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A Additional Results1

Figure 1: Ablating the number of unlabeled trajectories. We investigate the effect of unlabeled
trajectories on the performance. CLUE’s performance generally outperforms OTR. Further, we can
see that CLUE approximates the vanilla IQL method (with D4RL rewards) more closely and can
even outperform IQL given such a lack of offline data (≤ 25%).

Varying the amount of unlabeled offline data. Here we vary the amount of unlabeled offline data2

available for sparse-reward settings. Figure 1 shows that adding more unlabeled data improves the3

performance of both CLUE and OTR. However, across a range of offline imitation tasks, CLUE4

shows better performance compared to OTR. We also plot the performance curve of naive IQL with5

(reward-labeled) offline data in Figure 1. We can see that with extremely limited offline data (≤ 25%),6

CLUE approaches IQL’s performance more closely on the halfcheetah-medium task, and can even7

outperform IQL on the remaining three tasks.8

Table 1: Using 10% of D4RL data, normalized scores (mean and standard deviation) of CLUE and
baselines on antmaze tasks using one (K=1) and ten (K=10) expert demonstrations. The expert
trajectories are picked from the chosen 10% dataset. The highest score in each setting is highlighted.

Dataset IQL OTR (K=1) CLUE (K=1) OTR (K=10) CLUE (K=10)

umaze 73.7 ± 7.6 71.4 ± 8.5 75.4 ± 6.1 75.1 ± 8.3 82.5 ± 5.1
umaze-diverse 21.6 ± 9.8 33.0 ± 8.5 45.4 ± 10.4 30.8 ± 13.5* 58.6 ± 9.5*

medium-play 23.0 ± 8.9 38.7 ± 11.1 30.5 ± 13.9 37.3 ± 10.0 36.6 ± 12.7
medium-diverse 54.9 ± 7.8 60.9 ± 8.7 64.4 ± 8.9 59.2 ± 9.2 57.8 ± 8.6
large-play 5.8 ± 3.8 15.0 ± 8.4 12.0 ± 6.5 13.9 ± 5.8 29.4 ± 8.4
large-diverse 7.0 ± 3.6 3.3 ± 3.6 0.9 ± 1.5 9.0 ± 5.9 9.7 ± 4.5

antmaze-v2 total 186.0 222.3 228.6 225.3 274.6
* Only two successful trajectories are in the chosen sub-dataset and the results belong to K=2.

Varying the number of expert trajectories. Using 10% of D4RL data, we vary the number of9

expert trajectories for sparse-reward offline RL settings in Table 1. We compare our method with10

baseline methods (IQL and OTR) when only one expert trajectory is selected. For comparison, we11

train IQL over the naive sparse-reward D4RL data and train OTR over the relabeled D4RL dataset12

(using optimal transport to compute intrinsic rewards and employing IQL to learn offline RL policy).13
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We can find that in 7 out of 12 AntMaze tasks across, our CLUE outperforms the baseline OTR.14

Meanwhile, compared to naive IQL (with sparse rewards), our CLUE implementation generally15

outperforms better than IQL. This means that with only a single expert trajectory, we can completely16

replace the sparse rewards with our intrinsic reward in offline RL tasks, which can even achieve17

higher performance in such a data-scarce scenario (10% of D4RL data).18

Table 2: Normalized scores (mean) when varying the temperature factor c with a single expert
trajectory (K=1).

c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10

umaze 89.4 89.96 91.84 90.88 91.96 92.12 91.68 90.72 90.92 91.2
umaze-diverse 43.08 46.76 43.16 43.76 42.36 56.72 52.6 59.04 66.48 68
medium-play 60.4 63.2 65.2 68.92 68.04 75.32 71.76 74.12 72.2 73.64
medium-diverse 57.8 63.28 63.24 62.04 66.04 70.12 73 74.56 69.4 72.92
large-play 34.16 44.84 46.88 50.68 52.72 53.08 53.64 55.2 53.52 55.8
large-diverse 27.04 33.96 43.16 46.8 44.88 47.44 47.44 49.92 47.28 47.11

Table 3: Normalized scores (mean) when varying the temperature factor c with 10 expert trajectories
(K=10).

c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10

umaze 87.88 90 91.08 90.96 91.16 91 89.92 89.44 90.72 91.92
umaze-diverse 45.64 40.32 41.04 38.8 39.52 51.64 51.2 57.11 69.92 71.68
medium-play 58.72 64.2 68.24 71.44 69.92 75.56 74.12 76.2 75.8 76.48
medium-diverse 60.36 57.04 62.12 64.24 63.56 61.44 62.36 64.64 65.47 69.2
large-play 48.24 45.8 51.56 48.2 48.4 52.36 49.91 50.58 52.28 51.87
large-diverse 36.32 46.08 48.64 50.84 51.16 52.44 53.6 50.92 51.4 53.68

Varying the value of the temperature factor in intrinsic rewards. In Tables 2 and 3, we present19

the results on AntMaze tasks when we vary the value of the temperature factor c in intrinsic rewards.20

We can find that CLUE can generally achieve a robust performance across a range of temperature21

factors. In Figure 2, we further analyze our intrinsic reward distribution following OTR. We can find22

that CLUE’s reward prediction shows a stronger correlation with the ground-truth rewards from the23

dataset, which can be served as a good reward proxy for downstream offline RL algorithms.24

Figure 2: Qualitative comparison of the learned intrinsic rewards with different temperature factors.

B Experimental Details25

B.1 Hyperparameters for CVAE Implementation26

We list the hyperparameters used for training CVAE models in MuJoCO locomotion, AntMaze, and27

Adroit tasks. The other CVAE hyperparameters are kept the same as those used in Wu et al. [1].28
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Table 4: Hyperparameters for training CVAE.

MuJoCo Locomotion Antmaze Adroit

full-data partial-data full-data partial-data full-data

Hidden dim 128 128 512 512 128
Batch size 128 128 256 256 128
Numbers of iterations 104 104 105 105 105

Learning rate 10−4 10−4 10−3 10−3 10−4

Weight for Lcalibr 0.1 0.1 0.8 0.8 0.1
Spare-reward setting:
Number of expert trajectories 3 3 5 5 3

B.2 Hyperparameters for our IQL Implementation29

The IQL hyperparameters employed in this paper are consistent with those utilized by Kostrikov30

et al. [2] in their offline implementation. It is important to note that IQL incorporates a procedure31

for rescaling rewards within the dataset, which allows for the use of the same hyperparameters32

across datasets that differ in quality. As CLUE generates rewards offline, we similarly apply reward33

scaling following the IQL methodology. For the locomotion, adroit, and ant tasks, we rescale rewards34

with 1000
max_return−min_return . To regularize the policy network for the chosen sub-dataset, we similarly35

introduce Dropout with a rate of 0.2.36

MuJoCo locomotion and Adroit tasks. We set the learning rate 10−3 for hopper-medium-expert37

dataset (K=10) and 3× 10−4 for the rest of tasks. We run IQL for 1M gradient steps and average38

mean returns over 10 random seeds and 10 evaluation trajectories for each seed.39

Antmaze tasks. We set the learning rate 5× 10−4 for umaze-diverse dataset (K=1 and K=10) and40

3× 10−4 for the rest of tasks. For medium-play dataset (K=1 and K=10), medium-diverse dataset41

(K=1), and large-play dataset (K=10), we set the dropout rate 0.2 to gain a better performance. We42

run IQL for 1M gradient steps for the full dataset and 0.3M for the partial dataset, respectively.43

B.3 Hyperparameters in K-means44

We use CLUE to learn diversity skills on Ant-v2, HalfCheetah-v2, and Walker2d-v2. The K-means,45

an unsupervised learning method, is employed to cluster the offline transitions {(s, a, s′)} from each46

dataset into 100 classes and take each class as a separate "expert". Specifically, we use KMEANS47

method exacted from sklearn.cluster API. The hyperparameters are set as follows: n_clusters =48

100, random_state = 1, n_init = 1,max_iter = 300.49

B.4 Offline IL Baselines50

SQIL proposes to learn a soft Q-function where the reward labels for the expert transitions are one51

and the reward labels for the non-expert transitions are zero. The offline implementation of SQIL is52

adapted from the online SAC agent provided by Garg et al. [3], and we combine it with TD3+BC.53

IQ-Learn advocates for directly learning a Q-function by contrasting the expert data with the54

data collected in the replay buffer, thus avoiding the intermediate step of reward learning. In our55

experiments, we used the official PyTorch implementation1 with the recommended configuration by56

Garg et al. [3].57

ORIL assumes the offline dataset is a mixture of both optimal and suboptimal data and learns a58

discriminator to distinguish between them. Then, the output of the discriminator is used as the59

reward label to optimize the offline policy toward expert behaviors. We borrowed the TD3+BC60

implementation reproduced by Ma et al. [4] in our experiments.61

1https://github.com/Div99/IQ-Learn
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ValueDICE is the earliest DICE-based IL algorithm that minimizes the divergence of the state-action62

distribution between the learning policy and the expert data. The code used in the experiments is the63

official TensorFlow implementation2 released by Kostrikov et al. [5].64

DemoDICE proposes to optimize the policy via a state-action distribution matching objective with65

an extra offline regularization term. We report the performance of DemoDICE using the TensorFlow66

implementation3 by Kim et al. [6], while the hyperparameters are set as same as the ones in the paper.67

SMODICE aims to solve the problem of learning from observation and thus proposes to minimize68

the divergence of state distribution. Besides, Ma et al. [4] extends the choice of divergence so that the69

agent is more generalized. The code and configuration used in our experiments are from the official70

repository4.71

C Learned Diverse Skills72

To encourage diverse skills from reward-free offline data, we cluster the offline transitions into 10073

classes using K-means and take each class as a separate "expert". Then, we use these expert data from74

different classes to label the original reward-free data and train IQL policy to learn the corresponding75

skills. In this section, we illustrate all the learned skills by CLUE.76

2https://github.com/google-research/google-research/tree/master/value_dice
3https://github.com/KAIST-AILab/imitation-dice
4https://github.com/JasonMa2016/SMODICE
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C.1 Learned Diverse Skills from Ant-Medium Dataset77
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Figure 3: Visualization of unsupervised skills learned from the ant-medium dataset.
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C.2 Learned Diverse Skills from Ant-Random Dataset78
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Figure 4: Visualization of unsupervised skills learned from the ant-random dataset.
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C.3 Learned Diverse Skills from Halfcheetah-Medium Dataset79

11.75 m

Figure 5: Visualization of unsupervised skills learned from the halfcheetah-medium dataset.
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C.4 Learned Diverse Skills from Halfcheetah-Random Dataset80

0.7 cm

Figure 6: Visualization of unsupervised skills learned from the halfcheetah-random dataset.
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C.5 Learned Diverse Skills from Walker2d-Medium Dataset81

0.89 m

Figure 7: Visualization of unsupervised skills learned from the walker2d-medium dataset.
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C.6 Learned Diverse Skills from Walker2d-Random Dataset82

56.25 cm

Figure 8: Visualization of unsupervised skills learned from the walker2d-random dataset.
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