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A DETAILED EXPERIMENTAL SETUP
This section provides additional information on the experimental setup.

A.1 DATASETS

Following the conventional setup for evaluating cross-domain FSL performances on MetaDataset in
prior arts (Hu et al.| 2022; |Triantafillou et al., 20205 Guo et al., 2020), we use MinilmageNet (Vinyals
et al.,[2016) for Meta-Train and the non-ILSVRC datasets in MetaDataset (Triantafillou et al., 2020)
for Meta-Test. Specifically, MinilmageNet contains 100 classes from ImageNet-1k, split into 64
training, 16 validation, and 20 testing classes. The resolution of the images is downsampled to 84 x 84.
The MetaDataset used as Meta-Test datasets consists of nine public image datasets from a variety
of domains, namely Traffic Sign (Houben et al.|[2013), Omniglot (Lake et al.l[2015), Aircraft (Maji
et al.,[2013), Flowers (Nilsback and Zisserman) 2008), CUB (Welinder et al., 2011), DTD (Cimpoi
et al., 2014), QDraw (Jongejan et al.,[2016), Fungi (Schroeder and Cui, [2018)), and COCO (Lin et al.,
2014). Note that the ImageNet dataset is excluded as it is already used for pre-training the models
during the meta-training phase, which makes it an in-domain dataset. We showcase the robustness
and generality of our approach to the challenging cross-domain few-shot learning (CDFSL) problem
via extensive evaluation of these datasets. The details of each target dataset employed in our study
are described below.

The Traffic Sign (Houben et al.,|2013)) dataset consists of 50,000 images out of 43 classes regarding
German road signs.

The Omniglot (Lake et al.,[2015) dataset has 1,623 handwritten characters (i.e. classes) from 50
different alphabets. Each class contains 20 examples.

The Aircraft (Maji et al.,|2013) dataset contains images of 102 model variants with 100 images per
class.

The VGG Flowers (Flower) (Nilsback and Zisserman, |2008) dataset is comprised of natural images
of 102 flower categories. The number of images in each class ranges from 40 to 258.

The CUB-200-2011 (CUB) (Welinder et al.,|2011)) dataset is based on the fine-grained classification
of 200 different bird species.

The Describable Textures (DTD) (Cimpoi et al., 2014) dataset comprises 5,640 images organised
according to a list of 47 texture categories (classes) inspired by human perception.

The Quick Draw (QDraw) (Jongejan et al., 2016) is a dataset consisting of 50 million black-and-
white drawings of 345 categories (classes), contributed by players of the game Quick, Draw!

The Fungi (Schroeder and Cuil 2018) dataset is comprised of around 100K images of 1,394 wild
mushroom species, each forming a class.

The MSCOCO (COCO) (Lin et al.,|2014) dataset is the train2017 split of the COCO dataset. COCO
contains images from Flickr with 1.5 million object instances of 80 classes.

A.2 MODEL ARCHITECTURES

Following (Lin et al.|[2022), we employ optimised DNN architectures designed to be used in resource-
limited IoT devices, including MCUNet (Lin et al., 2020), MobileNetV2 (Sandler et al., 2018), and
ProxylessNASNet (Cai et al.,[2019). The DNN models are pre-trained using ImageNet (Deng et al.,
2009). Specifically, the backbones of MCUNet (using the SFPS ImageNet model), MobileNetV2
(with the 0.35 width multiplier), and ProxylessNAS (with a width multiplier of 0.3) have 23M, 17M,
19M MACs and 0.48M, 0.25M, 0.33M parameters, respectively. Note that MACs are calculated
based on an input resolution of 128 x 128 with an input channel dimension of 3. The basic statistics
of the three DNN architectures are summarised in Table 3]

A.3 TRAINING DETAILS

We adopt a common training strategy to meta-train the pre-trained DNN backbones, which helps
us avoid over-engineering the training process for each dataset and architecture (Hu et al., [2022).
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Table 3: The statistics of our employed DNN architectures.

Model Param MAC #Layers # Blocks
MCUNet 046M 22.5M 42 13
MobileNetV2 0.29M 17.4M 52 17
ProxylessNASNet 0.36M  19.2M 61 20

Specifically, we meta-train the backbone for 100 epochs. Each epoch has 2000 episodes/tasks. A
warm-up and learning rate scheduling with cosine annealing are used. The learning rate increases
from 1076 to 5 x 10~° in 5 epochs. Then, it decreases to 10~6. We use SGD with momentum as an
optimiser.

A.4 DETAILS FOR EVALUATION SETUP

To evaluate the cross-domain few-shot classification performance, we sample 200 different tasks
from the test split for each dataset. Then, as key performance metrics, we first use testing accuracy
on unseen samples of a new domain as the target dataset. Note that the number of classes and
support/query sets are sampled uniformly at random based on the dataset specifications. In addition,
we analytically calculate the computation cost and memory footprint required for the forward pass
and backward pass (i.e. model parameters, optimisers, activations). For the memory footprint of
the backward pass, we include (1) model memory for the weights to be updated, (2) optimiser
memory for gradients, and (3) activations memory for intermediate outputs for weights update. For
the computational cost, as in (Xu et al., [2022), we report the number of MAC operations of the
backward pass, which incurs 2x more MAC operations than the forward pass (inference). Also, we
measure latency and energy consumption to perform end-to-end training of a deployed DNN on the
edge device. We deploy TinyTrain and the baselines on a tiny edge device, Pi Zero. To measure the
end-to-end training time and energy consumption, we include the time and energy used to: (1) load
a pre-trained model, (2) perform training using all the samples (e.g. 25) for a certain number of
iterations (e.g. 40). For TinyTrain, we also include the time and energy to conduct a dynamic layer/
channel selection based on our proposed importance metric, by computing the Fisher information
on top of those to load a model and fine-tune it. Regarding energy, we measure the total amount of
energy consumed by a device during the end-to-end training process. This is performed by measuring
the power consumption on Pi Zero using a YOTINO USB power meter and deriving the energy
consumption following the equation: Energy = Power x Time.

Further Details on Memory Usage. There are several components that account for the memory
footprint for the backward pass of training. Specifically, (F1) model weights and (F2) buffer space
containing input and output tensors of a layer comprise the memory usage during the forward pass
(i.e. inference). On top of that, during the backward pass (i.e. training), we also need to consider (B1)
the model weights to be updated or accumulated gradients (i.e. a buffer space that contains newly
updated weights or accumulated gradients from back-propagation), (B2) other optimiser parameters
such as momentum values, (B3) values used to compute the derivatives of non-linear functions like
ReLU from the last layer L to a layer ¢ up to which we perform back-propagation, and (B4) inputs x;
of the layers selected to be updated from the last layer L to a layer ¢ up to which we back-propagate.

Regarding (B3), ReLU-type activation functions only need to store a binary mask indicating whether
the value is smaller than zero or not. Hence, the memory cost of each non-linearity activation function
based on ReLU is |z;| bits (32x smaller than storing the whole z;), which is negligible. In our
work, the employed network architectures (e.g. MCUNet, MobileNetV2, and ProxylessNASNet) rely
on the ReLU non-linearity function. Regarding (B4), it is worth mentioning that when computing
the gradient g(W;) given the inputs (z;) and the gradients (g(z;+1)) to a (i-th) layer, we perform
g(W;) = g(x;41).T * x; to get gradient w.r.t the weights and g(z;) = g(x;+1) * W;. Note that the
intermediate inputs (z;) are only required to get the gradient of the weights (g(W;)), meaning that
the backward memory can be substantially reduced if we do not update the model weights (W;).
This property is applicable to linear layers, convolutional layers, and normalisation layers as studied
by |Cai et al.[(2020).

17



Under review as a conference paper at ICLR 2024

In our evaluation (§3.2), we conducted memory analysis to present the memory usage by taking
into account both inference and backward-pass memory. We adopt the memory cost profiler used in
prior work (Cat et al.,|2020), which reuses the inference memory space during the backward pass
wherever possible. Specifically, the memory space of (F2) can be overlapped with (B3) and (B4)
as the buffer space for input and output tensors can be reused for intermediate variables of (B3)
and (B4). On the other hand, the memory space for (B1) and (B2) cannot be overlapped with (F2)
when the gradient accumulation is used as the system needs to retain the updated model weights
and optimiser parameters throughout the training process. In addition, we would like to add that,
depending on the hardware and deployment libraries, the model weights (F1) reside in the storage
instead of being loaded on the main memory space. For example, on MCUs, model weights are
stored on Flash (storage) and do not consume space on SRAM. Thus, we only include the model
weights to be updated when calculating the memory usage for the backward pass.

A.5 BASELINES

We include the following baselines in our experiments to evaluate the effectiveness of TinyTrain.

None. This baseline does not perform any on-device training during deployment. Hence, it shows the
accuracy drops of the DNNs when the model encounters a new task of a cross-domain dataset.

FullTrain. This method trains the entire backbone, serving as the strong baseline in terms of accuracy
performance, as it utilises all the required resources without system constraints. However, this method
intrinsically consumes the largest amount of system resources in terms of memory and computation
among all baselines.

LastLayer. This refers to adapting only the head (i.e. the last layer or classifier), which requires
relatively small memory footprint and computation. However, its accuracy typically is too low to be
practical. Prior works (Ren et al.,|2021; Lee and Nirjon, 2020) adopt this method to update the last
layer only for on-device training.

TinyTL (Cai et al., [2020). This method proposes to add a small convolutional block, named the
lite-residual module, to each convolutional block of the backbone network. During training, TinyTL
updates the lite-residual modules while freezing the original backbone, requiring less memory and
fewer computations than training the entire backbone. As shown in our results, TinyTrain requires
the second largest amount of memory and compute resources among all baselines.

SparseUpdate (Lin et al., [2022). This method reduces the memory footprint and computation in
performing on-device training. Memory reduction comes from updating selected layers in the network,
followed by another selection of channels within the selected layers. However, SparseUpdate adopts
a static channel and layer selection policy that relies on evolutionary search (ES). This ES-based
selection scheme requires compute and memory resources that the extreme-edge devices can not
afford. Even in the offline compute setting, it takes around 10 mins to complete the search.

B DETAILS OF SAMPLING ALGORITHM DURING META-TESTING

B.1 SAMPLING ALGORITHM DURING META-TESTING

We now describe the sampling algorithm during meta-testing that produces realistically imbalanced
episodes of various ways and shots (i.e. K-way-N-shot), following Triantafillou et al.|(2020). The
sampling algorithm is designed to accommodate realistic deployment scenarios by supporting the
various-way-various-shot setting. Given a data split (e.g. train, validation, or test split) of the dataset,
the overall procedure of the sampling algorithm is as follows: (1) sample of a set of classes C and
(2) sample support and query examples from C.

Sampling a set of classes. First of all, we sample a certain number of classes from the given split of a
dataset. The ‘way’ is sampled uniformly from the pre-defined range [5, MAX], where MAX indicates
either the maximum number of classes or 50. Then, ‘way’ many classes are sampled uniformly at
random from the given split of the dataset. For datasets with a known class organisation, such as
ImageNet and Omniglot, the class sampling algorithm differs as described in (Triantafillou et al.|
2020).
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Sampling support and query examples. Having selected a set of classes, we sample support and
query examples by following the principle that aims to simulate realistic scenarios with limited
(i.e. few-shot) and imbalanced (i.e. realistic) support set sizes as well as to achieve a fair evaluation
of our system via query set.

* Support Set Size. Based on the selected set of classes from the first step (i.e. sampling a set
of classes), the support set is at most 100 (excluding the query set described below). The
support set size is at least one so that every class has at least one image. The sum of support
set sizes across all the classes is capped at 500 examples as we want to consider few-shot
learning (FSL) in the problem formulation.

* Shot of each class. After having determined the support set size, we now obtain the ‘shot’
of each class.

* Query Set Size. We sample a class-balanced query set as we aim to perform well on all
classes of samples. The number of minimum query sets is capped at 10 images per class.

B.2 SAMPLE STATISTICS DURING META-TESTING

In this subsection, we present summary statistics regarding the support and query sets based on the
sampling algorithm described above in our experiments. In our evaluation, we conducted 200 trials
of experiments (200 sets of support and query samples) for each target dataset. Table 4 shows the
average (Avg.) number of ways, samples, and shots of each dataset as well as their standard deviations
(SD), demonstrating that the sampled target data are designed to be the challenging and realistic
various-way-various-shot CDFSL problem. Also, as our system performs well on such challenging
problems, we demonstrate the effectiveness of our system.

C FINE-TUNING PROCEDURE DURING META-TESTING

As we tackle realistic and challenging scenarios of the cross-domain few-shot learning (CDFSL)
problem, the pre-trained DNNs can encounter a target dataset drawn from an unseen domain, where
the pre-trained DNNs could fail to generalise due to a considerable shift in the data distribution.

Hence, to adjust to the target data distribution, we perform fine-tuning (on-device training) on the
pre-trained DNNs by a few gradient steps while leveraging the data augmentation (as explained
below). Specifically, the feature backbone as the DNNs is fine-tuned as our employed models are
based on ProtoNet.

Our fine-tuning procedure during the meta-testing phase is similar to that of (Guo et al., [2020; Hu
et al.|, [2022). First of all, as the support set is the only labelled data during meta-testing, prior
work (Guo et al.,|2020) fine-tunes the models using only the support set. For (Hu et al., 2022), it
first uses data augmentation with the given support set to create a pseudo query set. After that, it
uses the support set to generate prototypes and the pseudo query set to perform backpropagation
using Eq. |I Differently from (Guo et al.,2020),the fine-tuning procedure of (Hu et al., 2022) does
not need to compute prototypes and gradients using the same support set using Eq. I} However, Hu

Table 4: The summary statistics of the support and query sets sampled from nine cross-domain
datasets.

Traffic Omniglot Aircraft Flower CUB DTD QDraw Fungi COCO

Avg. Num of Ways 225 19.3 9.96 9.5 15.6 6.2 27.3 27.2 21.8
Avg. Num of Samples (Support Set) 445.9 93.7 369.4 287.8 2963 3240 460.0 3547 4241
Avg. Num of Samples (Query Set) 224.8 193.4 99.6 95.0 156.4 61.8 273.0 105.5 2178
Avg. Num of Shots (Support Set) 29.0 4.6 38.8 30.7 207 533 23.6 15.6 279
Avg. Num of Shots (Query Set) 10 10 10 10 10 10 10 10 10

SD of Num of Ways 11.8 10.8 3.4 3.1 6.6 0.8 13.2 14.4 11.5
SD of Num of Samples (Support Set) ~ 90.6 81.2 135.9 1593 1524 148.7 94.8 158.7  104.9
SD of Num of Samples (Query Set) 117.7 108.1 34.4 30.7 65.9 8.2 132.4 51.8 114.8
SD of Num of Shots (Support Set) 21.9 2.4 14.9 14.9 105 245 17.0 8.9 20.7
SD of Num of Shots (Query Set) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Num of Trials 200 200 200 200 200 200 200 200 200

19



Under review as a conference paper at ICLR 2024

et al. (2022) simply fine-tune the entire DNNs without memory-and compute-efficient on-device
training techniques, which becomes one of our baselines, FullTrain requiring prohibitively large
memory footprint and computation costs to be done on-device during deployment. In our work,
for all the on-device training methods including TinyTrain, we adopt the fine-tuning procedure
introduced in (Hu et al.,|2022). However, we extend the vanilla fine-tuning procedure with existing
on-device training methods (i.e. LastLayer, TinyTL, SparseUpdate, which serve as the baselines of
on-device training in our work) so as to improve the efficiency of on-device training on the extremely
resource-constrained devices. Furthermore, our system, TinyTrain, not only extends the fine-tuning
procedure with memory-and compute-efficient on-device training but also proposes to leverage
data-efficient FSL pretraining to enable the first data-, memory-, and compute-efficient on-device
training framework on edge devices.

D SYSTEM IMPLEMENTATION

The offline component of our system is built on top of PyTorch (version 1.10) and runs on a Linux
server equipped with an Intel Xeon Gold 5218 CPU and NVIDIA Quadro RTX 8000 GPU. This
component is used to obtain the pre-trained model weights, i.e. pre-training and meta-training. Then,
the online component of our system is implemented and evaluated on Raspberry Pi Zero 2 and
NVIDIA Jetson Nano, which constitute widely used and representative embedded platforms. Pi Zero
2 is equipped with a quad-core 64-bit ARM Cortex-A53 and limited 512 MB RAM. Jetson Nano
has a quad-core ARM Cortex-AS57 processor with 4 GB of RAM. Also, we do not use sophisticated
memory optimisation methods or compiler directives between the inference layer and the hardware to
decrease the peak memory footprint; such mechanisms are orthogonal to our algorithmic innovation
and may provide further memory reduction on top of our task-adaptive sparse update.
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Figure 7: Memory- and compute-aware analysis of MobileNetV2 by updating four different channel
ratios on each layer.
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Figure 8: Memory- and compute-aware analysis of ProxylessNASNet by updating four different
channel ratios on each layer.

E ADDITIONAL RESULTS

In this section, we present additional results that are not included in the main content of the paper due
to the page limit.

E.1 MEMORY- AND COMPUTE-AWARE ANALYSIS

In §2.7] to investigate the trade-offs among accuracy gain, compute and memory cost, we analysed
each layer’s contribution (i.e. accuracy gain) on the target dataset by updating a single layer at a time,
together with cost-normalised metrics, including accuracy gain per parameter and per MAC operation
of each layer. MCUNet is used as a case study. Hence, here we provide the results of memory- and
compute-aware analysis on the remaining architectures (MobileNetV2 and ProxylessNASNet) based
on the Traffic Sign dataset as shown in Figure [7]and[§]

The observations on MobileNetV2 and ProxylessNASNet are similar to those of MCUNet. Specif-
ically: (a) accuracy gain per layer is generally highest on the first layer of each block for both
MobileNetV2 and ProxylessNASNet; (b) accuracy gain per parameter of each layer is higher on
the second layer of each block for both MobileNetV3 and ProxylessNASNet, but it is not a clear
pattern; and (c) accuracy gain per MACs of each layer has peaked on the second layer of each block
for MobileNetV2, whereas it does not have clear patterns for ProxylessNASNet. These observations
indicate a non-trivial trade-off between accuracy, memory, and computation for all the employed
architectures in our work.

E.2 PAIRWISE COMPARISON AMONG DIFFERENT CHANNEL SELECTION SCHEMES

Here, we present additional results regarding the pairwise comparison between our dynamic channel
selection and static channel selections (i.e. Random and L2-Norm). Figure[9 and[T0 show that the
results of MobileNetV2 and ProxylessNASNet on the Traffic Sign dataset, respectively.

Similar to the results of MCUNet, the dynamic channel selection on MobileNetV?2 and Proxyless-
NASNet consistently outperforms static channel selections as the accuracy gain per layer differs by
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Figure 9: The pairwise comparison between our dynamic channel selection and static channel
selections (i.e. Random and L2-Norm) on MobileNetV2.
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Figure 10: The pairwise comparison between our dynamic channel selection and static channel
selections (i.e. Random and L2-Norm) on ProxylessNASNet.

up to 5.1%. Also, the gap between dynamic and static channel selection increases as fewer channels
are selected for updates.

E.3 END-TO-END LATENCY BREAKDOWN OF TinyTrain AND SparseUpdate

In this subsection, we present the end-to-end latency breakdown to highlight the efficiency of our
task-adaptive sparse update (i.e. the dynamic layer/channel selection process during deployment)
by comparing our work (TinyTrain) with previous SOTA (SparseUpdate). We present the time to
identify important layers/channels by calculating Fisher Potential (i.e. Fisher Calculation in Table 3]
and [6) and the time to perform on-device training by loading a pre-trained model and performing
backpropagation (i.e. Run Time in Tables 5] and [6).

In addition to the main results of on-device measurement on Pi Zero 2 presented in §3.2] we selected
Jetson Nano as an additional device and performed experiments in order to ensure that our results
regarding system efficiency are robust and generalisable across diverse and realistic devices. We used
the same experimental setup (as detailed in §3.T]and §A.4) as the one used for Pi Zero 2.

As shown in Table[5|and [6] our experiments show that TinyTrain enables efficient on-device training,
outperforming SparseUpdate by 1.3-1.7x on Jetson Nano and by 1.08-1.12x on Pi Zero 2 with
respect to end-to-end latency. Moreover, Our dynamic layer/channel selection process takes around
18.7-35.0 seconds on our employed edge devices (i.e. Jetson Nano and Pi Zero 2), accounting for
only 3.4-3.8% of the total training time of TinyTrain.

E.4 IMPACT OF META-TRAINING

In this subsection, we present the complete results of the impact of meta-training. As discussed in §3.3,
Figure[6a shows the average Top-1 accuracy with and without meta-training using MCUNet over nine
cross-domain datasets. This analysis shows the impact of meta-training compared to conventional
transfer learning, demonstrating the effectiveness of our FSL-based pre-training. However, it does not
reveal the accuracy results of individual datasets and models. Hence, in this subsection, we present
figures that compare Top-1 accuracy with and without meta-training for each architecture and dataset
with all the on-device training methods to present the complete results of the impact of meta-training.
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Table 5: The end-to-end latency breakdown of TinyTrain and SOTA on Pi Zero 2. The end-to-end
latency includes time (1) to load a pre-trained model, (2) to perform training using given samples
(e.g. 25) over 40 iterations, and (3) to calculate fisher information on activation (For TinyTrain).

Model Method | Fisher Calculation (s) Run Time (s) Total (s) | Ratio
MCUNet SparseUpdate | 0.0 607 607 | 1.12x
TinyTrain (Ours) ‘ 18.7 526 544 ‘ 1x
MobileNetV2 SparseUpdate | 0.0 611 611 | 1.10x
TinyTrain (Ours) | 20.1 536 556 | 1x
ProxylessNASNet SparseUpdate | 0.0 645 645 | 1.08x
TinyTrain (Ours) | 22.6 575 598 | Ix

Table 6: The end-to-end latency breakdown of TinyTrain and SOTA on Jetson Nano. The end-to-end
latency includes time (1) to load a pre-trained model, (2) to perform training using given samples
(e.g., 25) over 40 iterations, and (3) to calculate fisher information on activation (For TinyTrain).

Model Method | Fisher Calculation (s) Run Time (s) Total (s) | Ratio
MCUNet SparseUpdate | 0.0 1,189 1,189 | 1.3x
TinyTrain (Ours) | 35.0 892 927 | 1x
MobileNetV2 SparseUpdate 0.0 1,282 1,282 | 1.5x
TinyTrain (Ours) ‘ 32.2 815 847 ‘ 1x
ProxylessNASNet SparseUpdate | 0.0 1,517 1517 | 1.7x
TinyTrain (Ours) | 26.8 869 896 | Ix

Figures[IT, [I2, and [I3 demonstrate the effect of meta-training based on MCUNet, MobileNetV2,
and ProxylessNASNet, respectively, across all the on-device training methods and nine cross-domain
datasets.

E.5 ROBUSTNESS OF DYNAMIC CHANNEL SELECTION

As described in §3.3] to show how much improvement is derived from dynamically selecting important
channels based on our method at deployment time, Figure[6b]compares the accuracy of TinyTrain with
and without dynamic channel selection, with the same set of layers to be updated within strict memory
constraints using MCUNet. In this subsection, we present the full results regarding the robustness
of our dynamic channel selection scheme using all the employed architectures and cross-domain
datasets. Figures E, [E, and [E demonstrate the robustness of dynamic channel selection using
MCUNet, MobileNetV2, and ProxylessNASNet, respectively, based on nine cross-domain datasets.
Note that the reported results are averaged over 200 trials, and 95% confidence intervals are depicted.
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Figure 11: The effect of meta-training on MCUNet across all the on-device training methods and

nine cross-domain datasets.
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Figure 13: The effect of meta-training on ProxylessNASNet across all the on-device training methods

and nine cross-domain datasets.
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Figure 14: The effect of dynamic channel selection using MCUNet on nine cross-domain datasets.
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Figure 15: The effect of dynamic channel selection with MobileNetV2 on nine cross-domain datasets.
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Figure 16: The effect of dynamic channel selection with ProxylessNASNet on all the datasets.
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F FURTHER ANALYSIS AND DISCUSSION

F.1 FURTHER ANALYSIS OF CALCULATING FISHER INFORMATION ON ACTIVATIONS

In this section, we describe how TinyTrain calculates the Fisher information on activations (the
primary variable for our proposed multi-objective criterion) without incurring excessive memory
overheads. Specifically, computing Fisher information on activations is designed to be within the
memory and computation budget for a backward pass determined by hardware and users (e.g., in
our evaluation, we use roughly 1 MB as a memory budget). Also, as described in Appendix the
memory space used for saving intermediate variables can be overlapped with that of input/output
tensors. As observed in prior works (Lin et al., 2022;2021), the size of the activation is large for the
first few layers and small for the remaining ones. Table[7|shows the saved activations’ size to compute
the backward pass up to the last k blocks/layers. The sizes of saved activations are well within the
peak memory footprint of input/output tensors (i.e. 640 KB for MCUNet, 896 KB for MobileNetV2,
and 512 KB for ProxylessNASNet). Thus, the memory space of input/output tensors can be reused to
store the intermediate variables required to calculate Fisher information on activations.

Also, we empirically demonstrated that important layers for a CDFSL task are located among those
last few layers (as shown in Figure [3 for MCUNet, Figure [7 for MobileNetV2, and Figure [§ for
ProxylessNASNet). A prior work (Lin et al.,|2022) also observed the same trend. In our experiments,
TinyTrain demonstrates that inspecting 30-44% of layers is enough to achieve SOTA accuracy, as
shown in Table[T]in Section[3.2] Also, note that this process on edge devices is very swift as analysed
in Section3.3]

In addition, it is possible to further reduce the memory usage by optimising the execution scheduling
during the forward pass (e.g. patch-based inference (Lin et al., 2021) or partial execution (Liberis and
Lane, [2023)). This process trade-offs more computation for lower memory usage, consuming more
time. However, this can reduce the peak memory to meet the constraints of the target platform. We
leave this optimisation as future work.

Table 7: The total size of the saved activations in KB to compute the backward pass up to the last &
blocks/layers across three architectures used in our work.

Last k Blocks Lastk Layers MCUNet MobileNetV2 ProxylessNASNet

6 18 479.0 4329 299.3
5 15 392.3 325.7 241.5
4 12 281.0 218.4 171.6
3 9 191.6 148.5 118.0
2 6 1359 101.6 89.1
1 3 80.3 54.7 60.3

F.2 CoOST ANALYSIS OF META-TRAINING

In this subsection, we analyse the cost of meta-training, one of the major components of our FSL-
based pre-training, in terms of the overall latency to perform meta-training. 7inyTrain’s meta-training
stage takes place offline (as illustrated in Figure[2) on a server equipped with sufficient computing
power and memory (refer to §D for more details regarding hardware specifications used in our work)
prior to deployment on-device. In our experiments, the offline meta-training on MinilmageNet takes
around 5-6 hours across three architectures. However, note that this cost is small as meta-training
needs to be performed only once per architecture. Furthermore, this cost is amortised by being able
to reuse the same resulting meta-trained model across multiple downstream tasks (different target
datasets) and devices, e.g. Raspberry Pi Zero 2 and Jetson Nano, while achieving significant accuracy
improvements (refer to Table[T and Figure[6a)in the main manuscript and Figures[IT,[12; and[I3 in
the appendix).
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G EXTENDED RELATED WORK

G.1 ON-DEVICE TRAINING

Scarce memory and compute resources are major bottlenecks in deploying DNNs on tiny edge devices.
In this context, researchers have largely focused on optimising the inference stage (i.e. forward pass)
by proposing lightweight DNN architectures (Gholami et al.,[2018;|Sandler et al., 2018; Ma et al.|
2018), pruning (Han et al., [2016; |Liu et al., 2020), and quantisation methods (Jacob et al., [2018;
Krishnamoorthi, |2018; [Rastegari et al., [2016)), leveraging the inherent redundancy in weights and
activations of DNNs. Also, researchers investigated on how to efficiently leverage heterogeneous
processors (Jeong et al., 2022; |Ling et al., |2021bja), and offload computation (Yao et al., 2020).
Driven by the increasing privacy concerns and the need for post-deployment adaptability to new
tasks or users, the research community has recently turned its attention to enabling DNN training
(i.e., backpropagation having both forward and backward passes, and weights update) at the edge.

Researchers proposed memory-saving techniques to resolve the memory constraints of training (So-
honi et al., 2019; |Chen et al.,[2021; |Pan et al.,[2021; |[Evans and Aamodt, |[2021; |Liu et al.,[2022)). For
example, gradient checkpointing (Chen et al.,2016; Jain et al., 2020; Kirisame et al., 2021) discards
activations of some layers in the forward pass and recomputes those activations in the backward
pass. Microbatching (Huang et al.,[2019) splits a minibatch into smaller subsets that are processed
iteratively, to reduce the peak memory needs. Swapping (Huang et al.; 2020; |Wang et al., 2018; |Wolf]
et al.,2020) offloads activations or weights to an external memory/storage (e.g. from GPU to CPU
or from an MCU to an SD card). Some works (Patil et al., [2022; |Wang et al., [2022;|Gim and Ko\
2022) proposed a hybrid approach by combining two or three memory-saving techniques. Although
these methods reduce the memory footprint, they incur additional computation overhead on top of
the already prohibitively expensive on-device training time at the edge. Instead, TinyTrain drastically
minimises not only memory but also the amount of computation through its dynamic sparse update
that identifies and trains only the most important layers/channels on-the-fly.

A few existing works (Lin et al.| 2022; |Ca1 et al., [2020; Profentzas et al., |2022; Qu et al., [2022)
have also attempted to optimise both memory and computations, with prominent examples being
TinyTL (Cai et al.| [2020)), p-Meta (Qu et al.|[2022)), and SparseUpdate (Lin et al.| 2022). By selectively
updating only a subset of layers and channels during on-device training, these methods effectively
reduce both the memory and computation load. Nonetheless, as shown in the performance
of this approach drops dramatically (up to 7.7% for SparseUpdate) when applied at the extreme
edge where data availability is low. This occurs because the approach requires access to the entire
target dataset (e.g. SparseUpdate (Lin et al.,[2022) uses the entire CIFAR-100 dataset (Krizhevsky:
et al., 2009))), which is unrealistic for such devices in the wild. More importantly, it requires a large
number of epochs (e.g. SparseUpdate requires 50 epochs) to reach high accuracy, which results
in an excessive training time of up to 10 days when deployed on extreme edge devices, such as
STM32F746 MCUs. Also, these methods require running a few thousands of computationally heavy
search (Lin et al., [2022)) or pruning (Profentzas et al., 2022) processes on powerful GPUs to identify
important layers/channels for each target dataset; as such, the current static layer/channel selection
scheme cannot be adapted on-device to match the properties of the user data and hence remains
fixed after deployment, leading to an accuracy drop. p-Meta enables pre-selected layer-wise updates
learned during offline meta-training and dynamic channel-wise updates during online on-device
training. However, as p-Meta requires additional learned parameters such as a meta-attention module
identifying important channels for every layer, its computation and memory saving are relatively low.
For example, p-Meta still incurs up to 4.7 x higher memory usage than updating the last layer only. In
addition, TinyTL still demands excessive memory and computation (see §@ In contrast, TinyTrain
enables data-, compute-, and memory-efficient training on tiny edge devices by adopting few-shot
learning pre-training and dynamic layer/channel selection.

G.2 FEW-SHOT LEARNING

Due to the scarcity of labelled user data on the device, developing Few-Shot Learning (FSL) tech-
niques is a natural fit for on-device training (Hospedales et al.,|2022). FSL methods aim to learn a
target task given a few examples (e.g. 5-30 samples per class) by transferring the knowledge from
large source data (i.e. meta-training) to scarcely annotated target data (i.e. meta-testing). Until now,
several FSL schemes have been proposed, ranging from gradient-based (Finn et al.,[2017}; |Antoniou
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et al., 2018; |L1 et al., 2017), and metric-based (Snell et al.l [2017;|Sung et al.} [2018; |[Satorras and
Estrach, |2018) to Bayesian-based (Zhang et al.,|2021). Recently, a growing body of work has been
focusing on cross-domain (out-of-domain) FSL (CDFSL) (Guo et al.,|2020). The CDFSL setting
dictates that the source (meta-train) dataset drastically differs from the target (meta-test) dataset. As
such, although CDFSL is more challenging than the standard in-domain (i.e. within-domain) FSL (Hu
et al., [2022), it tackles more realistic scenarios, which are similar to the real-world deployment
scenarios targeted by our work. In our work, we focus on realistic use-cases where the available
source data (e.g. MinilmageNet (Vinyals et al., [2016)) are significantly different from target data
(e.g. meta-dataset (Triantafillou et al., 2020)) with a few samples (5-30 samples per class), and hence
incorporate CDFSL techniques into TinyTrain.

FSL-based methods only consider data efficiency and neglect the memory and computation bot-
tlenecks of on-device training. Therefore, we explore joint optimisation of three major pillars of
on-device training such as data, memory, and computation.

In addition, Un-/Self-Supervised Learning could be a potential solution to data scarcity issues.
However, as investigated in (Liu et al., 2021)), self-supervised learning in the presence of significant
distribution shifts, as in the cross-domain tasks, could result in severe overfitting and insufficiency
to capture the complex distribution of high-dimensional features in low-order statistics, leading to
deteriorated accuracy. Further investigation could potentially reveal the feasibility of applying these
techniques in cross-domain on-device training.
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