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B EXTENDED RELATED WORK.

Overview of Recent work The recent work of Adebayo et al. (2020) presents debugging tests for
assessing feature attribution methods. The spurious correlation setting that we consider here fits
under their framework. However, they only consider feature attribution methods. Here we extend this
analysis to concept and training point ranking methods. Critically, Adebayo et al. (2020) show that
feature attributions are able to identify spurious training signals. We make a similar finding in this
work; however, we further demonstrate this finding for concept and training point ranking methods.
Our work takes important departures from theirs: 1) we explain the source of this phenomenon, and 2)
we demonstrate that naive application of these methods might be unable to detect spurious correlation
in practice. Adebayo et al. (2020) assume the spurious correlation training bug is known, a priori;
however, here we demonstrate that the more challenging task is identifying the spurious signal in the
first place.

More recently, Han et al. (2020) demonstrate that training point ranking via influence functions
is able to identify the dependence of an NLP model on dataset artifacts. In addition, they show
correspondence between the insights observed with the input-gradient feature attribution and the
training point ranking. Along similar lines, Guo et al. (2020) present fast approximations for
computing the training point ranking for a test point. In addition, they show how to identify and
correct model errors in a natural language task. Similar to the distinctions that we note with the work
by Adebayo et al. (2020) above, here, they also assume that the spurious signal being identified is
known a priori.

Post hoc explanations, more generally, have been shown to be able to identify a model’s reliance on
spurious training signals (Ribeiro et al., 2016; Meng et al., 2018; Lapuschkin et al., 2019; DeGrave
et al., 2020; Ross et al., 2017). Recent work by Rieger et al. (2020) showed that regularizing
model attributions during training can help lead to models that avoid spurious correlation and enable
improved debugging by experts. Similarly, Erion et al. (2019) show that regularizing the expected
gradient attribution during training confers similar benefits. Koh and Liang (2017) used influence
functions to identify domain shift. Kim et al. (2018) also perform a user study to understand if
attribution methods can be used for catch spurious correlation.

However, similar methods have also been shown to struggle in the hands of end-users for diagnosing
model errors (Alqaraawi et al., 2020; Adebayo et al., 2020). This contradiction reflects the challenge
that we explore in this work. Often, post hoc explanations have been shown to be effective for
identifying spurious signals that were suspected or known a priori; however, these methods seem to
struggle when confronted with the task of identifying an unexpected spurious signal.

Increasingly, insights into why overparametrized DNNs rely on spurious training set signals is starting
to be theoretically and empirically analyzed (Sagawa et al., 2019; 2020; Khani and Liang, 2020;
Nagarajan et al., 2020), yet it is still unclear how to reliably detect that a model is relying on such
signals prior to model deployment.

Assessing whether a post hoc explanation approach is faithful to the underlying model being explained
has been addressed in recent works, yet this challenge remains elusive (Hooker et al., 2019; Tomsett
et al., 2020). Generally, the class of approaches that modify backpropagation with positive aggregation
have been shown to be invariant to the higher layer parameters of a DNN (Mahendran and Vedaldi,
2016; Nie et al., 2018; Adebayo et al., 2018; Sixt et al., 2019). In an intriguing demonstration, Srinivas
and Fleuret (2021) show that the input-gradient, a key feature attribution primitive, might not capture
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discriminative signals about input sensitivity. Instead they show that input-gradient likely captures
the ability of the model to be able to generate class-conditional inputs.

User studies are typically the classic approach for evaluating the effective of an explanation (Doshi-
Velez and Kim, 2017). Poursabzi-Sangdeh et al. (2018) manipulate the features of a predictive
model trained to predict housing prices to assess how well end-users can identify model mistakes.
Their results indicate that users found it challenging to debug these linear models with the model
coefficients. Recent work by Chu et al. (2020) and Shen and Huang (2020) has shown similar results
in the DNN setting as well. Alqaraawi et al. (2020) find that the LRP explanation method improves
participant understanding of model behavior for an image classification task, but provides limited
utility to end-users when predicting the model’s output on new inputs.

Post hoc explanations have been shown to be fragile and very easily manipulated Ghorbani et al.
(2019a); Heo et al. (2019); Dombrowski et al. (2019); Anders et al. (2020); Slack et al. (2020);
Lakkaraju and Bastani (2020). Our work tackles a difference concern: whether they are suitable for
detecting unexpected spurious training set signals.

Yeh et al. (2020) and Ghorbani et al. (2019b) both present approaches to automatically discover
concepts and quantify a model’s dependence on these concepts. These approaches are promising
directions for addressing the challenge we identify in this work. Ghorbani et al. (2019b)’s approach,
ACE, segments input images and clusters to discover inherent clusters. We present some analysis
on this approach in the appendix. Critically, this approach would identify spurious signals that
the underlying segmentation algorithm can discover such the image tag, but not the blur or other
visually imperceptible features. Koh et al. (2020) and Chen et al. (2020) present approaches that learn
DNN models whose features inherently map onto concepts of interest. In this work, we assume the
model is given, focusing on post hoc explanations for models that are not inherently interpretable.
Recent work at the intersection of causal inference and explanations might also open up avenues
to help reveal unexpected confounding, some of which could be unknown spurious signals. Along
this line, (Bahadori and Heckerman, 2021) present an instrumental variable approach for debiasing
concept based explanations that might be confounded. Kazhdan et al. (2020) present CME, an
approach identify the important concepts that can help improve a model’s performance.

We rely on Guo et al. (2020) for fast approximations for computing the training point ranking for
a test point. In addition, they show how to identify and correct model errors in a natural language
task.However, Basu et al. (2020) show influence functions for DNNs are fragile and perhaps
inaccurate for deeper networks.

Other recent work has cast doubt on the utility of trying to explain ‘traditionally’ trained deep network
models. For example, Srinivas and Fleuret (2021) show that the input-gradient might not reflect
the discriminative capabilities of a DNN, but instead encode for an implicit density model. More
recently, Shah et al. (2021) show that the input and loss gradients of traditionally trained models do
not indicate the importance features that a DNN model relies on for its output—a phenomenon they
term feature inversion. Further they show that adversarially trained models do not exhibit feature
inversion. Taken together these results might explain some of the counter intuitive findings that we
observe even when the spurious signal is known since we only consider non-adversarially trained
models in this work. Along a different direction, post hoc explanations have been shown to be fragile
and very easily manipulated Ghorbani et al. (2019a); Heo et al. (2019); Dombrowski et al. (2019);
Anders et al. (2020); Slack et al. (2020); Lakkaraju and Bastani (2020).

C DETAILED OVERVIEW OF EXPLANATION METHODS

In this section, we provide additional implementation details for the explanation methods that we
consider in this work. To start with the model setup: let’s say we are given input-output pairs,
{xi, yi}ni , where x ∈ X and y ∈ Y; and a classifier’s goal is to learn a function, fθ : X → Y that
generalizes to new inputs via empirical risk minimization (ERM). In this work, we assume that fθ is
an over-parametrized deep neural network (DNN) trained on image data for classification (C classes).

We plan to release our larger codebase with the paper; however, in lieu of this we include a zip folder
that includes representative implementations. For each of the explanation methods described here, we
implement them from scratch and then compare to open-source libraries that also implement these
methods. We found that our results for both settings is comparable.
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Feature Attributions. An attribution functional, E : F ×Rd×R→ Rd, maps the input, xi ∈ Rd,
the model, fθ, output, fk(x), to an attribution map, Mxi

∈ Rd. The class of feature attribution
methods is large, so in this work we pick: Input Gradient, SmoothGrad, Integrated Gradients, and
Guided Backprop. We choose these approaches since they were the top-ranked methods tested under
the spurious correlation setting of Adebayo et al. (2020).

1. The Input-Gradient (Gradient) Simonyan et al. (2014); Baehrens et al. (2010) map,
|∇xi

Fi(xi)|, is a key primitive upon which several other methods are based.
2. SmoothGrad Smilkov et al. (2017) corresponds to the average of noisy input gradients:
Msg(x) = 1

N

∑N
i=1∇xi

Fi(xi + ni) where ni is sampled according to a random Gaussian
noise. We considered 50 noisy inputs, selected the standard deviation of the noise to be
0.15 ∗ input range. Here input range refers to the difference between the maximum and
minimum value in the input.

3. Integrated Gradients ( Sundararajan et al. (2017)) sums input gradients along an in-
terpolation path from the “baseline input”, x̄, to xi: MIntGrad(xi) = (xi − x̄) ×∫ 1

0
∂S(x̄+α(xi−x̄))

∂xi
dα. For integrated gradients we set the baseline input to be a vector

containing the minimum possible values across all input dimensions. This often corresponds
an all-black image. The choice of a baseline for IntGrad is not without controversy; however,
we follow this setup since it is one of the more widely used baselines for image data.

4. Guided Backpropagation (GBP) Springenberg et al. (2014) modifies the backpropagation
process at ReLU units in DNNs. Let, a = max(0, b), then for a backward pass, ∂l

∂s =

1s>0
∂l
∂b , where l is a function of s. For GBP, ∂l∂s = 1s>01 ∂l

∂s>0
∂l
∂b .

Feature Attributions: Implementation. We implement all of these methods from scratch in the
PyTorch framework and also compare our implementations to the output of the Captum (PyTorch).

Concept-Based Approaches. We now discuss additional implementation details of our concept
based approach. We select the TCAV approach to quantify the sensitivity of a DNN model’s class
score to user provided inputs represent a particular class. Given hidden representations, hl, from a
particular layer of a DNN for for images belonging to concept class C. We can derive the sensitivity
score as: ∇hl,k(fl(x)).θlc. The previous expression indicates the sensitivity of the class score (logit)
for class k to inputs indicating concept, C, given hidden representations from layer l from the DNN f .
The concept vector, θlc, typically corresponds to a the weights of a linear classifier trained to separate
the images for a particular concept class from or images.

For completeness, we show in Figure 20 an overview of the clinical concepts that we consider in this
work. These are the representative clinical attributes that a radiologist would inspect to ascertain the
bone age of a particular input. These concepts are: DIP, PIP, MCP, Radius, Ulna, and Wrist.

Concept Implementation. To compute the TCAV score for each concept, we collect representa-
tions from all hidden ‘layers’ of the model and train linear models to obtains the concept vector for
the corresponding attribute. We then compute the class sensitivity score for each concept attribute.
We train the linear model 100 times and perform statistical significance testing in order to mitigate
the case where a spurious concept is selected. For each concept class, we use 325 images that part
of the training, validation, or test sets. These new set of images were annotated by a board certified
radiology with the clinical bone age regions (MCP, PIP, DIP etc) that we chose.

Influence Functions for Training Point Ranking. The final kind of interpretation that we consider
is training point ranking via influence functions. In the case of training point ranking via influence
functions, we rank the training samples, in terms of ‘influence’, on the loss of a test example.
Specifically, if we up-weighted a training point and retrained the model, then by how much would
the loss on a given test example change? Koh and Liang (2017) analytically derive the analytically
formulas for computing this quantity. Given a test point, xt, the influence of a training point, xi, on
the test loss is: I(xt, xi) = −∇θ`(xt, θ̂)>H−1

θ̂
∇θ`(xi, θ̂), where H is the empirical Hessian of the

loss.

Estimating the influence requires computing hessian-vector products, so it can be difficult to scale to
model with large number of parameters, and recent work has shown that influence estimate for test
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points for deep networks can be inaccurate due to non-convexity (Basu et al., 2020). Consequently,
we estimate influence on a linear model student network trained to mimic the original DNN. We
empirically verify that the predictions of the student network seem to mimic the original DNN.

Implementation Details. There are two other training point ranking methods that we also consider
in this work (Yeh et al., 2018; Pruthi et al., 2020). For 150 inputs in the test set, we compare
the Spearman rank correlation of the training point due to Influence Functions to these other two
approaches. We obtain mean values of 0.88, and 0.76 respectively, which suggests high similarity
amongst these approaches. Ultimately, we chose to present the main results in the draft for the
training point ranking due to influence functions approach.

We rely on the fast influence heuristic of (Guo et al., 2020) to speed up the influence ranking
computations. We were able to obtain a 5-10X speed in doing so. In addition, we trained a student
multi-class logistic regression model to mimic the original model for each model we want to compute
influence for. Here for all training points, we collect embeddings across all layers and pass these
embedding through a random projection to obtain a 1000-dimensional approximation. We then train
linear models to mimic the original deep network using these features. The correlation between the
output of the student models and the original teacher models was found to be 0.87. Ultimately, we
went with the fast influence implementation of (Guo et al., 2020).

C.1 ADDITIONAL DETAILS ON METRICS

D HOW ARE THE APPROACHES TESTED USED IN PRACTICE?

Feature Attributions To understand or debug a model, a practitioner would have to inspect, one
sample at a time, the attribution of a collection of inputs. In inspecting these attributions, the
practitioner can then form an hypothesis about the behavior of the model on certain inputs. Along
these lines, to detect a model’s reliance on spurious signals with feature attributions, one of the
following must occur: i) The practitioner should inspect attributions for inputs that contain the
spurious signal and notice that the spurious signal constitute the key feature for a model’s output
decision or ii) The practitioner should inspect attributions for inputs that do not contain the spurious
signal and notice ‘an issue’ with these attributions. In addition, the output decision to be explained
has to also be the class for which the spurious signal encodes for. For example, in our experiments
the hospital tag encodes for the pre-puberty class. These two settings are exactly what we measure
with the SSIM metric in our analysis for feature attributions.

Concept Activation these classes of approaches measure the dependence of a particular class to a
user provided concept. For example, one could measure the pre-puberty class’ dependence on the
hospital tag concept. As part of this approach, the hospital tag is user defined, and it is up to the
practitioner to decide whether to test this concept. Other concepts include low frequency signals,
patches of the image, color dimensions, or even any conceivable high-level concept the practitioner is
interested in. For example, in the bone-age model, the concepts DIP, PIP, MCP, Wrist etc, are user
defined clinical concepts that we chose and which are well specified for this setting.

For each concept of interest, the practitioner collects input examples that have this concept. For
example, to test a model’s dependence on a hospital tag, we collect images that all have hospital tags
in them. Given this collection of examples, the TCAV approach can then be used to calculate a score,
TCAV score, that corresponds to the sensitivity of a particular output class to the input concept. The
key insight that makes the TCAV approach susceptible to the limitations we point out are 1) it is up to
the practitioner to decide which concept to test, and 2) our findings suggests that unless the spurious
signal is explicitly tested, the TCAV scores for other concepts do not indicate that a model is reliant
on a spurious signal. We note that even though we show all the concept scores in a single bar chart,
these concepts are actually tested independently.

Training Point Ranking These class of approaches ranks all training points by influence on the
test loss of an input. Qualitatively, if a training point has a high influence on the test loss of an
input, it means that if the model were re-trained without that training point, the test loss of that test
point would change significantly. Intuitively, the most highly ranked training points for a given test
input should also be points for which the model relies on semantically similar features. For example,
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one would expect the most highly ranked training points for a pre-puberty test-input to be other
pre-puberty inputs as well (assuming a model has learned the right semantic features)

To use this approach to identify spurious signals, one would have to inspect an input that contains
the spurious signal and further notice that the top ranked training inputs also include the training
signal. Specifically, to test that a model is relying on the hospital tag to identify pre-puberty inputs
one would have to use a test-input that has a hospital tag and then notice that all the top ranked inputs
also have hospital tags. The crux of our argument is that the choice and decision to use a test-input
with an hospital tag is the critical choice underlying whether the training point ranking methods can
be used to effectively detect a model’s reliance on spurious signals. One measure of reliability for an
influence function approach is the ICM metric that we compute in the paper.

Taken together, in the scenario where a practitioner is handed a model and asked to assess whether
it relies on any spurious signal, detecting a model’s reliance spurious signals requires that the
practitioner know which specific signals to test ahead of time.

E MODEL TRAINING & DATASET PROCESSING

Bone Age Dataset We consider the high stakes task of predicting the bone age category from a
radiograph to one of five classes based on age: Infancy/Toddler, Pre-Puberty, Early/MiD Puberty,
Late Puberty, and Post Puberty. This task is one that is routinely performed by radiologists and as
been previously studied with a variety of DNN. The dataset we use is derived from the Pediatric
Bone Age Machine learning challenge conducted by the radiological society of North America in
2017 Halabi et al. (2019). The dataset consists of 12282 training, 1425 validation, and 200 test
samples. We resize all images to (299 by 299) grayscale images for model training. We note here
that the training, validation, and test set splits correspond to similar splits used for the competition, so
we retain this split.

ModelRadiograph

• Infancy/Toddler 
• Pre-Puberty 
• Early/Mid Puberty 
• Late Puberty 
• Post Puberty

Output

Figure 6: Illustration of the Bone Age
Task.

Knee Dataset We also consider the high stakes task of
predicting the Kellgren and Lawrence (KL) grade of os-
teoarthritis based on Knee Xrays. The KL grade ranges
from the integers 0 to 4; 5 classes, so we treat it as a classi-
fication task. The Knee Radiographs are obtained from the
open source release by Chen et al. (2019) and consists of
5778 training samples, 826 validation samples, and 1656
test samples. Again here, we follow Chen et al. (2019)
data splits. The images were resized to be 299 by 299
pixels.

Dog Dataset The third dataset that we use in this work
is the dog breed classification dataset that is a combination
of Stanford dogs dataset Khosla et al. (2011) and the Oxford Cats and Dogs datasets Parkhi et al.
(2012b) following Adebayo et al. (2020). Similarly, we restrict our attention to 10 dog classes: Beagle,
Boxer, Chihuahua, Newfoundland, Saint Bernard, Pugs, Pomeranian, Great Pyrenees, Yorkshire
Terrier, Wheaten Terrier. Instead of the background spurious signal ofAdebayo et al. (2020), we focus
instead on the three spurious signals tested in this work.

Models We consider two different kinds of models: i) a small vanilla DNN based on Raghu et al.
(2019), and a Resnet-50 model. The small DNN consists of: conv-relu-batchnorm-maxpooling
operation successively, and two fully connected layers at the end. All convolutional kernels have
stride 1, and kernel size 5. We train this model with SGD with momentum (set to 0.9) and an initial
learning rate of 0.01. We use a learning rate scheduler that decays the learning rate every 10 epochs
by γ = 0.1.

Hyper-Parameter Tuning for Model Training We used the Ray Tune library for hyper-parameter
tuning of all the models used in this work. For the ResNet-50, we tuned with Ray, but the best
performing models retained the default parameter settings. In the case of the Small DNN model, we
tune the batch size, and learning rate with the validation set.
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Compute We perform all of our experiments on a VM with 60GB of RAM and a k80 GPU on
Google Cloud.

A Note about random seeds and Model Runs. We train 5 models each (different random seeds)
for each category and in the following tables the average performance metrics for these models. We
found that the standard error of the mean for typically between 0.01− 0.05, so we omit these in the
tables to improve readability.

F ADDITIONAL RESULTS: FEATURE ATTRIBUTIONS

In a series of subsequent figures with this appendix. We show additional saliency visualizations for
settings considered in the main text. Here show a single visualization for the bone age setting since
we found that the saliency attributions for such setting were quite faint. Overall we obtain similar
results between the knee and bone age datasets, so we opt to show the bone age visualizations here
instead.

Input

Gradient

SG

IG

GBP

A: Normal Model Spurious Tag Inputs B: Spurious Tag Model on ‘Normal’ Inputs C: Spurious Tag Model on Spurious Tag Inputs

Figure 7: Detecting Spurious Tag. Here we show in A) Feature attributions for 5 different inputs
across the four feature attribution methods with a normal model but with spurious Tag inputs; B)
Feature attributions on the same 5 inputs as in (A), but without spurious Tag inputs with a model that
has learned a spurious alignment between Pre-Puberty and Tag; C) Feature attributions on the same 5
inputs as in (A), but with the spurious Tag inputs with a model that has learned a spurious alignment
between Pre-Puberty and Tag.

G ADDITIONAL RESULTS: CONCEPTS APPROACHES

Normal Model compared to radiologist Concept Ranking For each of the 100 re-runs, we
computed the rank correlation between the concept ranking for the normal model and rankings
provided by a board certified radiologist.

Concepts for Dogs and Bone Age. We consider TCAV for the bone age and dog breeds task.
For bone age, we choose as concepts the partitions of a hand, which correspond to the parts of the
hand a radiologist would inspect to ascertain the age from a radiograph. We show, in Figure 20,
a representation of these concepts. In the dog breeds classification task, consider concepts related
floppiness of the ear, erectness of the ear, the dog head type, and color.

We manually collect data on the dog breed concept. Here we showed Amazon mechanical Turkers an
image from each class (10 classes) and then asked them to indicate whether each specific dog class
had floppy ears or not, erect ears or not, single colored or not etc. We normalize each attribute to be
binary and apply each concept broadly across each class.

Discussion on ACE . The ACE concept approach segments an image and uses the image segments
as concepts as part of a TCAV pipeline. In an experimental analysis, we segment the spurious images
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A: Normal Model Spurious Stripe Inputs B: Spurious Stripe Model on ‘Normal’ Inputs C: Spurious Stripe Model on Spurious Stripe Inputs

Figure 8: Detecting Spurious Stripe. Here we show in A) Feature attributions for 5 different inputs
across the four feature attribution methods with a normal model but with spurious Stripes inputs; B)
Feature attributions on the same 5 inputs as in (A), but without the spurious Stripe with a model that
has learned a spurious alignment between Pre-Puberty and Stripe; C) Feature attributions on the same
5 inputs as in (A), but with the spurious Stripe with a model that has learned a spurious alignment
between Pre-Puberty and Stripe.

Input

Gradient

SG

IG

GBP

A: Normal Model Spurious Blur Inputs B: Spurious Blur Model on ‘Normal’ Inputs C: Spurious Blur Model on Spurious Blur Inputs

Figure 9: Detecting Spurious Blur. Here we show in A) Feature attributions for 5 different inputs
across the four feature attribution methods with a normal model but with spurious Blur inputs; B)
Feature attributions on the same 5 inputs as in (A), but without the spurious Blur with a model that
has learned a spurious alignment between Pre-Puberty and Blur; C) Feature attributions on the same
5 inputs as in (A), but with the spurious blur with a model that has learned a spurious alignment
between Pre-Puberty and Blur.

using the various segmentation algorithms in algorithm to identify how often the spurious signal is
selected as a distinct segment. We found segmentation to be ineffective in the stripe and blur settings.
For the spurious tag, we found segmentation to be effective in only 25 percent of the examples tested,
which suggests that the underlying segmentation algorithm as part of ACE might be ineffective for
detecting hidden spurious signals.

H ADDITIONAL RESULTS: INFLUENCE FUNCTIONS

In Figure 22, we show the influence metric that we computed in the main text for the small DNN
model for the Knee Arthritis prediction. In this task, the spurious signal is always aligned with the
Grade 2 class. Here again, we see that in the spurious settings each metric actually improves.
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Grade 0 Grade 1 Grade 2 Grade 3 Grade 4

Figure 10: Spurious Images for Spurious Knee Model Examples

I USER STUDY DISCUSSION

In this section we present additional results of the user study along with break down of some
demographic information about the participants.

Gender Counts

Male 130
Female 62

N/A 8

Table 5: Gender Breakdown across participants.

ML Background Counts

ML Researcher 30
ML Practitioner 21

Major Familiarity with ML 50
Limited Familiarity 47

No Familiarity 52

Table 6: Machine Learning Experience Breakdown across participants.
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We now provide additional tables for the the feature attribution metrics from the main text.

Metric Gradient SmoothGrad Integrated Gradients Guided BackProp
SISM-GT 0.68 0.74 0.62 0.92

SEM 0.0091 0.017 0.019 0.0038
NISM-SISM 0.0013 8.8e-4 0.07 0.37

SEM 0.0012 0.0082 0.076 0.059

Table 7: Metrics for Bone Age Spurious Tag Model.

Metric Gradient SmoothGrad Integrated Gradients Guided BackProp
SISM-GT 0.78 0.68 0.59 0.89

SEM 0.0011 0.012 0.019 0.0088
NISM-SISM 0.0013 7.2e-5 0.17 0.46

SEM 0.0016 0.0032 0.026 0.029

Table 8: Metrics for Bone Age Spurious Stripe Model.

Metric Gradient SmoothGrad Integrated Gradients Guided BackProp
SISM-GT 0.7 0.84 0.49 0.92

SEM 0.001 0.02 0.06 0.008
NISM-SISM 0.0013 2.4e-4 0.21 0.86

SEM 0.006 0.002 0.06 0.09

Table 9: Metrics for Bone Age Spurious Blur Model.

Table 10: Performance metrics for each attribution method across tasks for the Tag Setting.
Method Bone Age Knee Dog Breed

Grad SG IG GBP Grad SG IG GBP Grad SG IG GBP
K-SSD 0.65 0.66 0.67 0.81 0.51 0.49 0.47 0.76 0.71 0.76 0.79 0.88
CCM 0.37 0.39 0.35 0.75 0.32 0.33 0.35 0.66 0.42 0.41 0.39 0.64
FAM 0.51 0.55 0.53 0.68 0.46 0.47 0.45 0.69 0.59 0.64 0.68 0.73

Table 11: Performance metrics for each attribution method across tasks for the Blur Setting.
Method Bone Age Knee Dog Breed

Grad SG IG GBP Grad SG IG GBP Grad SG IG GBP
K-SSD 0.21 0.20 0.19 0.13 0.13 0.18 0.17 0.31 0.29 0.30 0.31 0.35
CCM 0.28 0.29 0.24 0.64 0.23 0.22 0.27 0.67 0.38 0.33 0.35 0.71
FAM 0.48 0.49 0.47 0.51 0.36 0.38 0.33 0.58 0.55 0.56 0.47 0.73
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Input Grad SmoothGrad IG GBP

Figure 11: Normal Model on Normal Images
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Input Grad SmoothGrad IG GBP

Figure 12: Normal Model on Spurious Blur Images
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Input Grad SmoothGrad IG GBP

Figure 13: Normal Model on Spurious Stripe Images
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Input Grad SmoothGrad IG GBP

Figure 14: Normal Model on Spurious Tag Images
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Input Grad SmoothGrad IG GBP

Figure 15: Spurious Stripe Model on Normal Images
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Input Grad SmoothGrad IG GBP

Figure 16: Spurious Tag Model on Normal Images
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Input Grad SmoothGrad IG GBP

Figure 17: Spurious Stripe Model on Spurious Stripe Images
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Input Grad SmoothGrad IG GBP

Figure 18: Spurious Tag Model on Spurious Tag Images
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Figure 19: Results for Concept Ranking for another run of a normal and spurious bone age models.

Figure 20: Concept Partition for Bone Age Example. Here we show how we partition a single
instance into its constituent clinical concept components.

Figure 21: Influence Function Results. Here we show the identical class metric (ICM) (Hanawa
et al., 2020) for a normal model and models that rely on the three spurious signals tested in this work.
ICM measures what fractions of the top training inputs for a given test example belong to the same
class as the true class of the test example in question.

Figure 22: Influence Functions Results for Knee Settings.
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Figure 23: Box plots of User responses.
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