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ABSTRACT

We study the problem of fixed budget pure exploration in reinforcement learning.
The goal is to identify a near-optimal policy, given a fixed budget on the number
of interactions with the environment. Unlike the standard PAC setting, we do
not require the target error level ε and failure rate δ as input. We propose novel
algorithms and provide, to the best of our knowledge, the first instance-dependent
ε-uniform guarantee, meaning that the probability that ε-correctness is ensured
can be obtained simultaneously for all ε above a budget-dependent threshold. It
characterizes the budget requirements in terms of the problem-specific hardness of
exploration. As a core component of our analysis, we derive a ε-uniform guarantee
for the multiple bandit problem—solving multiple multi-armed bandit instances
simultaneously—which may be of independent interest. To enable our analysis,
we also develop tools for reward-free exploration under the fixed-budget setting,
which we believe will be useful for future work.

1 INTRODUCTION

Reinforcement Learning (RL) theory Agarwal et al. (2019) has been studied under two main objec-
tives: regret minimization and policy identification, also known as pure exploration. While the former
focuses on maximizing cumulative reward during learning, the latter aims to identify a near-optimal
policy without concern for rewards gained during learning. A substantial body of work on policy
identification has focused on the fixed-confidence setting Kearns and Singh (2002). This line of
research, often referred to as Probably Approximately Correct (PAC) RL, requires the algorithm to
spend as many samples as possible until it can find an ε-optimal policy with probability at least 1− δ.
Specifically, the algorithm is required to verify itself that the returned arm is indeed ε-optimal policy –
otherwise, it is not a fixed confidence algorithm. Due to the verification requirement, both ε and δ are
input to the algorithm. Thus, the analysis must be done for the correctness of the verification (i.e.,
proving that the returned arm is indeed an ε-optimal policy) as well as the sample complexity (i.e.,
proving how many samples are taken before stopping).

However, the fixed-confidence setting is not the only way to perform policy identification. The
fixed-budget setting has been popular in multi-armed bandits (Even-Dar et al., 2006; Bubeck et al.,
2009). In this setting, the learner is given a fixed number of interactions with the environment as a
budget and is required to output a good policy after exhausting the budget. This setting has numerous
merits. First, this setting is arguably more practical because the user of the algorithm can control
the budget explicitly. In contrast, the fixed confidence setting assumes that the algorithm can use as
many samples as possible (though less is preferred). When stopped forcefully to satisfy practical
constraints, it is hard to guarantee the quality of the returned policy. Second, the fixed budget setting
has potential to guarantee a better sample complexity because there is no verification requirement
(i.e., the algorithm itself certifies that the returned policy is ε-optimal). This was true for multi-armed
bandits where instant-dependent accelerated rates can be obtained as a function of how many good
arms there are, and also a data-poor regime guarantee can be obtained, meaning that where a nontrivial
performance guarantee is obtained even if the sampling budget is smaller than the number of arms,
depending on the problem instance Zhao et al. (2023). These bounds are not likely to be obtained in
the fixed confidence setting due to the verification requirement unless extra knowledge about the best
arm is known such as Chaudhuri and Kalyanakrishnan (2017). While the ε-correctness verification
from the fixed-confidence setting can be necessary in mission-critical applications, there are many
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applications that do not require such a guarantee, in which case the parameters ε and δ becomes a
cumbersome hyperparameter.

Despite the desirable properties of the fixed-budget setting in bandit problems, its counterpart in
MDPs remains largely unexplored to our knowledge. In this paper, we take the first step at studying
fixed-budget policy identification in MDPs, providing new theoretical insights and algorithms that
bridge this gap. Specifically, a fixed budget algorithm is required to take in a episode budget B and
return a policy π̂ at the end of B-th episode. Our central interest is to upper bound the probability
that the algorithm fails to return an ε-optimal policy as an exponentially decaying function of the
budget B and instance-dependent quantities, simultaneously for all ε ≥ ε′ for some budget dependent
threshold ε′. We refer to this type of theoretical guarantee as an ε-uniform guarantee. In other words,
the degree of suboptimality of the learned policy π̂ is a random variable, and we are characterizing its
distribution, in particular its tail behavior.

Contributions. Our main contributions are as follows:

• We propose a novel algorithm, BREA (Backward Reachability Estimation and Action
elimination), which is, to the best of our knowledge, the first fixed-budget pure exploration
algorithm for episodic MDPs with instance-dependent ε-uniform guarantees. The algorithm
only requires the episode budget B as an input, and does not assume the uniqueness of the
optimal action.

• For the first time, we establish an ε-uniform guarantee for the SAR algorithm (Bubeck et al.,
2013) for the muliple bandit problem. This may be of independent interest.

• We develop algorithmic and analytical tools for fixed-budget reward-free exploration by
carefully adapting a fixed-confidence reward-free exploration algorithm, L2E (Wagenmaker
et al., 2022), to the fixed-budget setting. We prove an ε-uniform guarantee for our fixed-
budget reward-free algorithms.

2 PRELIMINARIES

Finite-horizon MDP. We consider a finite-horizon non-stationary Markov Decision Process (MDP)
defined by the tupleM = (S,A, H, {Ph}H−1

h=0 , {Rh}Hh=1), where S is a finite set of states of size
S, A is a finite set of actions of size A, H ∈ N is the horizon, P0 ∈ ∆(S) is the initial distribution,
Ph : S × A → ∆(S) is the transition kernel, and Rh : S × A → ∆([0, 1]) is the random rewards
with E[Rh(s, a)] = rh(s, a). {Ph}H−1

h=0 and {Rh}Hh=1 are unknown to the learner.

The initial state s1 is drawn from the initial distribution P0. At each step h, taking action ah in
state sh results in a next state sh+1 sampled from the transition kernel Ph(· | sh, ah). A trajectory
{(sh, ah, Rh(sh, ah))}Hh=1 is called an episode, and when the learner reaches the end of the episode,
a new episode begins.

A policy π = (π1, . . . , πH) is a sequence of decision rules πh : S → ∆(A) for each step h ∈ [H].
The Q-value function of a policy π at step h ∈ [H] is defined as

Qπ
h(s, a) := Eπ[

H∑
h′=h

Rh′(sh′ , ah′)|sh = s, ah = a]

and it represents the expected reward obtained by choosing action a in state s at step h and choosing
the subsequent actions according to the policy π. The value function of π at step h is defined as

V π
h (s) = Eπ[Q

π
h(s, πh(s))]

and it represents the expected reward obtained by choosing actions according to the policy π starting
in state s at step h. We also define V π

0 := Es∼P0 [V
π
1 (s)]. The optimal Q-value function, optimal

value function are defined as

Q∗
h(s, a) = sup

π
Qπ

h(s, a), V ∗
h (s) = sup

π
V π
h (s), V ∗

0 = sup
π

V π
0 .

Throughout the paper, we do not assume that the optimal action or policy is unique.
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Pure exploration under the fixed budget setting. In pure exploration under the fixed budget
setting, the goal is to identify an optimal policy π∗ (or near-optimal) based on a limited interaction
budget. Specifically, the learner is allowed to execute a total of B episodes and must return a single
policy π̂ at the end. The performance is measured by the simple regret, which is defined as

V ∗
0 − V π̂

0 .

A policy π̂ is called ε-good if V ∗
0 − V π̂

0 ≤ ε. In this paper, we propose an algorithm and prove their
performance guarantee by showing some instance-dependent upper bounds of the failure probability

P(V ∗
0 − V π̂

0 > ε).

Instance-dependent quantities. To capture the instance-dependent complexity of the problem, we
need the notion of suboptimality gaps defined as

∆h(s, a) := V ∗
h (s)−Q∗

h(s, a),

∆π
h(s, a) := max

a′
Qπ

h(s, a
′)−Qπ

h(s, a).

For our analysis, we also denote

∆̄h(s, a) :=

{
∆h(s, a), if Q∗

h(s, a) < V ∗
h (s)

∆h(s, a
′), if Q∗

h(s, a) = V ∗
h and a′ is the second best action,

∆̄π
h(s, a) :=

{
∆π

h(s, a), if Qπ
h(s, a) < maxa′ Qπ

h(s, a
′)

∆π
h(s, ã), if Qπ

h(s, a) = maxa′ Qπ
h(s, a

′) and ã is the second best action with respect to π.

Thus, if the optimal action in s ∈ S at step h is unique, ∆̄h(s, a) > 0 for all a ∈ A. In contrast, if
there are multiple optimal actions in s ∈ S at step h, ∆̄h(s, a) = 0 for all optimal actions a. Similar
results hold for ∆̄h(s, a) as well.

In MDP, the probability of reaching each state or action is important. Let π be a policy, s ∈ S, a ∈
A, h ∈ [H],Z ⊂ S ×A, we use the following notations:

wπ
h(s) = Pπ[sh = s], wπ

h(s, a) = Pπ[sh = s, ah = a], wπ
h(Z) = Pπ[(sh, ah) ∈ Z],

Wh(s) = sup
π

wπ
h(s) = sup

π
wπ

h(s, a), Wh(Z) = sup
π

wπ
h(Z).

We refer to wπ
h(·) as the occupancy measure and Wh(·) as the reachability. Using these notions, we

define the controllability of MDP at step h as

Ch := sup
π

∑
s,Wh(s)>0

wπ
h(s)

Wh(s)
.

Then, we have

1 = sup
π

∑
s,Wh(s)>0

wπ
h(s) ≤ Ch = sup

π

∑
s,Wh(s)>0

wπ
h(s)

Wh(s)
≤

∑
s,Wh(s)>0

sup
π

wπ
h(s)

Wh(s)
≤ S.

We can see that Ch = 1 if Wh(s) = 0 or 1 for any state s i.e. the learner can reach sh = s with
probability 1 by some policy for any reachable state s. On the other hand, Ch = S if wπ

h(s) =
Wh(s) > 0 for any state s ∈ S, any policy π i.e. the learner cannot control the occupancy measure
by varying policy and all states are reachable. Therefore, intuitively, a larger Ch indicates that the
MDP is more difficult to control at step h.

3 THE BREA ALGORITHM

There are inherent difficulties in achieving instance-dependent ε-uniform guarantee for fixed budget
setting. First, while it is relatively straightforward to analyze algorithms in the fixed confidence setting
using concentration bounds such as Hoeffding or Bernstein bound with a prespecified confidence
level δ, it is much more challenging in the fixed budget setting, where neither the confidence level δ
nor the accuracy level ε is known in advance. Second, whereas the fixed-confidence setting typically
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allows for a potentially excessive number of samples before termination (depending on the confidence
level), the fixed-budget setting strictly limits the algorithm to a finite number of samples. Third, it is
hard to simply convert the fixed-confidence algorithms since it requires the knowledge of nontrivial
instance-dependent terms. Even if it is possible, the conversion of fixed-confidence algorithm would
require not only the budget B but also one of the confidence δ and the accuracy ε. Also, theoretical
guarantee of this conversion would only applies to prespecified ε (or δ), which is much weaker
than ε-uniform guarantee. In this section, we present how we design and analyze our algorithm to
overcome the aforementioned difficulties.

At step h, each state s can be treated as a bandit problem, where the expected reward of each action a
is given by Q∗

h(s, a). If we aim to learn the exact optimal policy maximizing Q∗
h(s, a), we need to

sample trajectories sh+1, ah+1, . . . , sH , aH generated under the optimal policy {π∗
h′}Hh′=h+1, which

is unknown. Fortunately, since our goal is to learn an approximately optimal policy, the following
proposition shows that it suffices to use a suitably accurate policy {π̂h′}Hh′=h+1 for sampling in order
to learn π̂h.

Proposition 1. (Wagenmaker et al., 2022, Lemma B.1) Assume that some deterministic policy π̂
satisfies ∆π̂

h(s, π̂h(s)) ≤ εh(s) for any h′ ≤ h ≤ H and any s ∈ S. Then, for any policy π′,

∑
s

wπ′

h′ (s)
(
V ∗
h′(s)− V π̂

h′(s)
)
≤

H∑
h=h′

sup
π

∑
s

wπ
h(s)εh(s).

Note that ∆π̂
h(s, a) depends only on the future policies {π̂h′}Hh′=h+1, implying that we must determine

them before learning π̂h(s). By this observation, our learning proceeds backward from H to 1.

If we assume that the hypothesis of the previous proposition holds with h′ = 1 and εh(s) :=
ε

ChHWh(s)
, then the proposition says

V ∗
0 − V π̂

0 ≤
H∑

h=1

sup
π

∑
s

wπ
h(s)εh(s)

=

H∑
h=1

sup
π

∑
s

wπ
h(s)

ε

ChHWh(s)

=

H∑
h=1

ε

H
(definition of Ch)

= ε.

Therefore, we design our algorithm to identify a Θ( ε
ChHWh(s)

)-good action for each relevant state s.
The precise definition of “relevant state” will be given in the analysis. We again emphasize that ε is
not an input to our algorithm and can be chosen arbitrarily for the purpose of analysis. Our algorithm
consists of two key components: estimating the reachability Wh(s) and eliminating actions. We
introduce the following notation, which will be used in the statements of upcoming results.

εB := (1 +
log(2)B

c(B)
)−0.6321

denotes an error threshold that depends on the budget B. The factor

CL2E(B) = Õ(poly(S,A,H)),

is formally defined in Appendix C, equation 5. We denote CL2E(B) = SH2c(B).

3.1 REACHABILITY ESTIMATION

The first part of our algorithm is greatly influenced by Wagenmaker et al. (2022). Through the
first part, we estimate the reachability Wh(s) of each state s at step h. To this end, we execute a
fixed-budget reward-free exploration. One notable benefit of reward-free exploration is that it only
needs to be run once, after which the collected data can be applied to a variety of downstream reward

4
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Algorithm 1 Fixed Budget Learn to Explore (FB-L2E)

1: function FB-L2E(X ⊆ S ×A, step h, budget B)
2: if |X | = 0 then
3: return {(∅, ∅, 0)}
4: end if
5: J ← ⌈0.6321 log2(1 +

log(2)B
c(B) )⌉ (c(B) is defined in Appendix C)

6: for j = 1 to J do
7: Lj ← 2J−j , δj ← ( 1

8SAH )0.6321Lj log log(8SAH)

8: Kj ← Kj(δj , SAHδj) (Kj is defined in Appendix C)
9: Nj ← Kj/(4|X | · 2j)

10: (Xj ,Πj)← FINDEXPLORABLESETS(X , h, δ,Kj , Nj)
11: X ← X \ Xj

12: end for
13: return {(Xj ,Πj , Nj)}Jj=1
14: end function
15:
16: function FINDEXPLORABLESETS(X ⊆ S ×A, step h, confidence δ, epochs K, samples N )
17: r1h(s, a)← 1 if (s, a) ∈ X , else 0
18: N(s, a, h)← 0, Y ← ∅, Π← ∅, j ← 1
19: for k = 1 to K do
20: // StrongEuler is as defined in Simchowitz and Jamieson (2019)
21: Run STRONGEULER(δ) on reward rjh to get trajectory {(skh, akh, h)}Hh=1 and policy πk

22: N(skh, a
k
h)← N(skh, a

k
h) + 1, Π← Π ∪ {πk}

23: if N(skh, a
k
h) ≥ N , (skh, a

k
h) ∈ X and (skh, a

k
h) /∈ Y then

24: Y ← Y ∪ (skh, a
k
h)

25: rj+1
h (s, a)← 1 if (s, a) ∈ X \ Y , else 0

26: j ← j + 1
27: Restart STRONGEULER(δ)
28: end if
29: end for
30: return Y,Π
31: end function

functions. More specifically, we reset the reward as Rh′(s′, a′) =

{
1, if (s′, a′, h′) = (s, 1, h),

0, otherwise.
,

where we arbitrarily fix an action and denote it by 1. With this reset reward, an optimal policy
maximizes the visitation probability of (s, 1) at step h. Therefore, V ∗

0 = Wh(s, 1) = Wh(s). To
approximate such an optimal policy, we employ STRONGEULER (Simchowitz and Jamieson, 2019).

More generally, the reachability Wh(X ) of any subset X ⊂ S × A can be estimated in the same
manner. We formalize this in Algorithm 1, which we refer to as FB-L2E, short for Fixed-Budget
Learn2Explore. It is a careful adaptation of Learn2Explore algorithm introduced in Wagenmaker
et al. (2022), which itself is inspired by Zhang et al. (2021); Brafman and Tennenholtz (2003).

Algorithm 1 satisfies the following guarantee:

Theorem 3.1. Consider running Algorithm 1 with B ≥ c(B). Then, the following statements hold.

1. The total budget used is at most B.

2. For any ε ≥ 2SH2εB , with probability at least 1− exp

(
−Θ̃

(
εB

CL2E(B)

))
,

(1) The reachability of each set Xi satisfies

|Xi|
|X |
· 2−i−3 ≤Wh(Xi) ≤ 2−i+1 for all i ≤ iε :=

log2
(
2SH2

ε

) ,

5
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(2) The remaining elements, X̄ := X \ ∪iεi=1Xi satisfy

sup
π

∑
(s,a)∈X̄

wπ
h(s, a) ≤

ε

2SH2
.

(3) Moreover, for any i ≤ iε, if each policy in Πi is executed A times, then every state-
action pair (s, a) ∈ Xi is visited at least 1

8ANi times.

Here, the probability accounts for both the randomness in execution and resampling.

The proof of Theorem 3.1 is deferred to Appendix C.
Remark 2. Theorem 3.1 crucially relies on the fact that STRONGEULER (Simchowitz and Jamieson,
2019) achieves a high probability regret bound with log 1

δ dependence. However, when the target
set is X = {(s, a)}, similar results can be obtained by applying a boosting technique even if we use
other algorithms with worse dependence. Although we only present Algorithm 1 in the main text for
the simplicity, the algorithm with boosting technique is described in Appendix C, Algorithm 0.

3.2 ACTION ELIMINATION

In the second part of our algorithm, we iteratively sample trajectories, compute empirical Q-function
of state-action pairs, and eliminate suboptimal actions. For the purpose of efficient elimination, we
employ a multiple bandit algorithm, Successive Accepts and Rejects (SAR), proposed by Bubeck et al.
(2013), and, for the first time, provide an ε-correctness guarantee for this algorithm. By employing
this algorithm to our main algorithm, we are able to reduce the dependency on S compared to applying
its multi-armed bandit counterpart. For a more detailed explanation, see Appendix D, Remark 27.

Multiple bandit problem. Consider M instances of multi-armed bandit problems, each with K
arms. Each arm i in instance m yields stochastic rewards supported on [0, σ], with mean µm,i,
ordered such that µm,1 ≥ · · · ≥ µm,K . We denote each bandit-arm pair by (m, i), where m ∈ [M ]
and i ∈ [K]. The objective is to identify a good arm in each instance m ∈ [M ] under a total budget
of B pulls.

We now define some notations. Let µ̂m,i(n) denote the empirical mean reward of arm i in instance
m after n pulls. Define the suboptimality gap as

∆̄m,i :=

{
µm,1 − µm,2, if i = 1,

µm,1 − µm,i, if i ∈ {2, . . . ,K}.

We enumerate all gaps ∆̄m,i over all (m, i) ∈ [M ]× [K] in increasing order as
∆̄(1) ≤ ∆̄(2) ≤ · · · ≤ ∆̄(MK).

Let
g(ε) :=

∣∣∣{(m, i) ∈ [M ]× [K] : µm,1 − µm,i ≤ ε
}∣∣∣

for any ε > 0, and define the harmonic log term

log(MK) :=
1

2
+

MK∑
i=2

1

i
.

For each k ∈ [MK − 1], define

nk(B,M,K) :=

⌈
1

log(MK)
· B −MK

MK + 1− k

⌉
. (1)

The SAR algorithm (Bubeck et al., 2013) is summarized in Algorithm 2. By leveraging the ranking
of empirical gaps, SAR adaptively distributes the budget across bandit instances, solving the multiple
bandit problem efficiently. We present a theoretical guarantee for its ability to identify ε-good arms.
Theorem 3.2. If we run Algorithm 2 with B ≥MK, then the total number of budget used is at most
B and

P(∃m ∈ [M ] : µm,1 − µm,J(m) > ε) ≤ 2M2K2 exp

(
− B −MK

128σ2 log(MK) ·
∑

i∈[MK](∆̄(i) ∨ ε)−2

)
.

for any ε ≥ 0.

The proof of Theorem 3.2 is deferred to Appendix D.

6
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Algorithm 2 Successive Accept and Reject (SAR) for the multiple bandit

1: input: Budget B
2: A1 ← {(1, 1), . . . , (M,K)}, n0 ← 0
3: for k = 1 to MK − 1 do
4: nk ← nk(B,M,K) (as defined in equation 1)
5: ∀(m, i) ∈ Ak, pull (m, i) for nk − nk−1 times
6: ∀m, 1̂m ← argmaxi:(m,i)∈Ak

µ̂m,i(nk) (Break ties arbitrarily)
7: if ∃m such that 1̂m is the last active arm in m then
8: Jm = 1̂m (Accept)
9: Ak+1 ← Ak \ {(m, 1̂m)} (Deactivate)

10: else
11: (mk, ik)← argmax(m,i)∈Ak

(
µ̂m,1̂m

(nk)− µ̂m,i(nk)
)

(Break ties arbitrarily)
12: Ak+1 ← Ak \ {(mk, ik)} (Reject and deactivate)
13: end if
14: end for
15: Jm ← i for AMK = {(m, i)}
16: return {(m,Jm)}Mm=1

3.3 OVERVIEW OF THE BREA ALGORITHM

We combine the two mechanisms described above to construct our main algorithm. The algorithm
proceeds in a backward manner over steps h = H,H − 1, . . . , 1. At each step h, the first half of
the budget is devoted to estimating the reachability Wh(s) for each state s, while the second half
applies the SAR mechanism to eliminate suboptimal actions. Although the logic by which our
algorithm eliminates actions is entirely different, the structure of eliminating actions after reward-free
exploration was also used in the fixed-confidence algorithm, MOCA (Wagenmaker et al., 2022).

In general MDPs, the stochasticity of the transition kernel prevents us from freely collecting arbitrary
state-action samples. However, Theorem 3.1 ensures that, with high probability, the policies stored
during the reachability estimation phase yield sufficient samples for each relevant state-action pair.
Under this event, the SAR mechanism is expected to perform reliably. We now present our main
theorem and its corollary; their proofs are provided in Appendix E.
Theorem 3.3. If we run Algorithm 3 with

B ≥ max{2SHc(
B

2SH
), 2SAε B

2SH
log2

1

ε B
2SH

},

then the total number of budget used is at most B. Moreover, for any ε ≥ 2SH2ε B
2SH

,

P
(
V ∗
0 − V π̂

0 > ε
)
≤ exp

(
−Θ̃

( εB

CL2E(
B

2SH )

))
+ exp

(
−Θ̃

( B

H5 maxh∈[H] C
2
h

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

))
.

Corollary 3. In addition to the hypothesis of Theorem 3.3, assume further that 2SH2ε B
2SH

< ε∗ :=

min{min+s,h Wh(s), 2Hmin+s,a,h ChWh(s)∆̄h(s, a)} and the optimal action in each state s at each
step h is unique. Then, we obtain a guarantee of the best policy identification, given by

P
(
V ∗
0 − V π̂

0 > 0
)
≤ exp

(
−Θ̃

( ε∗B

CL2E(
B

2SH )

))
+ exp

(
−Θ̃

( B

H3 maxh∈[H]

∑
s∈S Wh(s)−1

∑
a∈A ∆̄h(s, a)−2

))
.

Remark 4. From Theroem 3.3, we can derive the sample complexity required by BREA to identify an
ε-correct policy with probability at least 1− δ, given by

τε,δ = Θ̃

(
CL2E

(
B

2SH

)
ε

+H5 max
h∈[H]

C2
h

∑
s∈S

1

Wh(s)

∑
a∈A

1(
∆̄h(s, a) ∨ ε

Wh(s)

)2
)
log

1

δ
.
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Algorithm 3 Backward Reachability Estimation and Action elimination (BREA)

1: input: Budget B
2: B′ ← ⌊ B

2SH ⌋, J ← ⌈0.6321 log2(1 +
log(2)B′

c(B′) )⌉
3: B′′ ← B

2HJ
4: for h = H,H − 1, . . . , 1 do
5: Zh ← ∅
6: for s ∈ S do {(X sh

j ,Πsh
j , Nsh

j )}Jj=1 ← FB-L2E({(s, 1)}, h, B′) (1 is an arbitrary action)
7: if X sh

h = {(s, 1)} for some j ∈ [J ] then
8: Ŵh(s)← 2−j+1, Zh ← Zh ∪ {s}
9: end if

10: end for
11: for i = 1 to J do
12: Zhi ← {s ∈ Zh : Ŵh(s) = 2−i+1}, A1 ← Zhi ×A,
13: ∀(s, a) ∈ A1, N(s, a)← 0, T (s, a)← 0, T0(s, a) = 0, Q(s, a)← 0
14: for k = 1 to |Zhi|A− 1 do
15: nk ← nk(⌊B′′2−i−2⌋, |Zhi|, A) (as defined in equation 1)
16: for (s, a) ∈ Ak do
17: Tk(s, a)← ⌊ nk

Nsh
i

⌋
18: Rerun each policy in Πsh

i for Tk(s, a)− Tk−1(s, a) times
19: for each time t = T (s, a) + 1 to Tk(s, a) do
20: if (s, a) is visited at step h then
21: Take action a and extend a trajectory using {π̂h′}Hh′=h+1

22: N(s, a)← N(s, a) + 1

23: Q(s, a)← Q(s, a) +
∑H

h′=h R
t
h′(sth′ , ath′)

24: end if
25: end for
26: Q̂π̂

h(s, a)← Q(s, a)/N(s, a) if N(s, a) > 0 else 0
27: T (s, a)← T (s, a) + Tk(s, a)
28: end for
29: if ∃ state s with unique surviving pair (s, a) in Ak then
30: π̂h(s)← a, Ak+1 ← Ak \ {(s, a)}
31: else
32: ∀(s, a) ∈ Ak, ∆̂π̂

h(s, a)← maxa:(s,a)∈Ak
Q̂π̂

h(s, a)− Q̂π̂
h(s, a)

33: (s′, a′)← argmax(s,a)∈Ak
∆̂π̂

h(s, a) (Break ties arbitrarily)
34: Ak+1 ← Ak \ {(s′, a′)}
35: end if
36: end for
37: π̂(s)← a for A|Zhi|A = {(s, a)}
38: end for
39: For each s ∈ S \ Zh, set π̂h(s) as any action
40: end for
41: return π̂

The first term inside Θ̃ is a lower-order term. The second term inside Θ̃ becomes
∑

a∈A
1

(∆̄(a)∨ε)2

for multi-armed bandits (S = H = 1). This is consistent with known results in the bandit literature
((Even-Dar et al., 2006; Audibert et al., 2010; Karnin et al., 2013)). It is also noteworthy that our
sample complexity is deterministic while the sample complexity of PAC RL algorithm typically is
guaranteed with probability at least 1− δ.

Remark 5. Our sample complexity involves H5 maxh term, in contrast to the H4
∑

h dependence
that appear in PAC RL literature ((Wagenmaker et al., 2022; Wagenmaker and Jamieson, 2022;
Tirinzoni et al., 2023)). This difference stems from the inherent difficulty of the fixed budget setting,
where the algorithm does not know in advance how to distribute the budget across different h. A
similar issue regarding the dependency on S could be resolved by employing a multiple bandit
algorithm instead of a multi-armed bandit algorithm.
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3.4 INCORPORATING TARGET ACCURACY

If an accuracy level ε is provided as input, we can modify Algorithm 3 to include a third part and obtain
a different form of probabilistic guarantee. While Algorithm 3 allocates B

4 budget to each of its two
parts, the modified algorithm assigns B

4 to the first and the second part and assgins B
2 to the last part.

In the third part, for each multiple-bandit instance Zhi, let ĝπ̂hi(ε) denote the number of pairs
(s, a) ∈ Zhi such that ∆̂π̂

h(s, a) ≤ ε

Ŵh(s)
. After the second part, we gather the last ĝπ̂hi(ε) surviving

pairs and perform an additional refinement step.

Theoretical guarantees for this variant are presented in the next theorem. The full algorithm and its
analysis are provided in Appendix F.

Theorem 3.4. (Informal) There exists a variant of Algorithm 3 that, when given a sufficiently large
budget B and an accuracy level ε ≥ 2SH2ε B

2SH
as input, it uses at most budget B and satisfies the

following:

P
(
V ∗
0 − V π̂

0 > ε
)
≤ exp

(
−Θ̃

(
εB

poly(S,A,H, logB)

))

+ exp

−Θ̃( B

H3 maxh∈[H]

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

)
+ exp

−Θ̃( ε2B

H5 maxh∈[H] |OPTh(ε)|

) ,

where OPTh(ε) = {(s, a) ∈ S ×A : ∆h(s, a)Wh(s) ≤ ε}.
Remark 6. From Theorem 3.4, we can derive the sample complexity required by the modified
algorithm to identify an ε-correct policy with probability at least 1− δ, given by

τε,δ = Θ̃

(
poly(S,A,H, logB)

ε
+H3 max

h∈[H]

∑
s∈S

1

Wh(s)

∑
a∈A

1(
∆̄h(s, a) ∨ ε

Wh(s)

)2 +

H5max
h∈[H]

|OPTh(ε)|

ε2

)
log

1

δ
.

It is interesting that even though the logic of action elimination is very different, this expression is
closely aligned with the sample complexity

τε,δ =
CLOT(ε)

ε
+ Θ̃

(
H2

∑
h∈[H]

∑
s∈S

1

Wh(s)

∑
a∈A

1(
∆̄h(s, a) ∨ ε

Wh(s)

)2 +

H4
∑

h∈[H]

|OPTh(ε)|

ε2

)
log

1

δ

of MOCA algorithm (Wagenmaker et al., 2022), where CLOT = poly(S,A,H, log 1
ε , log

1
δ ).

4 CONCLUSION

In this paper, we have explored the fixed-budget setting of the pure exploration MDP, which is
surprisingly underexplored in RL theory. While our results establish the first fully instance-dependent
guarantee in the fixed budget setting, these are just beginning. First, it would be great to see what
kind of instance-dependent acceleration can be proven in MDP, which should be possible given that
accelerated rates were possible in bandits as a function of the number of good arms Katz-Samuels
and Jamieson (2020); Zhao et al. (2023). Second, similarly, it would be interesting to explore what
kind of data-poor regime guarantees are attainable – again, such bounds are available in the bandit
setting Katz-Samuels and Jamieson (2020); Zhao et al. (2023). Third, we believe the factor H2 in
the sample complexity may be improved by leveraging variance-dependent concentration bounds.
Finally, it would be interesting to extend our setting to the function approximation setting.
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REPRODUCIBILITY STATEMENT

We have carefully specified all details of the algorithms presented in this paper. Moreover, we clearly
state all assumptions required for the theoretical guarantees of our methods. We believe that this level
of detail ensures the reproducibility of our results.
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Notation. For a positive integer n, we write [n] := {1, 2, . . . , n}. We use f = Θ̃(g) to de-
note that the ratio f

g is bounded both above and below by polylogarithmic functions. We define
min+x∈X f(x) := minx∈X:f(x)>0 f(x). We use poly(·) to denote a polynomial in the variables inside
the parentheses. We write log for natural logarithm and log2 for binary logarithm.

A RELATED WORK

Given the breadth of the literature on each topic, we focus on introducing only the most recent and
relevant works.

Instance-dependent regret minimization in episodic MDPs. Zanette and Brunskill (2019) pro-
posed the EULER algorithm and proved a regret bound of

√
SAKmin{Q⋆H,G2}, where Q⋆,G

are instance dependent term. Soon after, Simchowitz and Jamieson (2019) proposed STRONGEULER
algorithm and proved a gap-dependent regret bound for episodic tabular MDPs, showing that opti-
mistic algorithms can achieve O

(∑
s,a,h

log T
∆h(s,a)

)
regret. This result, obtained via a novel “clipped”

regret decomposition, smoothly interpolates between instance-dependent O(log T ) growth and the
worst-case O(

√
T ) rate, without requiring simplifying assumptions like a bounded mixing time.

Dann et al. (2021) further refined these bounds by defining value-function gaps that ignore states
never visited by an optimal policy. Finally, we note that any low-regret algorithm can be converted
into a high-probability guarantee on near-optimal performance via an online-to-batch conversion.
For detailed explanations, see Jin et al. (2018). However, recent studies ((Wagenmaker et al., 2022;
Tirinzoni et al., 2023)) suggest that algorithms for minimizing regret cannot be instance-optimal
for identifying good policies, motivating specialized algorithms that explore more strategically than
standard optimism.

Instance-dependent episodic PAC RL. The history of instance-dependent episodic PAC RL is not
very long. Wagenmaker et al. (2022) proposed a planning-based algorithm, MOCA, and analyzed its
instance-dependent sample complexity. Tirinzoni et al. (2022) provided an instance-dependent lower
bound for deterministic MDPs and proposed the EPRL algorithm, which has an upper bound of sample
complexity matching the lower bound up to a H2 factor and logarithmic terms. Wagenmaker and
Jamieson (2022) considered finite horizon linear MDPs, a superset of tabular MDPs. They proposed
the PEDEL algorithm, which takes a policy set as an input, and analyzed its sample complexity.
Tirinzoni et al. (2023) proved, for the first time, an instance-dependent sample complexity of an
optimistic algorithm, BPI-UCRL.

Instance-dependent pure exploration in multi-armed bandits. The problem of pure exploration
in multi-armed bandits (a special case of RL with S = H = 1) has a rich history and is typically
studied in two frameworks: the fixed-confidence ((ε, δ)-PAC) setting and the fixed-budget setting.

In the fixed-confidence setting, the goal is to identify an arm whose mean reward is within ε of
the optimal arm’s mean with probability at least 1 − δ, while minimizing the number of samples
(pulls). Even-dar et al. (2002) initiated this line of work by proposing the Successive Elimination
algorithm, which guarantees an optimal arm with probability 1 − δ using distribution-dependent
samples ((ε, δ)-sample complexity). Mannor and Tsitsiklis (2004) later provided a distribution-
dependent lower bound on the (ε, δ)-sample complexity. Kalyanakrishnan et al. (2012) proposed
the LUCB algorithm and analyzed their sample complexity. Karnin et al. (2013) introduced the
Exponential-Gap Elimination algorithm, removed unnecessary log factors and attained near-optimal
sample complexity in the fixed-confidence regime. Garivier and Kaufmann (2016) gave a tighter lower
bound and proposed an algorithm, Track and Stop, which exactly hits the lower bound asymptotically.

In the fixed-budget setting, the learner is given a total sampling budget T and aims to maximize
the probability of identifying the best arm by time T . Here, the results are often characterized by
the exponential rate at which the failure probability decays with T . Audibert et al. (2010) studied
this setting and proposed the Successive Rejects algorithm, proving that its error probability decays
at an optimal rate, up to logarithmic factors in the number of arms. Karnin et al. (2013) proposed
the Sequential Halving algorithm, proving that its error probability has an improved rate, which
is optimal up to doubly logarithmic factors in the number of arms. Zhao et al. (2023) provided a
tighter analysis of the Sequential Halving algorithm and obtained an accelerated decay rate of ε-error
probability.
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B PROPERTIES OF MDP

Although the statements and proofs of the lemmas in this section are nearly identical to those in the
appendix of Wagenmaker et al. (2022), we include them here for completeness.
Lemma 7. Assume that some deterministic policy π̂ satisfies ∆π̂

h(s, π̂h(s)) ≤ εh(s) for any h′ ≤
h ≤ H and any s ∈ S. Then, for any policy π′,∑

s

wπ′

h′ (s)
(
V ∗
h′(s)− V π̂

h′(s)
)
≤

H∑
h=h′

sup
π

∑
s

wπ
h(s)εh(s).

Proof. The proof proceeds by backward induction on h′. When h′ = H , the statement trivially holds.
Assume that ∑

s

wπ′

h′ (s)
(
V ∗
h′(s)− V π̂

h′(s)
)
≤

H∑
h=h′

sup
π

∑
s

wπ
h(s)εh(s)

holds for step h′ > 1 and any policy π. Assume further that

∆π̂
h′−1(s, π̂(s)) ≤ εh′−1(s).

By definition,

V ∗
h′−1(s)− V π̂

h′−1(s) = Q∗
h′−1(s, π

∗
h′−1(s))−Qπ̂

h′−1(s, π̂h′−1(s))

= Q∗
h′−1(s, π

∗
h′−1(s))−Qπ̂

h′−1(s, π
∗
h′−1(s))︸ ︷︷ ︸

(1)

+Qπ̂
h′−1(s, π

∗
h′−1(s))−max

a
Qπ̂

h′−1(s, a)︸ ︷︷ ︸
(2)

+max
a

Qπ̂
h′−1(s, a)−Qπ̂

h′−1(s, π̂h′−1(s)).︸ ︷︷ ︸
(3)

It is obvious that (2) ≤ 0 and (3) = ∆π̂
h′−1(s, π̂h′−1(s)) ≤ εh′−1(s) by our assumption. Further-

more,
(1) =

∑
s′

Ph′−1(s
′|s, π∗

h′−1(s))(V
∗
h′(s′)− V π̂

h′(s′)).

Then, for any policy π′,∑
s

wπ′

h′−1(s)(V
∗
h′−1(s)− V π̂

h′−1(s)) ≤
∑
s

∑
s′

wπ′

h′−1(s)Ph′−1(s
′|s, π∗

h′−1(s))(V
∗
h′(s′)− V π̂

h′(s′))

+
∑
s

wπ′

h′−1(s)εh′−1(s)

=
∑
s

wπ′′

h′ (s)(V ∗
h′(s)− V π̂

h′(s)) +
∑
s

wπ′′

h′−1(s)εh′−1(s)

≤
H∑

h=h′−1

sup
π

∑
s

wπ
h(s)εh(s),

where π′′ is a policy that is equal to π′ in step 1, . . . , h′ − 2 and equal to π∗ in step h′ − 1, . . . , H ,
the last inequality follows by the induction hypothesis.

Lemma 8. Assume supπ
∑

s w
π
h+1(s)

(
V ∗
h+1(s)− V π̂

h+1(s)
)
≤ ε. Then

|∆h(s, a)−∆π̂
h(s, a)| ≤ ε/Wh(s).

Proof.

|∆h(s, a)−∆π̂
h(s, a)| = |V ∗

h (s)−Q∗
h(s, a)− (max

a′
Qπ̂

h(s, a
′)−Qπ̂

h(s, a))|

≤ max{|V ∗
h (s)−max

a′
Qπ̂

h(s, a
′)|, |Qπ̂

h(s, a)−Q∗
h(s, a)|},
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where the last inequality follows since

V ∗
h (s)−Q∗

h(s, a)− (max
a′

Qπ̂
h(s, a

′)−Qπ̂
h(s, a)) ≤ V ∗

h (s)−max
a′

Qπ̂
h(s, a

′)

and
−(V ∗

h (s)−Q∗
h(s, a)− (max

a′
Qπ̂

h(s, a
′)−Qπ̂

h(s, a))) ≤ Q∗
h(s, a)−Qπ̂

h(s, a).

We can write

Q∗
h(s, a) = rh(s, a) +

∑
s′

Ph(s
′|s, a)V ∗

h+1(s
′),

Qπ̂
h(s, a) = rh(s, a) +

∑
s′

Ph(s
′|s, a)V π̂

h+1(s
′).

Then we have

Q∗
h(s, a)−Qπ̂

h(s, a) =
∑
s′

Ph(s
′|s, a)(V ∗

h+1(s
′)− V π̂

h+1(s
′))

=
1

Wh(s)

∑
s′

Wh(s)Ph(s
′|s, a)(V ∗

h+1(s
′)− V π̂

h+1(s
′))

≤ 1

Wh(s)
sup
π

∑
s′

wπ
h+1(s

′)(V ∗
h+1(s

′)− V π̂
h+1(s

′)) ≤ ε

Wh(s)
. (2)

Let a1 := argmaxa Q
∗
h(s, a). Then

V ∗
h (s)−max

a′
Qπ̂

h(s, a
′) = max

a′
Q∗

h(s, a
′)−max

a′
Qπ̂

h(s, a
′) = Q∗

h(s, a1)−max
a′

Qπ̂
h(s, a

′)

= Q∗
h(s, a1)−Qπ̂

h(s, a1) +Qπ̂
h(s, a1)−max

a′
Qπ̂

h(s, a
′) ≤ ε

Wh(s)
. (3)

By (2), (3), the lemma follows.

C ANALYSIS OF FB-L2E

C.1 ANALYSIS OF FINDEXPLORABLESETS

The overall analysis is similar to that of Wagenmaker et al. (2022). However, the details should
be changed as we use STRONGEULER instead of EULER. We begin with a regret bound of
STRONGEULER. Throughout this section, let M := (SAH2)2.
Lemma 9. If we run STRONGEULER with confidence parameter δ for K episodes, with probability
at least 1− δ,
K∑

k=1

V ∗
0 −

K∑
k=1

V πk
0 ≤ cse

√
SAH2V ∗

0 K log(HK) log(
MHK

δ
)+cseS

2AH6 log(HK) log(
MHK

δ
),

where M = (SAH2)2 and cse is a universal constant.

Proof. In Simchowitz and Jamieson (2019, Theorem 2.4), the regret bound up to a universal constant
is presented as√

SAH̄TT log(
mT

δ
) + SAH4(S ∨H) log(

mT

δ
)min{log(mT

δ
), log(

mH

∆min
)},

where ∆min = min+s,a,h ∆h(s, a), T = HK, m = (SAH)2, and H̄T ≤ G2

H log(T ). Here, G is a

constant such that the reward of one episode of our MDP is bounded by G. We can reduce this G2

H

term to V ∗
0

4H by using the argument used in the proof of Jin et al. (2020, Lemma 3.4) and Wagenmaker
et al. (2022, Lemma D.4). Thus, the regret bound (up to a universal constant) of STRONGEULER is
given as√

SAV ∗
0 T log(T ) log(

mT

δ
) + SAH4(S ∨H) log(

mT

δ
)min{log(mT

δ
), log(

mH

∆min
)},
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The second term is derived from their Simchowitz and Jamieson (2019, Claim C.3). In the proof of
Simchowitz and Jamieson (2019, Claim C.3), we can just bound

log(1 +
N ∧ nend

n0
) ≤ log(1 + T )

since N ≤ T, n0 ≥ 1. By using this bound, we get a regret bound of√
SAV ∗

0 T log(T ) log(
mT

δ
) + SAH4(S ∨H) log(

mT

δ
) log(T ).

Although this bound only applies to stationary MDPs, stationary MDPs can represent non-stationary
MDPs by augmenting states s to (s, h). In this case, the effective number of states is SH . Thus, by
substituting SH in to S, HK into T , the lemma follows.

We now define the important quantities

CK(δ, δsamp, i) := max

{
432c2seS

3A2H6(i+ 6)2 log2(2 · 2 · 432c2seS3A2H7M(i+ 6),

432c2seS
3A2H6 log(

1

δ
)(i+ 3) log(2 · 432c2seS3A2H7 log(

1

δ
)(i+ 3)),

24 log(
4

δ
), 211S2A2 log(

4SAH

δsamp
)

}
,

Ki(δ, δsamp) := ⌈2iCK(δ, δsamp, i)⌉.

(4)

and prove the following property.
Lemma 10. Let CR := 2cseS

3A2H6 log(HKi) log(
2MHKi

δ ) + 2 log 4
δ and Ki = Ki(δ, δsamp).

Then,

Ki ≥ 2i max{4CR, 144c2seS
2A2H2 log(HKi) log(

2MHKi

δ
)}.

Proof. For any i, j > 0 and C > 0, if x ≥ Ci(i+ 3j)j logj(C(i+ 3j)), then x ≥ Ci logj x since

Ci logj x = Ci logj [Ci(i+ 3j)j logj(C(i+ 3j))] ≤ Ci logj [Ci+j(i+ 3j)2j ]

≤ Ci(i+ 3j)j logj [C(i+ 3j)]

= x

Since

2MHKi ≥ 2i · 2 · 432c2seS3A2H7M(i+ 6)2 log2(2 · 2 · 432c2seS3A2H7M(i+ 6),

we have
Ki ≥ 2i · 2 · 432c2seS3A2H6 log2(2MHKi).

Since

HKi ≥ 2i · 432c2seS3A2H7 log(
1

δ
)(i+ 3) log(2 · 432c2seS3A2H7 log(

1

δ
)(i+ 3)),

we have
Ki ≥ 2i · 432c2seS3A2H6 log(HKi) log(

1

δ
).

We also have Ki ≥ 2i · 24 log( 4δ ). Combining these three, we have

Ki ≥ 2i
(
144c2seS

3A2H6(log2(2MHKi) + log(HKi) log(
1

δ
) + 8 log(

4

δ
)

)
,

which easily implies

Ki ≥ 2i · 144c2seS2A2H2 log(HKi) log(
2MHKi

δ
),

Ki ≥ 8i
(
2cseS

3A2H6 log(HKi) log(
2MHKi

δ
) + 8 log(

4

δ
)

)
= 4CR.
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Throughout the rest of this subsection, we consider running

FINDEXPLORABLESETS(X , h, δ,Ki := Ki(δ, δsamp), Ni :=
Ki

4|X |2i
)

(defined in Algorithm 1) with some X ⊂ S ×A satisfying

Wh(X ) ≤ 2−i+1.

Let Xi ⊂ X , Πi be the output. We introduce the following notations. Let Kij denote the total number
of episodes taken for j, where the index j changes when the reward rjh is reset. Let mi denote the
number of j. Thus, we have

mi∑
j=1

Kij = Ki.

Let V ∗,ij
0 denote the optimal value function on the reward function rjh, V k,ij

0 denote the value function
for the policy πk on the reward function rjh. Then,

V k,ij
0 ≤ V ∗,ij

0 ≤ sup
π

Eπ[I{(sh, ah) ∈ X}] = Wh(X ) ≤ 2−(i−1).

Now we define some events.

C1,δ =
{mi∑
j=1

( Kij∑
k=1

V ∗,ij
0 −

Kij∑
k=1

V k,ij
0

)
≤ 2cse

√
S2A2H2V ∗,i1

0 Ki log(HKi) log(
MHKi

δ
)

+ 2cseS
3A2H6 log(HKi) log(

MHKi

δ
)
}
,

C2,δ =
{∣∣∣∣∣∣

mi∑
j=1

Kij∑
k=1

H∑
h=1

Rj
h(s

j,k
h , aj,kh )−

mi∑
j=1

Kij∑
k=1

V k,ij
0

∣∣∣∣∣∣ ≤
√
4Ki2−i log

2

δ
+ 2 log

2

δ

}
,

D1,δ =
{
∀(s, a) ∈ X ,

∣∣∣∣∣∣
Ki∑
k=1

wπk

h (s, a)−
Ki∑
k=1

I{(skh,ak
h)=(s,a)}

∣∣∣∣∣∣ ≤
√
2KiWh(s) log

2

δ
+ 2 log

2

δ

}
for the process during the algorithm,

D2,δ =
{
∀(s, a) ∈ Xi,

∣∣∣∣∣∣
Ki∑
k=1

wπk

h (s, a)−
Ki∑
k=1

I{(skh,ak
h)=(s,a)}

∣∣∣∣∣∣ ≤
√
2KiWh(s) log

2

δ
+ 2 log

2

δ

}
for the process during the replay.

Freedman’s inequality is stated below for use in subsequent analysis.
Lemma 11 (Freedman’s inequality). Let (Ω,F ,P) be a probability space and F0 ⊂ F1 ⊂ F2 ⊂
· · · F be a filtration of σ-algebra. Let {Xi}i be random variables such that Xi is Fi-measurable,

|Xi| ≤M,

E[Xn|Fn−1] = 0,

E[X2
n|Fn−1] ≤ Vn

for constants Vn. Then, for any δ > 0, with probability at least 1− δ,

|
n∑

i=1

Xi| < 2M log
2

δ
+

√√√√2

n∑
i=1

Vn log
2

δ
.

We state properties of the events defined above.
Lemma 12. If δ ∈ (0, 1) is the third argument of FindExplorableSets,

P(C1,δ/2) ≥ 1− δ/2.
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Proof. For any fixed K and j,( K∑
k=1

V ∗,ij
0 −

K∑
k=1

V k,ij
0

)
|Fj−1 ≤ cse

√
SAH2V ∗,i1

0 K log(HK) log(
MHK

δ
)

+ cseS
2AH6 log(HK) log(

MHK

δ
)

with probability at least 1−δ, whereFj−1 is the filtration up to iteration j, and we used V ∗,ij
0 ≤ V ∗,i1

0
for all j since the reward function can only decrease as j increases. FindExplorableSets stops
and restarts STRONGEULER if the relevant condition is met, but this is a random stopping condition.
Thus, to guarantee that the regret bound holds for any possible value of this stopping time, we union
bound over all possible values. Since FindExplorableSets runs for at most Ki episodes, we
union bound over Ki stopping times. We then have( K∑

k=1

V ∗,ij
0 −

K∑
k=1

V k,ij
0

)
|Fj−1 ≤ 2cse

√
SAH2V ∗,i1

0 K log(HKi) log(
2MHKi

δ
)

+ 2cseS
2AH6 log(HKi) log(

2MHKi

δ
)

for all K ∈ [Ki] with probability at least 1− δ
2SA . Since mi ≤ SA, union bounding over all j we

then have that, with probability at least 1− δ/2,

mi∑
j=1

( Kij∑
k=1

V ⋆,ij
0 −

Kij∑
k=1

V k,ij
0

)
≤

mi∑
j=1

2cse

√
SAH2V ∗,i1

0 Kij log(HKi) log(
2MHKi

δ
)

+ 2cseS
3A2H6 log(HKi) log(

2MHKi

δ
)

≤ 2cse

√
S2A2H2V ∗,i1

0 Ki log(HKi) log(
2MHKi

δ
)

+ 2cseS
3A2H6 log(HKi) log(

2MHKi

δ
),

where the last inequality follows from Jensen’s inequality.

Lemma 13. For any δ ∈ (0, 1),
P(C2,δ) ≥ 1− δ.

Proof. For each k ∈ [Ki], we have that Xk :=
∑H

h=1 Rh(s
k
h, a

k
h) ∼ Bernoulli(V πk

0 ). Then
|Xk − V πk

0 | ≤ 1, E[(Xk − V πk
0 )2|Fk−1] = V πk

0 (1 − V πk
0 ) ≤ V πk

0 ≤ Wh(X ) ≤ 2−i+1. Thus, if
we apply Lemma 11, we obtain the statement.

Lemma 14. For any δ ∈ (0, 1),

P(D1,δ) ≥ 1− |X |δ ≥ 1− SAδ.

Proof. Since Xk := I{(skh,ak
h)=(s,a)} ∼ Bernoulli(wπk

h (s, a)),

E[(Xk − wπk

h (s, a))2|Fk−1] = wπk

h (s, a)(1− wπk

h (s, a)) ≤ wπk

h (s, a) ≤Wh(s).

By Lemma 11, we have that∣∣∣∣∣∣
Ki∑
k=1

wπk

h (s, a)−
Ki∑
k=1

I{(skh,ak
h)=(s,a)}

∣∣∣∣∣∣ ≤
√

2KiWh(s) log
2

δ
+ 2 log

2

δ

with probability at least 1− δ. Union bounding over X leads to the statement.

Lemma 15. For any δ ∈ (0, 1),

P(D2,δ) ≥ 1− |Xi|δ ≥ 1− SAδ.
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Proof. Since Xk := I{(skh,ak
h)=(s,a)} ∼ Bernoulli(wπk

h (s, a)),

E[(Xk − wπk

h (s, a))2|Fk−1] = wπk

h (s, a)(1− wπk

h (s, a)) ≤ wπk

h (s, a) ≤Wh(s).

By Lemma 11 and union bound over Xi, the statement follows.

Lemma 16. If δ ∈ (0, 1) is the third argument of FindExplorableSets, the event C1,δ/2∩C2,δ/2
implies

Wh(X \ Xi) ≤ 2−i.

Proof. Putting Lemma 12, 13 and union bounding over these events, we have that with probability at
least 1− δ,

mi∑
j=1

Kij∑
k=1

H∑
h=1

Rj
h(s

j,k
h , aj,kh ) ≥

mi∑
j=1

Kij∑
k=1

V ⋆,ij
0 −

√
4Ki2−i log

4

δ

− 2cse

√
S2A2H2V ∗,i1

0 Ki log(HKi) log(
2MHKi

δ
)− CR

where we denote

CR := 2cseS
3A2H6 log(HKi) log(

2MHKi

δ
) + 2 log

4

δ
.

Assume that V ∗,imi

0 > 2−i. Using that the reward decreases monotonically so V ∗,imi

0 ≤ V ∗,ij
0 for

any j ≤ mi, we can lower bound the above as

≥ 2−iKi −
√
4Ki2−i log

4

δ
− 2cse

√
S2A2H2V ∗,i1

0 Ki log(HKi) log(
2MHKi

δ
)− CR

≥ 2−iKi − 3cse

√
S2A2H22−iKi log(HKi) log(

2MHKi

δ
)− CR

where the second inequality follows since V ∗,i1
0 ≤ 2−i+1 and

√
4Ki2−i log 4

δ will then be dominated
by the regret term. Lemma 10 gives

Ki ≥ 2i max

{
4CR, 144c2seS

2A2H2 log(HKi) log(
2MHKi

δ
)

}
which implies

1

4
2−iKi − CR ≥ 0

and

1

4
2−iKi − 3cse

√
S2A2H22−iKi log(HKi) log(

2MHKi

δ
)

≥
2i · 144c2seS2A2H2 log(HKi) log(

2MHKi

δ )

4 · 2i

− 3cse

√
S2A2H22−i log(HKi) log(

2MHKi

δ
) · 2i144c2seS2A2H2 log(HKi) log(

2MHKi

δ
)

= 0.

Thus, we can lower bound the above as

2−iKi − 3cse

√
S2A2H22−iKi log(HKi) log(

2MHKi

δ
)− CR ≥

1

2
2−iKi.

Note that we can collect a total reward of at most |X |Ni. However, by our choice of

Ni = Ki/(4|X | · 2i),
we have that

|X |Ni =
1

4 · 2i
Ki <

1

2 · 2i
Ki.

This is a contradiction. Thus, we must have that Wh(X \ Xi) ≤ V ∗,imi

0 ≤ 2−i.
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Lemma 17. The event Cδ/2 with δ ≥ δsamp

SAH implies

Wh(X ) ≥
|Xi|

2i+3|X |
.

Proof.

Ni|Xi| ≤
mi∑
j=1

Kij∑
k=1

Rj
h(s

j,k
h , aj,kh ) ≤

mi∑
j=1

Kij∑
k=1

V k,ij
0 +

√
4Ki2−i log

4

δ
+ 2 log

4

δ

≤ KiWh(X ) +
√
4Ki2−i log

4

δ
+ 2 log

4

δ

≤ KiWh(X ) +
Ki

2i+4SA
+

Ki

2i+10SA

≤ KiWh(X ) +
Ki

2i+3SA
,

where the forth inequality follows from Ki ≥ 2i+11S2A2 log 4SAH
δsamp

. Then,

Wh(X ) ≥
Ni|Xi|
Ki

− 1

2i+3SA
=

|Xi|
2i+2|X |

− 1

2i+3SA
≥ |Xi|

2i+3|X |
.

Lemma 18. The event D1,δ ∩ D2,δ with δ ≥ δsamp

2SAH implies that after rerunning each policy in Πi

once, the number of samples collected for each (s, a) ∈ Xi is at least 1
4Ni.

Proof. Let I1, I2 denote the indicator of an event during FindExplorableSets, and an event
during rerunning policies respectively. For a pair (s, a) ∈ Xi, we have

Ki∑
k=1

I1{(skh,ak
h)=(s,a)} −

Ki∑
k=1

wπk

h (s, a) ≤
√
2KiWh(s) log

2

δ
+ 2 log

2

δ

Ki∑
k=1

wπk

h (s, a)−
Ki∑
k=1

I2{(skh,ak
h)=(s,a)} ≤

√
2KiWh(s) log

2

δ
+ 2 log

2

δ

Then the number of samples of (s, a) collected during the rerunning satisfies

Ki∑
k=1

I2{(skh,ak
h)=(s,a)} ≥

Ki∑
k=1

I1{(skh,ak
h)=(s,a)} − 2

√
2KiWh(s) log

2

δ
− 4 log

2

δ

≥ Ni − 2

√
2KiWh(s) log

2

δ
− 4 log

2

δ

≥ Ni − 2

√
2−i+2Ki log

2

δ
− 4 log

2

δ

≥ Ni −
Ki

2i+3.5SA
− Ki

2i+9S2A2

≥ Ni −
Ki

2i+2.5SA

≥ Ni −
Ki

2i+2.5|X |
= Ni(1−

1√
2
) ≥ 1

4
Ni,

where the forth inequality follows from δ ≥ δsamp

4SAH and log 2SAH
δsamp

≤ Ki

2i+11S2A2 .

Lemma 19. The event D1,δ with δ ≥ δsamp

2SAH implies

Wh(s) >
1

2i+3|X |
for each (s, a) ∈ Xi, Wh(Xi) >

|Xi|
2i+3|X |

.
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Proof. In the proof of the previous lemma, we showed that√
2−i+2Ki log

2

δ
+ 2 log

2

δ
≤ Ni

2
√
2
<

Ni

2

when δ ≥ δsamp

2SAH . Using this, we have

Ni ≤
Ki∑
k=1

I1{(skh,ak
h)=(s,a)} ≤

Ki∑
k=1

wπk

h (s, a) +

√
2−i+2Ki log

2

δ
+ 2 log

2

δ
< KiWh(s) +

Ni

2

for each (s, a) ∈ Xi. Thus,

Wh(s) >
Ni

2Ki
=

1

2i+3|X |
.

On the other hand,

|Xi|Ni ≤
∑

(s,a)∈Xi

Ki∑
k=1

I1{(skh,ak
h)=(s,a)} ≤

Ki∑
k=1

wπk

h (Xi) + |Xi|

(√
2−i+2Ki log

2

δ
+ 2 log

2

δ

)
< KiWh(Xi) +

|Xi|Ni

2
.

Thus,

Wh(Xi) >
|Xi|Ni

2Ki
=

|Xi|
2i+3|X |

.

We finally give a guarantee of FindExplorableSets.
Theorem C.1. If we run

FindExplorableSets(X , h, δ,Ki = Ki(δ, δsamp = SAHδ), Ni =
Ki

4|X |2i
)

for a subset X ⊂ S ×A with Wh(X ) ≤ 2−i+1 and returns subset Xi ⊂ X , policy set Πi, then

1. Wh(X \ Xi) ≤ 2−i with probability at least 1− δ.

2. With probability at least 1− SAδ,

(1) If we rerun each policy in Πi once, the number of samples collected for each (s, a) ∈ Xi

is at least 1
4Ni.

(2) Wh(s) >
1

2i+3|X | for each (s, a) ∈ Xi and Wh(Xi) >
|Xi|

2i+3|X | .

Proof. By Lemma 12, 13, 14, 15, 16, 18, and 19, the theorem follows.

C.2 PROOF OF THEOREM 3.1

Before proving Theorem 3.1, we introduce a useful lemma related to the Lambert W -function. The
Lambert function W (s) : [0,∞)→ [0,∞) is defined by

x = W (x) exp(W (x)), for x ≥ 0.

Then the following holds.
Lemma 20. (Orabona and Pal, 2016, Lemma 17)

0.6321 log(1 + x) ≤W (x) ≤ log(1 + x) for x ≥ 0.

We define

c(B) = 4JCK(
1

8SAH
,
1

8
, J) = poly(S,A,H, log(B)),

CL2E(B) = SH2c(B). (5)

Recall that CK was defined in equation 4. We now give a proof of Theorem 3.1
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Theorem C.2 (Theorem 3.1). Consider running Algorithm 1 with B ≥ c(B). Then, the following
statements hold.

1. The total budget used is at most B.

2. For any ε ≥ 2SH2εB , with probability at least 1− exp

(
−Θ̃

(
εB

CL2E(B)

))
,

(1) The reachability of each set Xi satisfies

|Xi|
|X |
· 2−i−3 ≤Wh(Xi) ≤ 2−i+1 for all i ≤ iε :=

log2
(
2SH2

ε

) ,

(2) The remaining elements, X̄ := X \ ∪iεi=1Xi satisfy

sup
π

∑
(s,a)∈X̄

wπ
h(s, a) ≤

ε

2SH2
.

(3) Moreover, for any i ≤ iε, if each policy in Πi is executed A times, then every state-
action pair (s, a) ∈ Xi is visited at least 1

8ANi times.

Here, the probability accounts for both the randomness in the execution of the algorithm
and the resampling process.

Proof. We first prove that the total budget used is at most B. Let δ = 1
8SAH . By the definition of δi,

log
1

δi
= 0.6321Li log

1

δ
· log log 1

δ

≤ 1 + 0.6321Li log
1

δ
· log log 1

δ

≤ (1 + Li log
1

δ
· log log 1

δ
)0.6321

≤ exp(W (Li log
1

δ
· log log 1

δ
)).

Thus,

log
1

δi
· log log 1

δi
≤W (Li log

1

δ
· log log 1

δ
) exp(W (Li log

1

δ
· log log 1

δ
)) = Li log

1

δ
· log log 1

δ
.

(6)
The total budget used is

J∑
j=1

Kj(δj , SAHδj) ≤
J∑

j=1

2j+1CK(δj , SAHδj , J)

≤
J∑

j=1

2J+1CK(
1

8SAH
,
1

8
, J)

≤ 2J(1 +
log(2)B

c(B)
)0.6321CK(

1

8SAH
,
1

8
, J)

≤ 2J(1 +
B

c(B)
)CK(

1

8SAH
,
1

8
, J),

where the second inequality follows from equation 6 and that CK has log( 1δ ) log log(
1
δ ) dependence.

If B ≥ c(B), then the above is bounded by

4JB

c(B)
CK(

1

8SAH
,
1

8
, J) = B.
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We now prove the second part. By union bounding Theorem C.1 over i = 1, 2, . . . iε, (1) hold with
probability at least

1−
iε∑
i=1

δi ≥ 1− iεδiε .

Here, δiε = exp(−Θ̃(Liε)) by the definition and

Liε = 2J−iε ≥ ε

4SH2
(1+

log(2)B

c(B)
)0.6321 ≥ ε

4SH2
(1+0.6321

log(2)B

c(B)
) ≥ ε

4SH2
·0.6321 log(2)B

c(B)
.

Thus, (1) holds with probability at least 1 − exp

(
−Θ̃

(
εB

CL2E(B)

))
. Similarly, (2) holds with

probability at least

1− SA

iε∑
i=1

δi.

Since SA becomes log(SA) when moving into the exponential, (2) also holds with probability at

least 1 − exp

(
−Θ̃

(
εB

CL2E(B)

))
. We next compute the probability that (3) holds. For simplicity,

let’s consider the level i = iε, in which the failure probability SAδiε is dominant. For the collection
of samples via rerunning policies to be successful, we need both D1,δiε

and D2,δiε
to hold. D1,δiε

holds with probability at least 1 − SAδiε
2 . On the event D1,δiε

, consider rerunning each policy in
Πiε for A times. By Lemma 21, with probability 1− exp(− 1

2A log( 1
eSAδiε

)), at least for A
2 trials

of repetition, we collect Niε

4 samples of each (s, a) ∈ Xiε , which means we collect at least ANiε

8
samples of each (s, a) ∈ Xiε . Thus, the probability that there exists some (s, a) ∈ Xiε , the sample
number of which is less than ANiε

8 is

exp

(
−1

2
A log(

1

eSAδiε
)

)
= exp

(
−Θ̃

(
εAB

CL2E(B)

))
.

However, the failure probability ofD1,δiε is already exp

(
−Θ̃

(
εB

CL2E(B)

))
, which is more dominant.

Thus, (3) also holds with probability 1− exp

(
−Θ̃

(
εB

CL2E(B)

))
. The theorem is proven.

C.3 BOOSTING TECHNIQUE

In this subsection, we develop an alternative algorithm of FB-L2E. The core mechanism of this
alternative is the boosting technique, which repeatedly executes independent trials. The number of
repetitions and the failure probability is in the exponential relationship as we can see in the following
lemma.
Lemma 21. Let E be an event from a random trial such that P(E) ≤ δ Let α ∈ (δ, 1). Let N be the
number of trials where E is true out of L trials. Assume α > δ. Then,

P(
N

L
≥ α) ≤ exp

(
−αL ln

(
α

eδ

))

Proof. Recall the KL divergence based concentration inequality where µ̂n is the sample mean of n
Bernoulli i.i.d. random variables with head probability µ:

P(µ̂n − µ ≥ ε) ≤ exp(−nkl(µ+ ε, µ)) .

Note that N/L can be viewed as the sample mean of Bernoulli trials with µ := P(E). Then,

P(N ≥ αL) = P(
N

L
≥ α)

= P(
N

L
− µ ≥ α− µ)
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Algorithm 4 Fixed Budget Learn to Explore with Boosting for Singleton (FB-L2E-BS)
function FB-L2E-BS(X = {(s, a)} ⊆ S ×A, step h, budget B)

if |X | = 0 then
return {(∅, ∅, 0, )}

end if
J ← ⌈0.6321 log2(1 +

log(2)B
c(B) )⌉

for j = 1, . . . , J do
Kj ← Kj(

1
8SAH , 1

8 ), Nj ← Kj/(4|X | · 2j), Lj ← 2J−j

for m = 1, . . . , Lj do
Yj,m,Πj,m = FindExplorableSets(X , h, 1

8SAH ,Kj , Nj)
end for
Calculate the votes: ∀(s, a) ∈ X , vs,a ←

∑Lj

m=1 1
{
(s, a) ∈ Yj,m

}
.

Filter out only if chosen at least half the time: Xj ← {(s, a) | vs,a ≥ Lj/2}
Πj = ∪

Lj

m=1Πj,m

X ← X\Xj

end for
return {(Xj ,Πj , Nj)}Jj=1

end function

≤ exp(−Lkl(α, µ))

= exp

(
−L

(
α ln(α/µ) + (1− α) ln

1− α

1− µ

))
(a)

≤ exp
(
−L

(
α ln(α/µ)− α

))
≤ exp

(
−L

(
α ln(α/δ)− α

))
where (a) is by the following derivation:

(1− α) ln
1− α

1− µ
= −(1− α) ln

1− µ

1− α

= −(1− α) ln

(
1 +

α− µ

1− α

)
≥ −(α− µ)

≥ −α

The alternative algorithm, FB-L2E-BS is described in Algorithm 0. Although it only applies to
singleton subsets (subset of size 1), one can flexibly change the regret minimization algorithm in
FINDEXPLORABLESETS. It was crucial for our result that the regret bound of STRONGEULER has
log( 1δ ) dependence. However, for FB-L2E-BS, we can use algorithms such as EULER, which has
log3( 1δ ) dependence in the lower order term.

We briefly argue that the statements of Theorem 3.1 also hold for FB-L2E-BS used for singleton
subset. The total budget used is

J∑
j=1

2J−jKj = J2J+1CK(
1

8SAH
,
1

8
, J)

≤ 2J(1 +
log(2)B

c(B)
)0.6321CK(

1

8SAH
,
1

8
, J)

≤ 2J(1 +
log(2)B

c(B)
)CK(

1

8SAH
,
1

8
, J).
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If B ≥ c(B), then the above is bounded by

4JB

c(B)
CK(

1

8SAH
,
1

8
, J) = B.

Let δ = 1
8SAH , δsamp = 1

8 . The crucial part for other statements in Theorem 3.1, was to make the
failure probability of the j-th iteration in the form of

(c1δ)
c2Lj (7)

for some constant c1, c2, which was done by defining δi as this form in FB-L2E. Once we get equa-

tion 7, the dominant term becomes (c1δ)c2Liε = exp

(
−Θ̃

(
εB

CL2E(B)

))
. We show that equation 7

can also be obtained for FB-L2E-BS.

Assume Wh(s) ∈ (2−i, 2−i+1] for i ≤ J . Let’s call i as the reachable index of s at h. Let Nj be the
event that (s, a) is not filtered in j-th boosted FES. By Lemma 16,

P
(
(s, a) is not filtered in i-th step by a single FES| ∩i−1

j=1 Nj

)
≤ δ.

If we apply Lemma 21, we obtain the form of equation 7 as

P
(
∩ij=1Nj

)
≤ P

(
Ni| ∩i−1

j=1 Nj

)
≤ exp

(
−1

2
Li log

1

2eδ

)
.

We say that (s, a) is upper well-filtered at h if (s, a) is filtered in the index j for some j ≤ i.

Now we consider the j-th boosted FES for some j ≤ i− 4. By Lemma 14, 19,

P
(
(s, a) is filtered in j-th step by a single FES| ∩j−1

k=1 Nk

)
≤ δsamp

2SAH
.

Thus, by Lemma 21, we obtain the form of equation 7 as

P
(
∩j−1
k=1Nk, N c

j

)
≤ P

(
N c

j | ∩
j−1
k=1 Nk

)
≤ exp

(
−1

2
Lj log

SAH

eδsamp

)
.

We say that (s, a) is lower well-filtered at h if (s, a) is not filtered in the indices j with j ≤ i− 4. We
also say that (s, a) is well-filtered at h if (s, a) is both upper and lower well-filtered at h. We have

P
(
(s, a) is not lower well-filtered at h

)
≤

i−4∑
j=1

exp

(
−1

2
Lj log

SAH

eδsamp

)
≤ i exp

(
−1

2
Li log

SAH

eδsamp

)
.

Thus, we have

P
(
(s, a) is well-filtered at h

)
≥ 1− exp

(
−1

2
Li log

1

2eδ

)
− i exp

(
−1

2
Li log

SAH

eδsamp

)
.

Recall that ε ≥ 2SH2εB and iε := ⌈log2( 2SH2

ε )⌉. We define the set

Sε = {(s, h) : the reachable index of s at h ≤ iε}

and the event
Mε = {(s, a) is well-filtered at h for all (s, h) ∈ Sε}.

By using the monotonicity of Li and union bound, we have the following.
Lemma 22.

P(Mε) ≥ 1− SH exp

(
−1

2
Li∗ log

1

2eδ

)
− SHiε exp

(
−1

2
Li∗ log

SAH

eδsamp

)

= 1− exp

(
−Θ̃

(
εB

CL2E(B)

))
.
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Let Wh(S) ∈ (2−i, 2−i+1] and assume that D1,δ happened for at least Lj

2 , where j is the index that
(s, a) is filtered. We denote the number of (s, a) samples at horizon h when running each policy in a
policy set Π A times as NA

Π (s, a, h). Let I ⊂ [Lj ] be the set of indices that D1,δ happened, which
means |I| ≥ Lj/2. Assume m ∈ I . If we rerun each policy in Πj,m once,

P(# of (s, a) samples at horizon h <
1

4
Nj) ≤

δsamp

H

by Lemma 18. Now consider rerunning each policy in Πj,m A times. Since running policies are
independent, we can think of the process as A repetition of running each policy in Πj,m once. Thus,
we get

P(NA
Πj,m

(s, a, h) <
1

8
ANj) ≤ P(

A∑
i=1

Ii{N1
Πj,m

(s,a,h)< 1
4Nj} ≥

A

2
) ≤ exp(−A

2
ln(H/2eδsamp)),

where Ii is the indicator function for i-th repetition of running each policy in Πj,m and the second
inequality follows from Lemma 21. If we rerun each policy in Πj A times,

P(NA
Πj

<
1

32
ANjLj) ≤ P(

∑
m∈I

I{NA
Πj,m

(s,a,h)< 1
8ANj} ≥

|I|
2
) ≤ exp(−Y

2
ln(1/2e exp(−A

2
ln(H/2eδsamp))))

≤ exp(−Lj

4
ln(1/2e exp(−A

2
ln(H/2eδsamp))))

≤ exp
(
−Θ̃

(
ALj

))
by Lemma 21. If this happens, let’s say that (s, a) is well-collected at horizon h for A repetition.
However, the failure probability

P(D1,δ happened less than
Lj

2
) ≤ exp

(
−Θ̃

(
Lj

))
,

which is more dominant. Thus, the following holds.
Lemma 23. Consider s whose reachable index at h is i ≤ iε. If we replay policies saved for (s, a)
A times, the number Ths of (s, a) samples we get satisfies

P
(
Ths <

ANiLi

16

)
≤ exp

(
−Θ̃

(
εB

CL2E(B)

))
.

D ANALYSIS OF SAR

Fix ε ≥ 0. We say that an arm i of a bandit m is ε-good if µm,1 − µm,i ≤ ε. An arm is ε-
bad if it is not ε-good. Let gm(ε) denote the number of ε-good arms in bandit m. We write
k∗ := max

{
k : ∆̄(KM+1−k) > ε

}
and define the following two key events:

E1 =
{
∀k ∈ [k∗], ε

2 -good pairs are not rejected at the end of phase k
}

E2 = {∀k ∈ [(k∗ + 1), . . . ,K], for every active bandit m containing an ε-bad arm

at the beginning of phase k, an ε
2 -good arm in bandit m is not rejected

}
We first show that the intersection of these two events leads to a successful good arm identification
for every bandit.
Lemma 24. Suppose E1 ∩ E2 holds. Then for every m ∈ [M ], the accepted arm is ε-good.

Proof. Suppose the conclusion is not true; i.e., there exists a bandit m for which an ε-bad arm (m, b)
has been accepted. Then, there exists a phase k ∈ [KM − 1] where the best arm (m, 1) is rejected
from bandit m. Due to E1 and the fact that arm (m, 1) is an ε

2 -good arm, we know k ≥ k∗ + 1. Now,
at the beginning of phase k, the bandit m must contain both (m, b) and (m, 1). However, due to E2,
the arm (m, 1) cannot be rejected, which contradicts our supposition.
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Furthermore, consider the following event

E0 =

{
∀m ∈ [M ],∀i ∈ [K], ∀k ∈ [MK − 1],

∣∣µ̂m,i(nk)− µm,i

∣∣ < 1

8
(∆̄(MK+1−k) ∨ ∆̄(g(ε)+1))

}
Lemma 25. E0 =⇒ E1 ∩ E2

Proof. Assume E0. To show E1, it suffices to show that, for every k ∈ [k∗], if no ε
2 -good arm was

rejected before phase k then no ε
2 -good arm will be rejected in phase k (i.e., either accepts an arm or

rejects a non- ε2 -good arm).

So, let k ∈ [k∗], which implies that ∆̄(MK+1−k) > ε by definition, and assume that no ε
2 -good arm

was rejected before phase k. Furthermore, E1 is trivially true if the phase k accepts an arm. Thus, it
suffices to assume that the phase k does not accept an arm.

We claim that, at the beginning of phase k, there exists an arm (m̄, ī) ∈ S such that

µm̄,1 − µm̄,̄i ≥ ∆̄(MK+1−k) .

Hereafter, we omit (nk) from µ̂·,·(nk). To prove this claim, first note that there exists (m′, i′) ∈ S
such that

∆̄m′,i′ ≥ ∆̄(MK+1−k) .

(To see this, first, confirm that this is true with equality if the arm (MK + 1 − k) is rejected or
accepted at each phase k; now, notice that if an arm other than (MK + 1 − k) was rejected or
accepted, then it only makes the equality into ≥.) Then, we have the following two cases:

• If i′ ̸= 1, then ∆̄m′,i′ = µm′,1 − µm′,i′ by definition, so we can take m̄ = m′ and ī = i′ to
prove the claim.

• If i′ = 1, then, since phase k does not accept an arm, there must exist another surviving arm
i′′ ̸= 1 in bandit m′. Since ∆̄m′,i′′ = µm′,1 − µm′,i′′ and

∆̄m′,i′′ ≥ ∆̄m′,2 = ∆̄m′,1 = ∆̄m′,i′ ≥ ∆̄(MK+1−k) ,

we can choose m̄ = m′ and ī = i′′ to prove the claim.

Assume that E1 is false; i.e., an ε
2 -good arm in bandit m is rejected. This implies that there exists an

active bandit m such that

∃g ∈ [gm( ε2 )] : µ̂m,1̂m
− µ̂m,g ≥ µ̂m̄,1̂m̄

− µ̂m̄,̄i .

Note that, using E0 and µm,1̂m
− µm,g ≤ µm,1 − µm,g ≤ ε

2 < 1
2∆̄(MK+1−k),

(LHS) = µ̂m,1̂m
− µm,1̂m

+ µm,1̂m
− µm,g + µm,g − µ̂m,g

<
∆̄(MK+1−k)

8
+

∆̄(MK+1−k)

2
+

∆̄(MK+1−k)

8

=
3

4
∆̄(MK+1−k) .

On the other hand,

(RHS) ≥ µ̂m̄,1 − µ̂m̄,̄i ((m, 1) ∈ S since no ε
2 -good arm rejected before phase k)

= µ̂m̄,1 − µm̄,1 + µm̄,1 − µm̄,̄i + µm̄,̄i − µ̂m̄,̄i

> −1

8
∆̄(MK+1−k) + ∆̄(MK+1−k) −

1

8
∆̄(MK+1−k)

≥ 3

4
∆̄(MK+1−k) .

This is a contradiction.
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We now prove E2. Suppose not; there exists a phase k ≥ k∗+1 and a bandit m active at the beginning
of phase k where an ε

2 -good arm (g,m) is rejected even if there was a surviving bad arm (b,m). This
means that

µ̂m,g ≤ µ̂m,b

On the other hand, note that k ≥ k∗ + 1 implies ∆̄(MK+1−k) ≤ ∆̄(g(ε)+1), so ∆̄(MK+1−k) ∨
∆̄(g(ε)+1) = ∆̄(g(ε)+1). Thus,

µ̂m,g − µ̂m,b = µ̂m,g − µm,g + µm,g − µm,b + µm,b − µ̂m,b

> −1

8
∆̄(g(ε)+1) + µm,g − µm,b −

1

8
∆̄(g(ε)+1) (E0)

≥ −1

8
∆̄(g(ε)+1) +

1

2
∆̄(g(ε)+1) −

1

8
∆̄(g(ε)+1) (definition of g and b)

> 0

This is a contradiction.

Let

H1(ε) :=

MK∑
i=1

1

(∆̄(i) ∨ ε)2
, H2(ε) := max

i≥g(ε)+1

i

∆̄2
(i)

.

We present a relation between these two gap-dependent quantities.

Lemma 26. H2(ε) ≤ H1(ε) ≤ g(ε)
ε2 + log(MK

g(ε) )H2(ε).

Proof. Let i∗ = argmaxi≥g(ε)+1 i∆̄
−2
i . Note that

H1(ε) =
∑
i≥1

(∆̄i ∨ ε)−2 ≥
g(ε)∑
i=1

∆̄−2
g(ε)+1 +

∑
i≥g(ε)+1

∆−2
i

≥
g(ε)∑
i=1

∆̄−2
g(ε)+1 +

i∗∑
i=g(ε)+1

∆̄−2
i∗

=

g(ε)∑
i=1

∆̄−2
g(ε)+1 + (i∗ − g(ε))∆̄−2

i∗

=

g(ε)∑
i=1

∆̄−2
g(ε)+1 +H2(ε)− g(ε)∆̄−2

i∗

≥
g(ε)∑
i=1

∆̄−2
g(ε)+1 +H2(ε)− g(ε)∆̄−2

g(ε)+1

≥ H2(ε).

For the right inequality,

H1(ε) =
∑
i≥1

1

i
i(∆̄i ∨ ε)−2 =

≤
g(ε)∑
i=1

1

i
iε−2 +

MK∑
i=g(ε)+1

1

i
H2(ε)

≤ g(ε)

ε2
+ log(

MK

g(ε)
)H2(ε).

We are now ready to prove Theorem 3.2.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Theorem D.1 (Refinement of Theorem 3.2). If we run Algorithm 2 with B ≥MK, then the total
number of budget used is at most B and

P(∃m ∈ [M ] : µm,1 − µm,JB(m) > ε) ≤ 2M2K2 exp

(
− B −MK

128σ2 log(MK) ·maxi≥g(ε)+1 i∆̄
−2
(i)

)
≤ 2M2K2 exp

(
− B −MK

128σ2 log(MK) ·
∑

i∈[MK](∆̄(i) ∨ ε)−2

)
.

Proof. For the first part, the total budget used is bounded as
MK−1∑
k=1

nk(B,M,K)+nMK−1(B,M,K) ≤MK+
B −MK

log(MK)

(
1

2
+

MK−1∑
k=1

1

MK + 1− k

)
= B,

where we used ⌈x⌉ ≤ 1 + x For the second part, it suffices to bound P(E0) by Lemma 24 and
Lemma 25. Fix a bandit m and an arm i. Then,

P
(
∃k ∈ [KM − 1] :

∣∣µ̂m,i(nk)− µm,i

∣∣ ≥ 1

8
(∆̄(MK+1−k) ∨ ∆̄(g(ε)+1))

)
≤

KM−1∑
k=1

2 exp

(
− nk

2σ2
·
(∆̄(MK+1−k) ∨ ∆̄(g(ε)+1))

2

64

)

≤
KM−1∑
k=1

2 exp

(
− B −MK

log(MK) · (MK + 1− k)

(∆̄(MK+1−k) ∨ ∆̄(g(ε)+1))
2

128σ2

)
≤ 2MK exp

(
− B −MK

128σ2 log(MK) ·maxi∈[2..MK] i(∆̄(i) ∨ ∆̄(g(ε)+1))−2

)
≤ 2MK exp

(
− B −MK

128σ2 log(MK) ·maxi≥g(ε)+1 i∆̄
−2
(i)

)
.

Taking a union bound over m ∈ [M ] and i ∈ [K] and Lemma 26 completes the proof.

Note that when ε = 0, this theorem recovers the best arm identification result of Bubeck et al. (2013).

Remark 27. If we set M = 1, SAR becomes a single bandit algorithm. Consider running this single
bandit SAR to each bandit m ∈ [M ] with budget B/M . Then, we have

P(µm,1 − µm,J(m) > ε) ≤ exp

−Θ̃( B/M∑
i(∆̄m,i ∨ ε)−2)

)
for each bandit m ∈ [M ]. This yields

P(∃m ∈ [M ] : mum,1 − µm,J(m) > ε) ≤ exp

−Θ̃( B/M

maxm
∑

i(∆̄m,i ∨ ε)−2)

) ,

which is worse than the result of Theorem 3.2 since∑
m

∑
i

(∆̄m,i ∨ ε)−2) ≤M max
m

∑
i

(∆̄m,i ∨ ε)−2).

Due to this difference, if we use single bandit algorithm in BREA, we get the term

exp
(
−Θ̃

( B

H5 maxh∈[H] C
2
hSmaxs∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

))
,

which is worse than the actual term

exp
(
−Θ̃

( B

H5 maxh∈[H] C
2
h

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

))
of Theorem 3.3.
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E PROOF OF THEOREM 3.3 AND COROLLARY 3

In this section, we provide an analysis of BREA. Recall that ε ≥ 2SH2εB and iε = ⌈log2( 2SH2

ε )⌉
We define the events

Mh,ε =
{

For any s ∈ S,

FB-L2E({(s, 1)}, h, B′) outputs Xi = {(s, 1)} for some i ≤ iε =⇒ 2−i−3 ≤Wh(s) ≤ 2−i+1,

FB-L2E({(s, 1)}, h, B′) outputs Xi = ∅ for all i ∈ [iε] =⇒ Wh(s) ≤
ε

2SH2

}
,

Mε = ∪Hh=1Mh,ε,

Lh,ε =
{

For any i ≤ iε and any phase k ∈ [|Zhi|A− 1],

each (s, a) ∈ Ak is collected at least ⌊ nk

Nsh
i

⌋N
sh
i

8
times

}
,

Lε = ∪Hh=1 Lh,ε

Eh =
{
∆π̂

h(s, π̂h(s)) ≤
ε

2ChHWh(s)
for all s ∈ ∪iεi=1Zhi

}
.

(8)

Before proving Theorem 3.3, we provide lemmas that will give us a relation between the suboptimality
gap and its empirical estimate.
Lemma 28. Let 0 < a ≤ b and assume f1, f2 ≥ 0 satisfy |f1 − f2| ≤ b. Then

(f1 ∨ a)−2 ≤ (
a

2b
f2 ∨ a)−2.

Proof. If f1 ≤ a, then (f1 ∨ a)−2 = a−2. On the other hand, f2 ≤ f1 + b ≤ a+ b ≤ 2b. Thus,

(f1 ∨ a)−2 = a−2 = (
a

2b
f2 ∨ a)−2.

If f1 > a, then (f1 ∨ a)−2 = f−2
1 < a−2. Also, f2 ≤ f1 + b < f1 +

f1
a b = f1(1 + b

a ) ≤
2b
a f1.

Thus,
(f1 ∨ a)−2 = f−2

1 < (
a

2b
f2 ∨ a)−2.

Lemma 29. On ∩h+1
h′=HEh′ ∩Mε ∩ Lε, we have

(∆π̂
h(s, a) ∨

ε

2ChHWh(s)
)−2 ≤ 16C2

hH
2(∆h(s, a) ∨

2ε

Wh(s)
)−2.

Proof. By Lemma 7, for any policy π′

∑
s

wπ′

h+1(s)(V
∗
h+1(s)− V π̂

h+1(s)) ≤
H∑

h′=h+1

sup
π

∑
s

wπ
h′(s)εh(s)

≤
H∑

h′=h+1

sup
π

∑
i≤iε

∑
s∈Zhi

wπ
h′(s)

ε

2ChHWh(s)
+H

H∑
h′=h+1

∑
s̸∈∪i≤iεZhi

sup
π

wπ
h′(s)

≤
H∑

h′=h+1

ε

2H
+

H∑
h′=h+1

SH
ε

2SH2

≤ ε.

By Lemma 8,
|∆h(s, a)−∆π̂

h(s, a)| ≤
ε

Wh(s)
.

By applying Lemma 28 with f1 = ∆π̂
h(s, a), f2 = ∆h(s, a), a = ε

2ChHWh(s)
, b = ε

Wh(s)
, the proof

is done.
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Theorem E.1 (Theorem 3.3). If we run Algorithm 3 with

B ≥ max{2SHc(
B

2SH
), 2SAε B

2SH
log2

1

ε B
2SH

},

then the total number of budget used is at most B. Moreover, for any ε ≥ 2SH2ε B
2SH

,

P
(
V ∗
0 − V π̂

0 > ε
)
≤ exp

(
−Θ̃

( εB

CL2E(
B

2SH )

))
+ exp

(
−Θ̃

( B

H5 maxh∈[H] C
2
h

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

))
.

Proof. The budget used from the first part is

SH⌊ B

2SH
⌋ ≤ B

2

by Theorem 3.1. For the second part, we use

|Zhi|A−1∑
i=1

Ti(s, a) + T|Zhi|A−1(s, a)

≤ 1

Ni

|Zhi|A−1∑
i=1

ni + n|Zhi|A−1


≤⌊B

′′2−i−2⌋
2i+2

≤ B′′ =
B

2HJ
(Theorem 3.2)

for each multiple bandit Zhi. Thus, the budget used in the second part is at most B
2 , the total budget

used is at most B.

We now prove the probability bound. By Theorem 3.1 and that B ≥ 2SHc( B
2SH ), we have

P(Mc
ε) ≤ SH exp

−Θ̃( εB

CL2E(
B

2SH )

) = exp

−Θ̃( εB

CL2E(
B

2SH )

) ,

P(Lc
ε) ≤ S2A2H exp

−Θ̃( εB

CL2E(
B

2SH )

) = exp

−Θ̃( εB

CL2E(
B

2SH )

) . (9)

We can decompose the probability as

P(V ∗
0 − V π̂

0 > ε) ≤ P(V ∗
0 − V π̂

0 > ε,Mε,Lε) + P(Mc
ε) + P(Lc

ε)

≤ P(V ∗
0 − V π̂

0 > ε,Mε,Lε) + exp

−Θ̃( εB

CL2E(
B

2SH )

) . (10)

Assume thatMε,Lε, {Eh}Hh=1 holds. Then, by Lemma 7,

V ∗
0 − V π̂

0 ≤
H∑

h=1

sup
π

∑
s

wπ
h(s)εh(s)

≤
H∑

h=1

sup
π

∑
i≤iε

∑
s∈Zhi

wπ
h(s)

ε

2ChHWh(s)
+H

H∑
h=1

∑
s̸∈∪i≤iεZhi

sup
π

wπ
h(s)

≤
H∑

h=1

ε

2H
+ SH2 ε

2SH2

≤ ε

2
+

ε

2
= ε,
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where the second inequality follows from the definition of Ch. Thus, we have

P(V ∗
0 − V π̂

0 > ε,Mε,Lε) ≤
H∑

h=1

P(Ech,Mε,Lε,∩h+1
h′=HEh′). (11)

We try to bound P(Ech,Mε,Lε,∩h+1
h′=HEh′).

On the event Lε, every multiple bandit instance Zhi effectively collects samples so that SAR with
budget Θ( B

2HJ 2
−i−2) is run. On the eventMε, this is Θ(BWh(s)

HJ ) = Θ(BWh(s)
H ). To be precise,

the minimum budget of SAR is mins∈Zh

BWh(s)
2HJ ≥

Bε B
2SH

2HJ and this is more or equal to SA by the
hypothesis of Theorem 3.3. Thus, by Theorem 3.2, we have

P
(
∆π̂

h(s, π̂h(s)) >
ε

2ChHWh(s)
for some s ∈ Zhi,Mε,Lε,∩h+1

h′=HEh′ |Fh+1

)

≤ exp

−Θ̃( B

H3
∑

(s,a)∈Zhi×A Wh(s)−1(∆̄π̂
h(s, a) ∨

ε
2ChHWh(s)

)−2

)
= exp

−Θ̃( B

H3
∑

s∈Zhi
Wh(s)−1

∑
a≥2(∆

π̂
h(s, a) ∨

ε
2ChHWh(s)

)−2

)
≤ exp

−Θ̃( B

C2
hH

5
∑

s∈Zhi
Wh(s)−1

∑
a≥2(∆h(s, a) ∨ ε

Wh(s)
)−2

)
≤ exp

−Θ̃( B

C2
hH

5
∑

(s,a)∈Zhi×A Wh(s)−1(∆̄h(s, a) ∨ ε
Wh(s)

)−2

) , (12)

where the second inequality follows from Lemma 29, Fh+1 is a filtration up to learning in step h+ 1.
Thus, we have

P(Ech,Mε,Lε,∩h+1
h′=HEh′) ≤ iε exp

−Θ̃( B

C2
hH

5
∑

(s,a)∈S×A Wh(s)−1(∆h(s, a) ∨ ε
Wh(s)

)−2

)
= exp

−Θ̃( B

C2
hH

5
∑

(s,a)∈S×A Wh(s)−1(∆h(s, a) ∨ ε
Wh(s)

)−2

) .

If we plug this into equation 11 and equation 10, we get the probability bound of the theorem.

Corollary 30 (Exact statement of Corollary 3). If

2SH2ε B
2SH

< ε∗ := min{
+

min
s,h

Wh(s), 2H
+

min
s,a,h

ChWh(s)∆̄h(s, a)},

we obtain a guarantee of the best policy identification, given by

P
(
V ∗
0 − V π̂

0 > 0
)
≤ exp

(
−Θ̃

( ε∗B

CL2E(
B

2SH )

))
+ exp

(
−Θ̃

( B

H5 maxh∈[H] C
2
h

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε∗

Wh(s)
)−2

))
.

Furthermore, if the optimal action in each state s at each step h is unique, then

P
(
V ∗
0 − V π̂

0 > 0
)
≤ exp

(
−Θ̃

( ε∗B

CL2E(
B

2SH )

))
+ exp

(
−Θ̃

( B

H3 maxh∈[H]

∑
s∈S Wh(s)−1

∑
a∈A ∆̄h(s, a)−2

))
.
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Proof. Let’s take any ε B
2SH

≤ ε < ε∗ and assume that the events Mε,Lε,∩Hh=1Eh hold. By
the definition of Mε in equation 8, ε < 2SH2 min+s,h Wh(s) implies that any state s with
Wh(s) > 0 lies in Zh for any h ∈ [H]. Since ∆π̂

H(s, a) = ∆H(s, a), the event EH and that
ε < 2Hmin+s,a,h ChWh(s) ¯∆h(s, a) implies that π̂H(s) is an optimal action for all s ∈ ZH . Then
this implies that ∆π̂

H−1(s, a) = ∆H−1(s, a) holds for all s, a. Again, the event EH−1 and that
ε < 2Hmin+s,a,h ChWh(s) ¯∆h(s, a) implies that π̂H−1(s) is an optimal action for all s ∈ ZH−1.
Repeating this procedure, we can conclude that π̂ is optimal. The first probability bound follows by
limiting the result of Theorem 3.3 as ε→ ε∗−.

Next, we further assume the uniqueness of the optimal actions. In equation 12 of the proof of Theo-
rem 3.3, we may apply tha fact that ∆π̂

h(s, a) = ∆h(s, a) and ε < 2Hmin+s,a,h ChWh(s) ¯∆h(s, a)
instead of Lemma 29 so that we obtain

P
(
∆π̂

h(s, π̂h(s)) >
ε

2ChHWh(s)
for some s ∈ Zhi,Mε,Lε,∩h+1

h′=HEh′ |Fh+1

)

≤ exp

−Θ̃( B

H3
∑

(s,a)∈Zhi×A Wh(s)−1(∆̄π̂
h(s, a) ∨

ε
2ChHWh(s)

)−2

)
= exp

−Θ̃( B

H3
∑

s∈Zhi
Wh(s)−1

∑
a≥2(∆

π̂
h(s, a) ∨

ε
2ChHWh(s)

)−2

)
= exp

−Θ̃( B

H3
∑

s∈Zhi
Wh(s)−1

∑
a≥2(∆h(s, a) ∨ ε

2ChHWh(s)
)−2

)
= exp

−Θ̃( B

H3
∑

s∈Zhi
Wh(s)−1

∑
a≥2 ∆h(s, a)−2

)
≤ exp

(
−Θ̃

( B

H3
∑

s∈S Wh(s)−1
∑

a∈A ∆̄h(s, a)−2

))
.

Union bound over h, combining with the exploration term and taking the limit as ε→ ε∗− give the
second probability bound.

F PROOF OF THEOREM 3.4

We present a modified algorithm, BREAP in Algorithm 5

BREAP additionally refine the policy. Intuitively, BREAP gathers good arms from the second part,
additionally collects samples of them, and picks the empirically best actions.

Consider the situation where we run SAR with the set Zhi ×A. Let

∆̂π̂
h(s, a) := max

a′
Q̂π̂

h(s, a
′)− Q̂π̂

h(s, a)

and
ĝπ̂hi(ε) := |{(s, a) ∈ Zhi ×A : ∆̂π̂

h(s, a) ≤ ε}|.

We define the set ÔPTh(ε) as the last ĝπ̂hi(
ε

Ŵh(s)
) surviving pairs.

Let k∗ be
max{k : ∆̄(|Zhi|A+1−k) < ε},

where ∆̄(1) ≥ ∆̄(2) ≥ . . . ≥ ∆̄(|Zhi|A) and define the events

G0,ε(Zhi) = {∀k, ∀(s, a) ∈ Zhi ×A, |Q̂π̂
h(s, a, nk)−Qπ̂

h(s, a)| <
1

8
(∆̄(|Zhi|A+1−k) ∨

ε

Wh(s)
)}

G1,ε(Zhi) = {∀k ∈ [k∗],
ε

2Wh(s)
− good pairs are not rejected at phase k}
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G2,ε(Zhi) = {∀k > k∗,
ε

2Wh(s)
− good pairs are not rejected at phase k if there exists a bad pair in the same state}

as in Appendix D. We omit Zhi when there is no confusion. We also redefine the events

Eh = {sup
π

∑
s∈Zh1:iε

wπ
h(s)∆

π̂
h(s, π̂(s)) ≤

ε

2H
},

where Zh1:iε = ∪iεi=1Zhi.

We state some lemmas describing the properties of SAR process.
Lemma 31. Under the eventsMε,Lε, the event G0,ε implies G1,ε and G2,ε.

Proof. This is just a restatement of Lemma 25.

Lemma 32. Under the eventsMε,Lε,

P(Gc0,ε) ≤ exp

−Θ̃( Wh(s)B

H3 maxi i( ¯∆(i) ∨ ε
Wh(s)

)−2

) .

Proof. This is just a restatement of Theorem 3.2.

Lemma 33. Under the eventsMε,Lε,G0,ε, if a pair (s, a) is rejected in a phase k ∈ [k∗], then

∆π̂
h(s, a) >

1

2
∆̄(|Zhi|A+1−k).

Proof. There exists a pair (s′, a′) in the remaining set at the beginning of phase k such that

∆π̂
h(s

′, a′) ≥ ∆̄(|Zhi|A+1−k).

Since (s, a) is eliminated in phase k ≤ k∗,

∆̂h(s, a)k ≥ ∆̂h(s
′, a′)k,

where the subscript k is for the empirical gap until phase k. Let a∗s ∈ argmaxa Q̂
π̂
h(s, a)k. Then we

have

∆̂h(s, a)k = Q̂π̂
h(s, âs)k − Q̂π̂

h(s, a)k

= Q̂π̂
h(s, âs)k −Qπ̂

h(s, âs) +Qπ̂
h(s, âs)−Qπ̂

h(s, a) +Qπ̂
h(s, a)− Q̂π̂

h(s, a)k

<
∆̄(|Zhi|A+1−k)

8
+Qπ̂

h(s, a
∗
s)−Qπ̂

h(s, a) +
∆̄(|Zhi|A+1−k)

8

= ∆π̂
h(s, a) +

∆̄(|Zhi|A+1−k)

4

under G0. On the other hand,

∆̂h(s
′, a′)k = Q̂π̂

h(s
′, âs′)k − Q̂π̂

h(s
′, a′)k

≥ Q̂π̂
h(s

′, a∗s′)k − Q̂π̂
h(s

′, a′)k

= Q̂π̂
h(s

′, a∗s′)k −Qπ̂
h(s

′, a∗s′) +Qπ̂
h(s

′, a∗s′)−Qπ̂
h(s

′, a) +Qπ̂
h(s

′, a)− Q̂π̂
h(s

′, a′)k

> −
∆̄(|Zhi|A+1−k)

8
+ ∆π̂

h(s
′, a′)−

∆̄(|Zhi|A+1−k)

8

≥ −
∆̄(|Zhi|A+1−k)

8
+ ∆̄(|Zhi|A+1−k) −

∆̄(|Zhi|A+1−k)

8

=
3∆̄(|Zhi|A+1−k)

4

under G0. Then

∆π̂
h(s, a) +

∆̄(|Zhi|A+1−k)

4
> ∆̂h(s, a)k ≥ ∆̂h(s

′, a′)k >
3∆̄(|Zhi|A+1−k)

4
,
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which implies

∆π̂
h(s, a) >

1

2
∆̄(|Zhi|A+1−k).

Lemma 34. Under the eventsMε,Lε,G0,ε, if a pair (s, a) is accepted in a phase k ∈ [k∗], then

∆π̂
h(s, a) = 0.

Proof. Since (s, a) is accepted in the phase k ∈ [k∗], (s, a′) for the other actions a′ are rejected befor
phase k. By Lemma 33, ∆π̂

h(s, a
′) > 0 for the other actions a′. Thus, ∆π̂

h(s, a) = 0.

Lemma 35. Under the eventsMε, Lε, ∩Hh′=h+1Eh′ , and G0,ε,

∆̂π̂
h(s, a) ≤

ε

Wh(s)
=⇒ ∆h(s, a) ≤

3ε

Wh(s)

Proof. Assume that ∆̂π̂
h(s, a) ≤ ε

Wh(s)
. We have

∆h(s, a)− ∆̂π̂
h(s, a) ≤ ∆h(s, a)−∆π̂

h(s, a)︸ ︷︷ ︸
(I)

+∆π̂
h(s, a)− ∆̂π̂

h(s, a)︸ ︷︷ ︸
(II)

.

(I) is less than or equal to ε
Wh(s)

in the good event ∩Hh′=h+1Eh′ by Lemma 8. Thus, under ∩Hh′=h+1Eh′ ,

∆h(s, a) ≤
2ε

Wh(s)
+ (II). (13)

Let a∗s ∈ argmaxQπ̂
h(s, a). Then we have

(II) = ∆π̂
h(s, a)− ∆̂π̂

h(s, a) = max
a

Qπ̂
h(s, a)−max

a
Q̂π̂

h(s, a) + Q̂π̂
h(s, a)−Qπ̂

h(s, a)

≤ Qπ̂
h(s, a

∗
s)− Q̂π̂

h(s, a
∗
s)︸ ︷︷ ︸

(III)

+ Q̂π̂
h(s, a)−Qπ̂

h(s, a)︸ ︷︷ ︸
(IV)

.

(1) If (s, a) is accepted, then

(II) = ∆π̂
h(s, a)− ∆̂π̂

h(s, a) ≤ ∆π̂
h(s, a) ≤

ε

Wh(s)

by Theorem 3.2. Thus, ∆h(s, a) ≤ 3ε
Wh(s)

.

(2) If (s, a) is rejected in some phase k > k∗, then

(II) = ∆π̂
h(s, a)− ∆̂π̂

h(s, a) ≤ ∆π̂
h(s, a) ≤

ε

Wh(s)

since
G0,ε =⇒ G0,2ε =⇒ G1,2ε, G2,2ε

and G1,2ε, G2,2ε implies that all of the pairs remaining in the end of phase k∗ are ε
Wh(s)

-
good. Thus, ∆h(s, a) ≤ 3ε

Wh(s)
.

(3) Assume (s, a) is rejected in phase k. By G0 and Lemma 33,

(IV) <
1

8
(∆̄(|Zhi|A+1−k) ∨

ε

Wh(s)
) ≤ 1

8
(2∆π̂

h(s, a) ∨
ε

Wh(s)
).

(i) If (s, a∗s) is accepted, then it is accepted in phase k′ > k. Thus,

(III) ≤ 1

8
(∆̄(|Zhi|A+1−k′)∨

ε

Wh(s)
) ≤ 1

8
(∆̄(|Zhi|A+1−k)∨

ε

Wh(s)
) ≤ 1

8
(2∆π̂

h(s, a)∨
ε

Wh(s)
).
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(ii) If (s, a∗s) is rejected at phase k′, then

(III) <
1

8
(∆̄(|Zhi|A+1−k′)∨

ε

Wh(s)
) ≤ 1

8
(2∆π̂

h(s, a
∗
s)∨

ε

Wh(s)
) ≤ 1

8
(2∆π̂

h(s, a)∨
ε

Wh(s)
)

also by G0 and Lemma 33.

Thus,

∆π̂
h(s, a)−

ε

Wh(s)
≤ ∆π̂

h(s, a)−∆̂π̂
h(s, a) = (II) ≤ (III)+(IV) <

1

4
(2∆π̂

h(s, a)∨
ε

Wh(s)
)

If 2∆π̂
h(s, a) > ε

Wh(s)
, then ∆π̂

h(s, a) < 2ε
Wh(s)

which implies ∆h(s, a) ≤ 3ε
Wh(s)

by the
event ∩Hh′=h+1Eh′ and Lemma 8.

If 2∆π̂
h(s, a) ≤ ε

Wh(s)
, then ∆π̂

h(s, a) <
5ε

4Wh(s)
which implies ∆h(s, a) ≤ 9ε

4Wh(s)
by the

event ∩Hh′=h+1Eh′ and Lemma 8.

By Lemma 35, we have |ÔPTh(ε)| ≤ |OPTh(3ε)|. Now we prove Theorem 3.4.
Theorem F.1 (Theorem 3.4). If we run Algorithm 5 with

B ≥ max{2SHc(
B

2SH
), 4Hc(

B

4H
), 2SAε B

2SH
log2

1

ε B
2SH

}

and an accuracy level ε ≥ 2SH2ε B
2SH

, it uses at most budget B and satisfies the following guarantee:

P
(
V ∗
0 − V π̂

0 > ε
)
≤ exp

(
−Θ̃

(
εB

poly(S,A,H, logB)

))

+ exp

−Θ̃( B

H3 maxh∈[H]

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

)
+ exp

−Θ̃( ε2B

H5 maxh∈[H] |OPTh(ε)|

) ,

where OPTh(ε) = {(s, a) ∈ S ×A : ∆̄h(s, a)Wh(s) ≤ ε}.

Proof. For the budget, the first and the second part each consume at most B
4 . In the third part total

budget of running FB-L2E is at most B
4 by Theorem 3.1. We only need to consider the collecting

part. Let Kj = Kj(δj , SAHδj), Nj =
Kj

2j+2|ÔPTh(ε)\∪j−1
i=1Xi|

. Then, the budget used in collecting is

J∑
j=1

Kj

Nj
nj =

J∑
j=1

2i+2|ÔPTh(ε) \ ∪j−1
i=1Xi| ×

B

H|ÔPTh(ε)|
2−2i−4 ≤ B

4

Next, we prove the probability bound. LetM′
ε be the event where all of the FB-L2E in the third

part suceed up to ε as in Theorem 3.1. Let L′
ε be the event where all of the resampling process up to

group reachability level iε suceed as in Theorem 3.1. Since B
4H ≤ c( B

4H ),

P(M′c
ε ),P(L′c

ε ) ≤ exp

(
−Θ̃

(
εB

poly(S,A,H, logB)

))
(14)

by Theorem 3.1. In collecting part, assume the good event

Hh,ε = {∀h,∀s ∈ Zh,1:iε ,max
a′

Qπ̂
h(s, a

′)−Qπ̂
h(s, π̂(s)) ≤ εh(s) :=

ε

2HJ2−j(s)+1
},
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where iε = ⌈log2( 2SH2

ε )⌉ and j(s) := sup{j : (s, a′) ∈ Xj for some a′}. Let X̃j = {s : j(s) = j}.
Then,Hh,ε =⇒ Eh since

sup
π

∑
s∈Zh1:iε

wπ
h(s)∆

π̂
h(s, π̂(s)) ≤

ε

2HJ
sup
π

iε∑
j=1

∑
s∈X̃j

wπ
h(s)2

−j+1 ≤ iεε

2HJ
≤ ε

2H
.

LetHε := ∪Hh=1Hh,ε, Then the eventsMε,Lε,M′
ε,L′

ε,∩Hh=1Eh,Hε and G0,ε(Zhi) for all multiple
bandit instances Zhi with i ≤ iε implies

V ∗
0 − V π̂

0 ≤
H∑

h=1

sup
π

∑
s

wπ
h(s)∆

π̂
h(s, π̂(s))

≤ ε

2HJ

H∑
h=1

sup
π

∑
s∈Zh,1:iε

wπ
h(s)2

j(s)−1 +H
∑
h

sup
π

∑
s∈Zc

h,1:iε

wπ
h(s)

≤ ε

2HJ

H∑
h=1

sup
π

iε∑
j=1

∑
s∈X̃j

wπ
h(s)2

j−1 +H
∑
h

∑
s∈Zc

h,1:i∗

Wh(s)

≤ ε

2HJ

H∑
h=1

iε∑
j=1

2j−1 sup
π

∑
(s,a)∈X̃j

wπ
h(s, a) +H

∑
h

|S2−iε

≤ ε

2HJ

H∑
h=1

iε∑
j=1

2j−1 · 2−j+1 +
ε

2

≤ ε

2
+

ε

2
= ε

Thus,

P(V ∗
0 − V π̂

0 > ε) ≤ P(Mc
ε ∪ Lc

ε ∪M′c
ε ∪ L′c

ε ) +

H∑
h=1

iε∑
i=1

P(Mε,Lε,G0,ε(Zhi)
c)

+

H∑
h=1

P(Hc
h,ε,Mε,Lε,M′

ε,L′
ε,
⋃

h,i≤iε

G0,ε(Zhi)).

The first term is

exp

(
−Θ̃

(
εB

poly(S,A,H, logB)

))
by equation 14 and Theorem 3.1 and the second term is

exp

−Θ̃( B

H3 maxh∈[H]

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

)
by Lemma 32 and that iε is only a logarithmic factor.

It remains to bound the probability ofHc
h,ε assuming other events

Mε,Lε,M′
ε,L′

ε,∩Hh′=h+1Eh′ ,
⋃

h,i≤iε

G0,ε(Zhi).

Let a∗ ∈ argmaxa Q
π̂
h(s, a) and denote εh(s) :=

ε
HJ2−j(s)+1 .

εh(s) < max
a

Qπ̂
h(s, a)−Qπ̂(s, π̂h(s))

= Qπ̂
h(s, a

∗)− Q̂π̂
h(s, a

∗) + Q̂π̂
h(s, a

∗)− Q̂π̂
h(s, π̂h(s)) + Q̂π̂

h(s, π̂h(s))−Qπ̂
h(s, π̂h(s))

≤ Qπ̂
h(s, a

∗)− Q̂π̂
h(s, a

∗) + 0 + Q̂π̂
h(s, π̂h(s))−Qπ̂

h(s, π̂h(s))
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=⇒
(
εh(s)/2 ≤ Qπ̂

h(s, a
∗)− Q̂π̂

h(s, a
∗)
)
∨
(
εh(s)/2 ≤ Q̂π̂

h(s, π̂h(s))−Qπ̂
h(s, π̂h(s))

)
Then, by Hoeffding’s inequality, the probability term below can be obtained as

P(Hc
h,ε|Mε,Lε,M′

ε,L′
ε,∩Hh′=h+1Eh′ ,

⋃
h,i≤iε

G0,ε(Zhi)) ≤

P(∃(s, a) ∈ ÔPTh(ε), |max
a′

Qπ̂
h(s, a

′)− Q̂π̂
h(s, a)| ≥ εh(s)|Mε,Lε,M′

ε,L′
ε,∩Hh′=h+1Eh′ ,

⋃
Zhi

G0,ε(Zhi))

≤ exp

−Θ̃( 1

22j(s)
n0 ·

1

H2
· ε2

H2(2−2j(s))

)
= exp

−Θ̃( B

|ÔPTh(ε)|
· ε

2

H5

)
≤ exp

−Θ̃( B

|OPTh(3ε)|
· ε

2

H5

) .

This proves the theorem.
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Algorithm 5 Backward Reachability Estimation, Action elimination and Policy refinement (BREAP)

1: input: Budget B, error level ε
2: B′ ← ⌊ B

4SH ⌋, J ← ⌈0.6321 log2(1 +
log(2)B′

c(B′) )⌉
3: B′′ ← B

4HJ
4: for h = H,H − 1, . . . , 1 do
5: Zh ← ∅
6: for s ∈ S do {(X sh

j ,Πsh
j , Nsh

j )}Jj=1 ← FB-L2E({(s, 1)}, h, B′) (1 is an arbitrary action)
7: if X sh

h = {(s, 1)} for some j ∈ [J ] then
8: Ŵh(s)← 2−j+1, Zh ← Zh ∪ {s}
9: end if

10: end for
11: ÔPTh(ε)← ∅
12: for i = 1 to J do
13: Zhi ← {s ∈ Zh : Ŵh(s) = 2−i+1}, A1 ← Zhi ×A,
14: ∀(s, a) ∈ A1, N(s, a)← 0, T (s, a)← 0, T0(s, a)← 0, Q(s, a)← 0
15: for k = 1 to |Zhi|A− 1 do
16: nk ← nk(⌊B′′2−i−2⌋, |Zhi|, A) (as defined in equation 1)
17: for (s, a) ∈ Ak do
18: Tk(s, a)← ⌊ nk

Ns
i h
⌋

19: Rerun each policy in Πsh
i for Tk − Tk−1 times

20: for each time t = T (s, a) + 1 to Tk(s, a) do
21: if (s, a) is visited at step h then
22: Take action a and extend a trajectory using {π̂h′}Hh′=h+1

23: N(s, a)← N(s, a) + 1

24: Q(s, a)← Q(s, a) +
∑H

h′=h R
t
h′(sth′ , ath′)

25: end if
26: end for
27: Q̂π̂

h(s, a)← Q(s, a)/N(s, a) if N(s, a) > 0 else 0
28: T (s, a)← Tk(s, a)
29: end for
30: if ∃ state s with unique surviving pair (s, a) in Ak then
31: π̂h(s)← a, Ak+1 ← Ak \ {(s, a)}
32: else
33: ∀(s, a) ∈ Ak, ∆̂π̂

h(s, a)← maxa:(s,a)∈Ak
Q̂π̂

h(s, a)− Q̂π̂
h(s, a)

34: (s′, a′)← argmax(s,a)∈Ak
∆̂π̂

h(s, a) (Break ties arbitrarily)
35: Ak+1 ← Ak \ {(s′, a′)}
36: end if
37: end for
38: ∀(s, a) ∈ Zhi ×A, Q̂π̂

h(s, a)← Q(s, a)/N(s, a) if N(s, a) > 0 else 0

39: ∀(s, a) ∈ Zhi ×A, ∆̂π̂
h(s, a)← maxa′ Q̂π̂

h(s, a
′)− Q̂π̂

h(s, a)

40: ĝπ̂hi(ε)← |{(s, a) ∈ Zhi ×A : ∆̂π̂
h(s, a)Ŵh(s) ≤ ε}|

41: ÔPTh(ε)← ÔPTh(ε) ∪ {survived pairs in the end of phase |Zhi|A− ĝπ̂hi(ε) + 1}
42: π̂h(s)← a for (s, a) accepted up to phase |Zhi|A− ĝπ̂hi(ε) + 1
43: end for
44: For each s ∈ S \ Zh, set π̂h(s) as any action
45: {(Xj ,Πj , Nj)}Jj=1 ← FB-L2E(ÔPTh(ε), h,

B
4H )

46: ∀j ∈ [J ], nj ← B

H|ÔPTh(ε)|
2−2j−4

47: for j = 1 to J do
48: rerun each policy in Πj , ⌈ nj

Nj
⌉ times

49: end for
50: Compute the empirical Q̂π̂

h(s, a)

51: π̂(s)← argmaxa Q̂
π̂
h(s, a) for all active state s in ÔPTh(ε)

52: end for
53: return π̂
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