
A ImageNet-Texture

See Figures 7 and 8 for examples of the ImageNet-Texture dataset and their counterparts in the original
ImageNet dataset. The analysis of models pretrained on ImageNet and evaluated on ImageNet-Texture
is presented in Section A.2.

A.1 Examples
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Figure 7: Randomly picked images from our ImageNet-Texture dataset and their corresponding
original images from the ImageNet dataset.
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Figure 8: More randomly picked images from our ImageNet-Texture dataset and their corresponding
original images from the ImageNet dataset.
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A.2 Analysis

The proposed ImageNet-Texture dataset contains images with preserved texture information and
diminished shape information, which can be used to better understand how models behave when only
texture features are available. We evaluate the pretrained models provided in Pytorch model zoo 2 on
the ImageNet-Texture versus standard ImageNet and report the accuracy in Figure 9a. As shown in
the figure, VGG networks generally have a higher accuracy on the ImageNet-Texture dataset. For
the rest of the model architectures, we see a positive correlation between the standard accuracy and
texture accuracy.

We also plot the histogram of the classes with different accuracy based on a pretrained ResNet-50
model in Figure 9b, which achieves a relatively high accuracy, 9.3%, among all the models. The
class-based accuracy denotes the accuracy on the images of the same certain class. We find that on
the 343 out of 100 classes, the model can only achieve an accuracy smaller than 2.5%, which shows
that texture feature only is not sufficient to classify these classes. But we do notice a long tail of
the distribution. Specifically, 15 classes have an accuracy larger than 50%. Sample images of these
classes are demonstrated in Figure 10. Notably, texture plays an important role in distinguishing these
classes. Shape is often less well-defined in these classes, for example in window screen and rapeseed.

(a) (b)

Figure 9: (a) Accuracy on the ImageNet-Texture versus standard ImageNet with different model
architectures. (b) Histogram of accuracy on the individual ImageNet-Texture classes with ResNet-50.

B Discussion on the contrastive learning with non-semantic negatives

B.1 Comparison of two ways to apply α in NCE loss

Since the non-semantic negative samples play different roles from the original negative samples, we
introduce an additional parameter to control the penalty w.r.t. non-semantic negatives. There are two
straightforward alternatives to implement α, which we call Lin and Lout:

Lin = −
∑
i∈I

log
exp (zi · zp/τ)

exp (zi · zp/τ) + exp (αzi · zns/τ) +
∑

n∈N exp (zi · zn/τ)

Lout = −
∑
i∈I

log
exp (zi · zp/τ)

exp (zi · zp/τ) + α exp (zi · zns/τ) +
∑

n∈N exp (zi · zn/τ)

We compare the relative importance of different pairs play in the gradient w.r.t. zi:

∂Lin

∂zi
=

zp/τ exp (zi · zp/τ) + αzns/τ exp (αzi · zns/τ) +
∑

n∈N zn/τ exp (zi · zn/τ)

exp (zi · zp/τ) + exp (αzi · zns/τ) +
∑

n∈N exp (zi · zn/τ)
− zp/τ

2https://pytorch.org/vision/stable/models.html
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n01872401, echidna, 0.56 n01917289, brain coral, 0.52 n02892201, plaque, 0.64

n03042490, cliff dwelling, 0.54 n03207743, dishrag, 0.82 n03590841, jack-o'-lantern, 0.66

n03598930, jigsaw puzzle, 0.54 n03717622, manhole cover, 0.5 n03930313, picket fence, 0.54

n04275548, spider web, 0.52 n04435653, tile roof, 0.56 n04589890, window screen, 0.58

n07754684, jackfruit, 0.5 n11879895, rapeseed, 0.64 n12985857, coral fungus, 0.54

Figure 10: On some classes, a ResNet-50 model trained on the standard ImageNet dataset can achieve
> 50% accuracy when only texture features are available. For each class, one sample image and its
texture version are displayed. The caption of each image pair indicates the ImageNet class ID, class
name and ResNet-50 accuracy on the texture images.

∂Lout

∂zi
=

zp/τ exp (zi · zp/τ) + αzns/τ exp (zi · zns/τ) +
∑

n∈N zn/τ exp (zi · zn/τ)

exp (zi · zp/τ) + α exp (zi · zns/τ) +
∑

n∈N exp (zi · zn/τ)
− zp/τ

Since the denominator normalizes the 3 kinds of pairs equally, we only pay attention to the numerator.
The difference between Lout and Lin is that Lout has α inside the exponential. Because of the
exponential tail, it applies a exponentially larger weight to the negatives that are harder. Since
non-semantic negatives are often harder as shown in Figure 2, Lin regularizes the non-semantic
negatives more effectively than Lout. Note that the implementation of Lout is equivalent to using α
non-semantic negatives samples for each input image. In addition, the number of standard negative
|N | in the loss also affects the relative importance of non-semantic. The smaller |N | is, the larger
effect is played by the non-semantic negative.

B.2 Comparison of patch-based negatives and jigsaw-based pretext tasks

Our patch-based augmentation is also closely related to some of the self-supervised learning methods
which solve jigsaw as the pretext task. Specifically, [41] proposes to learn meaningful representations
through predicting the order of shuffled 3x3 patches of a given image. [39] further extends this idea
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to contrastive learning and learn representations that are invariant under such pre-text transformation.
[20] exploit the connection between local patches to learn the representations by fusing it with
contrastive predictive coding. The common idea behind these methods is to learn the representations
based on the correct configuration of the patches in the natural images. However, our patch-based
augmentation treats the entire image with unsorted patches as a wrong configuration of the a natural
image and use it as the negative samples in the contrastive learning.

C Experimental details and additional results

C.1 Implementation details

For ImageNet-1K dataset, we follow the official hyperparameters to MoCo-v2 [8]. For ImageNet-100
and STL-10 datasets, we follow [31] which uses a different memory bank size of 16384 and batch
size 128 during the pretraining. For linear evaluation, we adopt a learning rate 10.0, batch size 128,
and a learning schedule that decreases the learning rate by 0.1 at 30, 40, and 50 epochs. For BYOL
pretraining, we follow [16] to utilize the LARS optimizer with cosine learning rate schedule with
a global weight decay parameter of 10−6 and momentum of 0.9. We use a batch size of 1024 and
an initial learning rate 4.8. For both MoCo and BYOL, the non-semantic negatives are input to the
momentum branch. All of our models are trained on 4 GTX 1080 Ti gpus. Training single model
takes around 1.5 and 12 days on the ImageNet-100 and ImageNet-1K datasets respectively.

C.2 Results on ImageNet-C with different levels of severity

We show the accuracy of different MoCo-v2 models on the ImageNet-C-100 dataset with different
corruption severity levels in Table 5. Specifically, as we have seen in the main body of the paper, a
larger α often favors larger domain shift. This is further demonstrated by the fact that the model with
α = 3 outperforms the model with α = 2 on the highest corruption level 5.

Severity level 1 2 3 4 5

MoCo-v2 - k = 16384 65.58±0.32 53.41±0.27 42.31±0.31 31.87±0.31 22.22±0.20

+ Texture-base NS 66.00±0.47 54.11±0.43 42.96±0.41 32.23±0.26 22.60±0.23

+ Patch-base NS - α = 2 67.84±0.21 55.99±0.20 44.65±0.40 33.74±0.51 23.41±0.50

+ Patch-base NS - α = 3 65.82±0.04 54.95±0.13 44.10±0.17 33.67±0.25 23.71±0.28

MoCo-v2 - k = 8192 65.44±0.52 53.52±0.49 42.71±0.42 32.09±0.33 22.36±0.19

+ Patch-base NS - α = 2 68.01±0.01 56.26±0.12 45.04±0.28 34.16±0.34 23.92±0.27

Table 5: Top-1 accuracy on ImageNet-C-100 dataset with different levels of severity.

C.3 Additional ablations on the patch-based augmentations

C.3.1 Patch sizes

We show more results on the patch-based augmentations with different patch sizes by reporting the
test accuracy on the ImageNet-100 validation set and corresponding ImageNet-Sketch dataset in
Figure 11. Specifically, we sample patch sizes from uniform distributions d ∼ U(x, y) of different
interval [x, y]. We find that for the performance on the standard validation set, both the large or
smaller patch sizes cause a less desired accuracy. But for the ImageNet-Sketch dataset, the larger
patch sizes generally provide larger performance improvement. Our conjecture on this observation is
that using larger patch sizes prevents the model to learn some of the local features that are shared
between training and validation set while absent from the sketch dataset.

C.3.2 Data augmentations on individual patches

We test whether common data augmentation methods can be used to augment individual patches so
as to further improve the performance. We report the accuracy on the ImageNet-100 validation set
with the model trained with the patch-based negative samples in Table 6. The patches are potentially
augmented with horizontal flip or vertical flip with 50% probability, or rotation in 0◦, 90◦, 180◦ or
270◦ with 25% probability respectively. We find that for a larger patch size, i.e. d ∼ U(16, 72), such
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(a) Standard accuracy (b) Sketch accuracy

Figure 11: Test accuracy of patch-based non-semantic augmentations with patch sizes sampled from
different uniform distribution. The x-axis indicates the lower boundary of the sampling interval and
the y-axis indicates the higher boundary.

augmentations always downplay the accuracy. But for a smaller patch size, such augmentations,
especially with horizontal flip only, can improve the performance. For the larger patch size, we
conjecture that it is important to ensure that the patches to be identical to the certain part of the input
image. Therefore the non-semantic features are best preserved. However, for a smaller patch size,
such augmentations have a less impact on the captured non-semantic information.

Patch size No aug. + Horizontal flip + Vertical flip + Rotation

8 – 28 78.58 78.72 78.66 78.64
16 – 72 79.35 79.06 78.92 78.40

Table 6: Accuracy on ImageNet-100 validation set with different configurations of augmentations on
the individual patches. Augmentations are cumulative across the columns (e.g. the “+ Vertical flip”
model used horizontal and vertical flip).

C.4 BYOL with different kinds of negative samples

The proper way to add negative samples to BYOL is still an open research problem. In this section,
we provide additional experiments to demystify the role of non-semantic negative samples played
in BYOL. Specifically, we train BYOL with a regular negative that is randomly picked from the
same batch with the query sample excluded, or a regular negative as well as a patch-based non-
semantic negative. We report the accuracy on the ImageNet-100 variants in the Table 7. We find
that introducing a regular negative sample without further modification dramatically undermines
the performance, which demonstrates that the improved performance is due to the negative mining
strategy instead of adding an arbitrary negative sample.

ImageNet ImageNet-C ImageNet-S Stylized-ImageNet ImageNet-R

BYOL 78.76 44.43 35.84 15.01 39.53
+ Patch-based 78.81 44.60 36.76 15.52 41.16
+ Reg. 57.22 24.19 19.11 6.74 20.47
+ Patch-based and Reg. 57.24 24.37 20.11 6.60 20.95

Table 7: Top-1 accuracy of BYOL trained with different negatives on the ImageNet-100 datasets.

C.5 Hardness of texture-based negative samples

We show the distribution of similarities between the representations of input image versus different
paired samples in Figure 12. The similarities are calculated by the models trained without (blue) and
with (red) texture-based negative samples. We use α = 2 when texture-based negative samples are
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adopted. Comparing with Figure 3, the regularization of texture-based negative samples is generally
weaker than the patch-based negative samples. For example, the average similarity w.r.t patch-based
negative samples decrease from 0.4040 to 0.3677 when using texture-based negative samples for
training, which is 0.3252 when using patch-based negative samples.

(a) Positive (b) Negative (c) Texture-based NS (d) Patch-based NS

Figure 12: The histogram of cosine similarity between the representations of different kinds of pairs
using models trained without (blue) and with (red) texture-based negative samples.

C.6 Hardness of patch-based negative samples using models trained with different α

We show the distribution of similarities calculated by the models trained with patch-based negative
samples and different α in Figure 13. When α increases from 0 to 5, we see a larger penalty on the
similarities to both patch-based and texture-based negative samples. When α = 5, the distributions of
two negative samples are close to a normal distribution like the distribution of the standard negative
samples. Specifically, the average similarity w.r.t. the patch-based negative samples further decreases
to 0.4040 to 0.1184. In terms of the original pretext task, we find that the distribution of both standard
negative and positive samples become wider and less concentrated to 0 and 1 respectively. This shows
that a larger α makes the optimization of the original objective more difficult.

C.7 More results on ImageNet-1K

ImageNet ImageNet-C ImageNet-S Stylized ImageNet-R

MoCo-v2 [8] 67.60 87.7 17.47 5.55 27.81
+ MoCHi (128,1024,512) [31] 66.62 90.0 16.00 5.32 25.29
+ MoCHi (512,1024,512) [31] 67.56 88.7 16.32 5.94 25.71
+ Patch-base NS - α = 2, k = 65536 67.92 87.6 18.58 6.34 28.95
+ Patch-base NS - α = 3, k = 65536 60.80 92.1 18.79 6.80 28.11
+ Patch-base NS - α = 2, k = 32768 67.83 87.2 18.70 6.06 28.50
+ Patch-base NS - α = 2, k = 16384 67.34 87.5 19.49 6.49 29.45

Table 8: Top-1 accuracy on the ImageNet-1K dataset and its sketch, stylized, rendition variants, and
mCE on the ImageNet-C dataset.

We show more results on the ImageNet-1K dataset using MoCo-v2 models trained with patch-based
negative samples in Table 8. We also report the other released MoChi model 3, and the different
hyperparameters are indicated following the model name in the table. For our method, we focus on
the models when a larger penalty on the similarity w.r.t. the patch-based negative samples is added.
Specifically, we report the results with a larger α = 3 and smaller memory bank sizes k = 32768
or k = 16384. As shown in the table, increasing the penalty stably improves the generalization
under OOD settings. For example, when α = 2 and k = 16384, the accuracy on ImageNet-S and
ImageNet-R increase from 17.47 to 19.49 and 27.81 to 29.45 respectively.

3https://europe.naverlabs.com/research/computer-vision/mochi/
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(a) Positive (b) Negative (c) Texture-based NS (d) Patch-based NS

Figure 13: The histogram of cosine similarity between the representations of different kinds of pairs
using models trained with patch-based negative samples and different α values from 0 (top) to 5
(bottom).
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