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ABSTRACT

Recent advancements in real image editing have been attributed to the exploration
of Generative Adversarial Networks (GANs) latent space. However, a key chal-
lenge in this process is GAN inversion, which aims to accurately map images
to the latent space. Current methods working on the extended latent space W+
struggle to achieve low distortion and high editability simultaneously. In response
to this challenge, we propose an approach that operates in the native latent space
W and fine-tunes the generator network to restore missing image details. This
method introduces a novel regularization strategy with learnable coefficients ac-
quired through training a randomized StyleGAN 2 model - WRanGAN, surpass-
ing traditional approaches in terms of reconstruction quality and computational
efficiency. It achieves the lowest distortion compared to traditional methods. Fur-
thermore, we observe a slight improvement in the quality of constructing hyper-
planes corresponding to binary image attributes. The effectiveness of our approach
is validated through experiments on two complex datasets: Flickr-Faces-HQ and
LSUN Church

1 INTRODUCTION

The advent of generative adversarial networks (GANs) has significantly advanced the realm of high-
fidelity image synthesis. Among the prominent models in this domain is StyleGAN, renowned for
its exceptional achievements. Furthermore, a body of research Pfau et al. (2020); Khrulkov et al.
(2021); Peebles et al. (2020); Voynov & Babenko (2020); Shen et al. (2020); Härkönen et al. (2020)
has underscored the rich interpretability of GANs, laying the foundation for intricate image manip-
ulation. This distinct characteristic empowers the selective modification of specific attributes while
preserving the fundamental identity of the image in relation to others. Nevertheless, the practical
application of this feature to real-world images has been constrained by the necessity for precise
mapping into the latent space. This intricate task, commonly referred to as GAN inversion, origi-
nally focused on accurately projecting images into the intrinsic latent space denoted as W . However,
as highlighted in Abdal et al. (2019), this methodology has been demonstrated to yield substantial
disparities between the original and synthesized images. Subsequent studies have redirected their
efforts towards the utilization of the expanded latent space W+ Abdal et al. (2020); Richardson
et al. (2021); Alaluf et al. (2021a); Tov et al. (2021); Wang et al. (2022); Hu et al. (2022), which en-
hances image reconstruction quality but compromises editability. This phenomenon, referred to as
the distortion-editability tradeoff Tov et al. (2021), imposes limitations on the practical application
of codes acquired within the W+ space.

Another innovative approach to addressing this challenge was proposed in Roich et al. (2021), in-
troducing a minor adjustment in the generator parameters for operations conducted within the latent
space W - the pivotal tuning inversion (PTI).

In this paper, we introduce a new approach based on tuning generator parameters with learnable
regularization. Instead of using small, equal regularization coefficients for all model parameters, we
propose to learn the optimal ones. This allows for achieving high-quality image reconstructions by
tuning only 25% of the model parameters. This approach is based on a randomized version of the
StyleGAN 2 model called WRanGAN, in which part of the model weights are assumed to be nor-
mally distributed with trainable mean and variance. To apply the learned regularization coefficients
during inversion, we utilized the reparameterization trick Kingma & Welling (2014). We evaluated
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the effectiveness of our technique on two complex datasets, the Flickr-Faces-HQ Dataset (FFHQ)
Karras et al. (2019) and LSUN Churches Yu et al. (2015). Our contributions can be summarized as
follows:

• We present a novel adaptive regularization scheme and investigate their effect on recon-
struction quality and editability.

• We introduce WRanGAN, a model that learns appropriate regularization coefficients via a
randomization of the StyleGAN 2 model.

• We evaluate WRanGAN in terms of generation, reconstruction, binary attributes extraction,
and computational cost, and compare it to several baselines.

2 PROBLEM SETTING

2.1 LATENT SPACE MANIPULATION

GANs enable the creation of images that can be manipulated along semantic directions, as evidenced
in Pfau et al. (2020); Khrulkov et al. (2021); Peebles et al. (2020); Voynov & Babenko (2020);
Shen et al. (2020); Härkönen et al. (2020). Notably, the work presented in Härkönen et al. (2020)
introduced the concept of estimating subspaces that remain invariant under random-walk diffusion
for identification purposes. Additionally, in the study by Shen et al. (2020), supervision in the
form of facial attribute labels was employed to discern meaningful linear directions within the latent
space. Furthermore, the utilization of principal component analysis (PCA) for the identification of
latent directions was proposed in Härkönen et al. (2020).

2.2 GAN INVERSION

Recent efforts have been dedicated to enhancing the quality of GAN inversion for image reconstruc-
tion, a task focusing on precisely identifying the latent code required to accurately reproduce a real
image. This pursuit can be broadly classified into two groups: optimization techniques that directly
manipulate the latent code to minimize a loss function Abdal et al. (2019); Pernuš et al. (2021), and
encoder-based methods that use a trained encoder to generate an image Guan et al. (2020); Alaluf
et al. (2021a); Richardson et al. (2021); Tov et al. (2021). Typically, these methods function within
the native latent space W , potentially leading to significant visual differences compared to the orig-
inal image Abdal et al. (2019). Conversely, operating in the extended latent space W+ provides
increased expressiveness, enabling the recreation of finer image details. Nevertheless, this approach
is limited by fixed generator parameters. In response to this constraint, certain strategies have sug-
gested adjustments to the generator network to address visual inconsistencies, as seen in Roich et al.
(2021). Other approaches employ hypernetworks to forecast changes in generator parameters, with
the objective of reducing distortion and preserving the fidelity of the generated image, illustrated in
Alaluf et al. (2021b) and Dinh et al. (2022).

2.3 DISTORTION-EDITABILITY TRADEOFF

The utilization of the extended latent space W+ in GAN inversion has shown notable improvement
in the reconstruction of real images, albeit at the cost of reduced editability, a phenomenon known as
the distortion-editability trade-off Tov et al. (2021). Notably, recent works such as Zhu et al. (2020)
and Tov et al. (2021) have proposed methods to seek editable latent codes within the extended
latent space W+. Conversely, alternative approaches, as presented in the works by Alaluf et al.
(2021b) and Roich et al. (2021), offer a completely distinct solution to this challenge. Rather than
striving to strike a balance between editability and distortion, these authors advocate for leveraging
the advantages of projecting into the latent space W and updating generator parameters to minimize
distortion. In our study, we also employed projection into the native latent space to achieve enhanced
editability.

2.4 GENERATOR TUNING

Model tuning significantly improves ability to reproduce real image Roich et al. (2021); Alaluf et al.
(2021b); Dinh et al. (2022). But changing the parameters of the model can damage its quality.
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Figure 1: Comparison between the PTI and WRanGAN regularization strategies. PTI, employing
pivotal tuning with a high regularization coefficient, falls short in comparison to WRanGAN, which
incorporates optimal regularization coefficients. This is evident in the reconstruction results, partic-
ularly the enlarged area around the glasses, where PTI displays inferior performance. Furthermore,
the impact on image editing is apparent, as altering the age results in darkened areas around the eyes,
and removing glasses fails to produce the desired effect on the image.

In order to improve the realism of generated images after modification of the generator weights,
non-saturating GAN loss was used to train hypernetworks Alaluf et al. (2021b); Dinh et al. (2022)
(encoders predicting the necessary weight shift) . Despite the significant improvement in the quality
of reproduction, these methods are still inferior to the PTI approach Roich et al. (2021) based on
direct weight optimization. But optimization of model parameters without any additional constraints
requires imposing a regularization with a high coefficient in order not to damage the realism of the
generated images and forces to optimize all the parameters of the model to reach low distortion. As
a result, it leads to a significant increase in the computational costs.

3 METHOD

The proposed method addresses the issue by utilizing non-uniform learnable regularization. This
approach enables the setting of an appropriate regularization coefficient for each parameter based
on its impact on model performance (realism of generated images). Initially, we determine suitable
regularization coefficients for the inversion task through adversarial training of a generator with
partially randomized parameters. Subsequently, these learned coefficients are applied in an inversion
procedure that involves encoder projection and regularized optimization to minimize a specific loss
function.

3.1 REGULARIZED INVERSION

In order to avoid degradation of realism in generated images, regularization term is added to opti-
mization procedure:

ŵ, θ̂G = arg min
w,θG
L(G(w, θG), x̂) + αreg∥θG − θG,0∥22

where x̂ represents a real image, αreg∥θG − θG,0∥22 is the regularization term, G(w, θG) is the re-
constructed image, θG,0 are the initial values of the generator weights.For the WRanGAN inversion,
we used L = 2L2 + LLPIPS and initialized the intermediate latent code w by mapping the output
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Algorithm 1 Algorithm of WRanGAN inversion
Input: real image x̂, generator parameters µθ, σθ

Parameter: regularization coefficient αreg

Output: latent code w and parameterized randomization ϵ

Initialize w = E(x) by the output of encoder network
Initialize ϵ with small value (10−4)
for number of iterations do

Set generator weights θG ← µθ + σθϵ
Update parameters w, ϵ minimizing:

L(G(w, θG), x̂) + αreg∥ϵ∥22
end for
return w,ϵ

Table 1: Quantitative comparison of memory cost on the number of randomized layers
Number of

randomized layers
Relative increase in

amount of parameters
4 7%
6 23%
8 39%

of the trained encoder E to the intermediate latent space W : w = f(E(x̂)). The regularisation
coefficient αreg is chosen to obtain low distortion and not corrupt the model’s generative quality.
We considered two strategies of regularization to illustrate this paradigm:

• high regularization value (PTI)
• appropriate regularization coefficients (WRanGAN)

Based on the outcomes of our experiments, depicted in Figure 1, it is evident that a high regu-
larization coefficient does not yield the lowest distortion, as illustrated by the enlarged area in the
reconstructed image. Moreover, it results in the manipulation of specific image attributes, leading to
inaccurate behavior. In the showcased example, the proposed WRanGAN model exhibits superior
performance in reconstruction and consistently generates realistic images during editing: altering
attributes such as the presence of eyeglasses, gender, and human age.

3.2 WRANGAN INVERSION

In this segment, we have explored the application of regularization to randomized model parameters
θG ∼ N(µθ, σθ). For this purpose, we employ the reparameterization trick, which asserts that
θiG = µi

θ + ϵiσi
θ where ϵ ∼ N(0, 1) and i denotes the index of a specific parameter. By imposing

regularization on the parameter ϵ, we derive the following equation:

αreg∥ϵ∥22 =
∑
i

αreg

(σi
θ)

2
(θiG − µi

θ)
2 =

∑
i

αi
reg(θ

i
G − θiG,0)

2

Here, we have utilized the notations αi
reg =

αreg

(σi
θ)

2 and µi
θ = θiG,0, and have derived a standard regu-

larization formulation with distinct regularization coefficients for each randomized model parameter.
The insights discussed in this section are encapsulated in Algorithm 1.

3.3 WEIGHT RANDOMIZATION

The concept of randomizing the model was influenced by Bayesian GAN Saatci & Wilson (2017),
in which both the generator and discriminator networks are assumed to have distributions over their
internal parameters. However, randomizing the entire network is computationally intensive due to
the increased number of parameters needed for training and tuning the generator parameters during
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Figure 2: Dependence of MSE on number of randomized layers N versus regularization coefficient.
The lower the curve the better chosen number of layers.

Algorithm 2 WRanGAN training algorithm.
Input: pretrained StyleGAN 2 weights θG,0, dataset x̂
Parameter: batch size m
Output: µθ, σθ

Initialize µθ = θG,0

Initialize σθ = 1 for randomized parameters
for number of training iterations do

Sample z(1), ..., z(m) ∼ N(0, 1)
Map to intermediate latent space w(i) = f(z(i))
Sample x̂(1), ..., x̂(m) from training dataset x̂
Sample ϵ ∼ N(0, 1) and calculate θG = µθ + ϵσθ

Update discriminator weights θD minimizing:

1

m

m∑
i=1

LD(D(x̂(i)), D(G(w(i), θG)))

Sample z(1), ..., z(m) ∼ N(0, 1)
Map to intermediate latent space w(i) = f(z(i))
Sample ϵ ∼ N(0, 1) and calculate θG = µθ + ϵσθ

Update parameters (µθ, σθ) minimizing:

1

m

m∑
i=1

Lg(D(G(w(i), θG)))

end for
return µθ,σθ

the inversion step. Our previous discussion demonstrated the process of inversion using suitable
regularization coefficients, and now we will outline how to acquire these coefficients.
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Table 2: Quantitative reconstruction outcomes of the WRanGAN model are juxtaposed with the
StyleGAN 2 inversion methodologies, encompassing encoder and optimization-based techniques.
The evaluation encompasses various standard metrics, with each metri direction of improvement
indicated by the arrow (lower ↓ / higher ↑). The best results for each metric are prominently denoted
in bold. Notably, metrics highlighted in blue signify instances where we surpass PTI in performance.

Domain Model Method MSE↓ LPIPS↓ MS-SSIM↑ Time
VGG Alex (s)↓

FFHQ StyleGAN 2

E4E 0.062 0.389 0.235 0.605 1.64
Restyle 0.035 0.335 0.154 0.72 0.28

SG2 W+ 0.04 0.14 0.138 0.783 97.9
HyperStyle 0.026 0.288 0.105 0.788 0.31

PTI 0.024 0.293 0.06 0.776 35.46

WRanGAN WRanGAN
inversion 0.007 0.085 0.083 0.929 23.27

LSUN
Church

StyleGAN 2

E4E 0.142 0.506 0.418 0.263 1.64
Restyle 0.087 0.411 0.25 0.489 0.28

SG2 W+ 0.107 0.225 0.235 0.543 97.9
PTI 0.053 0.411 0.065 0.643 47

WRanGAN WRanGAN
inversion 0.033 0.177 0.224 0.782 23.27

Table 3: The assessment of WRanGAN model quality involved the utilization of FID, Precision, and
Recall metrics across two domains: FFHQ and LSUN Church. The best results for each domain and
metric are distinctly highlighted in bold.

Domain Model FID Precision Recall
Human
Faces

StyleGAN 2 4.27 0.7 0.42
WRanGAN 5.61 0.65 0.45

LSUN
Church

StyleGAN 2 4.3 0.61 0.37
WRanGAN 3.57 0.55 0.42

How many parameters to randomize? The study conducted in Alaluf et al. (2021b). aimed to
identify the most effective parameters to be modified in the generator. It was determined that re-
stricting the randomization to the last few convolutional layers, excluding the toRGB layers, while
leaving the discriminator architecture unchanged, was the optimal approach. A grid search was car-
ried out over N = 4, 6, 8 with varying regularization coefficients to ascertain the appropriate number
of layers for randomization. The findings of this search are detailed in Figure 2, and the associated
computational costs are provided in Table 1. The results led to the conclusion that randomizing
only the last N = 6 convolutional layers produced the best outcomes with a minimal increase in
computational expenses.

How to train? When training the WRanGAN model, a pre-trained model was utilized to initialize
the mean value of the model parameters, µθ = θG,0. A standard deviation of one was then incor-
porated into each randomized parameter. The generator and discriminator underwent concurrent
training to achieve the global optima, as delineated in Algorithm 2.

4 EXPERIMENTS

This section presents the results of the evaluation of the proposed WRanGAN model. Below are
presented the details of conducted experiments: datasets, baselines, and hyperparameters.

Technical details.

• Models: We used the StyleGAN 2 Karras et al. (2020) model as a basis, with pre-trained
models and base code for implementation taken from an open resource1.

1https://github.com/rosinality/stylegan2-pytorch
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Figure 3: Qualitative evaluation of WRanGAN inversion results compared to ones produced by
StyleGAN 2 using various approaches for FFHQ domain. For each reconstruction provided zoomed
version (interesting regions were cropped) to see the difference in details completely.
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Figure 4: Qualitative evaluation of WRanGAN inversion results compared to ones produced by
StyleGAN 2 using various approaches for LSUN Church domain. For each reconstruction provided
zoomed version (interesting regions were cropped) to see the difference in details completely.

• Datasets: We trained using the Flickr-Faces-HQ Dataset (FFHQ) Karras et al. (2019) with
pictures resized to resolution 256x256, and LSUN Churches Yu et al. (2015) with pictures
center-cropped and resized to 256x256. We randomly sampled 1000 images from both
datasets for testing.

• WRanGAN training details: We used standard parameters for StyleGAN 2, and trained
on 2 GPUs with a batch size of 8 for 200k iterations.

• WRanGAN inversion details: For the encoder E in Algorithm 1, we used the architecture
proposed by Tov et al. (2021) and trained with default parameters. We used the Adam
optimizer with a learning rate of lr = 10−3, and the number of iterations needed for
convergence was set to 500. The randomization parameter was initialized with the value
ϵ = 10−4, and we used a regularization coefficient of αreg = 10−4.

Experiments were conducted on 4 Tesla V100-SXM2 GPUs with 16 GB of memory.

4.1 WRANGAN MODEL EVALUATION

We evaluated the performance of our WRanGAN model by running several metrics such as FID,
Precision, and Recall Kynkäänniemi et al. (2019) and comparing our results with those produced
by the StyleGAN 2 model (see Table 3). WRanGAN showed an improvement in the Recall metric
for both data domains, which suggests that the generator is more likely to reproduce particular real
images. However, we observed a slight decrease in the Precision metric. For further details on
the randomized parameters of the model and their effect on the generated images, please refer to
Appendix A.
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Figure 5: Qualitative evaluation of WRanGAN editing quality compared to PTI approach applied
over StyleGAN 2 model.
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Figure 6: Qualitative evaluation of WRanGAN interpolation quality compared to PTI approach
applied over StyleGAN 2 model. Here α denotes interpolation step.

4.2 INVERSION QUALITY ASSESSMENT

The evaluation of inversion quality encompassed several encoder-based approaches, including e4e
Tov et al. (2021), ReStyle Alaluf et al. (2021a), and HyperStyle Alaluf et al. (2021b), as well as
optimization-based approaches such as SG2 W+ Karras et al. (2020) and PTI Roich et al. (2021).
Standard metrics such as mean squared error (MSE), LPIPS Zhang et al. (2018) with the VGG
and Alex feature network, and MS-SSIM Wang et al. (2003) were employed for the assessment.
The summarized results in Table 2 indicate that the proposed WRanGAN model outperformed all
other methods applied to StyleGAN 2 across most metrics. Not only did it achieve the lowest
distortion, but its computational efficiency also far exceeded that of PTI, as the tuning procedure
necessitated optimizing 4 times fewer parameters. Moreover, the computational speed was 1.5 and
2 times faster for FFHQ and LSUN Church domains, respectively. The visual representation of the
results further demonstrated how the enhancement in reconstruction affected the image, with the
WRanGAN approach capable of reproducing unique details such as bangs, the outline of the eyes,
and small church windows. More detailed visualizations and an exploration of the distribution of
randomized parameters for real mapped images can be found in Appendices B and C, respectively.

4.3 EDITING AND INTERPOLATION ASSESSMENT

Our experiment was designed to verify that the WRanGAN model exhibits a similar excellent prop-
erty as the StyleGAN 2 model - specifically, for any binary attribute, there exists a hyperplane in
latent space such that all samples from the same side have the same attribute Shen et al. (2020). To
achieve this, we trained a classifier to predict attributes including Gender, Eyeglasses, Smile, Age,
and Open Mouth. Subsequently, we constructed hyperplanes in the latent space corresponding to the
selected attributes and evaluated their accuracy, as detailed in Table 4. The findings from our exper-
iment indicate that the WRanGAN model outperforms the basic StyleGAN 2 model, as evidenced
in the visualization provided in Figure 5. This visualization clearly shows the significant impact of
attributes such as eyeglasses in the original image on attribute editing using the PTI method, while
WRanGAN exhibits exceptional performance. Furthermore, the interpolation comparison presented
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Table 4: Classification accuracy (%) on separation boundaries in latent space with respect to different
face attributes. The best results are highlighted in bold.

Attribute StyleGAN 2 WRanGAN
Gender 73.9 75.0

Eyeglasses 99.8 99.9
Smile 99.5 99.8
Age 99.5 99.4

Mouth open 98.2 98.5

in Figure 6 highlights the superior performance of WRanGAN. Additional examples are available
in Appendix D for further reference.

5 CONCLUSION

We introduced WRanGAN, a randomized variant of the StyleGAN 2 model that autonomously
learns the optimal scaling (standard deviation) for each parameter to determine the appropriate reg-
ularization coefficient. Our non-uniform regularization coefficient approach for GAN tuning exhib-
ited superior performance in terms of distortion and computational efficiency when compared to
the highly successful pivotal tuning inversion method. Importantly, our method maintained model
integrity, facilitating image editing capabilities. Furthermore, we illustrated the ease of constructing
hyperplanes corresponding to standard image attributes in the FFHQ domain within the latent space
of a randomized model.

Our approach reduces memory requirements per image during the inversion process, facilitating
parallelized computations. Moreover, it exhibits slight dependency on the network architecture,
allowing for potential adaptation to other structures such as StyleGAN 3 Karras et al. (2021).
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A INVESTIGATION OF WRANGAN MODEL RANDOMIZATION
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Figure 7: Dependence of distribution of randomized parameters variance with respect to index of
convolutional layer for model trained on FFHQ dataset.
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Figure 8: Dependence of distribution of randomized parameters variance with respect to index of
convolutional layer for model trained on LSUN Church dataset.

The WRanGAN model is a type of generative model that optimizes two parameters - the mean
and variance - in its learning process. It is hypothesized that a larger variance value allows for
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Table 5: Percentage of small variances (σθ < 10−3) for each randomized convolutional layer.
Layer index Percentage

7 0.13 %
8 0.16 %
9 0.18 %

10 0.29 %
11 0.40 %
12 0.52 %

Real E4E Restyle SG2 W+ HyperStyle PTI WRanGAN

Figure 9: Qualitative reconstruction examples for images taken from FFHQ dataset.

Table 6: Influence of each randomized layer on generator output.
Layer index MSE

7 0.017
8 0.017
9 0.015
10 0.015
11 0.014
12 0.014

more changes to be made, which can be observed by examining the distributions of the variance
values of the trained WRanGAN model. Figures 7 and 8 present the distributions for the FFHQ
and LSUN Church domains respectively. It can be seen that the distribution is shifted towards zero

13



Published as a conference paper at ICOMP 2024

Real E4E Restyle SG2 W+ PTI WRanGAN

Figure 10: Qualitative reconstruction examples for images taken from LSUN Church dataset.

as the number of randomized layers increases. In order to verify this idea, a test was conducted to
measure the number of parameters that have a variance close to zero (σθ < 10−3) in each layer.
The results, as presented in Table 5, indicate that the last layers have a greater effect on the model
performance. To further investigate this idea, a procedure was conducted in which the parameters
of different layers were changed and the impact of these changes on the output image was assessed
by calculating the MSE metric (Table 6). The results confirm the hypothesis that the last layers have
the greatest influence.

B ADDITIONAL QUALITATIVE RESULTS ON RECONSTRUCTION

The proposed approach of WRanGAN demonstrates a clear advantage in terms of reproducing
unique details, as demonstrated in the additional examples of Figure 9 and Figure 10. Difference
maps in Figure 11 and Figure 12 more clearly show the areas of the image that differ from the
original, where the WRanGAN model has more accurately reproduced the unique details of facial
skin tones, wrinkles, clothing elements, complex hairstyles, and background elements, such as the
windows, friezes, pilasters, and clock in the case of churches. However, some unique details are not
completely restored even with the use of the new approach.

14



Published as a conference paper at ICOMP 2024

Re
co

ns
tru

ct
io

n Real E4E Restyle SG2 W+ HyperStyle PTI WRanGAN

Di
ffe

re
nc

e
 m

ap
Re

co
ns

tru
ct

io
n

Di
ffe

re
nc

e
 m

ap
Re

co
ns

tru
ct

io
n

Di
ffe

re
nc

e
 m

ap

Figure 11: Qualitative reconstruction examples for FFHQ dataset with difference map, which rep-
resents pixel wise difference between reconstructed and original images. Map colors range from
purple to yellow - from exact match to maximal difference.

C INVESTIGATION OF INVERSION PROCEDURE RESULTS

The proposed methodology utilizes a reparametrization trick to work with randomized parameters.
Specifically, the generator parameter θg is represented as θg = µθ + ϵσθ, where ϵ is sampled from
a normal distribution. Figures 13, 14, 15, 16, 17, and Figures 18, 19, 20, 21, 22, provide examples
of the resulting distribution of ϵ for images taken from FFHQ and LSUN Church respectively. In
general, the parameter is close to normally distributed, albeit with a variance that is 10 times lower
than that which was specified at the Wrangan training stage for FFHQ, and 7 times lower for LSUN
Church. Despite this reduction, the proposed methodology is still successful.

D ADDITIONAL QUALITATIVE COMPARISONS FOR EDITING

We conducted additional comparative experiments of the proposed WRanGAN approach and the
PTI inversion method for the StyleGAN 2 model in two domains: the FFHQ domain, with semantic
directions corresponding to binary image attributes Shen et al. (2020), and the LSUN Church do-
main, with the first 4 vectors obtained by PCA approach Härkönen et al. (2020). The results were
captured in Figures 23, 24, 25, 26, and 27.
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Figure 12: Qualitative reconstruction examples for LSUN Church dataset with difference map,
which represents pixel wise difference between reconstructed and original images. Map colors range
from purple to yellow - from exact match to maximal difference.
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Figure 13: Distribution of parameter ϵ among randomized layers for image taken from FFHQ.
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Figure 14: Distribution of parameter ϵ among randomized layers for image taken from FFHQ.
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Figure 15: Distribution of parameter ϵ among randomized layers for image taken from FFHQ.
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Figure 16: Distribution of parameter ϵ among randomized layers for image taken from FFHQ.
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Figure 17: Distribution of parameter ϵ among randomized layers for image taken from FFHQ.
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Figure 18: Distribution of parameter ϵ among randomized layers for image taken from LSUN
Church.
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Figure 19: Distribution of parameter ϵ among randomized layers for image taken from LSUN
Church.
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Figure 20: Distribution of parameter ϵ among randomized layers for image taken from LSUN
Church.
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Figure 21: Distribution of parameter ϵ among randomized layers for image taken from LSUN
Church.
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Figure 22: Distribution of parameter ϵ among randomized layers for image taken from LSUN
Church.
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Figure 23: Qualitative editing comparisons for FFHQ dataset
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Figure 24: Qualitative editing comparisons for FFHQ dataset
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Figure 25: Qualitative editing comparisons for FFHQ dataset
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Figure 26: Qualitative editing comparisons for LSUN Church
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Figure 27: Qualitative editing comparisons for LSUN Church
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