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ABSTRACT

Diffusion models have achieved remarkable success in image generation, partic-
ularly with the various applications of classifier-free guidance conditional diffu-
sion models. While many diffusion models perform well when controlling for
particular aspect among style, character, and interaction, they struggle with fine-
grained control due to dataset limitations and intricate model architecture design.
This paper introduces a novel algorithm, Aggregation of Multi Diffusion Mod-
els (AMDM), which synthesizes features from multiple diffusion models into a
specified model, enhancing its learned representations to activate specific features
for fine-grained control. AMDM consists of two key components: spherical ag-
gregation and manifold optimization. Spherical aggregation merges intermedi-
ate variables from different diffusion models with minimal manifold deviation,
while manifold optimization refines these variables to align with the intermediate
data manifold, enhancing sampling quality. Experimental results demonstrate that
AMDM significantly improves fine-grained control without additional training or
inference time, proving its effectiveness. Additionally, it reveals that diffusion
models initially focus on features such as position, attributes, and style, with later
stages improving generation quality and consistency. AMDM offers a new per-
spective for tackling the challenges of fine-grained conditional control generation
in diffusion models: We can fully utilize existing conditional diffusion models that
control specific aspects, or develop new ones, and then aggregate them using the
AMDM algorithm. This eliminates the need for constructing complex datasets,
designing intricate model architectures, and incurring high training costs. Code is
available at: https://github.com/Hammour—-steak/AMDM.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., [2015; Ho et al., [2020; |Song et al., 2021ajb; [Karras et al.,
2022) are designed to establish a relationship between data and noise, utilizing neural networks to
learn the reverse process (Anderson, |1982). This enables the generation of data from random noise,
showcasing exceptional performance in generative tasks. In practical applications like Text-to-Image
(T2I) (Nichol et al., 2022; |Chen et al.| 2023 |Lee et al., [2024} | Xu et al., 2024) and Image-to-Image
(I2]) (Zhang et al., 2023} Mou et al.,2024) generation, conditional diffusion models (Rombach et al.,
2022; |Chung et al.|, |2023; [Esser et al., 2024) are widely used. These models achieve state-of-the-
art results and provide highly flexible conditional control, making them a central focus in current
research.

Recent research on conditional diffusion models has focused on achieving fine-grained control over
image generation. However, maintaining consistency across diverse nuanced control, including ob-
ject attributes (Wu et al.,2023aj; Wang et al.,2024a)), interactions (Hoe et al.,|2024; Jia et al.||2024),
layouts (Zheng et al.l 2023; (Chai et al., 2023} [Chen et al., [2024b)), and style (Wang et al.l 2023;
Huang et al.,2024; |Q1 et al.,[2024)), remains a significant challenge. Generating multiple objects with
overlapping bounding boxes can lead to attribute leakage, where one object’s description inappropri-
ately influences others, causing inconsistencies between objects and the background. Fine-grained
interaction details may be illogical, and style integration may compromise object attributes.

Existing approaches only partially address these issues due to the inherent complexity and
diversity of fine-grained control, coupled with limitations in datasets and model architec-
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tures. Some works (Li et al) 2023 [Zhou et al.) [2024; |Wang et all |2024b) may per-
form well in preventing attribute leakage among multiple instances during layout genera-
tion but perform poorly in managing object interactions, while others (Ye et al| 2023}
Huang et all [2024) may excel in style transfer but exhibit limited control over layout.
Interestingly, most of these methods are based

on Stable Diffusion (Rombach et al.l 2022), Manifold

which is theoretically grounded in the DDPM Optimization

(Ho et al. 2020) and classifier-free guidance
(Dhariwal & Nichol, 2021) for conditional con-

trol. Therefore, for these conditional diffusion Spherical
models grounded in the same theoretical foun- ~ Ad9regation
dation, our objective is to overcome this chal-
lenge by developing a method that effectively
aggregates the advantages of each model, lever-
aging their unique strengths to achieve fine-
grained control.

This paper proposes a novel algorithm called
Aggregation of Multi Diffusion Models
(AMDM), as shown in Figure [ AMDM
aggregates intermediate variables from differ-
ent conditional diffusion models which based Figure 1: Geometry of AMDM. The process of
on the same theoretical foundation, into a aggregating features from model py, into model
specific model during inference. This approach py, involves two main stages: spherical aggrega-
enhances learned representations by absorbing tion and manifold optimization. The AMDM al-
characteristics from different models, regard- gorithm is utilized to incorporate conditional in-
less of variations in architecture or training formation during the initial steps of the sampling
datasets, without requiring additional training, process. Direct sampling is then applied to expe-
avoiding the need for complex datasets and dite the process and generate high-quality images.
intricate model designs.  Our experiments

show that our proposed algorithm AMDM

significantly improves the fine-grained generation capability of a specific conditional diffusion
model. Furthermore, it demonstrate that diffusion models with a shared theoretical foundation
possess the same mathematical essence, allowing operations on their intermediate variables, while
also revealing a phenomenon where early sampling steps focus on generating diverse features, and
later stages prioritize quality and consistency.

Our main contributions are as follows:

* We propose a novel diffusion model aggregation algorithm AMDM that can aggregate
intermediate variables from different conditional diffusion models of the same theoretical
foundation, absorbing the characteristics of each model and enabling the generation of
fine-grained control tasks.

* We conduct a variety of experiments by aggregating different conditional diffusion mod-
els, and both visual and quantitative results demonstrate noticeable improvements in areas
where the models previously exhibited weaker control, validating the effectiveness of the
algorithm.

* Our algorithm and experiments reveal some unique properties of diffusion models: Diffu-
sion models with a shared theoretical foundation possess the same mathematical essence,
even if they differ in architecture, allowing operations on their intermediate variables; Fur-
thermore, diffusion models initially focus on the generation of features such as position,
attributes, and style, while later stages emphasize generation quality and consistency.

2 PRELIMINARIES

2.1 DIFFUSION MODEL

Diffusion models are a class of generative models that progressively add noise to guide the data
distribution ¢(x) towards a Gaussian distribution. By employing maximum likelihood estimation
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through neural networks, diffusion models learn a reverse process, enabling them to generate data by
progressively denoising from arbitrary noise. In the classical DDPM (Ho et al., [2020) formulation,
the noise addition process from time ¢t — 1 to ¢ is defined as:

q(xe|xe-1) = N(Varxi—1, (1 — an)I), (1)
where, x; represents the noisy data at timestep ¢ € [0, T, oy is the coefficient drift schedule gen-
erally satisfying lim;_,7 oy = 0. From equation |I] we can readily derive the forward marginal

distribution:
q(xt[x0) = N(Vauxo, (1 — a)I), 2
where &y = H§:1 Q. Equationindicates that we can directly obtain x; from x( avoiding multistep
sampling. Assuming the generative model is py(x), consider the variational lower bound of its
likelihood as the loss function, i.e., the KL divergence of the joint probability:
L = KL(q(xo.7)|lpe(x0.7))

X Bt x, e [||€t - Ee(Xtat)HQ] )
where €; ~ N(0, I') and €4 (x¢, t) is the denoising neural network. More generally, we utilize DDIM
(Song et al 2021a) sampling which directly defines the forward process equation [2] compared to
DDPM. Ultimately, the reverse sampling process as follows:

po(Xi—1 |Xt)N<\/ ('; X¢ + (\/1Oét 1 —of — \/at 1((3, & ) (x4, ¢ I>, 4

1—ay 1 (1 _
T—ay
while 07 = 0 results in a deterministic sampling, which is the origin of the name DDIM.

3)

where o, is a free variable. When o7 =

,ajl ), it corresponds to DDPM sampling,

at

2.2 CLASSIFIER-FREE GUIDANCE

The key of conditional control in diffusion models is estimating g(x¢—1|xX¢,y) given the condition
y. In unconditional generation, according to equation[d] it can be written as:

po(xi—1 | x¢) :N(#G(Xt»t);Uth)~ &)
Accordingly, Classifier-Free Guidance (Dhariwal & Nichol, 2021)) directly incorporates the condi-
tion y into the mean for estimation:

po(xi—1 | x¢,y) = N (po (x4, t,y), 07 1)

:/\/(,/‘*; Xt+<m V= “”) (xt,t,9), I)

(6)

Therefore, the training loss function is:
L o Et,xmﬂ [Het - Eg(Xt, ta y)||2] . (7)

The noise model €y(x¢, t, y) incorporates conditioning on y, guiding the denoising process towards
the conditioned direction, thereby enabling conditional sampling and generation.

3 AMDM

In this section, we first analyzes the challenges and limitations of current fine-grained control re-
search, providing a general direction for potential solutions. Next, a rigorous formal definition of
the research problem is presented for clarity. Finally, we describe the design principles and propose
the AMDM algorithm.

3.1 ANALYSIS

Current fine-grained conditional control models tend to have limited control capabilities and face
numerous issues. For example, given the caption ”A red hair girl is drinking from a blue bottle of
water, oil painting” and corresponding bounding boxes for positioning control, different models are
likely to show varying performance, as illustrated in Figure 2] Model A, which receives additional
inputs for position information and actions, excels in generating high-quality generation of position-
ing and interactions. However, it struggles with attribute control and maintaining the oil painting
style. Conversely, Model B incorporates extra input for position and attribute information, managing
both but not accurately capture interactions and stylistic elements.
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Model C references the style of an image, en-  capti
abling precise management of style character- :
istics but lacking adequate control over loca-
tion and attribute details. The fundamental rea-
son for these issues lies in the complexity and
flexibility of fine-grained control tasks, which
makes it challenging for limited datasets and
specific model architectures to account for all
the intricate features. While implementing a
specific feature for a particular task is relatively Figure 2: Examples of fine-grained conditional
straightforward, integrating these features for control of the same caption by different models.
fine-grained control remains a significant chal-

lenge.

While different models may have varying additional input conditions, these conditions are often
mutually compatible, leading to consistent objectives, which allows the models to generate similar
images within their respective generation domains. Theoretically, model A has the capability to
generate images that meet all the composite conditions of the caption for fine-grained control, al-
though a single sampling might not fully activate this capability. It is noteworthy that these models
share a common theoretical foundation, as they are all predicated on the same diffusion process and
Classifier-Free Guidance (CFG) conditional control mechanism. Recognizing this shared basis, our
objective is to develop an algorithm that leverages these commonalities to integrate the distinctive
characteristics of multiple models into a specific model, achieving fine-grained conditional control
in a more direct and efficient manner.

3.2 DEFINITION

It is necessary to formally define the above concepts to facilitate a more rigorous exposition of the
research problem.

Definition 1. For the diffusion model py, its generation domain of t under condition vy is:
nyy ={x: € R" | x¢ ~ po(x¢t|y)}. (8)

When t = 0, D&y represents the set of all possible data generated by the diffusion model py under
the condition y. Assuming the n-dimensional data generated by py resides on an m-dimensional
manifold My = {zo € R™",zy ~ pyg(z0)},m <K n, the data in Dg’ will reside on a lower [
dimensional (I < n) submanifold due to the constraints imposed by y. When ¢ # 0,
have proved that M; = {x; € R",x; ~ py(x;)} is an (n — 1)-dimensional intermediate
data manifold, which approximates an n-dimensional hypersphere when ¢ is large. Additionally, the
introduction of the condition y does not affect the forward noise addition process. As a result, we
can infer through a similar proof that the data in nyy will also reside on an (n — 1)-dimensional
manifold.

Definition 2. For a set of different diffusion models M = {pg,,po,, - - -, Poy }» and corresponding

conditions Y = {y1,y2,...,yn} if iy ijyi # (0, then M is referred to as the t-compatible
model set under condition Y.

This indicates that there exists an intersection on the manifold where x; resides under different
conditions corresponding to various diffusion models within M. Evidently, the points at these in-
tersections encapsulate all the information of the condition Y. Therefore, intermediate variables
z; of any model encapsulate all conditional information, enabling the generation of images under
additional composite conditions.

For a specific fine-grained control task, although different models may accept varying additional
input types, they share a common objective. If this task is decomposed into different conditions
Y1, Y2, - . ., Yn recognizable by different models, there must exist intermediate variables x; that sat-
isfy each of these conditions for any ¢t € [0,7]. Consequently, these models collectively form a
t-compatible model set under the condition Y = {y1, yo, ..., yn }. Given this, we have the follow-
ing assumption:

Assumption 1. If y1,y2,...,yn all describe a specific task, M = {pg,,Po,,---, Doy } forms a
t-compatible model set under the conditionY = {y1,ya,...,yn} foranyt € [0,T).
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In practical applications, we focus on generation for a specific task. Based on this assumption,
these models form a t-compatible model set under the task condition Y, enabling generation under
composite conditions and achieving fine-grained control.

3.3 ALGORITHM

For simplicity, we begin by considering the case of two models, specifically focusing on aggregating
the conditional control information from py, into py, .

Spherical Aggregation. Sampling x( from the model py, involves a series of reverse diffusion

steps: p(T) ~ N(0,I), ps, (X9T171|x33,y), e pg(x81|x(f1,y1), signifying that x?l S Df,lyl for
all t € [0, 7). It indicates that the new intermediate variable must also reside within Df@i for the
sampling of pg,, after aggregating another model py,. Regarding the aggregation of conditional
information, we propose two key design points for the algorithm: 1) a shared latent space encoder
and same diffusion process; and 2) spherical linear interpolation for conditional control information

aggregation.

For the first point, the alignment of the latent space ensures the consistency of the initial data mani-
fold M, while maintaining an identical diffusion process preserves the consistency of intermediate
data manifolds M, (¢ > 0). This guarantees that all operations performed on different interme-
diate variables remain closed within the corresponding manifolds M, for any ¢. For the second
point, since the noisy n-dimensional data x; resides on the manifold of an approximate (n — 1)-
dimensional hypersphere (Chung et al.| [2022), using spherical linear interpolation for aggregation
maximizes the retention of the aggregated data on the original manifold, minimizing deviations:

X, =wx? 41— w2 )

where x}_; represents the aggregated inter-

mediate variable, xfl_l and xfil are sampled
from Do, (Xfil |Xf1 ) yl) and Po, (X?il |Xf23 y2)
respectively, and w € [0, 1] is the weighting
factor that balances the contribution of each
model. Spherical aggregation integrates the
conditional control information of py, into py,,
while remaining the new variables stable near
the manifold.

Do, (z.foil‘zf,o‘7y2)

e, (1|2, 1)

Manifold Optimization. Ideally, z}_; would
reside on Dfll’yl N Dfil’w, achieving the ag-
gregation of conditional information from dif-
ferent models. However, deviations are likely
to occur in practice, leading us to propose a
manifold optimization algorithm to correct the
deviation of the aggregated data on the man-
ifold. Considering the step from ¢ to ¢ — 1,
since py, (x7* %7, y1) follows a normal dis-
tribution, a single sample is likely to be drawn

Figure 3: Geometry of manifold optimization be-

. . g tween two models. The green points represent
near a peak with high confidence. This suggests e original sampled points, the red points indi-

that the true da;ta consistently resides near the ..o the results of spherical aggregation, and the
peak and on Dt,lyl' Consequently, we can shift gold points denote the final results after manifold
x}_, along the gradient of the probability den- optimization.

sity function pg, (x7,|x7*, y1) by performing

gradient ascent, adjusting the value to position

it near the peak and bringing it back to Dfil,yl . In light of this, we propose the main proposition of
the manifold optimization algorithm:
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Proposition 1. For the diffusion model py, and any new intermediate variable x;_, let:

0
X01 =x _ ,,791 Xéfl — Mo, (that? yl)
T e — e (< )|

(10)

then, Xfll is corrected onto Dfil,yl‘ Here, (19, (Xf1 ,t,y1) is defined by equation@ nfil is a small
optimization step size.

Proof is provided in Appendix [A] and the geometry of manifold optimization is illustrated in Fig-
ure [3} Proposition [1| demonstrates that data can be corrected in a straightforward way to reside on

Dfll’yl, thereby improving sampling quality. Furthermore, since the new variable contains infor-

mation from py, and under Assumptiong} we can infer that it indeed resides on Dfi1,y1 N Dfilyyz,
thus fulfilling the expectation of manifold optimization. We also introduce an adjustable aggregation
step s, allowing flexible control over whether to incorporate information from other models to en-
hance the learned representations. Combining equations[9]and[I0] the Aggregation of Two Diffusion
Model algorithm is presented in Algorithm

Algorithm 1 Aggregation of Two Diffusion Models

Input: t-compatible model set M = {py,, pp, } under condition Y = {y1, y= }, aggregation step s,
weighting factor w, optimization step nf ! and nf 2
x Z.ng ~ N(0,I)
for¢in [T : 1] do
0 01 10
?(til ~ po, (XL [%¢", y1)
if ¢ 5 T-s theg )
X2 q ~ Do (X421 X7, y2)
X 1= wxfl_l +41— wate?_1
’ 61
61 01 Xi_1—Hoq (x¢*,t,y1)
Xl =x, -
LT R T T g, T )|
’ o
62 / Oy Xi_1—Hoy (xt 7tay2)
X =X;_ 1 —
LT R T T g, 2 )|
end if
end for
Output: z}’

The algorithm comprises two key components: spherical aggregation and manifold optimization.
Spherical aggregation aggregates the conditional control information from different models and en-
sures that the new intermediate variables remain stable near the manifold, while manifold optimiza-
tion ensures more precise retention on the corresponding data manifold, enhancing sample quality.
Note that each step of spherical aggregation also necessitates manifold optimization for pg, to pre-
serve the relevant conditional information within it, facilitating the subsequent aggregation step.
This algorithm can be readily extended to multiple models, leading to the final Aggregation of Multi
Diffusion Models (AMDM) algorithm, as shown in Algorithm 2]

The AMDM algorithm iteratively performs spherical aggregation and manifold optimization for
each model during the first s steps, followed by direct sampling from pg,. Moreover, since
po, (X7, t, ;) can reuse eg, (x7*, ¢, y;) from the previous sampling step, the manifold optimization
only introduces a single mathematical operation with no additional computational overhead, avoid-
ing extra inference time.

4 EXPERIMENTS

In this section, we aggregate several representative models based on Stable Diffusion to evaluate the
effectiveness of the algorithm. All experiments were conducted using a single RTX 3090 GPU.

InteractDiffusion and MIGC. InteractDiffusion (Hoe et al.,[2024) is a T2I model that combines
a pretrained Stable Diffusion (SD) model with a locally controlled interaction mechanism, enabling
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Algorithm 2 Aggregation of Multi Diffusion Models (AMDM)

Input: ¢t-compatible model set M = {pg,,po,, ..., Doy } under condition Y = {y1,92,...,yn},
aggregation step s, weighting factor w1, we, ..., wy—_1 and optimization step nf Y nf 2 nf N
xg} :Xg? =.. :ng" ~ N(0,I)
for tin [T : 1] do
0 0 0
Xy 1y ~ po, (%1%t Y1)
if ¢ ? T-—s theg )
X1y ~ po, (X1 %y, y;) foriin [2: N]

’ _ 0 2 0 2 2 N
Xi_1 = WW2..wWN_1X; /1 —wiwe.. . wn_1X2 +... /1 —wi. /1 —wi X

’ 0;
i 0; Xp_1—po(x."t,yi) .. .
X1 =X = e T foriin[1: N]
t—1 He(xt s 7317,)”
end if

end for
Output: 3381

MIGC

InteractDiffusion

InteractDiffusion
(+MIGC)

aman inarmy green  a man in white shirts @ man in red suitis 3 ywoman in white

is inspecting a and khaki pantsis ~ holding ablue bag, a  clothes holding a red
airplane eating a donut Maninblack suitis  ymprella
carrying a

suitcase

Figure 4: Visual results of aggregating MIGC into InteractDiffusion applying the AMDM algorithm.

fine-grained control over the generated images and demonstrating effective interactivity. Similarly,
MIGC (Zhou et al, 2024) is a T2I model that employs a divide-and-conquer strategy, achieving
excellent performance in both attribute representation and isolation of generated instances.

InteractDiffusion primarily focuses on controlling subject-object interactions. However, due to the
lack of explicit constraints on object attributes within the model architecture and dataset design,
it exhibits suboptimal performance in attribute control. To address this, we attempt to aggregate
the intermediate variables of MIGC py, into InteractDiffusion pg, applying the AMDM algorithm,
thereby introducing attribute control information into InteractDiffusion which we denoted as Inter-
actDiffusion(+MIGC). The total sampling steps 1" are set to 50, the aggregation step s is set to 3,
the weighting factor w is set to 0.5 and the optimization steps nf ! and nta ? are simply set to 45
and 55, respectively. We use InteractDiffusion v1.0, and MIGC is modified to use the DDIM sam-
pling method to align with the same diffusion process. Experimental results are shown in Figure [4]
It is evident that aggregating the MIGC model into InteractDiffusion using our proposed AMDM
algorithm significantly enhances its learned representations, leading to a notable improvement in
instance attribute control, and confirming the algorithm’s effectiveness.
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Method ‘ Instance Success Rate (%) 1 ‘ mloU Score 1 ‘ Time (s)

Level ‘ Ls Ly Li Ls Lg Avg ‘ Ls Ly Li Ly Ls Avg ‘

InteractiDiffusion 31.87 26.66 2390 2337 23.85 2496 | 2799 2413 2145 2151 21.16 2244 18.76
InteractiDiffusion(+MIGC) | 57.18 5291 52.65 49.62 47.39 50.81 | 50.73 45.54 44.66 43.54 43.23 44.69 19.45

Table 1: Quantitative results on the COCO-MIG benchmark across different models. It demonstrates
that aggregating MIGC into InteractiDiffusion leads to substantial improvements in all evaluated
metrics.

Reference

IP-Adapter

InteractDiffusion

InteractDiffusion
(+IP-Adapter)

Aman is sitting A girl is feeding a A boy is reading vAvc‘)Nn?amnalrs] ;]50%9;03?:‘(;

on a chair, cat, Barogue Art a book, anime  woman is holding a
classic, vintage newspaper, ink painting

Figure 5: Visual results of aggregating IP-Adapter into InteractDiffusion applying AMDM algo-
rithm.

Currently, it is challenging to establish a comprehensive set of metrics and corresponding test sets to
evaluate both attribute and interactive control performance of models. Therefore, we primarily focus
on the improvement of aggregated control information metrics. For InteractDiffusion(+MIGC), we
utilize the COCO-MIG Benchmark to assess the enhancement in attribute metrics. The COCO-
MIG Benchmark employs the layout of COCO-position and assigns a specific color attribute to
each instance, requiring that each generated instance not only satisfies positional requirements but
also adheres to color attributes. The main process involves sampling layouts from COCO, filtering
out smaller instances, and categorizing the layouts into five levels (L2-L6) based on the number
of instances. Subsequently, a color is assigned to each instance within the sampled layout, selected
from eight possible colors, and a global prompt is constructed, resulting in a test file with 800 entries.
The COCO-MIG metrics primarily include Instance Success Rate and mloU Score. The Instance
Success Rate measures the probability of each instance being generated correctly, while mloU Score
calculates the average of the maximum IoU for all instances; if the color attribute is incorrect, the
IoU value is set to 0.

Since the MIG-Benchmark does not contain interactive information, we set the “action” input in the
InteractDiffusion model to ”and”. The final test results are shown in Table[Il It can be observed that
the metrics for attribute control in InteractDiffusion(+MIGC) have significantly improved, further
demonstrating the effectiveness of the algorithm.



Under review as a conference paper at ICLR 2025

Reference

IP-Adapter

MIGC

InteractDiffusion =

InteractDiffusion
(+IP-Adapter,
+MIGC)

A girl inblack dress is A blondle girl is  a boy in red a cowboy in jean jacket is

feeding a white cat, a s L A riding a brown metal
o ) rinkin | r iti )
girlin dress is drinking a blue  sports suit is horse, steampunk, with

reading a red book, a  bottle of water,  kicking a blue  geam-powered gadget in

girl in white clothes is 0il painting sports ball, oil the background, metal,
holding a green cup, painting, classic carriage
water color

Figure 6: Visual results of aggregating MIGC and IP-Adapter into InteractDiffusion applying the
AMDM algorithm.

InteractDiffusion and IP-Adapter. IP-Adapter is a lightweight I2I model that
employs a decoupled cross-attention mechanism to separately process text and image features, en-
abling multimodal image generation. Due to its superior performance in preserving the style of the
reference image, we propose integrating the style information from IP-Adapter py, into InteractDif-
fusion py,, denoted as InteractDiffusion(+IP-Adapter). The total sampling steps 7" are set to 10, the
aggregation step s is set to 3, the weighting factor w is set to 0.45, ip scale is set to 0.8 and the op-
timization steps nf ! and nf 3 are simply set to 45 and 55, respectively. We utilized IP-Adapter based
on SD1.5 while keeping InteractDiffusion unchanged. The experimental results are shown in Figure
[] It can be observed that IP-Adapter enhances the learned representations of InteractDiffusion, fully
activating its style features, which further validates the effectiveness of the algorithm.

InteractDiffusion, MIGC and IP-Adapter. Furthermore, we attempt to aggregate the attribute
features from MIGC py, and the style features from IP-Adapter py, into InteractDiffusion py, to
evaluate the effectiveness of the AMDM algorithm. The pretrained models for the three architectures
remain consistent with those mentioned above. The total sampling step 7" set to 10, an aggregation
step s set to 3, and weight factors w; and ws set to 0.47 and 0.5. The optimization steps nf ', nf 2,

and nf 3 are also simply set to 45, 40, and 35, respectively. The experimental results are presented in
Figure[6]
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These experiments provide robust evidence for the effectiveness of the AMDM algorithm. Fur-
thermore, it can be inferred from the aggregation steps that the diffusion models initially focus on
features such as position, attributes, and style, while later stages emphasize generation quality and
consistency.

5 RELATED WORK

Classifier-free guidance in conditional diffusion models is widely applied in the field of image con-
trolled generation. In addition to the classic directly text-driven models (Nichol et al., 2022; Ramesh
et al., |2022; [Rombach et al.| [2022; [Li et al., 2024b; [Podell et al.l 2024), an increasing number of
studies are exploring more advanced and finer-grained conditional control techniques.

One of the most classical approaches in controllable generation is personalization controlled gener-
ation, which aims to capture and utilize complex concepts that are difficult to articulate through text.
This method employs features such as style characteristics and attributes of subjects and objects
from references as conditions for generation. Notable applications include style generation (Sohn
et al.| 2023; Liu et al., [2023; Hertz et al., 2024} |Chen et al.| [20244), subject-driven generation (Ruiz
et al., 2023} |L1 et al., 2024a; |Shi et al.|, 2024} Jiang et al., 2024} Ye et al.,[2023)), person-driven gener-
ation (Xiao et al., 2024} \Giambi & Lisanti, 2023 Valevski et al., 2023; |Achlioptas et al., 2023; |Peng
et al., [2024), and interactive generation (Huang et al.l 2023b}; (Guo et al.| [2024; Wu et al.| [2023b;
Hoe et al., 2024). Additionally, spatial-controlled generation (Li et al.l 2023; |Cheng et al., 2023;
Kim et al.| 2023} [Nie et al.| [2024; [Zhou et al.| |2024) represents another significant research focus,
primarily leveraging bounding boxes or various regions as additional input conditions to achieve
specific spatial control objectives.

In recent years, several studies have attempted to achieve fine-grained control (Huang et al.|2023aj;
Han et al.| 2023} |Smith et al.| [2023}|Gu et al.| [2024}; | Kumari et al.|[2023)) by designing various model
architectures to handle inputs from various modalities, which require extensive training. These ap-
proaches inevitably necessitate a substantial amount of comprehensive multi-condition fine-grained
data and the development of complex model architectures.

6 CONCLUSION

This paper proposes a novel AMDM algorithm, which consists of two main components: spheri-
cal aggregation and manifold optimization. Experimental results demonstrate the effectiveness of
the AMDM algorithm, revealing that diffusion models initially prioritize image feature generation,
shifting their focus to image quality and consistency in later stages. The algorithm provides a new
perspective for addressing fine-grained conditional control generation challenge: We can leverage
existing conditional diffusion models that control particular aspects, or develop and train new ones,
and then apply the AMDM algorithm to achieve fine-grained control. This eliminates the need for
constructing complex datasets, designing intricate model architectures, and incurring high training
costs.
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A PROOF OF PROPOSITION 1]

Proposition For the diffusion model pg, and any new intermediate variable x;_1, let:

/ 01
6 / 01 Xt—1 — Mo,y (Xt 7t7y1)

X1 = X1~ M1 ] ) (10)

l[xi—1 = po, (3¢5 1) |

then, xfl_l is corrected onto Dteil,yl' Here, pg, (Xf1 ,t,y1) is defined by equation@ nfil is a small
optimization step size.

Proof: Our objective is to correct the new variable x_;, which deviates from D' 4o O en-

sure proper generation in subsequent sampling. Considering the step from ¢ to ¢ — 1, since

Do, (xfil | xfl,yl) follows a normal distribution, the sampling process typically results in high-
confidence clustering near the peak, causing the data to consistently reside in this region. Thus, we
can move x_, along the gradient of the probability density function pg, (x}_, | x/*,y1) by per-
forming gradient ascent, thereby adjusting the value toward the peak region and aligning the data
with the manifold M = {x% | ~ pg, (x?, | x?*,51)}. Since M is a submanifold of D/*

t—1,y1°
this optimization approach effectively pulls x;_, back onto Do

t-1,,- Therefore, our optimization
objective is:

argmax [V po, (Xj_y | X7, 90)] " (x72 1 —x)_y), (11)
xfileﬁ(x,’sfl,é)

where U(x,_;,0) = {x | ||[x —x}_;|| < J} and § is a small adjusting step, then:

91 _ / / 01
X1 =X 1+ 5vx;,1p91 (xp_1lx:21)

Vi, poy (X1 |x7" 1) (12)
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where " | is the step size for the unit gradient ascent. Since py, (x;_,|x’*, 1) is a normal distri-
bution, its gradient can be computed as follows:

1 lxf_y =g Gyt
4 o = N 202
VX;71p01 (Xt—1|Xf, 7y1) = va£71 e b

/ o . (13)
IR R el E R ZICANAT
(2ro?) 2 o? |
Simplifying the coefficient term, the final result is:
X;_q — po(x{",t,y)
X =X ; , (14)

HX271 - ﬂe(x?lvtvyl)H

which concludes the proof.

B ADDITIONAL VISUAL RESULTS
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Figure 7: Additional Visual results of aggregating MIGC into InteractDiffusion applying the AMDM

algorithm.
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Figure 8: Additional Visual results of aggregating IP-Adapter into InteractDiffusion applying
AMDM algorithm.
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Reference
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InteractDiffusion
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Figure 9: Additional Visual results of aggregating MIGC and IP-Adapter into InteractDiffusion
applying the AMDM algorithm.
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