA+1—k) V Wals)

)}

G1,:(Zni) = {Vk € [k"], — good pairs are not rejected at phase k}

_c
2Wh(8)
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Go.e(Zhi) = {Vk > k™, #() — good pairs are not rejected at phase k if there exists a bad pair in the same state}
h{S
as in Appendix [D| We omit Zj; when there is no confusion. We also redefine the events
- €
& = h(s)AL (s, 7 < -
p={w Y WAl () < 55

SEZR1:i,

where Zp1.;, = UZ;IZM.

We state some lemmas describing the properties of SAR process.

Lemma 31. Under the events M., L., the event Gy . implies Gy . and Ga ..

Proof. This is just a restatement of Lemma 23] O
Lemma 32. Under the events M., L.,

i(AG) Y wey)”

c a Wh(S)B
P(Go.e) < exp | =6 <H3 max; ] ) 2>

Proof. This is just a restatement of Theorem [3.2] O

Lemma 33. Under the events M., L., Go.e, if a pair (s, a) is rejected in a phase k € [k*), then
N 1-
An(s,a) > SA( 2z a+1-8)-

Proof. There exists a pair (s’,a’) in the remaining set at the beginning of phase & such that
AZ(S’,a’) > A(|Z;Li|A+1—k)-
Since (s, a) is eliminated in phase k < k*,
An(s,a)r > Ap(s', a)y,

where the subscript & is for the empirical gap until phase k. Let o’ € arg max, Q’,{(s, a)k. Then we
have

A( 1z, ) A41-k) A(z, ) A+1-k)

+Qh(s,a) — Qh(s,0) +

8 8
X Az, _
:AZ(57Q)+ (|Z;n|:+1 k)
under Gy. On the other hand,
An(s'a ) = Qh (s as )k — Qi(s,d)k
2 QAZ(S/7GZ/)]€ - QZ(S 7al)k
= Qs al)k — Qi (s’ a%) + Qi(s' al) — Qi (s, a) + Qi (s, a) — Qi (s, a))
A2 1AL]— A Az, 1ar1—
S (IZni|A+1-F) +AZ(s’,a’) _ 22nilA+1-k)
8 8
AZiA 1-k ~ A2“4 1-k
> (12ni|A+1-k) + Az Ad1—k) — (I12ni|A+1-k)
B 8 8
_ 3A(z.a41-k)
N 4
under Gy. Then
A(zar1-k) _ & A 3A(1 21| A+ 1—k)

AT (s,a) + > Ap(s,a)r > Ap(s',a )y >

4 4 ’
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which implies

Al (s,a) > SA( 2,1 A41-k)-

DN | =

O
Lemma 34. Under the events M., L., Go.e, if a pair (s, a) is accepted in a phase k € [k*|, then
A7 (s,a) = 0.
Proof. Since (s, a) is accepted in the phase k € [£*], (s, a’) for the other actions a’ are rejected befor
phase k. By Lemma A7 (s,a") > 0 for the other actions a’. Thus, A} (s,a) = 0. O

Lemma 35. Under the events M., L., ﬁ{fzhﬂgh/, and Gy ¢,

€ 3e
Wh(s) - Ah(saa) S Wh(S)

A (s,a) <
Proof. Assume that A7 (s,a) < Wiey - We have
Ap(s,a) — AZ(S, a) < Ap(s,a) — AZ(S, a) JrAZ(s, a) — AZ(S, a).
@I (IT)

(I) is less than or equal to == in the good event NE i1 En by Lemma Thus, under N _, 1 En,
2
An(s,0) € + (). (13)
n(s)

Leta’ € argmax Q7 (s, a). Then we have
(I) = Af(s,a) — Af(s,a) = max Qf (s, a) — max Qj (s, a) + Qf (s,0) — Qi (s, a)

S QZ(S,(I:) - Q‘Z(Saa’:) +Q‘Z(Saa) - QZ(&G/) .

(1) If (s, a) is accepted, then

(D) = Aj(s,0) = Af(s,0) < Af(s,0) < 7o
n(s)
by Theorem Thus, Ap(s,a) < Wis(s).
(2) If (s, a) is rejected in some phase k > k*, then
R Aa R €
II) = A7 (s,a) — Al (s,a) < AF(s,a) <
(1) = A (s.0) = A (5.0) < A} (s.0) < s

since
Goe = Go2e = Gi2:, Go22¢
and G1 2., G2,2. implies that all of the pairs remaining in the end of phase k* are W-

good. Thus, Ay (s,a) < W,gf(s)'

(3) Assume (s, a) is rejected in phase k. By Gy and Lemma 33]

1 .
© )< (2% (s,a) V ——).

V) < §Bgzinnn ¥ ) < 5 W)

(1) If (S, a:) is aCCCpted, then it is aCCCpted in phase K > k. Ihus,
(IH) < *1 (A \/76 ) < 71 (A \/7) < *1 (QAA( )\/
. — k! . _ S,a
=3 (|1Zni|A+1—K") th(s) =g (|1Zni|A+1—k) VVh(S) =g h\®>
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(ii) If (s, a?) is rejected at phase &/, then

1

(1) < é(&gmﬂl_k/)vﬁ()) g(zm(s al)v ) < E(QAZ(s,a)v

v &
Wh(s) -8 W, (S)

also by Gy and Lemma[33]
Thus,

Af(s,a)— < Aji(s,a)=Af (s,a) = (1) < (I +(IV) < %QAZ(S’G)V#(S))

€
Wals)
If 2A7(s,a) > AOLE
event Nf}_,, ., € and Lemmal§]
If 2A7 (s,a) < Wiy then AT (s,a) < ﬁf@) which implies Ap(s,a) < 4W T, 75 DY the
event N7 _, . &y and Lemma

then A7 (s,a) < Wie(s) which implies Ay (s, a) <

3e
Wi (s)

O

By Lemma we have |6P7I‘h(5)| < |OPT}(3¢)|. Now we prove Theorem
Theorem F.1 (Theorem [3.4). If we run Algorithm[5|with

1

), 4Hc(— B

B > max{2SHc(—— 10

),254¢ 5 log2 }

B
2SH _B_
25H

and an accuracy level e > 2SH?e B , it uses at most budget B and satisfies the following guarantee:

* T <
]P(VO Vo >E) eXp( poly (S, 4, HlogB)>>

+exp | —

+exp | —

B
( maxpe(r] Y ses Wh(s)™! ZaeA(Ah(s’a)vW:(s))2>

H"maxhe |OPTh( )|> ’
where OPTh(g) = {(s,a) € S x A: Ap(s,a)Wy(s) < e}

Proof. For the budget, the first and the second part each consume at most = In the third part total
budget of running FB-L2E is at most £ 7 by Theorem. We only need to con51der the collecting

part. Let K; = K;(6;,SAHJ;),N; = 2:+2|0PT:{(2)\U Pt . Then, the budget used in collecting is

J

J
K. o ) B . B
> =) 2FOPT,(e) \ UL A x ——=———2"%"* < —
N, J i=1 4
j=1 J j=1 H‘OPT}](€)|

Next, we prove the probablhty bound. Let M. be the event where all of the FB-L2E in the third
part suceed up to € as in Theorem- Let L. be the event Where all of the resampling process up to

group reachability level 7. suceed as in Theorem Since £ i <cly H)

Ic Ic a eB
M) S e (‘6 (o e B))) W

by Theorem [3.1] In collecting part, assume the good event

Hpe = {Vh,Vs € Z,1.4., max QF(s,a") — QF (s,7(s)) < en(s) :=

)
2H J2—i(s)+1 }’
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where i. = Dogz(QSEHzﬂ and j(s) 1= sup{j : (s,a’) € X; for some a’}. Let X; = {s: j(s) = j}.
Then, Hp,. = &), since

sup Z wir (s) AT (s,7(s)) < supz Z 27Tl < 2iHJ < %

SEZn1:i, =1 sex;

Let H. := Uthl’}-lh’g, Then the events M., L., M., LL, ﬂthlf,’h, H and Gy . (Zp;) for all multiple
bandit instances Z; with ¢ < 7. implies

H
Ve - Vi <3 sup S wi(s) A% (s, 7(5))
h=1 T s
Z wi(s)27(*)1 —|—HZSup Z wp, ()

s
SEZK 11, h @EZ{7 e

2HJZSupZth 2J1+HZ Z Wh(s

Jj= 136X h sEZhl*

sup Z wp, (s,a) +HZ|SQ e

h=1j=1 (s,a)EX;

TN ILIEELTE

h=1j5=1

IN

€
2d0J =

| /\

IN

2HJ

IN

<€+8_
-9 2

Thus,
. H i
P(Vy = V5 >e) SP(MEULEUMEULE) + Y > P(Me, Le,Go.o(Z1:)°)

h=11i=1

H
+ Y PHS Mo Loy ML LL | Goc(Zhi)
h=1

h,i<i.

exp (6 =b
P poly(S, A, H,log B)

by equation[T4]and Theorem [3.1] and the second term is

The first term is

B
<H3 maxpe(p] Y ses Wh(s)™? ZaeA(Ah(‘g? a)V W:(S))2>

by Lemma [32]and that i. is only a logarithmic factor.

exp | —©

It remains to bound the probability of Hj, _ assuming other events

MEa ‘C67 Mlgv £;7 m}IL—I’:hJ,-lgh’a U g0,€<zhi)-

h,i<ie

Let a* € argmax, Q7 (s,a) and denote 5, (s) :=

en(s) < max QF (s,a) — Q% (s, 71 (s))

PR
HJ2—3(s)+1*

= QZ(S, a*) - QZ(S’ a*> + Qh(s7a’*) - QZ(Svﬁh(S)) + QZ(SﬂTh(S)) - QZ(S’ Wh(s))
< Qhi(s,a") = Qh(s,a") + 0+ Qfi (s, 7n(s)) — Qf (s, 7 (s))
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— (n()/2 < Qils.0") = Qii(s,0") v (2(5)/2 < Qi (5, 7n(9)) — Qi (s, 7n(5)) )
Then, by Hoeffding’s inequality, the probability term below can be obtained as

]P(HZHME’£57M;a£;7ﬂg=h+1gh’, U gO,s(Zhi)) S

h,i<ic
]P’(El(s,a) € O/I;I‘h(g)a | HE}XQZ(&G/) - QZ(Sa a)| > 5h(5)|M5,£5,M;, ‘C:-:v mg:h+1gh/7 U gO,E(Zhi))
Zhi
- 5 1 1 g2
=P TE 260" B R (260)
- B g2
= exp 7@ — " T =
<|0PTh<s>| H)
- B g2
< _ - .=
sexp | =0 <|OPTh(35)| H5>
O

This proves the theorem.
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Algorithm 5 Backward Reachability Estimation, Action elimination and Policy refinement (BREAP)

1: input: Budget B, error level €

2 B+ 8], J ¢ [0.6321log, (1 + 2Ly

3: B”(—%
4: forh=H, H—-1,...,1do

5: Zh, “— @
6 for s € S do {(XjSh, Hjh, th)}j:1 < FB-L2E({(s,1)}, h, B") (1 is an arbitrary action)
7: if X" = {(s,1)} for some j € [J] then
8 W}L(S) — 27IHL, Zn +— Zp U {S}
end if
10: end for

11: OPTy(e) < 0
12: for:=1to J do

13: Zpi {S € Zy: Wh(s) = 2_i+1}, Ay Zp X A,

14: V(s,a) € A;, N(s,a)+ 0, T(s,a) <« 0, To(s,a)«+ 0, Q(s,a)<« 0
15: for k =1to|Z;|A—1do

16: ny < ng(|B"27772|,| 23, A) (as defined in equation|1))

17: for (s,a) € Ay do

18: Ty(s,a) < |75

19: Rerun each policy in Hfh for T3 — T}._1 times

20: for each time ¢t = T'(s,a) + 1 to Ty (s, a) do

21: if (s, a) is visited at step h then

22: Take action a and extend a trajectory using {7p } i _, .,
23: N(s,a) + N(s,a)+1

24: Q(s,a) < Q(s,a) + S0 _, R (st al,)

25: end if

26: end for

27: Q7 (s,a) < Q(s,a)/N(s,a)if N(s,a) > 0 else 0

28: T(s,a) « Ti(s,a)

29: end for

30: if 3 state s with unique surviving pair (s, a) in Ay then

31: 7n(s) «— a, Agy1 +— Ap\ {(s,a)}

32: else . . .

33: V(s,a) € Ag, Af(s,a) < maxg(s,a)ca, @F(s,a) — Qf (s, a)
34: (s',a’) <= argmax(, e, AZ(S, a) (Break ties arbitrarily)

35: Apy1 — A\ {(s,a")}

36: end if

37: end for .

38: V(s,a) € Zp;i x A, QF (s,a) < Q(s,a)/N(s,a) if N(s,a) > 0else 0
39: V(s,a) € Zp; X A, AZ(S, a) < maxg QZ(S,G/) - QZ(s,a)

40: ar(e) < |{(s,a) € Zn; x A: AT (s,a)Wy(s) < e}

41: 61;1“;1(5) — 61;1“;1(5) U {survived pairs in the end of phase | Z),;|A — §7,(¢) + 1}
42: #n(s) < a for (s, a) accepted up to phase | Z5;|A — g7, () + 1

43: end for

44: For each s € S\ Z}, set T, (s) as any action
45: {(X;,11;, N;)}/_, < FB-L2E(OPT(e), b, £57)
) ' _ B —2j—4
46: Vi e [J],n; < H|O/P\Th(s)|2
47: for j =1to J do
48: rerun each policy in IT;, [+ ] times
J
49: end for .
50: Compute the empirical Q7 (s, a)
51: 7(s)  argmax, Q7 (s, a) for all active state s in OPT}, ()
52: end for
53: return 7
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