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Abstract
Conventional state representations in reinforce-
ment learning often omit critical task-related de-
tails, presenting a significant challenge for value
networks in establishing accurate mappings from
states to task rewards. Traditional methods typi-
cally depend on extensive sample learning to en-
rich state representations with task-specific in-
formation, which leads to low sample efficiency
and high time costs. Recently, surging knowl-
edgeable large language models (LLM) have pro-
vided promising substitutes for prior injection
with minimal human intervention. Motivated by
this, we propose LLM-Empowered State Repre-
sentation (LESR), a novel approach that utilizes
LLM to autonomously generate task-related state
representation codes which help to enhance the
continuity of network mappings and facilitate
efficient training. Experimental results demon-
strate LESR exhibits high sample efficiency and
outperforms state-of-the-art baselines by an av-
erage of 29% in accumulated reward in Mujoco
tasks and 30% in success rates in Gym-Robotics
tasks. Codes of LESR are accessible at https:
//github.com/thu-rllab/LESR.

1. Introduction
Traditional reinforcement learning (RL) algorithms (Tesauro
et al., 1995; Watkins & Dayan, 1992; Rummery & Niran-
jan, 1994) generally require a large number of samples to
converge (Maei et al., 2009; Ohnishi et al., 2019). Com-
pounding this challenge, in most cases, the intricate nature
of RL tasks significantly hampers sample efficiency. (Dulac-
Arnold et al., 2019). For handling complex tasks and en-
hancing generalization, neural networks are utilized to ap-
proximate value functions (Mnih et al., 2015; Schulman
et al., 2015). However, value networks often lack smooth-
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ness even when they are trained to converge, leading to
instability and low sample efficiency throughout the training
process (Asadi et al., 2018). Considering that in deep RL,
state vectors serve as the primary input to value networks,
sub-optimal state representations can result in limited gener-
alization capabilities and non-smoothness of value network
mappings (Schuck et al., 2018; Merckling et al., 2022).

In most RL environments (Todorov et al., 2012; Brockman
et al., 2016; de Lazcano et al., 2023), source state representa-
tions typically embody environmental information but lack
specific task-related details. However, the learning of value
networks depends on accurately capturing task dynamics
through rewards (Yang et al., 2020; Yoo et al., 2022). The
absence of task-related representations may impede the es-
tablishment of network mappings from states to rewards,
affecting network continuity. Previous researches leverage
diverse transitions, intensifying the issue of time-consuming
data collection and training (Merckling et al., 2020; Sod-
hani et al., 2021; Merckling et al., 2022). Consequently, a
question arises regarding the existence of a more efficient
method for identifying task-related state representations.

Indeed, incorporating task-specific information into the state
representation can be achieved through introducing expert
knowledge (Niv, 2019; Ota et al., 2020). Recently, signif-
icant strides have been accomplished in the field of Large
Language Models (LLM) (Touvron et al., 2023; OpenAI,
2023). The exceptional performance of LLM in various
domains (Shen et al., 2023; Miao et al., 2023; Liang et al.,
2023; Madaan et al., 2023; Stremmel et al., 2023), par-
ticularly in sequential decision-making tasks, showcases
their extensive knowledge and sufficient reasoning abili-
ties (Wang et al., 2023a;b; Feng et al., 2023; Wu et al., 2023;
Du et al., 2023; Shukla et al., 2023; Sun et al., 2023; Zhang
& Lu, 2023). This motivates the idea that the prior knowl-
edge embedded in LLM can be exploited to enhance the
generation of task-related state representations.

To preliminarily validate LLM’s capacity in enhancing state
representations, an illustrative toy example is provided. In
Figure 1, results demonstrated that the state representation
generated by LLM can help to enhance the continuity of
value networks and expedite the convergence of policy learn-
ing. To substantiate this, we employ the Lipschitz con-
stant (Jones et al., 1993) for smoothness assessment. The
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(a) Training Curves (b) Source, Lip(Q) = 37.47 (c) LLM-generated, Lip(Q) = 3.15

Figure 1. Experiments conducted in the PointMaze in Gym-Robotics (de Lazcano et al., 2023). The agent aims to navigate from
the bottom-left (depicted by ‘⃝’) to the top-right target (depicted by ‘△’). (a) The training curves of policies in two different state
representations: (1) Source: which only involves the coordinates of the agent and the target; (2) LLM-Generated: which adds another
dimension indicating the distance from the agent to the target. (b) (c): Visualizations of final policies and learned state values. Arrows show
actions by final policies. Heatmaps display learned state values after just 500 training steps, and the smoother result of LLM-generated
shows higher sample efficiency. The Lipschitz constant Lip(Q) is defined in Definition 3.1. Further details are provided in Appendix D.3.

LLM-generated state representations enhance the Lipschitz
continuity of value networks, accounting for the improve-
ment of sample efficiency and performance.

In this paper, we propose a novel method named LLM-
Empowered State Representation (LESR). We utilize
LLM’s coding proficiency and interpretive capacity for phys-
ical mechanisms to generate task-related state representa-
tion function codes. LLM is then employed to formulate an
intrinsic reward function based on these generated state rep-
resentations. A feedback mechanism is devised to iteratively
refine both the state representation and intrinsic reward func-
tions. In the proposed algorithm, LLM consultation takes
place only at the beginning of each iteration. Throughout
both training and testing stages, LLM is entirely omitted,
ensuring significant time savings and flexibility.

In summary, our main contributions are:

• We propose a novel method employing LLM to gener-
ate task-related state representations accompanied by
intrinsic reward functions for RL. These functions are
demonstrated to exhibit robustness when transferred to
various underlying RL algorithms.

• We have theoretically demonstrated that enhancing Lip-
schitz continuity improves the convergence of the value
networks and empirically validated more task-related
state representations can enhance Lipschitz continuity.

• LESR is a general framework that accommodates both
continuous and discontinuous reward scenarios. Ex-
perimental results demonstrate that LESR significantly
surpass state-of-the-art baselines by an average im-
provement of 29% in Mujoco tasks and 30% in Gym-
Robotics tasks. We have also experimentally validated
LESR’s adaptability to novel tasks.

2. Related Work
Incorporating LLM within RL Architecture Since the
advent of LLM, researchers have endeavored to harness the
extensive common-sense knowledge and efficient reasoning
abilities inherent in LLMs within the context of RL envi-
ronments. Challenges have arisen due to the misalignment
between the high-level language outputs of LLMs and the
low-level executable actions within the environment. To ad-
dress this, Qiu et al. (2023); Agashe et al. (2023); Yuan et al.
(2023); Wang et al. (2023a;b); Feng et al. (2023); Wu et al.
(2023) have sought to employ environments where observa-
tion and action spaces can be readily translated into natural
language (Carta et al., 2023; Puig et al., 2018). Alternative
approaches employ language models as the policy network
with fine-tuning (Zhang & Lu, 2023; Li et al., 2022; Shi
et al., 2023; Yan et al., 2023; Carta et al., 2023). Meanwhile,
other endeavors focus on leveraging LLMs as high-level
planners, generating sub-goals for RL agents (Sun et al.,
2023; Shukla et al., 2023; Zhang et al., 2023). Neverthe-
less, these works encounter a common challenge: the tight
coupling of LLMs with RL agents, leading to frequent com-
munication between the two even during the testing stage, a
process that proves time-consuming and inefficient.

State Representation Derived from LLM Some re-
searchers use LLM for state representations that contain
more information in partially observable scenarios. Da et al.
(2023) employs LLMs to provide extra details about road
conditions in traffic control areas. Similarly, Shek et al.
(2023) focuses on robot locomotion in unstructured environ-
ments, using LLM as translators to extract environmental
properties and generate contextual embeddings for train-
ing. Chen et al. (2023), tracks key objects and attributes in
open-world household environments via LLM, expanding
and updating object attributes based on historical trajectory
information. These methods mainly addressed the issue of
missing state information in partially observable scenarios.
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Task Description

LLM Prompt Template

The swimmers consist of three or more 
segments (’links’) and one less 
articulation joints (’rotors’) - one rotor…

State Details

Details of each dimension in the
state `s` are as follows:

`s[0]`: angle of the front tip ……
`s[1]`: angle of the first rotor ……

Role Instruction

You should increase the source state to 
better for rl……
Besides, we want you to design an 
intrinsic reward function……

def revise_state(source_s):

cos_angles = np.cos(s[:3])   
sin_angles = np.sin(s[:3])
kinetic_energy = 0.5 * (s[3]**2 + s[4]**2) + 
0.5 * np.sum(s[5:]**2)
…
return state_representation                                           

State Representation and 
Intrinsic Reward Candidates

RL Training

def intrinsic_reward(state_representation):

reward_velocity = state_representation[3] 
penalty_torque = -np.log(1+state_
representation[-1])
…
return   intrinsic_r

Feedback

Iteration Results

(a) Low Performance Analysis: 
Candidate 2 have the lowest 
final policy…

(b) Lipschitz constant Analysis:                   
The velocity along the x-axis 
(s[3])  consistently…

Feedback

𝒔

𝒔, 𝒔𝒓

======= Candidate 1 =======

Final Policy Performance: 51.62

Lipschitz constant between the 
state and the reward are:

Lip ℛ;𝐷1 = 37.47
…

Lip ℛ;𝐷8 = 21.58
𝒓𝒊

For this problem, we have some 
history experience for you, here 
are some state revision codes we 
have tried in the former iterations:
Candidate 1:

Candidate 2:
……

revise_state() 
intrinsic_reward()
final policy performance:51.62
Lipschitz constant: …

CoT Suggestions

Env

Agent

𝒂 𝒓

𝓕

𝓖

𝒔

(𝒔, 𝒔𝒓)

(𝒔, 𝒔𝒓, 𝒓𝒊)

Figure 2. LESR Framework: (1) LLM is prompted to generate codes for state representation and intrinsic reward functions. Refer to
Appendix C for details on all prompt templates. (2) K state representations and intrinsic rewards {Fk}Kk=1, {Gk}Kk=1 are sampled from
LLM. (3) During RL training, function F and G are utilized to generate sr = F(s) for state representations, and ri = G(s, sr) for
intrinsic rewards. (4) Finally, Lipschitz constants and episode returns of each candidate serve as feedback metrics for LLM.

In contrast, our method emphasizes exploring correlations
among internal state features, recognizing meaningful cor-
relations reflecting underlying physical relationships and
generating more task-related representations.

Reward Design via LLM For the purpose of effectively
bridging the gap between high-level language instructions
and low-level robot actions, some researchers employ re-
wards as the intermediate interface generated by LLM.
Works in this domain can be categorized into the follow-
ing three types: (1) Sparse Reward: Kwon et al. (2023);
Yu et al. (2023); Sontakke et al. (2023), aiming to design
sparse rewards at the trajectory level. (2) Dense Reward:
Song et al. (2023); Xie et al. (2023); Ma et al. (2023); Ro-
camonde et al. (2023), aiming to design dense rewards for
every interactive step of the agent. (3) Intrinsic Reward:
Klissarov et al. (2023); Triantafyllidis et al. (2023), aiming
to design intrinsic rewards for reducing ineffective explo-
ration and improving sample efficiency. In this paper, we
also utilize LLM to generate intrinsic reward function codes.
The primary difference between our methodology and prior
research lies in that our reward design serves as an auxiliary
mechanism for encouraging the agent to better comprehend
the state representations generated by LLM. This aids the
policy and critic networks in establishing correlations be-
tween the state representations and intrinsic rewards.

3. Method
3.1. Problem Statement

We consider a Markov decision process (Puterman, 1990)
defined by a tuple (S,A,R,P, p0, γ), where S denotes

the source state space and A denotes the action space.
Given a specific task, R is the source extrinsic reward
function of the environment. P(s′|s, a) denotes the dy-
namic transition function, p0 is the initial state distribution,
and γ is the discount factor. The primary objective is to
learn a RL policy π(a|s) that maximizes the cumulative
rewards expectation, which is defined as value function
Qπ(st, at) = Eπ

[∑∞
t=0 γ

trt

∣∣∣st, at].

In order to assess the impact of LESR on network continuity,
we introduce the Lipschitz constant (Jones et al., 1993):

Definition 3.1. Denote the data space as X ⊂ Rd and the
label space as Y ⊂ R. Consider a dataset X0 ⊂ X , and the
label Y0 = {yi|yi = u(xi),where xi ∈ X0} ⊂ Y . Here,
xi represents a sequence of i.i.d. random variables on X
sampled from the probability distribution ρ, and u : X0 ⊂
X → Y is the Lipschitz constant of a mapping given by

Lip(u;X0) = sup
x1,x2∈X0

∥u(x1)− u(x2)∥2
∥x1 − x2∥2

. (1)

When X0 is all of X , we write Lip(u;X ) = Lip(u). A
lower Lipschitz constant indicates a smoother mapping u.

3.2. LLM-Empowered State Representation

In many RL settings (Todorov et al., 2012; Brockman et al.,
2016; de Lazcano et al., 2023), source state representations
usually contain general environmental information, while
often lacking specific details related to current tasks which
is critical to the training of the value networks (Yang et al.,
2020; Yoo et al., 2022). The absence of task-related rep-
resentations may hinder network mappings from states to
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rewards, impacting the continuity of networks. Recognizing
this limitation, the identification and incorporation of addi-
tional task-related state representations emerge as a pivotal
strategy. This strategic augmentation can expedite the estab-
lishment of network mappings, subsequently boosting the
smoothness of networks and augmenting training efficiency.

Due to the extensive knowledge and priors embedded in
LLM, utilizing it for generating task-related state represen-
tations can be promising. In this context, we present a
direct and efficient method named LLM-Empowered State
Representation (LESR). The whole framework is depicted
in Figure 2. Our methodology hinges on leveraging LLM
to facilitate the generation of more task-specific state repre-
sentations. Herein, we denote LLM as M and a descriptor
translating symbolic information into natural language as
d. Consequently, the input to LLM M is represented as
d(S), which constitutes four parts: (1) Task Description:
information about the RL environment and the specific task.
(2) State Details: information pertaining to each dimension
of the source state. (3) Role Instruction: assignments that
require LLM to generate task-related state representation
and intrinsic reward codes. (4) Feedback: historical infor-
mation from previous iterations. For a full comprehensive
descriptions of our prompts, refer to Appendix C.

Our primary objective is to harness LLM M to formulate
a python function F : S → Sr, where Sr denotes the
LLM-empowered state representation space. F is sampled
from M

(
d(S)

)
and d(S) explicitly embeds the task in-

formation into LLM. The state representation function F
utilizes source state dimensions for calculations, generating
task-specific state dimensions. At each timestep t, when
the agent get the current state st from the environment,
the corresponding state representation srt = F(st) will be
concatenated to the source state as the input for the policy
π(at|st, srt ) and value Q(st, s

r
t , at).

Once the state representation function F is obtained, LLM
M is subsequently required to provide an intrinsic reward
function G : Sc → R in python code format based on
sct = (st, s

r
t ) ∈ Sc, where Sc = S × Sr is the joint state

space. More precisely, we stipulate in the prompt that LLM
is obliged to incorporate the LLM-empowered state repre-
sentations srt to calculate the intrinsic rewards, and it also
retains the option to incorporate the source state st for a
better intrinsic reward design. We formulate the joint opti-
mization objective as:

max
F,G

max
π

EF,G,π

[ ∞∑
t=0

γt
(
r + w · ri

)∣∣∣ri = G
(
st,F(st)

)]
.

(2)
where F ,G ∼ M

(
d (S)

)
, and w is the weight of the in-

trinsic reward.

3.3. Lipschitz Constant for Feedback

In practice, to enhance the robustness of state representa-
tions, we iteratively query LLM multiple times, incorpo-
rating previous training results as feedback. During each
training iteration, we sample K state representation and
intrinsic reward function codes Fk,Gk, k = 1, . . . ,K from
LLM M. Subsequently, we concurrently execute K train-
ing processes over Nsmall training timesteps to evaluate
the performance of each function Fk,Gk. Here, Nsmall is
intentionally set to be smaller than the total timesteps N
employed in the final evaluation stage.

• Continuous Scenarios For scenarios with continuous
extrinsic reward, we maintain a Lipschitz constant array
Ck ∈ R|Sc| for each of the K training instances. Each el-
ement of Ck signifies the Lipschitz constant of a mapping
ui, i = 1, . . . , |Sc|, which maps each dimension of Sc to
the extrinsic rewards. Note: ui is introduced to signify the
Lipschitz constant computed independently for each state
dimension concerning the extrinsic reward. This assessment
is crucial for guiding the LLM in identifying and eliminat-
ing undesired dimensions within the state representation.
Given a trajectory T = {sct , rt}Ht=1 of length H , the current
Lipschitz constant array is calculated as follows:

CT
k =

[
Lip(ui;Ti)

]|Sc|

i=1

, (3)

where Ti = {sct [i], rt}Ht=1, sct [i] denotes the i-th dimension
of the joint state representations sc, and CT

k denotes the
Lipschitz constant array of the current trajectory. we soft-
update Ck over trajectories:

Ck = τCk + (1− τ)CT
k , (4)

where τ ∈ [0, 1] is the soft-update weight. At the end of
each training iteration, the Lipschitz constant array Ck and
policy performance νk are provided to LLM for CoT (Wei
et al., 2022) suggestions, which, along with the training
results, serve as feedback for subsequent iterations. The
feedback information helps LLM to generate task-related
state representations that exhibit a lower Lipschitz constant
with extrinsic rewards, as elaborated in Section 3.4 where
we discuss the theoretical advantages of a lower Lipschitz
constant for network convergence. In the subsequent itera-
tions, LLM leverages all historical feedback to iteratively
refine and generate improved state representation and intrin-
sic reward function codes {Fk}Kk=1, {Gk}Kk=1. The whole
algorithm is summarized in Algorithm 1.

• Discontinuous Scenarios Dealing with scenarios with
discontinuous extrinsic reward using conventional RL base-
lines is notably challenging and constitutes a specialized
research area (Vecerik et al., 2017; Trott et al., 2019; Liu
et al., 2023). Despite this challenge, LESR remains effec-
tive in such scenarios. We provide two ways of estimating
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Algorithm 1 LLM-Empowered State Representation

Input: Policy network πθ , value network Qϕ, LLM M, training
timesteps Nsmall, total final evaluation timesteps N , sample
count K, iteration count I , initial prompt l1 = d(S), feedback
analysis prompt lanalysis.
Output: learned policy network πθ , best state representation and
intrinsic reward function Fbest,Gbest.

# Sampling and Training Stage
for itr = 1 to I do

Sample Fk,Gk ∼ M(litr), k = 1, . . . ,K
Concurrently execute K training processes over Nsmall train-
ing timesteps using Fk,Gk.
Obtain Ck according to Equation (3), (4) and final policy
performance νk.
lfeedback = M(lanalysis; {Ck}; {νk})
litr+1 =

(
litr; lfeedback

)
end for
# Evaluating Stage
Initialize πθ and Qϕ.
Execute N training timesteps using Fbest,Gbest.
return πθ , Fbest,Gbest.

Lipschitz constant as feedback in discontinuous extrinsic
reward settings.

LESR with Discounted Return In Equation 3, ui initially
maps each dimension of Sc to dense extrinsic rewards. In
sparse reward settings, we substitute these extrinsic rewards
with the discounted episode return

∑
t γ

tr. Thus, ui now
maps each dimension of Sc to the discounted episode re-
turns, consistent with the algorithmic framework and theo-
retical scope proposed in LESR.

LESR with Spectral Norm Since in Theorems B.4 and
B.8 show that reducing the Lipschitz constant of the reward
function lowers the upper bound of Lip(V ;S) and improves
the convergence of value functions. Therefore, we can use
the spectral norm to estimate Lip(V ;S) (Anil et al., 2019;
Fazlyab et al., 2019) as feedback to LLM. By calculating the
spectral norm of the N weight matrices W1, . . . ,WN of the
value functions, the Lipschitz constant of the value function
is bounded by

∏N
i=1 ∥Wi∥2, which is then presented to the

LLM as feedback.

3.4. Theoretical Analysis

In this section, we present analysis of the theoretical impli-
cations of the Lipschitz constant on convergence in neural
networks, inspired by Oberman & Calder (2018). Consider
the dataset and labels X0,Y0 defined in Definition 3.1 with
N = |X0| elements. The true mapping from X to Y is
denoted as u∗0 : X → Y . Let f : X → X be a function
transforming a source x ∈ X into a more task-related f(x).

Definition 3.2. Denote u(x;ψ) as a neural network map-
ping parameterized by ψ. Consider the empirical loss for
X0,Y0, where ℓ : Y × Y → R is a loss function satisfying

(i) ℓ ≥ 0, (ii) ℓ(y1, y2) = 0 if and only if y1 = y2:

min
u:X0→Y

L(u,X0) =
1

N

N∑
i=1

ℓ(u(xi;ψ), yi). (5)

Assumption 3.3. The mapping f : X → X only swaps
the order of x in the dataset X0, which means X1 =
{f(xi)|f(xi) ∈ X0, i = 1, . . . , N} and X1 = X0. While
for x ∈ X2 = {x|x ∈ X , x /∈ X0}, f(x) = x. Under f , the
true mapping from f(X ) to Y is denoted as u∗1 : f(X ) → Y .
It can be derived that u∗1 = u∗0 ◦ f−1. We suppose under f
a lower Lipschitz constant is achieved:

Lip(u∗1) ≤ Lip(u∗0). (6)

Theorem 3.4. Under Assumption 3.3, Given X0,Y0 and
X1,Y1 = {yi|yi = u∗1(xi), xi ∈ X1}, u0 ∈ U0 is any
minimizer of L(u,X0) and u1 ∈ U1 is any minimizer
of L(u,X1), where U0 and U1 denote the solution set of
L(u,X0) and L(u,X1) in Definition 3.2 relatively, then on
the same condition when Lip(u0) = Lip(u1):

sup
u1∈U1

Ex∼ρf
∥u∗1 − u1∥2 ≤ sup

u0∈U0

Ex∼ρ∥u∗0 − u0∥2, (7)

ρ and ρf denote the source probability distribution on X
and probability distribution on f(X ), relatively. In Theo-
rem 3.4, it is demonstrated that the mapping f exhibiting
a lower Lipschitz constant can attain superior convergence.
This observation underscores the significance of identifying
task-related state representations characterized by lower Lip-
schitz constants with respect to the associated rewards. Such
analysis to some extent sheds light on why smoother net-
work mappings exhibit improved convergence performance.
Proofs of Theorem 3.4 can be referred to Appendix A.

We delve deeper into the significance of the Lipschitz con-
stant of the reward concerning state representations in RL.
We introduce two additional theorems, namely Theorem B.4
and Theorem B.8, establishing a strong correlation between
Lip(r;S) and Lip(V ;S) and, consequently, the conver-
gence of RL’s value functions. Theorem B.4 indicates that
reducing the Lipschitz constant of the reward function low-
ers the upper bound of Lip(V ;S). Theorem B.8 illustrates
how decreasing Lip(r;S) can enhance the convergence of
RL algorithms’ value functions. These theorems collec-
tively emphasize our focus on minimizing the Lipschitz
constant of the reward function to improve RL algorithms’
convergence. Detailed proofs are available in Appendix B.

4. Experiments
In this section, we will assess LLM-Empowered State
Representation (LESR) through experiments on two well-
established reinforcement learning (RL) benchmarks: Mu-
joco (Todorov et al., 2012; Brockman et al., 2016) and Gym-
Robotics (de Lazcano et al., 2023). For more information
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about the tasks, see Appendix D. The following questions
will guide our investigation:

•Q1: Can LESR generate task-related state representations
characterized by lower Lipschitz constants in relation to
extrinsic environmental rewards? (Section 4.2)

•Q2: Can LESR achieve higher sample efficiency and out-
perform RL baselines? Does each component contribute to
the final performance? (Section 4.3, 4.4)

•Q3: Are functions Fbest and Gbest algorithm-agnostic, and
transferable directly to other RL algorithms? (Section 4.5)

•Q4: Do Fbest and Gbest possess semantic-physical sig-
nificance and exhibit consistency across different runs of
LLM? Does LESR exhibit robustness to the variations in
hyperparameters? (Section 4.6, 4.7)

4.1. Implementation Details

LLM and Prompts We employ the gpt-4-1106-preview
as LLM to generate the state representation and intrinsic
reward functions. There are three well-designed prompt tem-
plates and details of prompts are available in Appendix C.

Baseline Algorithm We employ the SOTA RL algorithm
TD3 (Fujimoto et al., 2018) as the foundational Deep Re-
inforcement Learning (DRL) algorithm. Building upon the
implementation of TD3 as provided in the source paper1,
we have formulated LESR (Ours). We also employ EU-
REKA (Ma et al., 2023) for comparison, which incorporates
LLM for human-level reward designs. It is noteworthy that,
in order to maintain comparative fairness, we have adhered
to the hyperparameters of TD3 without introducing any
modifications. Both EUREKA and LESR are grounded in
the common RL algorithm TD3. For a comprehensive list
of hyperparameters, please refer to Appendix G.

4.2. LESR Can Enhance Lipschitz Continuity

The reward function R commonly serves as an indicator of
the specific task within the same environment (Yoo et al.,
2022). In RL, value function learning is also predicated on
rewards. Specifically, when the discount factor γ equals to 0,
the value function directly learns the rewards. Additionally,
the state representations form a part of the input to the value
function. Task-related state representations might contribute
to enhancing the Lipschitz continuity of the value function,
thereby expediting the learning process.

Therefore, to validate whether LESR can help enhance
the Lipschitz continuity between the generated state rep-
resentations and the value function, we execute the final
policy of LESR in the Mujoco Ant environment for 20
episodes of length H = 1000 and establish two datasets:

1https://github.com/sfujim/TD3

(a) Lip(R;T1) = 560.2 (b) Lip(R;T2) = 168.1

Figure 3. Visualization illustrating states post 2D dimensionality
reduction via t-SNE. Details of T1 and T2 can be referred to Sec-
tion 4.2. The reward for each state is normalized to a range of [0, 1]
and discretized, and the graph employs color coding to represent
their respective reward values.

(a) T1 = {st, rt}Ht=1 and (b) T2 = {Fbest(st), rt}Ht=1.
For states within each dataset, we employ t-SNE (Van der
Maaten & Hinton, 2008) to visualize the states on the 2D
graph with coloring the data with corresponding rewards and
calculate the Lipschitz constant between states and rewards.

As shown in Figure 3, it is illustrated that in T1 the Lip-
schitz constant of the mapping from state representations
generated by LESR to the extrinsic environment rewards
(R : F(s) → r,Lip(R;T2) = 168.1) is much lower than
that of the source(R : s → r,Lip(R;T1) = 560.2). This
indicates that the task-related state representations generated
by LESR can enhance the Lipschitz continuity.

4.3. LESR Can Achieve High Sample Efficiency

Performance Comparison We validate LESR and the re-
sults are presented in Table 2. In Mujoco environments,
LESR outperforms the state-of-art baselines in 4 out of 5
tasks. In Gym-Robotics environments, it outperforms the
baselines in 5 out of 6 tasks. Particularly noteworthy are
the results on challenging antmaze tasks, where TD3 fails
to train, resulting in all final success rates of TD3 remaining
at zero. Conversely, the performance exhibited by LESR is
marked by excellence, highlighting its proficiency in over-
coming the challenges posed by these intricate tasks. LESR
yields an average performance improvement of 29% over
the 5 tasks in Mujoco and an average success improvement
of 30% over the 7 tasks in Gym-Robotics, thus substan-
tiating the efficacy of the employed methodology. More
information of training can be referenced in Appendix E.4.

Sample Efficiency For the purpose of assessing the sample
efficiency of LESR, we have presented the performance for
a limited scope of 300k training steps, as depicted in Table 1.
The results demonstrate that LESR exhibits superior perfor-
mance within significantly fewer training steps, excelling
comprehensively across all tasks in comparison to the SOTA
baseline, thereby manifesting heightened sample efficiency.
This is further supported by the information of experimental
details presented in Appendix E.4.
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Table 1. Final Performance on Mujoco environments over only
300k environment interaction training steps, aiming to validate the
sample efficiency of LESR. RPI = (accumulated rewards
- baseline)/baseline: relative performance improvement.

Environments
Algorithm TD3 LESR(Ours) RPI

HalfCheetah 7288.3±842.4 7639.4±464.1 5%
Hopper 921.9±646.8 2705.0±623.2 193%

Walker2d 1354.5±734.1 1874.8±718.2 38%
Ant 1665.2±895.5 1915.3±885.5 15%

Swimmer 49.9±5.2 150.9±9.5 203%
Mujoco Improve Mean - - 91%

4.4. Ablation Study

Experimental Setting In this section, we conduct ablative
analyses on distinct components of LESR to evaluate their
respective contributions. Three ablation types are consid-
ered in total. Ours w/o IR: This entails the removal of
the intrinsic reward component, with training relying solely
on state representation. Ours w/o SR: Here, we exclude
the state representation part. It is crucial to note that de-
spite this ablation, the state representation function is still
necessary due to the intrinsic reward calculation process
ri = G

(
s,F(s)

)
outlined in Equation (2). However, in

this context, only the source state s is provided as input
to the policy, instead of the concatenated state sc. Ours
w/o FB: In this instance, the ‘iteration count’ specified in
Appendix G is set to 1 and the ‘sample count’ is increased
to 10, eliminating the feedback component.

Results and Analysis The ablation results are presented in
Table 2. It is elucidated that regardless of the component sub-
jected to ablation, a substantial decline in final performance
ensues, underscoring the indispensability of all components
for the final efficacy of our method. Crucially, our find-
ings demonstrate that when only the intrinsic rewards part
is ablated, namely Ours w/o IR, the performance results
exhibit minimal influence, particularly in Mujoco environ-
ment tasks. This observation unveils the pivotal role of
state representation component in our method, highlighting
its significant contribution to the primary performance en-
hancement and further substantiating the assertions made in
Section 1. Furthermore, since LESR requires that the input
of networks be the concatenation of the source state and the
generated state representations (i.e., sct = (st, s

r
t )), we have

conducted experiments to substantiate the indispensability
of the source state st. As depicted in Figure 4, it is evident
that the source state and the generated state representations
work synergistically, both playing pivotal roles in achieving
optimal performance.

Besides, in Appendix E, we also validate the role of the Lip-
schitz constant of LESR through more ablation experiments.
Furthermore, we showcase LESR’s robustness through ex-
periments solely utilizing intrinsic reward functions, affirm-

Figure 4. Comparison of Mujoco tasks between LESR and the
removal of source state during training (i.e., utilizing only the
(F(s)) as input for policy and critic network training). The y-axis
is on a logarithmic scale, and error bars represent 5 random seeds.

ing its reliability. Additionally in Appendix E experiments
on the novel tasks ’Walker Jump’ and ’Walker Split Legs’
underscore LESR’s adaptability to new scenarios.

4.5. Directly Transfer to Other Algorithms

As there is no algorithm-specific information provided in
the iteration prompts, we hypothesize that the state represen-
tation and intrinsic reward functions are algorithm-agnostic.
This suggests that they can be directly transferred and inte-
grated with other RL algorithms without the iteration pro-
cess in Algorithm 1. To substantiate this hypothesis, we
retain the best state representation and intrinsic reward func-
tion Fbest,Gbest and combine them with two other widely
employed RL algorithms PPO (Schulman et al., 2017) and
SAC (Haarnoja et al., 2018) for validation.

The results in Table 3 highlight that the state representa-
tions and their associated intrinsic reward functions, ac-
quired through the training of TD3, exhibit the potential to
be integrated with alternative algorithms, still resulting in
improved outcomes. This validates our initial hypothesis.
Furthermore, these results further emphasize the efficacy
and adaptability of our approach. Consequently, by simply
employing a fundamental algorithm to explore state repre-
sentation and intrinsic reward functions for a given task,
it becomes possible to significantly diminish the training
complexity associated with that task for other algorithms.

4.6. Semantic Analysis and Consistency Verification

To elucidate the precise function of the state representations
and comprehend the rationale behind their superior perfor-
mance, we meticulously analyze the state representation
functions produced by LLM. We use the Swimmer task
from Mujoco as an example for semantic analysis. Please
refer to Appendix E.5 for details about the state representa-
tion functions generated by LLM.

Semantic Analysis In the case of the Swimmer task, the
goal is to move as fast as possible towards the right by apply-
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Table 2. Final Performance on Mujoco and Gym-robotics environments over 1M environment interaction training steps. Ours w/o
IR: without intrinsic reward. Ours w/o SR: without state representation. Ours w/o FB: without feedback. More details about the
ablation study are elucidated in Section 4.4. RPI = (accumulated rewards - baseline)/baseline: relative performance
improvement. PI = success rate - baseline: success rate improvement. This distinction arises because the performance is
represented by the accumulative rewards in Mujoco, whereas in Gym-Robotics, it is measured by the success rate. The ”mean±std”
denotes values computed across five random seeds.

Environments
Algorithm TD3 EUREKA RPI Ours w/o IR RPI Ours w/o SR RPI Ours w/o FB RPI LESR(Ours) RPI

HalfCheetah 9680.2±1555.8 10400.6±289.2 7% 9969.8±1767.5 3% 9463.2±796.3 -2% 9770.4±1531.3 1% 10614.2±510.8 10%
Hopper 3193.9±507.8 3346.4±423.2 5% 3324.7±191.7 4% 3159.0±466.7 -1% 2851.3±748.1 -11% 3424.8±143.7 7%

Walker2d 3952.1±445.7 3606.2±1010.0 -9% 4148.2±352.9 5% 3977.4±434.3 1% 4204.9±590.3 6% 4433.0±435.3 12%
Ant 3532.6±1265.3 2577.7±1085.6 -27% 5359.0±336.4 52% 3962.2±1332.0 12% 4244.9±1227.9 20% 4343.4±1171.4 23%

Swimmer 84.9±34.0 98.1±31.1 16% 132.0±6.0 55% 160.2±10.2 89% 85.4±29.8 1% 164.2±7.6 93%
Mujoco Relative Improve Mean - - -2% - 24% - 21% - 3% - 29%

- - - PI - PI - PI - PI - PI

AntMaze Open 0.0±0.0 0.13±0.04 13% 0.0±0.0 0% 0.15±0.06 15% 0.16±0.07 16% 0.17±0.06 17%
AntMaze Medium 0.0±0.0 0.01±0.01 1% 0.0±0.0 0% 0.07±0.05 7% 0.0±0.0 0% 0.1±0.05 10%

AntMaze Large 0.0±0.0 0.0±0.0 0% 0.0±0.0 0% 0.06±0.03 6% 0.04±0.04 4% 0.07±0.03 7%
FetchPush 0.07±0.02 0.07±0.03 0% 0.78±0.16 71% 0.06±0.05 -1% 0.77±0.14 70% 0.91±0.08 84%

AdroitHandDoor 0.53±0.44 0.83±0.08 30% 0.46±0.46 -7% 0.63±0.39 10% 0.23±0.38 -30% 0.88±0.12 34%
AdroitHandHammer 0.28±0.32 0.32±0.45 4% 0.22±0.21 -6% 0.29±0.28 1% 0.41±0.33 13% 0.53±0.38 25%

Gym-Robotics Improve Mean - - 8% - 8% - 6% - 10% - 30%

Table 3. Gym-Robotics Results. PPO and SAC denote algorithms trained
using the original state and reward functions within the tasks. + Ours signifies
training utilizing state representation functions and the corresponding intrinsic
reward functions. PI: performance improvement.

Environments
Algorithm PPO PPO + Ours PI SAC SAC + Ours PI

AntMaze Open 0.006±0.005 0.12±0.022 11% 0.002±0.001 0.12±0.033 12%
AntMaze Medium 0.0±0.0 0.156±0.039 16% 0.008±0.003 0.108±0.03 10%

AntMaze Large 0.006±0.004 0.092±0.02 9% 0.009±0.003 0.124±0.029 12%
FetchPush 0.063±0.017 0.812±0.13 75% 0.059±0.015 0.589±0.207 53%

AdroitHandDoor 0.001±0.001 0.948±0.047 95% 0.759±0.158 0.956±0.035 20%
AdroitHandHammer 0.006±0.002 0.007±0.002 0% 0.752±0.158 0.892±0.084 14%

Gym-Robotics Improve Mean - - 34% - - 20%

Table 4. Consistency verification in Swimmer. seedi de-
notes the experiments over four random seeds. ci signifies
the state representation categories. ✓signifies the inclu-
sion of a particular category in the corresponding seed.

seed1 seed2 seed3 seed4

c1 ✓ ✓ ✓ ✓
c2 ✓ ✓ ✓ ✓
c3 ✓ ✓ ✓ ✓
c4 ✓ ✓ ✓
c5 ✓

Figure 5. Experimental results for hyperparameter variations in
AdroitHandDoor. The sample count K is adjusted to [1, 3, 6,
9] (bottom x-axis), and the intrinsic reward weight w is modified
to [0.01, 0.02, 0.05, 0.1] (top x-axis).

ing torque on the rotors and using the fluids friction, without
taking any drastic action. The state representations in this
task can be categorized into five groups, whose names are
derived from the comments provided by LLM: cosine or
sine of the angles (c1), relative angles between adjacent
links (c2), kinetic energy (c3), distance moved (c4), and sum
of torques applied (c5). It is apparent that these representa-
tions exhibit a strong correlation with the task’s objective:
c1 and c2 contribute to enhanced understanding of posture,
c3 and c5 signify the necessity to avoid excessive actions,
while c4 corresponds directly to the objective of advancing

towards the target.

Consistency of LLM Through semantic analysis, it is
demonstrable that LLM is capable of generating signif-
icantly task-related state representations of a physically
meaningful nature, stemming from the source state. Then,
how consistent are the answers from LLM? We carried out
experiments with four random seeds for the Swimmer task,
and took out the final state representation functions in each
experiment for statistics. As demonstrated in Table 4, the
functions generated by LLM exhibit a pronounced level of
consistency across diverse experiments, e.g. c1, c2 and c3
are included in all experiments. This reaffirms the impor-
tance and universality of the extended state while ensuring
the robustness and stability of our methodology.

4.7. Robustness

To validate the robustness and stability of varying
hyperparameters, we conducted experiments in the
AdroitHandDoor environment. We systematically al-
tered the values of two key hyperparameters: the weight
of the intrinsic reward w in Equation (2) and the sample
count K. For each experiment, we modified one hyperpa-
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rameter while keeping the others. The outcomes of these
experiments are illustrated in Figure 5.

The results indicate that an increase in the sample count
K can lead to a performance improvement, for instance,
from K = 1 to K = 3. However, elevating the value of
K from 3 to 9 does not yield further performance enhance-
ment. Regarding the variation in the weight of the intrinsic
reward w, the findings illustrate that the final performance
is not significantly affected by changes in w and remains
stable. In summary, the final performance across all hyper-
parameter tuning experiments remains consistently within
a stable range, significantly surpassing the baseline. This
observation underscores the stability of our approach.

5. Conclusion
In this paper, we introduce LESR, an algorithm leveraging
the coding proficiency and interpretive capacity for phys-
ical mechanism of LLM to generate state representation
and intrinsic reward function codes for reinforcement learn-
ing. Demonstrating its efficacy on benchmarks Mujoco and
Gym-Robotics, we illustrate LLM’s capability to produce
task-specific state representations alongside meaningful in-
trinsic reward functions. These representations enhance Lip-
schitz continuity in networks, resulting in superior efficiency
and outperforming SOTA baselines. In-depth ablations and
additional experiments show the consistency and robustness
of LESR. We believe that LESR can effectively contribute
to various real-world interaction tasks.

However, our work still suffers limitations. A primary con-
straint lies in our attempt to derive task-related represen-
tations solely from the source state features using LLM,
without incorporating external information. This approach
may restrict the information available to the network in
partially observable environments. Besides, the quality of
state representations generated by LLM is constrained by
its capabilities, and there is no absolute guarantee that it
can produce more task-related representations. This lim-
itation is anticipated to be mitigated as LLM evolves. In
the future, we are interested in exploring the integration of
additional information to establish a more comprehensive
framework for state representations. We anticipate that our
work may serve as an inspiration for further exploration in
this promising area among researchers.
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A. Theoretical Analysis
Definition A.1. We firstly define the identity projection and closet point projection map Id : X → X , σXk

: X → Xk =
{x1, . . . , xn} that satisfies

∀x ∈ X , Id(x) = x

∀x ∈ X , ∥x− σXk
∥2 = min

1≤i≤n
{∥x− xi∥2} (8)

Now we investigate the convergence under the mapping f in Theorem 3.4:

Theorem A.2 (Convergence). If u1 ∈ U1 is any minimizer of L(u,X1), where U1 denotes the solution set of L(u,X1)
in Definition 3.2, then for any t > 0, there exists C ≥ 1 and 0 < c < 1 satisfies the following with probability at least
1− Ct−1N−(ct−1):

Ex∼ρf
∥u∗1 − u1∥2 ≤ C

[
Lip(u∗1) + Lip(u1)

]( t logN
N

)1/d

(9)

Proof of Theorem A.2. Since u1 ∈ U1 is a minimizer of L(u,X1), we must have u1(xi) = u∗1(xi) for all 1 ≤ i ≤ N . Then
for any x ∈ X we have

∥u∗1(x)− u1(x)∥2 = ∥u∗1(x)− u∗1(σX1(x)) + u∗1(σX1(x))− u1(σX1(x))︸ ︷︷ ︸
=0

+u1(σX1(x))− u1(x)∥2

≤ ∥u∗1(x)− u∗1(σX1(x))∥2 + ∥u1(σX1(x))− u1(x)∥2

≤
[
Lip(u∗1) + Lip(u1)

]
∥x− σX1(x)∥2

(10)

Now we provide a bound between the identity projection and closet point projection:

Lemma A.3 (Lemma 2.9. in (Oberman & Calder, 2018)). For any t > 0, the following holds with probability at least
1− Ct−1N−(ct−1):

Ex∼ρf
∥x− σX1

(x)∥2 ≤ C

(
t logN

N

)1/d

(11)

The proof is completed by combining Lemma A.3 into Eq 10.

Next, we can prove that the generalization loss converges based on Theorem A.2:

Theorem A.4. Assume that for some q ≥ 1 the loss ℓ in Definition 3.2 satisfies ℓ(yi, yk) ≤ C∥yi − yk∥q2 for all yi, yk ∈ Y.
Then under Theorem A.2, the following bound of the loss L[u1,X ] in Definition 3.2 holds with probability at least
1− Ct−1N−(ct−1):

L[u1,X ] ≤ C
[
Lip(u∗1) + Lip(u1)

]q ( t logN
N

)q/d

(12)

Proof of Theorem A.4. We can bound the loss as:

L[u1,X ] =

∫
x∈X

ρf (x)ℓ
(
u∗1(x), u1(x)

)
dx ≤ CEx∼ρf

∥u∗1 − u1∥q2 (13)

The proof is completed by combining Theorem A.2 into Eq 13.

Now we turn to the proof of Theorem 3.4, we start with the following lemma:

Lemma A.5. Under Assumption 3.3, ρ and ρf denote the source probability distribution on X and probability distribution
on f(X ):

Ex∼ρf
∥x− σX1

(x)∥2 = Ex∼ρ∥x− σX0
(x)∥2 (14)
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Proof of Lemma A.5. Let X2 = {x|x ∈ X , x /∈ X0}, from Definition A.1, when x ∈ X0, σX0
(x) = x, then we have:∫

x∈X
ρ(x)∥x− σX0

(x)∥2 dx =

∫
x∈X2

ρ(x)∥x− σX0
(x)∥2 dx+

∫
x∈X0

ρ(x)∥x− σX0
(x)∥2 dx︸ ︷︷ ︸

=0

=

∫
x∈X2

ρ(x)∥x− σX0
(x)∥2 dx

(15)

Consider the mapping f : X → X only swaps the order of x in the dataset X0, which means:

f(x) =

x
′
∣∣∣x, x′ ∈ X0

x
∣∣∣x ∈ X2

X1 = {f(xi)|f(xi) ∈ X0, i = 1, . . . , N} and X0 = X1

(16)

Therefore we get ∀x ∈ X2, ρf (x) = ρ(x). Hence:

Ex∼ρ∥x− σX0
(x)∥2 =

∫
x∈X2

ρ(x)∥x− σX0
(x)∥2 dx

=

∫
x∈X2

ρf (x)∥x− σX0
(x)∥2 dx = Ex∼ρf

∥x− σX1
(x)∥2

(17)

Proof of Theorem 3.4. Since u0 ∈ U0 is a minimizer of L(u,X0), we must have u0(xi) = u∗0(xi) for all 1 ≤ i ≤ n. Then
for any x ∈ X we have

∥u∗0(x)− u0(x)∥2 = ∥u∗0(x)− u∗0(σX0
(x)) + u∗0(σX0

(x))− u0(σX0
(x)) + u0(σX0

(x))− u0(x)∥2
≤ ∥u∗0(x)− u∗0(σX0

(x))∥2 + ∥u0(σX0
(x))− u0(x)∥2

≤
[
Lip(u∗0) + Lip(u0)

]
∥x− σX0

(x)∥2
(18)

Therefore, combined with Theorem A.2, we have:

sup
u1∈U1

Ex∼ρf
∥u∗1 − u1∥2 =

[
Lip(u∗1) + Lip(u1)

]
Ex∼ρ∥x− σX1

(x)∥2

≤
[
Lip(u∗0) + Lip(u0)

]
Ex∼ρf

∥x− σX1(x)∥2

= sup
u0∈U0

Ex∼ρ∥u∗0 − u0∥2 (invoking Assumption 3.3, Lemma A.5)

(19)

B. Why Lipschitz constant is crucial for RL
In this section we main focus on the relationship between the Lipschitz constant of the reward function and the continuity of
the value function in RL. Firstly we make some assumptions.

Definition B.1. In reinforcement learning, given a policy π, γ denotes the discounted factor, r (r : s → R) denotes the
reward function, H denotes the length of trajectory, the definition of the value function V (s) is:

V π(s) = E
[ H∑
t=0

γtr|s0 = s, at ∼ π(st)
]
. (20)
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Similar to Farahmand et al. (2017), we make the deterministic assumption of the environment and RL policy. Besides, the
policy of RL algorithm TD3 utilized in our method is also deterministic.

Assumption B.2. The environment transition and policy are deterministic.

We also make the assumptions of the Lipschitz constant of reward function and environment dynamic transition which is
similar to previous work (Asadi et al., 2018).

Assumption B.3. There exists constants K1,K2 such that the lipschitz constant of reward function r (r : s→ R) is K1,
where s ∈ S is the state. In other words, Lip(r) = K1, and P(s, a) : S × A → S denotes the environment dynamic
transition function, K2 that satisfies: Lip(P) = K2.

• Relationship between Lip(r;S) and Lip(V ;S)

Drawing upon the aforementioned definitions and assumptions, let us commence our analysis:

Theorem B.4. Under Assumption B.2, B.3, given a RL policy π, the value function of π, namely V π , satisfies:

∀s1, s2 ∈ S, ∥V π(s1)− V π(s2)∥ ≤ [1− (γK2)
H ]K1

1− γK2
∥s1 − s2∥. (21)

Proof of Theorem B.4. Because the policy π and environment dynamic transition function P are deterministic, for ∀s1, s2 ∈
S, two trajectories τ1, τ2 can be generated:

τ1 = {s1,i|t = 0, . . . ,H s1,0 = s1, s1,t+1 = P(s1,t, π(s1,t))},
τ2 = {s2,i|t = 0, . . . ,H s2,0 = s2, s2,t+1 = P(s2,t, π(s2,t))}.

(22)

Under Definition B.1:∥∥∥∥V π(s1)− V π(s2)

∥∥∥∥ =

∥∥∥∥ H∑
t=0

γtr(s1,t)−
H∑
t=0

γtr(s2,t)

∥∥∥∥
=

∥∥∥∥ H∑
t=0

γt
[
r(s1,t)− r(s2,t)

]∥∥∥∥
≤

H∑
t=0

γt
∥∥∥∥[r(s1,t)− r(s2,t)

]∥∥∥∥ # invoking Assumption B.3

≤
H∑
t=0

γtK1

∥∥s1,t − s2,t
∥∥.

(23)

The state dynamic distances
∥∥s1,t − s2,t

∥∥ can be estimated as follows:∥∥s1,t − s2,t
∥∥ ≤ K2

∥∥s1,t−1 − s2,t−1

∥∥ ≤ K2
2

∥∥s1,t−2 − s2,t−2

∥∥ · · · ≤ Kt
2

∥∥s1 − s2
∥∥. (24)

Combined Equation 24 with 23:∥∥∥∥V π(s1)− V π(s2)

∥∥∥∥ ≤
H∑
t=0

(
γK2

)t
K1

∥∥s1 − s2
∥∥ =

[1− (γK2)
H ]K1

1− γK2
∥s1 − s2∥. (25)

Proof of Theorem B.4 is completed. A direct corollary from Theorem B.4 is:

Corollary B.5.

Lip(V π;S) ≤ [1− (γK2)
H ]K1

1− γK2
. (26)
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Corollary B.5 demonstrates that reducing the Lipschitz constant K1 of the reward function directly decreases the upper
bound of the Lipschitz constant of value functions in RL. This confirms that our approach effectively improves the continuity
of the value functions.

• How does Lip(V ;S) work for RL algorithms?

We provide additional definitions to aid in understanding the subsequent theorems. Inspired by Farahmand et al. (2017);
Zheng et al. (2023); Farahmand et al. (2010); Asadi et al. (2018):

Definition B.6. Denote environment dynamic transition function P defined in B.4. For a given value function V , the
Bellman operator as T , policy transition matrix as Pπ : S × S → R, the greedy policy πg of V , and the optimal policy π∗

and optimal value funtion V ∗ are defined as follows:

T V (s) = r(s) + max
a

P(s, a)V (P(s, a)),

T πV = r + γPπV,

Pπ(s1, s2) =

{
0, s2 ̸= P(s1, π(s1))

1, s2 = P(s1, π(s1))
,

∀s ∈ S, πg = argmax
a

[
r(s) + P(s, a)V (P(s, a))

]
,

∀s ∈ S, V π∗
(s) = V ∗(s) = max

π
V π(s).

(27)

Definition B.7. Denote π1, π2, . . . , πm as any m policies arranged in any order, ∀m ≥ 1, u and v are two state distributions,
define C(u) ∈ R+ ∪+∞, c(m) ∈ R+ ∪+∞ and c(0) = 1:

c(m) = max
π1,π2,...πm,s∈S

(
vPπ1Pπ2 . . . Pπm

)
(s)

u(s)
,

C1(v, u) = (1− γ)
∑
m≥0

γmc(m).

(28)

c(m), as defined in Definition B.7, quantifies the discrepancy between transitions of m policies from an initial state
distribution v over m time steps and a target distribution u, while C1(v, u) quantifies the discounted discrepancy.

Theorem B.8. Denote πg as the greedy policy of a given value function V , V is the value function of some policy
π0. u and v are two state distributions. The norm ∥V ∥q,u is the q-norm of V weighted by u which is defined as

∥V ∥q,u =
[∑

s u(s)
(
V (s)

)q] 1
q . Suppose ∀s1, s2 ∈ S , there exists a constant D1 that satisfies ∥s1 − s2∥ ≤ D1 and under

assumption B.2, B.3:

||V ∗ − V πg ||q,v ≤
2γK1D1

(
1− (γK2)

H
)

(1− γ)(1− γK2)

[
C1(v, u)

] 1
q . (29)

Proof of Theorem B.8. We first present two lemmas that aid in the subsequent proof.

Lemma B.9. Denote matrix I as the identity matrix(here V1 ⪯ V2 means ∀s ∈ S, V1(s) ≤ V2(s)):

V ∗ − V πg ⪯
[
(I − γPπ∗

)−1 + (I − γPπg )−1
]
|T V − V |. (30)

Proof of Lemma B.9. It can be derived that T πgV = T V , T πgV πg = V πg :

V ∗ − V πg = T π∗
V ∗ − T π∗

V + T π∗
V − T πgV︸ ︷︷ ︸

⪯0

+T πgV − T πgV πg

⪯ T π∗
V ∗ − T π∗

V + T πgV − T πgV πg

= γPπ∗
(V ∗ − V πg + V πg − V ) + γPπg (V − V πg ).

⇒ (I − γPπ∗
)(V ∗ − V πg ) ⪯ γ(Pπ∗

− Pπg )(V πg − V ).

⇒ V ∗ − V πg ⪯ (I − γPπ∗
)−1γ(Pπ∗

− Pπg )(V πg − V ).

(31)
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(I − γPπg )(V πg − V ) = V πg − V − γPπgV πg + γPπgV

= r + γPπgV −
(
r + γPπgV πg

)
+ V πg − V

= T πgV − T πgV πg + V πg − V

= T V − V.

(32)

Combine Inequation 31 and Equation 32:

V ∗ − V πg ⪯ (I − γPπ∗
)−1γ(Pπ∗

− Pπg )(V πg − V )

= (I − γPπ∗
)−1γ(Pπ∗

− Pπg )(I − γPπg )−1(T V − V )

= (I − γPπ∗
)−1

[
(I − γPπg )− (I − γPπ∗

)
]
(I − γPπg )−1(T V − V )

=
[
(I − γPπ∗

)−1 − (I − γPπg )−1
]
(T V − V )

⪯
[
(I − γPπ∗

)−1 + (I − γPπg )−1
]
|T V − V |.

(33)

Proof of Lemma B.9 is completed.

Lemma B.10. For a given policy π:

(I − γPπ)−1 =

∞∑
k=0

(
γPπ

)k

. (34)

Proof of Lemma B.10.

(I − γPπ)

∞∑
k=0

(
γPπ

)k

=

∞∑
k=0

[(
γPπ

)k

−
(
γPπ

)k+1
]

= I − lim
k→∞

(
γPπ

)k+1

= I.

(35)

Proof of Lemma B.10 is completed.

Now we turn to the proof of Theorem B.8, we rewrite Lemma B.9 as follows:

V ∗ − V πg ⪯ 2

1− γ
A|T V − V |

A =
1− γ

2

[
(I − γPπ∗

)−1 + (I − γPπg )−1
]
.

(36)

Under the q-norm weighted by v:

∥V ∗ − V πg∥qq,v ≤ [
2

1− γ
]q
∑
s∈S

v(s)
[
A(s)|T V (s)− V (s)|

]q
≤ [

2

1− γ
]q
∑
s∈S

v(s)A(s)|T V (s)− V (s)|q.
(37)

Equation 37 stems from Jensen’s inequality, exploiting the convexity of the function f(x) = xq for q ≥ 1. Furthermore,
when combined with Lemma B.10 and Equation 36, each row of matrix A attains a sum of 1−γ

2

[
1

1−γ + 1
1−γ

]
= 1, meeting

the prerequisites of Jensen’s inequality.
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Next we focus on the v(s)A(s) in Equation 37:

vA =
1− γ

2
v
[
(I − γPπ∗

)−1 + (I − γPπg )−1
]

=
1− γ

2

∞∑
m=0

γm
(
vPπ∗

+ vPπg

)
# invoking Lemma B.10

⪯ 1− γ

2

( ∑
m≥0

γmc(m)u+
∑
m≥0

γmc(m)u
)

# under Definition B.7

= C1(v, u)u.

(38)

Now we return to Equation 37, combined with Equation 38:

∥V ∗ − V πg∥qq,v ≤ [
2

1− γ
]qC1(v, u)

∑
s∈S

u(s)|T V (s)− V (s)|q. (39)

In the description of Theorem B.8, Because πg is denoted as the greedy policy of a given value function V , V is the value
function of some policy π0. Therefore under assumption B.2: T V (s) − V (s) = r(s) + γV (s1) − r(s) − γV (s2) =
γ(V (s1)− V (s2)), s1 = P(s, πg(s)), s2 = P(s, π0(s)).

Continuing Equation 39:

∥V ∗ − V πg∥qq,v ≤ [
2

1− γ
]qC1(v, u)

∑
s∈S

u(s)|T V (s)− V (s)|q

= [
2

1− γ
]qC1(v, u)

∑
s∈S

u(s)|γ(V (s1)− V (s2)|q # (s1 = P(s, πg(s)), s2 = P(s, π0(s)))

≤ [
2

1− γ
]qC1(v, u)

∑
s∈S

u(s)

[
γ Lip(V ;S)∥s1 − s2∥

]q
# invoking Corollary B.5

≤
[

2γ

1− γ

(
1− (γK2)

H
)
K1D1

1− γK2

]q
C1(v, u).

(40)

Proof of Theorem B.8 is completed.

A direct corollary from Theorem B.8 is:

Corollary B.11. Under the setting of Theorem B.8:

||V ∗ − V πg ||∞ ≤
2γK1D1

(
1− (γK2)

H
)

(1− γ)(1− γK2)
. (41)

C. All of Our Prompts
There are three prompt templates in total.

The initial prompt for the first iteration. This prompt is designed to use at the commencement of the first iteration,
which is the letter ‘p’ in Algorithm 1. LLM is required to output the state representation and intrinsic reward functions in
python code format. Notably, the ‘task description’ and ‘detail content of each dimensions’ in the prompt are derived from
the official document of Mujoco2 and Gym-Robotics3.

Prompt for Chain-of-thought Feedback Analysis. This prompt is formulated to facilitate the examination by LLM
of the outcomes from all training experiments during each iteration in a chain-of-thought process(Wei et al., 2022). This
prompt corresponds to the variable pfeedback in Algorithm 1. LLM is expected to provide suggestions about how to enhance

2https://www.gymlibrary.dev/environments/mujoco/
3https://robotics.farama.org/
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the performance of the state representation function codes. It is noteworthy that the ‘iteration results’ referred to in the
prompt encompasses both policy performance and correlation coefficients, as elaborated in Section 3.2.

Subsequent Prompt for Later Iterations. This prompt is similar to ‘The initial prompt for the first iteration’. However,
the difference is that it contains the information of history iterations, as well as LLM’s suggestions about how to enhance the
performance of the state representation and intrinsic reward functions.

Here are the prompt templates:

Initial Prompt for the First Iteration

Revise the state representation for a reinforcement learning agent.
=========================================================
The agent’s task description is:
{task description}
=========================================================

The current state is represented by a {total dim}-dimensional Python NumPy array, denoted as ‘s‘.

Details of each dimension in the state ‘s‘ are as follows:
{detail content}
You should design a task-related state representation based on the source {total dim} dim to better for reinforcement
training, using the detailed information mentioned above to do some caculations, and feel free to do complex
caculations, and then concat them to the source state.

Besides, we want you to design an intrinsic reward function based on the revise state python function.

That is to say, we will:
1. use your revise state python function to get an updated state: updated s = revise state(s)
2. use your intrinsic reward function to get an intrinsic reward for the task: r = intrinsic reward(updated s)
3. to better design the intrinsic reward, we recommond you use some source dim in the updated s, which is between
updated s[0] and updated s[{total dim - 1}]
4. however, you must use the extra dim in your given revise state python function, which is between up-
dated s[{total dim}] and the end of updated s

Your task is to create two Python functions, named ‘revise state‘, which takes the current state ‘s‘ as input and returns
an updated state representation, and named ‘intrinsic reward‘, which takes the updated state ‘updated s‘ as input and
returns an intrinsic reward. The functions should be executable and ready for integration into a reinforcement learning
environment.

The goal is to better for reinforcement training. Lets think step by step. Below is an illustrative example of
the expected output:

“‘python
import numpy as np
def revise state(s):
# Your state revision implementation goes here
return updated s
def intrinsic reward(updated s):
# Your intrinsic reward code implementation goes here
return intrinsic reward
“‘
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Prompt for Chain-of-thought Feedback Analysis

We have successfully trained Reinforcement Learning policy using {args.sample count} different state revision codes
and intrinsic reward function codes sampled by you, and each pair of code is associated with the training of a policy
relatively.

Throughout every state revision code’s training process, we monitored:
1. The final policy performance(accumulated reward).
2. Most importantly, every state revise dim’s Lipschitz constant with the reward. That is to say, you can see which
state revise dim is more related to the reward and which dim can contribute to enhancing the continuity of the reward
function mapping.

Here are the results:
{iteration results(performance and Lipschitz constants)}

You should analyze the results mentioned above and give suggestions about how to imporve the performace
of the ”state revision code”.

Here are some tips for how to analyze the results:
(a) if you find a state revision code’s performance is very low, then you should analyze to figure out why it fail
(b) if you find some dims’ Lipschitz constant very large, you should analyze to figure out what makes it fail
(c) you should also analyze how to imporve the performace of the ”state revision code” and ”intrinsic reward code”
later

Lets think step by step. Your solution should aim to improve the overall performance of the RL policy.

Subsequent Prompt for Later Iterations

Revise the state representation for a reinforcement learning agent.
=========================================================
The agent’s task description is:
{task description}
=========================================================

The current state is represented by a {total dim}-dimensional Python NumPy array, denoted as ‘s‘.

Details of each dimension in the state ‘s‘ are as follows:
{detail content}
You should design a task-related state representation based on the source {total dim} dim to better for reinforcement
training, using the detailed information mentioned above to do some caculations, and feel free to do complex
caculations, and then concat them to the source state.

For this problem, we have some history experience for you, here are some state revision codes we have
tried in the former iterations:
{former histoy}

Based on the former suggestions. We are seeking an improved state revision code and an improved intrin-
sic reward code that can enhance the model’s performance on the task. The state revised code should incorporate
calculations, and the results should be concatenated to the original state.
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Besides, We are seeking an improved intrinsic reward code.

That is to say, we will:
1. use your revise state python function to get an updated state: updated s = revise state(s)
2. use your intrinsic reward function to get an intrinsic reward for the task: r = intrinsic reward(updated s)
3. to better design the intrinsic reward, we recommond you use some source dim in the updated s, which is between
updated s[0] and updated s[{total dim - 1}]
4. however, you must use the extra dim in your given revise state python function, which is between up-
dated s[{total dim}] and the end of updated s

Your task is to create two Python functions, named ‘revise state‘, which takes the current state ‘s‘ as input and returns
an updated state representation, and named ‘intrinsic reward‘, which takes the updated state ‘updated s‘ as input and
returns an intrinsic reward. The functions should be executable and ready for integration into a reinforcement learning
environment.

The goal is to better for reinforcement training. Lets think step by step. Below is an illustrative example of
the expected output:

“‘python
import numpy as np
def revise state(s):
# Your state revision implementation goes here
return updated s
def intrinsic reward(updated s):
# Your intrinsic reward code implementation goes here
return intrinsic reward
“‘

D. Additional Environment Information
D.1. Mujoco Environment Tasks

HalfCheetah This environment is based on the work by P. Wawrzyński in (Wawrzyński, 2009). The HalfCheetah is a
2-dimensional robot consisting of 9 body parts and 8 joints connecting them (including two paws). The goal is to apply a
torque on the joints to make the cheetah run forward (right) as fast as possible, with a positive reward allocated based on
the distance moved forward and a negative reward allocated for moving backward. The torso and head of the cheetah are
fixed, and the torque can only be applied on the other 6 joints over the front and back thighs (connecting to the torso), shins
(connecting to the thighs) and feet (connecting to the shins).

Hopper This environment is based on the work done by Erez, Tassa, and Todorov in (Erez et al., 2011). The environment
aims to increase the number of independent state and control variables as compared to the classic control environments. The
hopper is a two-dimensional one-legged figure that consist of four main body parts - the torso at the top, the thigh in the
middle, the leg in the bottom, and a single foot on which the entire body rests. The goal is to make hops that move in the
forward (right) direction by applying torques on the three hinges connecting the four body parts.

Walker This environment builds on the Hopper environment by adding another set of legs making it possible for the
robot to walk forward instead of hop. Like other Mujoco environments, this environment aims to increase the number of
independent state and control variables as compared to the classic control environments. The walker is a two-dimensional
two-legged figure that consist of seven main body parts - a single torso at the top (with the two legs splitting after the torso),
two thighs in the middle below the torso, two legs in the bottom below the thighs, and two feet attached to the legs on
which the entire body rests. The goal is to walk in the in the forward (right) direction by applying torques on the six hinges
connecting the seven body parts.

Ant This environment is based on the environment introduced by Schulman, Moritz, Levine, Jordan and Abbeel in
(Schulman et al., 2015). The ant is a 3D robot consisting of one torso (free rotational body) with four legs attached to it with
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each leg having two body parts. The goal is to coordinate the four legs to move in the forward (right) direction by applying
torques on the eight hinges connecting the two body parts of each leg and the torso (nine body parts and eight hinges).

Swimmer This environment corresponds to the Swimmer environment described in Rémi Coulom’s PhD thesis (Coulom,
2002). The environment aims to increase the number of independent state and control variables as compared to the classic
control environments. The swimmers consist of three or more segments (’links’) and one less articulation joints (’rotors’) -
one rotor joint connecting exactly two links to form a linear chain. The swimmer is suspended in a two dimensional pool
and always starts in the same position (subject to some deviation drawn from an uniform distribution), and the goal is to
move as fast as possible towards the right by applying torque on the rotors and using the fluids friction.

D.2. Gym-Robotics Environment Tasks

AntMaze This environment was refactored from the D4RL repository, introduced by Justin Fu, Aviral Kumar, Ofir
Nachum, George Tucker, and Sergey Levine in (Fu et al., 2020). The task in the environment is for an ant-agent to reach a
target goal in a closed maze. The ant is a 3D robot consisting of one torso (free rotational body) with four legs attached to it
with each leg having two body parts. The goal is to reach a target goal in a closed maze by applying torques on the eight
hinges connecting the two body parts of each leg and the torso (nine body parts and eight hinges).

Fetch This environment was introduced in (Plappert et al., 2018). The robot is a 7-DoF Fetch Mobile Manipulator with a
two-fingered parallel gripper. The robot is controlled by small displacements of the gripper in Cartesian coordinates and the
inverse kinematics are computed internally by the MuJoCo framework. The gripper is locked in a closed configuration in
order to perform the push task. The task is also continuing which means that the robot has to maintain the block in the target
position for an indefinite period of time. Notably, in “FetchPush” or “FetchSlide” when the absolute value of the reward is
smaller than 0.05, namely |r| < 0.05, we consider the task to be terminated. This is because the returned dense reward is the
negative Euclidean distance between the achieved goal position and the desired goal.

Adroit Hand This environment was introduced in (Rajeswaran et al., 2017). The environment is based on the Adroit
manipulation platform, a 28 degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a 4
degree of freedom arm. Notably, in “AdroitDoor” when the absolute value of the reward is greater than 20, namely |r| > 20,
we consider the task to be terminated. This is because a total positive reward of 20 is added if the door hinge is opened
more than 1.35 radians. In “AdroitHammer” when the absolute value of the reward is greater than 25, namely |r| > 25, we
consider the task to be terminated. This is because a total positive reward of 25 is added if the euclidean distance between
both body frames is less than 0.02 meters.

For more information about the tasks, please refer to the official document and the links are presented in Appendix C.

D.3. Toy Example Settings

This subsection introduces the settings of the toy example in Figure 1.

Task Description We employ the tailored interface of the PointMaze environment within Gym-Robotics(de Lazcano
et al., 2023). As illustrated in Figure 6, the maze has dimensions of 10× 10, and the agent commences its navigation from
the bottom-left corner, aiming to reach the top-right corner.

Figure 6. Demonstration of the customized maze in ‘Human’ mode render.

Observation Space The source observation only contains an array of shape (4, ). The entire observation space is
continuous, where obs[0] and obs[1] denotes the x, y coordinates of the agent’s current position, while obs[2] and obs[3]
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represent the x, y coordinates of the target location.

Action Space The source action only contains an array of shape (2, ). The entire action space is continuous, where
action[0] and action[1] denote the linear force in the x, y direction to the agent.

Rewards We use dense rewards. The returned reward is the negative Euclidean distance between the current agent’s
location and the target location.

Training Parameters We use TD3 (Fujimoto et al., 2018) as the RL algorithm. The values of hyperparameters for
TD3(Fujimoto et al., 2018) are derived from their original implementation4. In Figure 1a ‘1 Iteration’, the ‘Episode Return’
is normalized to 0-100.

E. Additional Experiments
E.1. Could LESR work if it uses the LLM-coded reward function as the only reward signal?

We have conducted several experiments in Mujoco tasks. Directly Intrinsic means directly using the best state representation
and intrinsic reward codes Fbest,Gbest to train without extrinsic reward. LESR w/o ER means throughout the entire iterative
process of LESR, extrinsic rewards are entirely removed. LESR w/o LC means throughout the entire iterative process of
LESR, Lipschitz constant is entirely removed. Results under five random seeds are demonstrated in the following Table 5.

Table 5. Experiments of using the LLM-coded reward function as the only reward signal, while dropping the external reward information.

Environments
Algorithm TD3 Directly Intrinsic LESR w/o ER LESR w/o LC LESR(Ours)

HalfCheetah 9680.2±1555.8 8919.9±1761.9 10252.8±277.1 10442.9±304.4 10614.2±510.8
Hopper 3193.9±507.8 3358.4±76.6 3408.4±144.0 3362.3±109.4 3424.8±143.7

Walker2d 3952.1±445.7 1924.3±969.3 3865.8±142.5 4356.2±335.3 4433.0±435.3
Ant 3532.6±1265.3 3518.0±147.6 4779.1±30.4 3242.3±459.9 4343.4±1171.4

Swimmer-v3 84.9±34.0 25.2±4.1 51.9±0.1 116.9±6.3 164.2±7.6

Directly Intrinsic: When we directly use F⌊⌉∫⊔,G⌊⌉∫⊔ to train without extrinsic reward. It’s observed that the performance
of our method is subject to perturbations but remains relatively stable, achieving comparable results to TD3 in environments
such as HalfCheetah, Hopper, and Ant.

LESR w/o ER: Particularly, when we iterate without extrinsic rewards throughout the process, LESR demonstrates superior
final performance over TD3 in most tasks.

LESR w/o LC: In experiments where the Lipschitz constant is removed, there is a performance decrease compared to
LESR, yet still outperforming TD3, further indicating the effectiveness of utilizing the Lipschitz constant for feedback in
our approach.

E.2. Two New Task Decriptions

To further validate the generalization capability of LESR, we conduct experiments on two entirely new task descriptions: (1)
requiring the walker agent to learn to jump in place, and (2) requiring the walker agent to learn to stand with its legs apart.
We abstain from any iterations or feedback, training solely on the F ,G produced in the first round of LESR, and only for
300k time steps. We generate the final GIFs in the github repository of LESR5, and from the GIFs on the webpage, it is
observed that the walker can perform the jumping and standing with legs apart actions as per the task descriptions, which
further highlights the generalization significance of LESR.

E.3. Different Choices of Lipschitz constant

As mentioned in Section 3.3, apart from estimating the Lipschitz constant computed independently for each state dimension
concerning the extrinsic reward, we can also employ the discouted return (LESR(DR)) or spectral norm (LESR(SN))
instead of the extrinsic reward. We have conducted experimental evaluations on these various feedback signals in Mujoco
tasks in Table 6. Note: In this setting the sample count K is set to 3.

4https://github.com/sfujim/TD3
5https://github.com/thu-rllab/LESR
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Table 6. Various choices of Lipschitz constant estimation as feedback signals to LLM. LESR(DR): LESR with Discounted Return.
LESR(SN): LESR with Spectral Norm.

Environments
Algorithm TD3 LESR(DR) LESR(SN) LESR(Ours)

Ant 3532.6±1265.3 4451.0±1532.7 3649.2±1709.3 5156.4±267.3
HalfCheetah 9680.2±1555.8 8926.1±1487.2 10830.8±340.6 9740.1±761.0

Hopper 3193.9±507.8 3405.6±482.3 3179.4±592.5 3370.9±135.8
Swimmer 84.9±34.0 60.1±10.5 49.7±1.9 142.0±7.6

It’s illustrated that both LESR(DR) and LESR(SN) are feasible for estimating the Lipschitz constant. However, LESR
demonstrates comparatively more stable performance with lower variance in the context of dense reward environments.
Nonetheless, this does not discount the utility of employing discounted return and spectral norm estimation methods.
Specifically, in scenarios involving discontinuous rewards, the necessity of employing LESR(DR) and LESR(SN) becomes
apparent.

E.4. More Training Details of LESR

We have presented the performance data for a limited scope of 300k environment interaction training steps in Table 7.
The results demonstrate that LESR exhibits superior performance within significantly fewer training steps, excelling
comprehensively across all tasks in comparison to the RL baseline algorithm TD3, thereby manifesting heightened sample
efficiency.

We have also presented the final evaluating curves in Figure 7 using all tasks’ best state representation and intrinsic reward
functions Fbest,Gbest. This further substantiates that our approach outperforms the baseline in terms of both sample
efficiency and ultimate performances.

In Figure 8 we have presented performance improments compared with the baseline using every iteration’s best state
representation and intrinsic reward functions Fbest,Gbest. It is demonstrated that the feedback part plays a critical role in
our method. The final performance demonstrated a gradual amelioration across successive iterations.

E.5. Semantic Analysis

Here are the state representation functions for the Swimmer task across four random seeds. The state representations in this
task can be categorized into five groups, whose names are derived from the comments provided by the LLM: cosine or sine
of the angles (c1), relative angles between adjacent links (c2), kinetic energy (c3), distance moved (c4), and sum of torques
applied (c5).

State representation functions for the Swimmer task

seed1:

def r e v i s e s t a t e ( s ) :
x v e l o c i t y s q u a r e d = s [ 3 ] * * 2
t o t a l a n g u l a r v e l o c i t y = np . sum ( s [ 5 : ] * * 2 )
c o s a n g l e s = np . cos ( s [ : 3 ] )
s i n a n g l e s = np . s i n ( s [ : 3 ] )
r e l a t i v e a n g l e s = np . d i f f ( s [ 1 : 3 ] )
u p d a t e d s = np . c o n c a t e n a t e ( ( s , [ x v e l o c i t y s q u a r e d ,

t o t a l a n g u l a r v e l o c i t y ] , c o s a n g l e s , s i n a n g l e s , r e l a t i v e a n g l e s ) )
re turn u p d a t e d s

seed2:

def r e v i s e s t a t e ( s ) :
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i f l e n ( s ) > 3 :
r e l a t i v e a n g l e s = [ s [ i +1] − s [ i ] f o r i in range ( 1 , l e n ( s ) −3) ]

e l s e :
r e l a t i v e a n g l e s = [ ]

k i n e t i c e n e r g y = 0 . 5 * ( s [ 3 ] * * 2 + s [ 4 ] * * 2 ) + 0 . 5 * sum ( s [ 5 : ] * * 2 )
d i s t a n c e m o v e d = s [ 3 ]
s u m t o r q u e s = sum ( abs ( s [ 5 : ] ) )
u p d a t e d s = np . c o n c a t e n a t e ( ( s , r e l a t i v e a n g l e s , [ k i n e t i c e n e r g y ,

d i s t a n c e m o v e d , s u m t o r q u e s ] ) )
re turn u p d a t e d s

seed3:

def r e v i s e s t a t e ( s ) :
r e l a t i v e a n g l e 1 2 = s [ 1 ] − s [ 2 ]
t o t a l k i n e t i c e n e r g y = 0 . 5 * ( s [ 5 ] * * 2 + s [ 6 ] * * 2 + s [ 7 ] * * 2 )
mass = 1 . 0
l e n g t h = 1 . 0
g r a v i t y = 9 . 8 1
p o t e n t i a l e n e r g y = mass * g r a v i t y * l e n g t h * np . s i n ( s [ 0 ] )
d t = 1 . 0
d i s t a n c e x = s [ 3 ] * d t
u p d a t e d s = np . c o n c a t e n a t e ( ( s , [ r e l a t i v e a n g l e 1 2 , t o t a l k i n e t i c e n e r g y ,

p o t e n t i a l e n e r g y , d i s t a n c e x ] ) )
re turn u p d a t e d s

seed4:

def r e v i s e s t a t e ( s ) :
c o s a n g l e s = np . cos ( s [ : 3 ] )
s i n a n g l e s = np . s i n ( s [ : 3 ] )
r e l a t i v e a n g l e s = np . d i f f ( s [ : 3 ] )
k i n e t i c e n e r g y = 0 . 5 * ( s [ 3 ] * * 2 + s [ 4 ] * * 2 ) + 0 . 5 * np . sum ( s [ 5 : ] * * 2 )
d i s t a n c e m o v e d = s [ 3 ]
u p d a t e d s = np . c o n c a t e n a t e ( ( s , c o s a n g l e s , s i n a n g l e s , r e l a t i v e a n g l e s , [

k i n e t i c e n e r g y , d i s t a n c e m o v e d ] ) )
re turn u p d a t e d s

F. Future Work
Methodology framework viability Our methodology framework in LESR remains viable for image tasks, where Vision-
Language Models (VLMs)(Radford et al., 2021; Kim et al., 2021) can be employed to extract semantic features from images,
followed by further processing under the LESR framework. We anticipate utilizing VLMs for future research.

General applicability beyond symbolic environments While our primary focus lies on symbolic environments, our
method extends beyond them. LESR serves as a general approach for leveraging large models to generate Empowered State
Representations, offering potential applicability across various environments.

Offline reinforcement learning LESR is also feasible for offline reinforcement learning scenarios(Qu et al., 2024; Shao
et al., 2024; Mao et al., 2023; 2024). The LESR framework is versatile and not limited to online RL. In the future, we aim to
explore various applications and possibilities.

Within LESR, we utilize LLMs to generate Empowered State Representations, showcasing their effectiveness in enhancing
the Lipschitz continuity of value networks in reinforcement learning. Our experimental results, along with supplementary
theorems, validate these advantages. We believe that LESR holds promise in inspiring future research endeavors.

26



LLM-Empowered State Representation for Reinforcement Learning

Figure 7. All tasks’ final evaluating curves using the best state representation and intrinsic reward functions Fbest,Gbest over 5 random
seeds. We have smoothed the curves using avgol filter in ‘scipy’.

(a) Mujoco Tasks (b) Gym-Robotics Tasks

Figure 8. Performance improments compared with the baseline TD3 during every iteration. We use every iteration’s best state represen-
tation and intrinsic reward functions Fbest,Gbest. Performance improments are calculated by accumulated rewards−baseline

baseline
, while in

Gym-Robotics, it is determined as success rate− baseline.
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Table 7. Final Performance on Mujoco and Gym-robotics environments over only 300k environment interaction training steps. Ours
w/o IR: without intrinsic reward. Ours w/o SR: without state representation. Ours w/o FB: without feedback. More details about the
ablation study are elucidated in Section 4.4. RPI = (accumulated rewards - baseline)/baseline: relative performance
improvement. PI = success rate - baseline: success rate improvement. This distinction arises because the performance is
represented by the accumulative rewards in Mujoco, whereas in Gym-Robotics, it is measured by the success rate. The ”mean±std”
denotes values computed across five random seeds.

Environments
Algorithm TD3 EUREKA RPI Ours w/o IR RPI Ours w/o SR RPI Ours w/o FB RPI LESR(Ours) RPI

HalfCheetah 7288.3±842.4 7299.1±344.2 0% 6985.7±921.8 -4% 6924.5±483.9 -5% 5391.6±3221.2 -26% 7639.4±464.1 5%
Hopper 921.9±646.8 2132.1±0.0 131% 2509.0±619.8 172% 1638.0±1031.3 78% 1993.4±956.0 116% 2705.0±623.2 193%

Walker2d 1354.5±734.1 512.9±132.3 -62% 1805.5±948.1 33% 962.1±388.4 -29% 1270.2±659.5 -6% 1874.8±718.2 38%
Ant 1665.2±895.5 1138.2±0.0 -32% 2409.9±575.2 45% 1967.9±1090.3 18% 2025.0±910.5 22% 1915.3±885.5 15%

Swimmer 49.9±5.2 32.3±0.0 -35% 57.5±4.2 15% 65.8±24.0 32% 51.3±5.0 3% 150.9±9.5 203%
Mujoco Relative Improve Mean - - 1% - 52% - 19% - 22% - 91%

- - - PI - PI - PI - PI - PI

AntMaze Open 0.0±0.0 0.12±0.03 12% 0.0±0.0 0% 0.19±0.05 19% 0.15±0.06 15% 0.15±0.06 15%
AntMaze Medium 0.0±0.0 0.01±0.0 1% 0.0±0.0 0% 0.06±0.03 6% 0.01±0.01 1% 0.11±0.05 11%

AntMaze Large 0.0±0.0 0.0±0.0 0% 0.0±0.0 0% 0.03±0.02 3% 0.01±0.02 1% 0.04±0.03 4%
FetchPush 0.06±0.03 0.08±0.03 2% 0.29±0.17 23% 0.06±0.03 0% 0.26±0.14 19% 0.41±0.15 35%

AdroitHandDoor 0.0±0.01 0.10±0.07 10% 0.12±0.2 12% 0.02±0.03 2% 0.04±0.07 4% 0.38±0.26 38%
AdroitHandHammer 0.02±0.02 0.04±0.05 2% 0.0±0.01 -1% 0.0±0.01 -1% 0.07±0.11 5% 0.01±0.01 -1%

Gym-Robotics Improve Mean - - 5% - 6% - 5% - 8% - 17%

G. Hyperparameters
We have listed the hyperparameters of our algorithm in Table 8, which encompasses the parameters of the training pro-
cess, algorithm and optimizer settings. Notably, for PPO and SAC, we adopt the code in https://github.com/
Lizhi-sjtu/DRL-code-pytorch. For EUREKA, to ensure comparative fairness, we utilized the same hyperparam-
eters as LESR, namely the sample count K and the iteration count I .

Table 8. Hyperparameters for our algorithm. The values of hyperparameters for TD3(Fujimoto et al., 2018) are derived from their original
implementation.

Hyperparameters Name Explaination Value

K How many sample to generate during one iteration 6
I How many iterations 3
Nsmall Total training timesteps for iteration 8e5
N Final total training timesteps for Fbest,Gbest 1e6
w weight of intrinsic reward 0.02 for Mujoco tasks, 0.2 for Gym-Robotics tasks
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