Supplementary Material: Exploring Masked Diffusion
Transformers for Co-Speech Gesture Generation

A Derivation of THEOREM 4.1

The proof is based on [2] and [3].

The sample Xy predicted by the network during the sampling
phase and the sample xj from the training phase is not identical; that
is, |Xo—xp|1 is non-zero. This discrepancy is more apparent when the
number of sampling iterations is reduced. However, pg(x;—1|x;) =
p(x—1|xz, x0) holds true when Xy = xo, this requires the network to
have no prediction error for x¢. In order to minimize errors during
the sampling process, especially under conditions of fewer network
predictions, we have conducted some derivations.

To start, we have the following definition: according to analysis-
dpm [1], we model xp as Xo = xo + e; * €9, €¢ ~ N(0,I). For
po(xr—1lxe):
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much error is 1ntr0duced by the inconsistency between %y and xy.
We substitute Xg = xp+e; * €9 into Eq. 1. Since the mean of ¢ is zero,
the mean of pg(x;—1|x;) remains unchanged. We only consider the
variance of pg(x;—1|x;):

xt. We consider how
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During inference, we utilize a fixed variance, resulting in g (x;, t) =
3(xt, t). Table 1 shows the discrepancy between pg(x;—1|x;) and
p(xr—1]x, x0).

Table 1: The distribution p(x;_1|x;,x9) during training and
po(x¢—1|x;) during DDPM sampling.

Mean Variance
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From Table 1, it can be seen that the variance of the sampling
distribution py(x;—1|x;) is always greater than the variance of the
training distribution p(x;—1|x;, x0). [3] pointed out that this error
cannot be addressed by adjusting the variance of pg(x;-1|x;), but
can be mitigated by scaling the predicted noise ¢; in the network,
this indirectly reduces the variance of pg(x;—1|x;). However, since
our MDT-A2G network predicts the original signal X, assume that
fcé represents the original gesture predicted by the diffusion model

Table 2: Quantitative comparison with different accelerating
configurations.

Method DDIM 50 steps ~ Acceleration ratio  scale  Average Time(s)] FGD| Diversity—

MDT-A2G-B v X X 0.516 + 0.099 161.81 137.33
MDT-A2G-B X 1:20 1 1.984 +0.214 59.93 334.88
MDT-A2G-B X 1:20 1.0005 1.984 + 0.215 57.61 340.11

at step ¢, taking into account that ¢; = (%; — \/Etfcé)/\/l — oy, some
transformations are needed:
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Ensuring that scale is greater than 1 reduces the variance of pg (x;—1|x;).
Based on experience, we set scale to 1.0005. In the acceleration
phase, We scale the Variance of the previous diffusion model pre-

diction X x0 and use xo as the next step’s prediction xé 1

B Additional Details of Ablation Studies

Figure 1 showcases the baseline mentioned in Table 6 of the sec-
tion "Effectiveness of Different Feature Processing" within the 5.4
Ablation Studies. In this baseline, we have substituted the feature
processing operation from DSG+ (baseline) into MAT-A2G, provid-
ing a foundation for comparison with other methods.

Figure 2 presents the AdaLN-Zero, as mentioned in Table 6 from
the "Effectiveness of Different Feature Processing" section within
the 5.4 Ablation Studies.

C Compared to DDIM

As shown in Table 2, we observed that directly using DDIM [5]
to accelerate the inference process of MDT-A2G does not yield
satisfactory results. We still need to compute the reverse process
for each step during the acceleration phase, e.g., with an accelera-
tion ratio of 1:20. In the i-th step, we obtain fcé through denoising
network computation, and then use Eq. 8 to calculate the predicted

value for the next 20 steps.

D More details about feature processing

Emotion: The BEAT dataset’s eight emotions are encoded as one-
hot vectors and transformed by a linear layer into the emotion
feature. We transform these labels into a continuous feature space
through a linear layer.

We don’t need to ensure consistent lengths for audio and text,
only the same number of frames. Assuming a batch size of 150 and
300 frames, we have %, € R120%300x1131 54 %, e R190%300x301
This allows us to concatenate x, and X;y; along the last dimension.
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Figure 1: The baseline mentioned in Table 6 of the section "Effectiveness of Different Feature Processing” within the 5.4 Ablation
Studies. RPE is Relative Position Encoding [6].
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Figure 2: We have integrated the AdaLN-Zero [4] module into MDT-A2G, replacing the SEAFusion.
We generate multiple short sequences and then concatenate Table 3: Network configurations of MDT-A2G models. N,
them, using interpolation and other post-processing techniques to is the number of decoders. The parameters and FLOSs are

ensure smooth transitions between segments.

E Model structure

measured during inference.

Size Layers N; Dim. Head Num. Param.(M) FLOSs (G)

Network configurations of MDT-A2G models.

TS 3 1 384 6 3.43 0.9

S 5 2 384 6 5.01 14

B 8 2 384 6 8.17 2.3

L 12 4 512 6 154 4.5

Network configurations of DSG+ baselines.

DSG+ 8 - 384 6 7.68 2.2
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