Appendices

A Additional Results

A.1 Sensitivity analysis on physical parameters

In addition to the evaluation on policy generalization in Section 5.4, we modify the important phys-
ical parameters one at a time to understand the sensitivity of the policy performance to these pa-
rameters (Figure 9). We compare the same baselines as Section 5.4: policies trained over a fixed
environment (Fixed Env), policies trained with ADR (With ADR) and open-loop trajectories gen-
erated by rolling out the fixed env policy in the default environment (Open Loop). The ranges of
parameters are chosen to create a performance drop for all the baselines as a stress test. Similar
to what we observe in Section 5.4, the policy can cover a wider range of physical parameters with
closed-loop execution and with ADR.
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Figure 9: We evaluate the generalization of policies by changing one parameter at a time. The
dashed lines indicate the default values of these parameters in the fixed environment.

A.2 Sensitivity analysis on object pose estimation noise

The proposed system takes the 6D object pose as policy input. In the real world, object pose es-
timation might be noisy. In this section, we evaluate the policies trained with ADR with different
levels of pose estimation noise for each dimension of the 6D object pose (Figure 10). During eval-
uation, for each timestep across the episode, we sample a scalar noise from a Gaussian distribution
N(u = 0,0 = z) and add it to one dimension of the object pose. The standard deviations o = x
are shown as the x-axis in the plots. The shaded area indicates the standard deviation of the success
rates across seeds.
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Figure 10: We evaluate the sensitivity of the ADR policies on object pose estimation noise.

A.3 Reward term weights

The reward function shown in Equation la is composed of three terms with weights a3, as and
B. a1 and a; weight the translation and rotation error between the target grasp and the current end-
effector.3 weights the target grasp occlusion penalty which is to penalize the agent if the target grasp
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configuration is in collision with the table. We use a; = 50, acs = 2, 8 = 200 in all the experiments.
In this section, we train the policies with different weight values to see how much reward tuning is
required to achieve reasonable performance for the occluded grasping task. Figure 11 below shows
that the policy is not too sensitive in most of the case we tested except that a higher a; = 70 leads
to a 50% drop in performance.
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Figure 11: Training curves with different reward weights. For each plot, we train the policies by
changing one of the weight terms to three different values.

B Implementation Details

B.1 Simulation environment

‘We build the simulation environment with Robosuite [38] which uses the MuJoCo simulator [39].
Each episode has a length of 40 timesteps which corresponds to 20 seconds of real time execution. At
the beginning of each episode, we set the robot arm to an initial joint configuration with Gaussian
noise in the joint angles of 0.02 rad. We use a box-shaped object in the simulation environment.
The dimensions of the box are randomized in the ADR experiments. One important note on the
simulator environment is the parameters of the MuJoCo solver. We notice that MuJoCo sometimes
creates unrealistic contacts with the default solver. We reduce the simulation solver timestep from
the default value of 0.002 to 0.001 and set the “noslip iterations” to 20 which significantly improved
simulation quality on contacts.

B.2 Grasp configurations

In this work, we focus on grasping large objects from the side because this is a task that may demon-
strate the benefits of extrinsic dexterity. For single grasp experiments, a default grasp location is
shown in Figure 1. In multi-grasp experiments, the grasps are sampled from a distribution shown
in Figure 6. The grasps are sampled along the side of the box and they are 2 cm away from the
edges. These grasp configurations are supposed to be the input to our proposed system, and could
be replaced by other grasp generation methods.

B.3 Success rate calculation

In simulation, the success of the task is computed as 1(AT < 3¢m) - 1(Af0 < 10 deg) at the end of
an episode. As defined in Section 3, AT is the position difference between the end-effector and the
target grasp and Ad is the orientation difference. The success is defined in this way because we focus
on reaching the desired grasp. One alternative is to evaluate the final grasping success by closing
the gripper and lift the object. However, this will increase the simulation time during training. To
confirm that the pose difference is a good proxy for the final grasping success, we evaluated a trained
policy and verified that if the robot closes the gripper at the end of a successful episode according to
the pose difference metric, it is able to lift the object 100% of the time.

For the real robot experiments, we evaluate success by closing the gripper and lifting the object; if
the object was successfully lifted, we will mark it as a successful episode.
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B.4 Observation and action space

As mentioned in Section 4.2, the observation includes a target grasp configuration in the object
frame g, the pose of the end-effector in the world frame " E and the object pose in the world
frame 'O. One implementation detail is that we also include the pose of the end-effector in the
object frame ©E = (WO)~}(W E) because we found that it sometimes speeds up learning. Each
pose is represented as a 3D translation vector and a 4D quaternion representation of the rotation.

The action space of the policy is the delta pose of the end-effector AE in its local frame represented
by a vector of translation p € R? and a 3D vector of rotation ¢ € SO(3) with axis-angle represen-
tation. An outline of the policy execution pipeline is shown in Figure 12. AFE is then passed into a
collision check function to form a desired pose E; which will be sent to a low-level controller.

B.5 Low-level controller

Handling joint limit: Although we may use nullspace in the operational space controller to avoid
reaching joint limit, in practice, certain desired end-effector poses still reach joint limits that cannot
be avoided by nullspace. Thus, we handling the joint limit in the following way. If the corresponding
joint configuration of the desired pose is going to reach joint limits, we will overwrite the policy
action to output the desired pose of the previous timestep to the low-level controller. In detail, we
use the Jacobian J to estimate the joint configuration of the desired pose:

eg;i%nts = 9§O1m‘€ + ‘]71 -AE 2)
where 0;,inss are the joint angles and AE is the output of the policy. If any joint in oLt y Omté is close

to the limit, the low-level controller will use the previous desired pose Ej instead.

Parameters of the Operational Space Controller: We use K, = 300 for position error, K, = 30

for orientation error, and Ky = \/E . These values are chosen by making sure that the real robot
is compliant enough to safely collide with the object and the bin without damage. In Figure 4, the
baseline of “High-gain OSC” uses K, = 600 for position error, K, = 60 for orientation error, and
Kq = \/K,. This baseline with less compliance is not only slower to train in the simulation, but
also not safe to execute on the real robot for our task which involves rich contacts and relies on
environment constraints. During our initial experiments, with the high-gain OSC, the robot deforms
the object and the bin surface.
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Figure 12: Outline of policy execution: Given the observation, the policy outputs an end-effector
delta movement. If the desired pose is within the joint limit of the robot, it will be sent to the
low-level controller which operates at a higher frequency.

B.6 Multi-Grasp Training with Curriculum

Here are more details on multi-grasp training. When the success rate of policy on a boundary
case of the training range is above 0.8, it will expand the range of grasps by 0.25 (See Figure 6
for parameterizations of the grasp configurations). For example, if the policy is currently training
with grasps [1, 2], and the success rate evaluated at grasp ID 1 is above 0.8, the new training range
will be [0.75,2]. This is following a similar procedure as Automatic Domain Randomization, but
randomizing goals instead of simulation parameters.

B.7 RL Training

We use Soft Actor Critic [37] to train the RL policy with the impementation from rlkit (https://
github.com/rail-berkeley/rlkit). Hyperparameters for SAC training are included in Table 2.
Since the task is conditioned on the target grasp as a goal, we use Hindsight Experience Replay [40]
for all the experiments with 60% original goals and 40% of the goals sampled from the same rollout.
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We compare the policies across 5 random seeds of each method and plot the average performance
with standard deviation across seeds. We use 10 episodes for each evaluation setting.

Table 2: Hyperparameters for RL training.

Hyperparameters Values
Optimizer Adam
Learning rate - Policy le-3
Leraning rate - Q-function Se-4
Networks [512,512,512] MLP
Batch size 256
Nonlinearity ReLU
Soft target update (7) 0.005
Replay buffer size le6
Discount factor () 0.99
HER rollout goals 40%

C Automatic Domain Randomization

As discussed in Section 4.6, we use Automatic Domain Randomization [14] to improve policy gen-
eralization across environment variations. In ADR, the policy is first trained with an environment
with very little randomization, and then we gradually expand the variations based on the evaluation
performance. For a set of environment parameters \;, each A; is sampled from a uniform distribu-
tion \; ~ U(¢F, o) at the beginning of each episode. During training, the policy will be evaluated
at these boundary values \; = ¢F or \; = ¢II. If the performance is higher than a threshold, the
boundary value will be expanded by an increment A. For example, if the performance at \; = ¢
is higher than the threshold, the training distribution becomes \; ~ U(¢X, ¢ + A) in the next
iteration. Compared to directly training the policy with the entire variations, Automatic Domain
Randomization can reduce the need of manually tuning a suitable range of variations for each envi-
ronment parameter.

Table 3 summarized the simulation parameters in the experiment. All the parameters are uniformly
sampled from these ranges at the beginning of each episode. The ranges of the parameters start from
a single initial value and gradually expand to a wider range according to the pre-specific increment
step +A on the upper bound and the decrement step —A at the lower bound.

Table 3: Simulation parameters in Automatic Domain Randomization

Initial Value +A —-A Final Range
Object size x (m) 0.15 0.01 -0.01 [0.14, 0.16]
Object size z (m) 0.05 0.01 -0.01 [0.04, 0.06]
Table friction 0.3 0.1 -0.1 [0.1, 0.5]
Gripper friction 3 / -1 [2,3]
Object Density (g/m?3) 86 86 43 [43, 172]
Action translation scale (m) 0.03 / -0.005 [0.02, 0.03]
Action rotation scale (rad) 0.2 / -0.05 [0.1,0.2]
Initial distance to wall (m) 0 0.01 / [0, 0.02]
Table offset x (m) 0.5 0.01 -0.01 [0.48, 0.52]
Table offset z (m) 0.07 0.01 0.01 [0.055, 0.075]

We include the training plots of the ADR policies in Figure 13. Dashed lines in Figure 13 indicate
fixed parameter boundaries where we do not intent to expand. The final ranges are used when we
sample 100 environments for evaluation in Section 5.4.
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(a) Overall training performance of the ADR policies: Success rate over the entire training range (left) and total
number of expanded parameter boundaries.
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Figure 13: Training curves for the ADR policies.
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D Real robot experiment

In this section, we include more details and discussion for the real robot experiments. Quantitative
results can be found on the website > where we include all the videos for the real robot experiments,
video examples of failure cases, recovery behaviors and ICP results.

D.1 Implementation details

The robot setup is shown in Figure 14. The code for controlling the real robot is built on top of
FrankaPy [41]. The policies are trained in the simulator and zero-shot transferred to a physical
Franka Emika Panda robot. For the real robot experiments, we train a policy in the XZ plane from
the side view to reduce the sim2real gap of the policy, since the motion is mostly in the XZ plane
for the side grasp.

Camera

Figure 14: Robot setup. We use one Azure Kinect camera for object pose estimation.

Sim2Real gap of the low-level controller: We observe a noticeable sim2real gap on the low-level
controller when deploying the policy. The same command of moving the end-effector to a certain
pose in free space may not have the same resulting movement. This is a combination of two factors:
First, there is a significant discrepancy between the robot model in simulation and the real robot.
The real robot has more damping and friction on the joints. Second, we use a compliant controller
for this task, which is more susceptible to the noise in the system. As a result, the real robot always
executes a smaller delta movement than the simulator. To compensate for this sim2real gap, we
slightly increase the action scale and reduce the policy execution rate from 2Hz to 1Hz. Both of these
changes will allow the real robot to compensate for the smaller movement caused by the damping
and friction of its joints. Note that the sim2real gap still exists after these changes. However, the
remaining gap could be further compensated by using a closed-loop policy. During our experiments,
we first use the default object Box-0 to tune the controller until we observe several successes in a
row. After that, we keep the same controller setting for the entire evaluation process.

Defining object pose: The pose of a box can simply be defined at the center of its volume and with
the axes defined parallel to the edges. For non-box object, we define the pose to be the center of
its bounding box. We scan the non-box objects into point clouds with the Qlone app on the phone
(Figure 15 top row). To obtain the bounding box, we first run Principle Component Analysis of the
scanned object to get the principle axes. Then, we take the min and max values along the axes to

’https://sites.google.com/view/grasp-ungraspable
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get the dimension of the bounding box. The axes are then aligned to global axes based on the initial
pose (Figure 15 middle row).

Toy bag Bottle Container Container-reverse

Figure 15: Illustrations of pose estimation pipeline for the non-box objects. The top row shows the
scanned object model. The middle row shows bounding box calculation and pose definition. The
last row shows an example of ICP.

Pose estimation with Iterative Closest Point: To get the pose of the object as the observation of
the policy, we use Iterative Closest Point (ICP) which matches the current point cloud to a template
point cloud of the object [32]. We use the implementation from Open3D. For box objects, we simply
create a box shape template with measured size. For non-box objects, we use the scanned object
point clouds as mentioned above. Figure 16 shows an example of the results from ICP across an
episode. Figure 15 includes examples of ICP results for non-box objects potentially with partial
point cloud. More visualizations of ICP results can be found on the website.

Figure 16: Examples of pose estimation with ICP during an episode. The blue points are the ob-
served point cloud from the camera. The red points are the object template that matches to the
observed point cloud using ICP.

D.2 More information on the objects

To emphasize the diversity of the objects and demonstrate the generalization capability of the policy,
we include more descriptions on the objects in this section. In Table 4, we highlight the object
properties that are out of the ADR training distribution in bold. Box-0 is the default object that we
used to calibrate the simulator and to tune the low-level controller.
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Table 4: Real robot evaluations with more object information. We highlight the out-of-distribution
aspect of the object properties in bold.

Bounding Box  Weight Success  Success

Object-ID Box? Surface Material Dimension (cm) @ wio ADR  w/ ADR
Box-0 Yes Cardboard (15.0, 20.0, 5.0) 128 9/10 9/10
Box-0 + 4 erasers Yes Cardboard (15.0, 20.0, 5.0) 237 6/10 10/10
Box-0 + 8 erasers Yes Cardboard (15.0, 20.0, 5.0) 345 3/10 4/10
Box-1 Yes Cardboard (15.4,29.2,5.8) 130 5/10 8/10
Box-2 Yes Cardboard (15.3,22.2,7.4) 113 2/10 9/10
Box-3 Yes Cardboard with tape (16.5, 24.5, 5.2) 50 0/10 7/10
Toy Bag Almost Silicone (16.6,14.5,7.1) 203 8/10 7/10
Bottle No Plastic (16.3, 28.8, 9.0) 112 0/10 8/10
Container No Plastic (14.7,14.7, 8.1) 61 0/10 10/10
Container-reverse No Plastic (14.7,14.7, 8.1) 61 0/10 6/10
Average 33% 78%

The policy trained with ADR can generalize across physical properties such as weight and surface
friction. We stress test Box-0 with additional weights by putting four or eight erasers inside of
the box. The erasers can move in the box during execution, which is not modeled in simulation.
Although we do not have access to the true friction coefficient between the object and the table, the
difference in surface friction results in qualitatively different behavior of the object even among the
cardboard boxes. For example, Box-3 has tape on its surface which has much higher friction than
the others cardboard boxes. It tends to stick to the wall during execution. The toy bag has a similar
cross section as the box but the material is very different.

We also evaluate the policies with objects that are not similar to a box shape including a bottle and a
container. Due to the difference in shape, both objects result in different dynamics during execution.
In addition, with the same container object, starting it from different initial poses will also lead to
different object pose distribution. Videos can be found on the website. Nonetheless, the policy
trained with ADR shows reasonable generalization across these non-box objects.

D.3 Failure cases

In this section, we include discussions on the failure cases of the evaluation. We categorize the
failure cases into the following categories and discuss the potential reasons:

A failure case that happens before the initial contact:

» Missing initial contact: The robot is not able to reach the initial contact of the object to
rotate it. This is mostly due to the noise in pose estimation and the variations in object
dimension.

Failure cases that happen during the rotation:

* Object drops during rotation: The object drops to the table during rotation. One potential
reason for this failure case is that the finger slips on the object during rotation. Another
potential reason for this failure case is the insufficient rotation of the low-level controller
due to the sim2real gap (See Section D - Sim2Real gap of the low-level controller). In
the “dropping” strategy, the policy is supposed to rotate object and then let it drop on the
bottom finger. Before the dropping happens, the gripper needs to be rotated until the bottom
finger is below the object. Otherwise, the bottom finger will not be able to catch the object
and the object directly drops to the table.

* Repeated rotation: The robot repeatedly rotates and drops the object. This is different
from the previous failure case because the robot moves down with the object at the same
time. Our hypothesis for this failure case is that the policy gets stuck in a loop in the MDP.

* Joint limit: The robot hits a joint limit and the policy gets stuck at the joint limit.
Failure cases that happen after the rotation:

* Unexpected object dynamics: When the robot rotates the object, the object might move
in unexpected ways. This mostly happens for the non-box objects.
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» Stop reaching: Following the “standing” strategy, the policy successfully rotates the object
to a stable pose on the side of the object. However, it cannot reach the final grasping pose.
The gripper tries to move down to reach the pose but it collides with the object due to the
unexpected object dimension.

* Timeout: Since we use a fixed episode length during evaluation, sometimes the policy does
not have enough time to finish the task although it is very close to a success. This happens
when the policy spends time to recover from some failed attempts at the beginning of the
episode.

Videos on these failure cases can be found on the website. We summarize the counts of the failure
cases in Table 5 and Table 6. The most common failure case for the policy trained with ADR is
the repeated rotation. For the policy trained without ADR, the most common failure case is missing
the initial contact. Comparing the percentage of the failure cases between Table 5 and Table 6, we
observe that percentage of missing the initial contact and the percentage of stopping the reaching
motion drops drastically when the policy is trained with ADR because the policy is more robust to
variations in shape and dimensions.

Table 5: Failure cases for Policy w/ ADR during real robot evaluation. The most common failures
include dropping the object during rotation, repeated rotation, and unexpected object dynamics.

Initial Object Repeated Joint Unexpected Stop
contact drops rotation limit dynamics reaching
Box-0 0 1 0 0 0 0
Box-0 + 4 erasers 0
Box-0 + 8 erasers 0
Box-1 0
Box-2 0
Box-3 0
Toy Bag 0
1
0
0
1
8

Timeout

Bottle

Container
Container-reverse
Total

Percentage 4
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1
0
0
0
0
0
1
8
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%  28.5% 38.1% 4.8% 23.8%

e

Table 6: Failure cases for Policy w/o ADR during real robot evaluation. The most common failures
include missing the initial contact, repeated rotation and unexpected object dynamics.

Initial Object Repeated Joint Unexpected Stop

contact drops rotation limit dynamics reaching Timeout
Box-0 0 0 0 0 0 0 1
Box-0 + 4 erasers 1 2 0 0 1
Box-0 + 8 erasers 0 1 3 0 0 2 1
Box-1 2 0 2 0 1 0 0
Box-2 1 0 1 0 0 6 0
Box-3 10 0 0 0 0 0 0
Toy Bag 0 2 0 0 0 0 1
Bottle 6 0 0 0 4 0 0
Container 0 0 2 0 8 0 0
Container-reverse 1 1 6 0 1 0 1
Total 21 4 16 0 14 8 5
Percentage 30.9% 5.9% 23.5% 0.0% 20.6% 11.8% 7.3%
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