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A Derivation of THEOREM 4.1
The proof is based on [2] and [3].

The sample 𝑥0 predicted by the network during the sampling
phase and the sample𝑥0 from the training phase is not identical; that
is, |𝑥0−𝑥0 |1 is non-zero. This discrepancy ismore apparent when the
number of sampling iterations is reduced. However, 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) =
𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑥0) holds true when 𝑥0 = 𝑥0, this requires the network to
have no prediction error for 𝑥0. In order to minimize errors during
the sampling process, especially under conditions of fewer network
predictions, we have conducted some derivations.

To start, we have the following definition: according to analysis-
dpm [1], we model 𝑥0 as 𝑥0 = 𝑥0 + 𝑒𝑡 ∗ 𝜖0, 𝜖0 ∼ N(0, 𝐼 ). For
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ):

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) (1)

Where 𝜇𝜃 (𝑥𝑡 , 𝑡) =
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much error is introduced by the inconsistency between 𝑥0 and 𝑥0.
We substitute 𝑥0 = 𝑥0+𝑒𝑡 ∗𝜖0 into Eq. 1. Since the mean of 𝜖0 is zero,
the mean of 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) remains unchanged. We only consider the
variance of 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ):
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During inference, we utilize a fixed variance, resulting in Σ𝜃 (𝑥𝑡 , 𝑡) =
Σ(𝑥𝑡 , 𝑡). Table 1 shows the discrepancy between 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) and
𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑥0).

Table 1: The distribution 𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑥0) during training and
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) during DDPM sampling.

Mean Variance

𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑥0) 𝜇𝜃 (𝑥𝑡 , 𝑡) (Σ(𝑥𝑡 , 𝑡))𝐼
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) 𝜇𝜃 (𝑥𝑡 , 𝑡) (Σ(𝑥𝑡 , 𝑡) + (

√
𝛼𝑡−1𝛽𝑡
1−𝛼𝑡 𝑒𝑡 )2)𝐼𝐼𝐼

From Table 1, it can be seen that the variance of the sampling
distribution 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) is always greater than the variance of the
training distribution 𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑥0). [3] pointed out that this error
cannot be addressed by adjusting the variance of 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ), but
can be mitigated by scaling the predicted noise 𝜖𝑡 in the network,
this indirectly reduces the variance of 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ). However, since
our MDT-A2G network predicts the original signal 𝑥0, assume that
𝑥𝑡0 represents the original gesture predicted by the diffusion model

Table 2: Quantitative comparison with different accelerating
configurations.

Method DDIM 50 steps Acceleration ratio 𝑠𝑐𝑎𝑙𝑒 Average Time(s)↓ FGD↓ Diversity→
MDT-A2G-B ✓ × × 0.516 ± 0.099 161.81 137.33
MDT-A2G-B × 1:20 1 1.984 ± 0.214 59.93 334.88
MDT-A2G-B × 1:20 1.0005 1.984 ± 0.215 57.61 340.11
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Ensuring that 𝑠𝑐𝑎𝑙𝑒 is greater than 1 reduces the variance of𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ).
Based on experience, we set 𝑠𝑐𝑎𝑙𝑒 to 1.0005. In the acceleration
phase, we scale the variance of the previous diffusion model pre-
diction 𝑥𝑡0 and use 𝑥𝑡0 as the next step’s prediction 𝑥𝑡−1

0 .

B Additional Details of Ablation Studies
Figure 1 showcases the baseline mentioned in Table 6 of the sec-
tion "Effectiveness of Different Feature Processing" within the 5.4
Ablation Studies. In this baseline, we have substituted the feature
processing operation from DSG+ (baseline) into MAT-A2G, provid-
ing a foundation for comparison with other methods.

Figure 2 presents the AdaLN-Zero, as mentioned in Table 6 from
the "Effectiveness of Different Feature Processing" section within
the 5.4 Ablation Studies.

C Compared to DDIM
As shown in Table 2, we observed that directly using DDIM [5]
to accelerate the inference process of MDT-A2G does not yield
satisfactory results. We still need to compute the reverse process
for each step during the acceleration phase, e.g., with an accelera-
tion ratio of 1:20. In the 𝑖-th step, we obtain 𝑥𝑖0 through denoising
network computation, and then use Eq. 8 to calculate the predicted
value for the next 20 steps.

D More details about feature processing
Emotion: The BEAT dataset’s eight emotions are encoded as one-
hot vectors and transformed by a linear layer into the emotion
feature. We transform these labels into a continuous feature space
through a linear layer.

We don’t need to ensure consistent lengths for audio and text,
only the same number of frames. Assuming a batch size of 150 and
300 frames, we have 𝑥𝑎 ∈ R150×300×1131 and 𝑥𝑡𝑥𝑡 ∈ R150×300×301.
This allows us to concatenate 𝑥𝑎 and 𝑥𝑡𝑥𝑡 along the last dimension.
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Figure 1: The baseline mentioned in Table 6 of the section "Effectiveness of Different Feature Processing" within the 5.4 Ablation
Studies. RPE is Relative Position Encoding [6].
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Figure 2: We have integrated the AdaLN-Zero [4] module into MDT-A2G, replacing the SEAFusion.

We generate multiple short sequences and then concatenate
them, using interpolation and other post-processing techniques to
ensure smooth transitions between segments.

E Model structure

Table 3: Network configurations of MDT-A2G models. 𝑁2
is the number of decoders. The parameters and FLOSs are
measured during inference.

Size Layers 𝑁2 Dim. Head Num. Param. (M) FLOSs (G)

Network configurations of MDT-A2G models.
TS 3 1 384 6 3.43 0.9
S 5 2 384 6 5.01 1.4
B 8 2 384 6 8.17 2.3
L 12 4 512 6 15.4 4.5

Network configurations of DSG+ baselines.
DSG+ 8 - 384 6 7.68 2.2
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