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ABSTRACT

We introduce a novel generative model, the Discrete Distribution Networks
(DDN), that approximates data distribution using hierarchical discrete distribu-
tions. We posit that since the features within a network inherently capture dis-
tributional information, enabling the network to generate multiple samples si-
multaneously, rather than a single output, may offer an effective way to repre-
sent distributions. Therefore, DDN fits the target distribution, including con-
tinuous ones, by generating multiple discrete sample points. To capture finer
details of the target data, DDN selects the output that is closest to the Ground
Truth (GT) from the coarse results generated in the first layer. This selected
output is then fed back into the network as a condition for the second layer,
thereby generating new outputs more similar to the GT. As the number of DDN
layers increases, the representational space of the outputs expands exponen-
tially, and the generated samples become increasingly similar to the GT. This
hierarchical output pattern of discrete distributions endows DDN with unique
properties: more general zero-shot conditional generation and 1D latent repre-
sentation. We demonstrate the efficacy of DDN and its intriguing properties
through experiments on CIFAR-10 and FFHQ. The code is available at https:
//discrete-distribution-networks.github.io/
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(a) Image Reconstruction through DDN
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(b) Tree Structure of DDN’s Latent

Figure 1: (a) Illustrates the process of image reconstruction and latent acquisition in DDN. Each
layer of DDN outputs K distinct images to approximate the distribution P (X). The sampler then
selects the image most similar to the target from these and feeds it into the next DDN layer. As
the number of layers increases, the generated images become increasingly similar to the target. For
generation tasks, the sampler is simply replaced with a random choice operation. (b) Depicts the
tree-structured representation space of DDN’s latent variables. Each sample can be mapped to a leaf
node on this tree.

1 INTRODUCTION

With the advent of ChatGPT Brown et al. (2020) and DDPM Ho et al. (2020), deep generative
models have become increasingly popular and significant in everyday life. However, modeling the
complex and diverse high-dimensional data distributions is challenging. Previous methods Kingma
& Welling (2014); Radford et al. (2016); Kingma & Dhariwal (2018); Goyal et al. (2021); Song et al.
(2021); Shocher et al. (2024); Graves et al. (2023) have each demonstrated their unique strengths and
characteristics in modeling these distributions. In this work, we propose a novel approach to model
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Figure 2: DDN enables more general zero-shot conditional generation. DDN supports zero-shot
conditional generation across non-pixel domains, and notably, without relying on gradient, such as
text-to-image generation using a black-box CLIP model Radford et al. (2021). Images enclosed in
yellow borders serve as the ground truth. The abbreviations in the table header correspond to their
respective tasks as follows: ‘SR’ stands for Super-Resolution, with the following digit indicating the
resolution of the condition. ‘ST’ denotes Style Transfer, which computes Perceptual Losses with the
condition according to Johnson et al. (2016).

the target distribution, where the core idea is to generate multiple samples simultaneously, allowing
the network to directly output an approximate discrete distribution. Hence, we name our method
Discrete Distribution Networks (DDN). DDN embraces a core concept as simple as autoregressive
models, offering another straightforward and effective form for generative models.

Most generative models applied in real-world scenarios are conditional generative models. Tak-
ing image generation as an example, these models generate corresponding images based on content
provided by users, such as images to be edited, reference images Saharia et al. (2021), text descrip-
tions, hand-drawn editing strokes Voynov et al. (2022), sketches, and so on. Current mainstream
generative models Rombach et al. (2021); Ramesh et al. (2022); Zhang et al. (2023) typically re-
quire training separate models and parameters for each condition. These models are restricted to
fixed condition formats and lack the flexibility to adjust the influence of each condition dynamically,
thereby limiting users’ creative freedom.

Recent works have attempted to address this issue through zero-shot conditional generation (ZSCG).
However, these methods either only support conditions in the same pixel domain as the training data
Wang et al. (2022); Lugmayr et al. (2022); Meng et al. (2021); Nair et al. (2023) or depend on dis-
criminative models to supply gradients during generation Yu et al. (2023). In contrast, DDN supports
a wide range of ZSCG tasks, encompassing both pixel-domain and non-pixel-domain conditions, as
shown in fig. 2. To the best of our knowledge, DDN is the first generative model capable of perform-
ing zero-shot conditional generation in non-pixel domains without relying on gradient information.
This implies that DDN can achieve ZSCG solely based on black-box discriminative models.

The core concept of Discrete Distribution Networks (DDN) is to approximate the distribution of
training data using a multitude of discrete sample points. The secret to generating diverse samples
lies in the network’s ability to concurrently generate multiple samples (K). This is perceived as the
network outputting a discrete distribution. All generated samples serve as the sample space for this
discrete distribution. Typically, each sample in this discrete distribution has an equal probability
mass of 1/K. Our goal is to make this discrete distribution as close as possible to the target dataset.

To accurately fit the target distribution of large datasets, a substantial representational space is re-
quired. In the most extreme scenario, this space must be larger than the number of training data
samples. However, current neural networks lack the feasibility to generate such a vast number of
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samples simultaneously. Therefore, we adopt a strategy from autoregressive models Van Den Oord
et al. (2016) and partition this large space into a hierarchical conditional probability model. Each
layer of this model needs only a small number of outputs. We then select one of these outputs as the
output for that layer and use it as conditional input to the next layer. As a result, the output of the
next layer will be more closely related to the selected conditional sample. If the number of layers is
L and the number of outputs per layer is K, then the output space of the network is KL. Due to its
exponential nature, this output space will be much larger than the number of samples in the dataset.
Figure 1 shows how DDN generates images.

We posit that the contributions of this paper are as follows:

• We introduce a novel generative model, termed Discrete Distribution Networks (DDN),
which exhibit a more straightforward and streamlined principle and form.

• For training the DDN, we propose the “Split-and-Prune” optimization algorithm, and a
range of practical techniques.

• We conduct preliminary experiments and analysis on the DDN, showcasing its intriguing
properties and capabilities, such as zero-shot conditional generation and 1D latent repre-
sentations.

2 RELATED WORK

Deep Generative Model. Generative Adversarial Networks (GANs) Radford et al. (2016); Brock
et al. (2019) and Variational Autoencoders (VAEs) Kingma & Welling (2014); van den Oord et al.
(2018) are two early successful generative models. GANs reduce the divergence between the gen-
erated sample distribution and the target distribution through a game between the generator and
discriminator. However, regular GANs cannot map samples back to the latent space, thus they
cannot reconstruct samples. VAEs encode data into a simple distribution’s latent space through an
Encoder, and the Decoder is trained to reconstruct the original data from this simple distribution’s
latent space. Autoregressive models van den Oord et al. (2016) , with their simple principles and
methods, model the target distribution by decomposing the target data into conditional probability
distributions of each component. They can also compute the exact likelihood of target samples.
However, the efficiency of these models is reduced when dealing with image data, which is not
suitable to be decomposed into a sequence of components. Normalizing flow Kingma & Dhariwal
(2018) is another class of generative models that can compute the likelihood. They use invertible
networks to construct a mapping from samples to a noise space, and during the generation stage,
they map back from noise to samples. Energy Based Models (EBM) Goyal et al. (2021); Song et al.
(2021) with their high-quality and rich generative results, have led to the rise of diffusion models.
However, their multi-step iterative generation process requires substantial computational resources.
The recent Idempotent Generative Network Shocher et al. (2024) introduces a novel approach by
training a neural network to be idempotent, mapping any input to the target distribution effectively.

Connections to VQ-VAE. While both VQ-VAE van den Oord et al. (2018) and DDN involve dis-
crete representations, they differ significantly in their approach and capabilities. VQ-VAE enhances
the traditional VAE by replacing the continuous latent space with discrete codebooks, thus achieving
a more compact representation. VQ-VAE-2 Razavi et al. (2019) further improves this by employ-
ing a multi-scale hierarchical structure, thereby enhancing its representational power. However, the
discrete representation in VQ-VAE remains two-dimensional, potentially leading to redundant in-
formation. Furthermore, VQ-VAE and its successors still rely on an additional prior network for
generative modeling in the latent space. Notably, DDN can also serve as this prior model to effec-
tively model the latent space of VQ-VAE. Other distinctions between DDN and VQ-VAE include the
absence of an encoder and codebook in DDN, as well as its capacity for Zero-Shot Conditional Gen-
eration. VQ-VAEs are known to encounter codebook collapse, a problem that some researchers have
addressed by reinitializing unused codes near frequently used ones Williams et al. (2020); Dhariwal
et al. (2020). Our Split-and-Prune algorithm shares a similar core idea, albeit with some differences.
While the reinitialization method aims to balance code usage to mitigate codebook collapse, our
goal is to align the discrete distribution output by our network as closely as possible to the target
distribution.
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Figure 3: Schematic of Discrete Distribution Networks (DDN). (a) The data flow during the
training phase of DDN is shown at the top. As the network depth increases, the generated images
become increasingly similar to the training images. Within each Discrete Distribution Layer (DDL),
K samples are generated, and the one closest to the training sample is selected as the generated im-
age for loss computation. These K output nodes are optimized using Adam with the Split-and-Prune
method. The right two figures shown the two model paradigms supported by DDN. (b) Single Shot
Generator Paradigm: Each neural network layer and DDL has independent weights. (c) Recurrence
Iteration Paradigm: All neural network layers and DDLs share weights. For inference, replacing the
Guided Sampler in the DDL with a random choice enables the generation of new images.

3 DISCRETE DISTRIBUTION NETWORKS

Network architecture. Figure 3a illustrates the overall structure of the DDN, comprised of Neural
Network Blocks and Discrete Distribution Layers (DDL). Each DDL contains K output nodes, each
of which is a set of 1x1 convolutions responsible for transforming the feature into the corresponding
output image. The parameters of these 1x1 convolutions are optimized by Adam with Split-and-
Prune. The K images generated by the K output nodes are inputted into the Guided Sampler.
The Guided Sampler selects the image with the smallest L2 distance to the training image, which
serves as the output of the current layer and is used to calculate the L2 loss with the training image.
Simultaneously, the selected image is concatenated back into the feature, acting as the condition for
the next block. The index (depicted in green as “K-1” in fig. 3a) of the selected image represents the
latent value of the training sample at this layer. Through the guidance of the Guided Sampler layer
by layer, the image generated by the network progressively becomes more similar to the training
sample until the final layer produces an approximation of the training sample.

For computational efficiency, we adopted a decoder structure similar to the generator in GANs for
coarse-to-fine image generation, as shown in fig. 3b. We refer to this as the Single Shot Generator
which is our default choice. As each layer of DDN can naturally input and output RGB domain data,
DDN seamlessly support the Recurrence Iteration Paradigm fig. 3c.

Objective function. The DDN model consists of L layers of Discrete Distribution Layers (DDL).
For a given layer l, denoted as fl, the input is the selected sample from the previous layer, x∗

l−1. The
layer generates K new samples, fl(x∗

l−1), from which we select the sample x∗
l that is closest to the

current training sample x, along with its corresponding index k∗l . The loss Jl for this layer is then
computed only on the selected sample x∗

l .

k∗l = argmin
k∈{1,...,K}

∥∥fl(x∗
l−1)[k]− x

∥∥2 (1)

x∗
l = fl(x

∗
l−1)[k

∗
l ] ; Jl = ∥x∗

l − x∥2 (2)

Here, x∗
0 = 0 represents the initial input to the first layer. For simplicity, we omit the details of

input/output feature, neural network blocks and transformation operations in the equations.
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By recursively unfolding the above equations, we can derive the latent variable k∗
1:L and the global

objective function J .

k∗
1:L = [k∗1 , k

∗
2 , . . . , k

∗
L] =

[
argmin

k∈{1,...,K}

∥∥F([k∗
1:l−1, k])− x

∥∥2]L

l=1

(3)

J =
1

L

L∑
l=1

∥F(k∗
1:l)− x∥2 (4)

Here, F represents the composite function formed from fl, defined as: F(k1:l) =
fl(fl−1(. . . f1(x0)[k1] . . . )[kl−1])[kl]. Finally, we average the L2 loss across all layers to obtain
the final loss for the entire network.

How to generation. When the network performs the generation task, replacing the Guided Sampler
with a random choice enables image generation. Given the exponential representational space of
KL sample points and the limited number of samples in the training set, the probability of sampling
an image with the same latent space as those in the training set is also exponentially low. For image
reconstruction tasks, the process is almost identical to the training process, only substituting the
training image with the target image to be reconstructed and omitting the L2 Loss part from the
training process. The Final Generated Image in fig. 3a represents the final reconstruction result.
The indices of the selected samples along the way form the target image’s latent k∗

1:L, same as
eq. (3). Therefore, the latent k∗

1:L is a sequence of integers with length L, which we regard as the
hierarchical discrete representation of the target sample. The latent space exhibits a tree structure
with L layers and K degrees per node, where each leaf node represents a sample point, and its
latent denotes the indices of all nodes along the path to this leaf node, as shown in fig. 1b. In the
latent sequence, values placed earlier correspond to higher-level nodes in the tree, controlling the
low-frequency information of the output sample, while later values tend to affect high-frequency
information.
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(c) Prune, K=6→5
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Figure 4: Illustration of the principle behind the Split-and-Prune operation. For example in
(a), the light blue bell-shaped curve represents a one-dimensional target distribution. The 5 “↑”
under the x-axis are the initial values from a uniform distribution of 5 output nodes, which divide
the entire space into 5 parts using midpoints between adjacent nodes as boundaries (i.e., vertical
gray dashed lines). Each part corresponds to the range represented by this output node on the
continuous space x. Below each node are three values: P stands for the relative frequency of the
ground truth falling within this node’s range during training; Q refers to the probability mass of this
sample (node) in the discrete distribution output by the model during the generation phase, which is
generally equal for each sample, i.e., 1/K. The bottom-most value denotes the difference between
P and Q. Colorful horizontal line segments represent the average probability density of P , Q within
corresponding intervals. In (b), the Split operation selects the node with the highest P (circled in
red). In (c), the Prune operation selects the node with the smallest P (circled in red). In (d), through
the combined effects of loss and Split-and-Prune operations, the distribution of output nodes moves
towards final optimization. From the observed results, the KL divergence (KL(P ||Q)) consistently
decreases as the operation progresses, and the yellow line increasingly approximates the light blue
target distribution.
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3.1 OPTIMIZATION WITH SPLIT-AND-PRUNE

We have observed two primary issues resulting from each layer calculating loss only with the closest
output samples to the ground truth (GT). Firstly, a problem similar to the“dead codebooks” in VQ-
VAE, wherein output nodes that are not selected for a long time receive no gradient updates. During
generation, these “dead nodes” are selected with equal probability, leading to poor output. The
second issue is the probability density shift. For instance, in a one-dimensional asymmetric bimodal
distribution, the target distribution is a mixture of two thin and tall Gaussian distribution functions,
with one larger and one smaller peak. The means of these two peaks are -1 and 1, respectively.
Therefore, half of the output samples with initial values less than 0 will be matched with samples
from the larger peak and optimized towards the larger Gaussian distribution. Meanwhile, the other
half of the output samples with values greater than 0 will be optimized towards the smaller Gaussian.
A problem arises as the large and small peaks carry different probability masses but occupy equal
portions of the output samples, resulting in the same sampling probability during generation.

Algorithm 1 Split-and-Prune of one layer
Require: Output nodes number K, model f , non-output

parameters θ, target distribution q(x)
1: Initialize output node parameters ψ(k) for k ∈
{1, . . . ,K} with random values

2: Initialize counter c(k) = 0 for k ∈ {1, . . . ,K}
3: Set split/prune threshold Psplit ← 2/K, Pprune ←

0.5/K
4: n← 0, knew ← K + 1
5: repeat
6: x ∼ q(x)

7: Choose k∗ = argmin
k∈ψ

∥f(θ,ψ(k))− x∥2

8: Gradient descent∇θ,ψ(k∗) ∥f(θ,ψ(k∗))− x∥2
9: c(k∗) := c(k∗) + 1

10: n← n+ 1
11: kmax = argmax

k
c(k) and kmin =

argmin
k

c(k)

12: if c(kmax)/n > Psplit or c(kmin)/n < Pprune

then
# Split:

13: ψ(knew) := clone(ψ(kmax))
14: c(knew) := c(kmax)/2
15: c(kmax) := c(kmax)/2
16: knew ← knew + 1

# Prune:
17: n← n− c(kmin)
18: remove ψ(kmin) and c(kmin)
19: end if
20: until converged

Inspired by the theory of evolution and ge-
netic algorithms Katoch et al. (2021), we
propose the Split-and-Prune algorithm to ad-
dress the above issues, as outlined in algo-
rithm 1. The Split operation targets nodes fre-
quently matched by training samples, while
the Prune operation addresses the issue of
“dead nodes”, similar to those in Williams
et al. (2020); Dhariwal et al. (2020). These
nodes are akin to species in evolution, sub-
ject to diversification and extinction. During
training, we track the frequency with which
each node is matched by training samples.
For nodes with excessive frequency, we exe-
cute the Split operation, cloning the node into
two new nodes, each inheriting half of the old
node’s frequency. Although these two new
nodes have identical parameters and outputs,
the next matched training sample will only be
associated with one node. Therefore, the loss
and gradient only affect one node’s parame-
ters. Consequently, their parameters and out-
puts exhibit slight differences, dividing the
old node’s match space into two. In subse-
quent training, the outputs of the two new
nodes will move towards the centers of their
respective spaces under the influence of the
loss, diverging to produce more diverse out-
puts. For nodes with low matching frequency
(dead nodes), we implement the Prune opera-
tion, removing them outright. Figure 4 illus-
trates the process of the Split-and-Prune oper-
ation and how it reduces the distance between
the discrete distribution represented by the Output Nodes and the target distribution. The efficacy of
the Split-and-Prune optimization algorithm is validated through examples of fitting 2D density maps
in fig. 17.

3.2 APPLICATIONS

Zero-Shot Conditional Generation (ZSCG). The DDN sampling process occurs directly within
the sample space, which inherently facilitates Zero-Shot Conditional Generation. Each layer of
the DDN generates multiple target samples, with a selected sample being forwarded as a condition
to the next layer. This enables the generation of new samples in the desired direction, ultimately
producing a sample that meets the given condition. In fact, the reconstruction process shown in

6



Published as a conference paper at ICLR 2025

fig. 1a is a ZSCG process guided by a target image. It is important to note that the target image
is never directly input into the network. Instead, it shapes the generation outcomes by steering the
sampling process.

To implement ZSCG, we replace the Guided Sampler in fig. 3a with a Conditional Guided Sampler.
For instance, when generating an image of class yi guided by a classifier gcls, we replace the “L2
Distance to Training Image” in the Guided Sampler of fig. 3a with the probability of each output
image belonging to class yi according to the classifier. We then replace “argmin” with “argmax” to
construct the Guided Sampler for this classifier. Similar to eq. (1), the sampling method is:

k∗l = argmax
k∈{1,...,K}

gcls(fl(x
∗
l−1)[k])[yi] (5)

After performing L steps guided sampling and L × K steps of classification, the ZSCG result can
be obtained without any gradient.

For super-resolution and colorization tasks, we construct a transform that converts the generated
images into the target domain (low-resolution or grayscale). This approach significantly reduces
the impact of the missing signal from the condition on the generated images, enabling DDN to
successfully perform super-resolution tasks even when the source image has a resolution as low as
4× 4.

The use of “argmax” in the Guided Sampler causes each layer to select a fixed sample, resulting in
the same image output under identical conditions, similar to greedy sampling in GPT. To increase
diversity, we use Top-k sampling with k = 2 for most ZSCG tasks, which balances diversity and
condition appropriateness within the large generation space (2L).

The versatility of ZSCG can be further enhanced by combining different Guided Samplers. For
example, an image can guide the primary structure while text guides the attributes. The influence
of each condition can be adjusted by setting their respective weights. Experiments involving the
combination of different Guided Samplers are presented in appendix B.

Efficient Data Compression Capability. The latent of DDN is a highly compressed discrete rep-
resentation, where the information content of a DDN latent is L × log2 K bits. Taking our default
experimental values of K=512 and L=128 as an example, a sample can be compressed to 1152
bits, demonstrating the efficient lossy compression capability of DDN. We hypothesize this ability
originates from two aspects: 1) the compact hierarchical discrete representation, and 2) the Split-
and-Prune operation makes the probabilities of each node as equal as possible, thereby increasing the
information entropy Shannon (1948) of the entire latent distribution and more effectively utilising
each bit within the latent.

In our experiments, we set K=512 as the default, considering the balance between generation per-
formance and training efficiency. However, from the perspective of data compression, setting K to
2 and increasing L provides a better balance between representation space and compression effi-
ciency. We refer to DDN with K = 2 as Taiji-DDN because of its similarity to the concept of Taiji
in ancient Chinese philosophy, as described in fig. 18. To our knowledge, Taiji-DDN is the first
generative model capable of directly transforming data into a semantically meaningful binary string
which represents a leaf node on a balanced binary tree.

3.3 TECHNIQUES

In this subsection, we present several techniques for training Discrete Distribution Networks.

Chain Dropout. In scenarios where the number of training samples is limited, each data sample
undergoes multiple training iterations within the network. During these iterations, similar selections
are often made by the Guided Sampler at each layer. However, the representational space of DDN
far exceeds the number of training samples in the dataset. This disparity leads to a situation where
the network is only trained on a very limited set of pathways, resulting in what can be perceived
as overfitting on these pathways. To mitigate this, we introduce a strategy during training where
each Discrete Distribution Layer substitutes the Guided Sampler with a “random choice” at a fixed
probability rate. We refer to this method as “Chain Dropout”.
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(a) CelebA-HQ 64x64 (b) FFHQ 64x64

(c) CIFAR (d) Conditional CIFAR (e) Conditional MNIST

Figure 5: Random samples from DDN. Figures (d) and (e) showcase images that are conditionally
generated by conditional DDN, with each row of images representing a distinct category.

Learning Residual. In the context of utilizing the Single Shot Generator structure, a Discrete Dis-
tribution Layer is introduced every two convolution layers. Given such small amount of computation
between adjacent layers, directly regressing the images themselves with these convolutions becomes
challenging. Drawing inspiration from ResNet He et al. (2016), we propose a scheme for the net-
work to learn the residual between the output images from the preceding layer and the ground truth.
The output of the current layer is then computed as the sum of the output from the previous layer
and the current layer’s residual. This approach alleviates the pressure of the network to represent
complex data and enhances the flexibility of the network.

Leak Choice. In each DDN layer, the output is conditioned on the image selected from the previous
layer. This condition serves as a signal in the image domain, requiring the current layer to expend
computational resources to extract features and interpret the choices made by the sampler. However,
the computation between two adjacent layers in Single Shot Generator Paradigm is very small,
involving only two convolutional layers. To facilitate a faster understanding of the choices made by
the Sampler in the subsequent layer, we have added extra convolutional layers to each output node.
The features produced by these extra convolutions also serve as conditional inputs to the next layer.
But these features don’t participate in the calculation of distance or loss in DDL.

4 EXPERIMENTS

We trained our models on a server equipped with 8 RTX2080Ti GPUs, setting the Chain Dropout
probability to 0.05 by default. For the 64x64 resolution experiments, we utilized a DDN with 93M
parameters, setting K = 512 and L = 128. In the CIFAR experiments, we employed a DDN with
74M parameters, setting K = 64 and L = 64. The MNIST experiments were conducted using a
Recurrence Iteration Paradigm UNet model with 407K parameters, where K = 64 and L = 10.
DDN is implemented on the foundation of the EDM Karras et al. (2022) codebase, with training
parameters nearly identical to EDM. More extended experiments exploring the properties of DDN
can be found in the appendix.

8



Published as a conference paper at ICLR 2025

4.1 QUALITATIVE AND QUANTITATIVE RESULTS

Generation Quality. Figures 5a and 5b depict random generation results of DDN on CelebA-HQ-
64x64 Karras et al. (2017) and FFHQ-64x64 Karras et al. (2019), verifying the model’s effectiveness
in modeling facial data. The generation quality on CelebA-HQ appears superior to that on FFHQ,
which is also reflected in the lower FID score (35.4 VS 43.1). We surmise this disparity arises from
CelebA-HQ’s relatively cleaner backgrounds and less diverse facial data compared to FFHQ.

Table 1: Quantitative comparison on
CIFAR-10. The data for VQ-VAE
comes from Vuong et al. (2023). Data
for other baselines comes from Bond-
Taylor et al. (2021).

Method Type FID↓
DCGAN GAN 37.1
IGEBM EBM 38.0

VAE VAE 106.7
VQ-VAE VAE 117.4

Gated PixelCNN AR 65.9
GLOW Flow 46.0

DDN(ours) DDN 52.0

Figure 5c showcases the random generation results of
DDN on the CIFAR dataset. We also present the FID
score of DDN on unconditional CIFAR in table 1, com-
paring it with classical generative models. It is worth
noting that modeling CIFAR remains a challenging task,
especially for new and under-explored generative mod-
els like DDN. For instance, the recent work IGN Shocher
et al. (2024) did not conduct experiments on CIFAR.

Conditional Training. Training a conditional DDN is
quite straightforward, it only requires the input of the
condition or features of the condition into the network,
and the network will automatically learn P (X|Y ). Fig-
ures 5d and 5e show the generation results of the class-
conditional DDN on CIFAR and MNIST, respectively.
Figure 8 further demonstrates the combination of condi-
tional generation and ZSCG on image-to-image tasks.

Zero-Shot Conditional Generation. We trained a DDN
model on the FFHQ-64x64 dataset and then evaluated its zero-shot conditional image generation
capability using the CelebA-HQ-64x64 dataset, as shown in fig. 2. In appendix B, we presented the
experiments of text-guided ZSCG using CLIP Radford et al. (2021). In particular, our generation
process does not require gradient derivation, numerical optimization, or iterative steps. To the best
of our knowledge, DDN is the first generative model to support the use of a purely discriminative
model as a guide for zero-shot conditional generation.

Table 2: Ablation study on FFHQ-64x64. We use
the reconstruction Fréchet Inception Distance (rFID) to
reflect the reconstructive performance of the network.
All models are trained on the FFHQ-64x64 dataset.
The rFID-FFHQ represents the reconstructive perfor-
mance of the model on the training set, while rFID-
CelebA can be seen as an indication of the model’s gen-
eralization performance on the test set. “w/o” stands
for “without”.

Model FID↓ FFHQ↓ CelebA↓
K=512 (default) 43.1 26.0 33.2
K=64 47.0 32.3 38.7
K=8 52.6 40.9 49.8
K=2 (Taiji-DDN) 66.5 38.4 70.6
w/o Split-and-Prune 55.3 31.2 34.7
w/o Chain Dropout 182.3 26.5 37.4
w/o Learning Res. 56.2 40.2 40.2
w/o Leak Choice 56.0 34.3 32.2

In addition, we employed an off-the-shelf
CIFAR classifier Phan (2021) to guide the
generation of specific category images by
a DDN model trained unconditionally on
CIFAR. We want to emphasize that the
classifier is an open-source, pre-trained
ResNet18 model, with no additional mod-
ifications or retraining. Figure 7 displays
images of various CIFAR categories gen-
erated by the model under the guidance of
the classifier.

Latent analysis. We trained a DDN on the
MNIST dataset with K = 8 and L = 3 to
visualize both the hierarchical generative
behavior of the DDN and the distribution
of samples in the entire latent representa-
tion space, as shown in fig. 6.

4.2 ABLATION STUDY

In Table 2, we demonstrate the impact of
different numbers of output nodes (K) and
various techniques on the network. Interestingly, despite the substantial difference between having
and not having the Split-and-Prune technique in the toy example, as shown in fig. 17, the perfor-
mance in the ablation study without Split-and-Prune is not as poor as one might expect. We hy-
pothesize that this is due to the Chain Dropout forcing all dead nodes to receive gradient guidance,
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preventing the network from generating poor results that are unoptimized. A particular case is when
K = 2, where the representational space of Taiji-DDN is already sufficiently compact. The use of
Chain Dropout in this case tends to result in more blurred generated images. Therefore, we did not
employ Chain Dropout when K = 2.

5 CONCLUSION

In this paper, we have introduced Discrete Distribution Networks, a generative model that approx-
imates the distribution of training data using a multitude of discrete sample points. DDN exhibits
unique property: more general zero-shot conditional generation. We also proposed the Split-and-
Prune optimization algorithm and several effective techniques for training DDN. Additionally, we
showcase the efficacy of DDN and its intriguing properties through experiments.

Figure 6: Hierarchical Generation Visualization of DDN.
We trained a DDN with output level L = 3 and output nodes
K = 8 per level on MNIST dataset, its latent hierarchical
structure is visualized as recursive grids. The large image
in the middle is the average of all the generated images.
Each sample with a colored border represents an interme-
diate generation image: a blue border indicates generation
by the first layer, and a green border by the second layer.
The samples within the surrounding grid of each colored-
bordered sample are refined versions generated condition-
ally based on it (enclosed by the same color frontier). The
small samples without colored borders are the final gener-
ated images. More detailed visualization of L = 4 is pre-
sented in the appendix fig. 19.

Figure 7: Zero-Shot Conditional
Generation on CIFAR-10 Guided by
a pretrained classification model with-
out gradient. Each row corresponds
to a class in CIFAR-10. Specifi-
cally, the first row consists of air-
planes, the third row displays birds
flying against the blue sky, and the last
row presents trucks. Our model suc-
cessfully generates reasonable images
for each class without any conditional
training, demonstrating the powerful
zero-shot generation capability of our
DDN.
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A EXPERIMENTAL RESULTS ON GENERATIVE PERFORMANCE

We present additional experiments to verify the generative and reconstructive capabilities of Discrete
Distribution Networks (DDN).

Conditional DDN for Image-to-Image Tasks. In the domain of image-to-image tasks, we extend
our Discrete Distribution Networks (DDN) to a conditional setting, resulting in the conditional DDN.
The image condition is fed directly into the network during training at the beginning of each stage.
The condition serves as an informative guide, significantly reducing the task’s generative space and,
consequently, mitigating the modeling task’s complexity. Through this conditional design, the DDN
can leverage the abundant information contained in the conditions to generate more accurate and
detailed images as shown in fig. 8.

Verify whether DDN can generate new images. As depicted in fig. 9, we compare the images
that are closest in the training dataset, FFHQ, to those generated by our DDNs. It suggests that our
DDNs can synthesize new images that, while not present in the original dataset, still conform to its
target distribution.

Demonstration of Generation and Reconstruction Quality. Figures 12 to 14 illustrate the results
of generation and reconstruction in various ablation experiments using the DDN model.

Efficacy of Split-and-Prune and Chain Dropout. A series of experiments were conducted to sep-
arately investigate the effectiveness of the Split-and-Prune and Chain Dropout methods. To isolate
the impacts of these two algorithms, we simplified the experimental conditions as much as possible,
using the MNIST dataset as a base, setting K = 8 and L = 10, and disabling Learning Residual.
The generated image quality under three different settings is displayed in fig. 10. The results demon-
strated that the Split-and-Prune method is indispensable, leading to significant improvements in the
quality of generated images. Meanwhile, the Chain Dropout method was found to alleviate the poor
results observed when the Split-and-Prune method was not implemented.

Implementation Details of Split-and-Prune. In algorithm 1, the Split and Prune operations are
executed simultaneously. During implementation, the newly split nodes occupy the positions of the
pruned nodes in the tensors, ensuring that the total number of network parameters remains constant
and the GPU memory usage is fixed. It is important to note that the algorithm must not only operate
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Condition GT

Guided by:

Figure 8: Conditional DDN performing coloring and edge-to-RGB tasks. Benefiting from the
reduction of the generative space by the condition, DDN is capable of generating high-quality im-
ages of 256 × 256 resolution. Columns 4 and 5 display combination of conditional generation and
ZSCG, the generated results under the guidance of other images, where the produced image strives
to adhere to the style of the guided image as closely as possible while ensuring compliance with the
condition.
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Figure 9: Nearest neighbors of the model trained on FFHQ. The leftmost column presents images
generated by the DDN. Starting from the second column, we display the images from FFHQ that
are most similar to the generated images, as measured by LPIPS Zhang et al. (2018).
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(a) With Split-and-Prune, set Chain
Dropout 0

(b) Without Split-and-Prune, set
Chain Dropout 0

(c) Without Split-and-Prune, set
Chain Dropout 0.05

Figure 10: Efficacy of Split-and-Prune and Chain Dropout on MNIST.

(a) DDN (Ours), FID=35.4 (b) Idempotent Generative Network (IGN), FID=39

Figure 11: Comparison of randomly generated images on CelebA-HQ 64x64. DDN produces
images with clearer details and fewer artifacts compared to IGN Shocher et al. (2024).

on the output parameters but also apply the same operations to the corresponding state variables in
the optimizer. This ensures consistency between the parameters being optimized and their associated
state information throughout the training process.

Comparison with other novel generative models. We conduct a qualitative comparison with a
recent work, the Idempotent Generative Network (IGN) Shocher et al. (2024), accepted by ICLR
2024. Since IGN was only experimented on the CelebA dataset and did not release its code, our
comparison is limited on the CelebA dataset. As depicted in fig. 11, our DDN demonstrate better
generation capabilities over IGN.

B FURTHER DEMONSTRATIONS ON ZERO-SHOT CONDITIONAL
GENERATION

In this section, we present additional experimental results on Zero-Shot Conditional Generation
(ZSCG).

Utilizing CLIP as Conditioning Guidance. As illustrated in fig. 15, we use CLIP Radford et al.
(2021) along with the corresponding prompts as conditions. We use a DDN model, which is exclu-
sively trained on the FFHQ dataset, to yield Zero-Shot Conditional Generation (ZSCG) results. The
results indicate that, DDN can generate corresponding images under the guidance of CLIP without
the necessity for gradient computations.

ZSCG with Multiple Conditions. In fig. 16, we illustrate the operation of ZSCG under the com-
bined action of two Guided Samplers: Inpainting and CLIP. Each sampler operates under its own
specific condition. The inpainting sampler utilizes a mask to cover the areas where the CLIP prompt
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K=512 (default)
(FID 43.1)

K=64 
(FID 47.0)

K=8 
(FID 52.6)

K=2 (BinDDN) 
(FID 66.5)

w/o Split-and-Prune 
(FID 55.3)

w/o Chain Dropout 
(FID 182.3)

w/o Learning Residual 
(FID 56.2)

w/o Leak Choice 
(FID 56.0)

(Taiji-DDN)

Figure 12: Illustration of the random sample generation effects as part of the ablation study on our
DDNs model.

Nodes/level Level Representation space Validation accuracy↑
K L KL 128 1024 10k 50k
2 10 1024 65.9 77.3 85.8 86.9
8 3 512 69.0 81.1 87.6 88.0
8 5 3.3× 104 67.5 79.1 87.5 90.5
8 10 1.1× 109 58.6 75.3 84.9 89.0
64 10 1.1× 1018 52.5 70.4 80.9 86.3

Table 3: Fine-tuning DDN latent as decision tree on MNIST. Constructing a decision tree based
on the latent variables from the DDN and fine-tuning it on MNIST trainning set. We report the
validation set accuracy of the decision tree after majority voting for class prediction with varying
number of training samples: 128, 1,024, 10,000, and 50,000 (the full training set).

acts. Specifically, “wearing sunglasses” masks the eyes, “wearing a hat” masks the upper half of the
face, and “happy person” masks the lower half.

For each Discrete Distribution Layer (DDL), both samplers assign a rank to every generated image,
corresponding to the degree of match to their respective conditions– the better the match, the higher
the rank. We apply a weight to each sampler, which represents their influence on the final assigned
ranking. In this case, both samplers have a weight of 0.5. To promote diversity in the generated
samples, we randomly select one image from the top two ranked generated images, serving as the
output for that DDL layer.

C LATENT ANALYSIS

Semantic Performance of Latents. We explored the semantic capabilities of DDN latents through a
classification experiment on the MNIST dataset. Given the inherent tree structure of DDN’s latents,
we employed a decision tree classification method, using fine-tuning data to assign class votes to
nodes in the tree. For unassigned nodes, their class is inherited from the closest ancestor node
with an assigned class. We fine-tuned DDN’s latent decision tree using various numbers of labeled
training set data, and the results on the test set are shown in table 3. All experiments in this table were
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K=64
(rFID 32.3)

K=512(default)
(rFID 26.0)

K=8
(rFID 40.9)

K=2(BinDDN)
(rFID 38.4)

w/o Split-and-Prune
(rFID 31.2)

w/o Chain Dropout
(rFID 26.5)

w/o Learning Residual
(rFID 40.2)

w/o Leak Choice
(rFID 34.3)

GT

(Taiji-DDN)

Figure 13: Demonstration of the reconstruction capability of our ablation study model on FFHQ-
64x64, which can be interpreted as the model’s fitting ability on the training set.
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K=64
(rFID 38.7)

K=512(default)
(rFID 33.2)

K=8
(rFID 49.8)

K=2(BinDDN)
(rFID 70.6)

w/o Split-and-Prune
(rFID 34.7)

w/o Chain Dropout
(rFID 37.4)

w/o Learning Residual
(rFID 40.2)

w/o Leak Choice
(rFID 32.2)

GT

(Taiji-DDN)

Figure 14: Demonstration of the reconstruction capability of our ablation study model on CelebA-
64x64, which can be interpreted as the model’s generalization ability on the test set.
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young 
man

Africa 
young 
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American 
young 
man

American 
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woman 
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sunglasses
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Figure 15: Zero-Shot Conditional Generation guided by CLIP. The text at the top is the guide
text for that column.
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Figure 16: Zero-Shot Conditional Generation under the Influence of Multiple Conditions. The
DDN balances the steering forces of CLIP and Inpainting according to their associated weights.

conducted with Recurrence Iteration Paradigm’s UNet, which has approximately 407k parameters.
These experiments substantiate that DDN’s latents encompass meaningful semantic information.

More Comprehensive Latent Visualization. fig. 19 demonstrates a more comprehensive distribu-
tion of samples that correspond to the latent variables.

D MORE DETAILED EXPERIMENTAL EXPLANATION

In fig. 20, we have expanded the “Illustration of the principle behind the Split-and-Prune operation”
by providing a schematic when K increases to 15. This demonstrates that a larger sample space
yields an approximation closer to the target distribution.

In the caption of fig. 17, we have detailed the experimental parameters for “Toy examples for two-
dimensional data generation”. Additionally, we will explain why the KL divergence in our model is
lower than that found in the Real Samples.

E LIMITATIONS AND FUTURE WORK

There are some key limitations of Discrete Distribution Networks (DDNs):

• The KL output space is insufficiently large to represent complex distributions.: We
are currently developing a new approach to enhance the efficiency of high-dimensional
data representation by expanding the output space from KL. This involves dividing an
image into N patches, independently selecting the optimal patch from K candidates for
each patch. These selected patches are then merged into a complete image, which serves
as the output of the current DDL layer and is input into the next layer. Consequently, this
increases the output space to KN ·L.

• The Split-and-Prune algorithm continuously discards trained parameters.: Discard-
ing parameters that have undergone extensive training is not a wise choice, particularly
when scaling up the model. The goal of the Split-and-Prune algorithm is to balance the fre-
quency at which each node is sampled during training, similar to maintaining load balance
among experts in Mixture-of-Experts (MoE) models Liu et al. (2024). A potential solution
to address this issue is the Loss-Free Balancing method Wang et al. (2024). After comput-
ing the L2 distance between each node’s output and the ground truth, Loss-Free Balancing
first applies a node-wise bias to these distances. By dynamically updating the bias of each
node based on its recent load, this method ensures that nodes with lower sampling frequen-
cies receive a lower bias, thereby increasing their chances of being sampled. Consequently,
Loss-Free Balancing helps maintain a balanced distribution of node sampling without dis-
carding parameters.

• Loss of high-frequency signals: The high level of data compression and the use of pixel
L2 loss during optimization may result in the loss of high-frequency signals, causing the
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Figure 17: Toy examples for two-dimensional data generation. The numerical values at the
bottom of each figure represent the Kullback-Leibler divergence, DKL. Due to phenomena such as
“dead nodes” and “density shift”, applying Gradient Descent alone fails to properly fit the Ground
Truth (GT) density. By employing the Split-and-Prune strategy, the density map looks the same as
Real Samples. In the experiment, we use K = 10, 000 discrete nodes to emulate the probability
distribution of the GT density. Each node encompasses two parameters, x and y, initialized from
a uniform distribution. Each experiment consists of 10 × K = 100, 000 iterations, wherein each
iteration, an L2 loss is calculated based only on the node closest to the GT. To compute the KL
divergence, the GT density map is converted into a discrete distribution with bins of size 100× 100,
which is then used to calculate the DKL against the discrete distribution represented by these nodes.
Notably, the KL divergence of Split-and-Prune is even lower than that of the Real Samples. This
is because our algorithm has been exposed to 10 ×K samples of the GT distribution, thus it better
reflects the GT distribution compared to the Real Samples, which are drawn only K times from the
GT distribution.
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太极生两仪，两仪生四象，
四象生八卦，八卦生万物。

《易经》

From the Taiji generates the Two Poles;
From the Two Poles generate the Four Symbols;
From the Four Symbols generate the Eight Trigrams;
And from the Eight Trigrams generate the Myriad Things.

I Ching: The Book of Changes

1

(a) Famous quote and its translation about Taiji (b) Tree structure of Taiji

Figure 18: The Taiji-DDN exhibits a surprising similarity to the ancient Chinese philosophy
of Taiji. Records of Taiji can be traced back to the I Ching (Book of Changes) from the late 9th
century BC, often described by the quote on the left (a) that explains the universe’s generation
and transformation. This description coincidentally also summarizes the generation process and the
transformations in the generative space of Taiji-DDN. Moreover, the diagram (b) from the book Tom
(2013) bears a closely resemblance to the tree structure of DDN’s latent fig. 1b. Therefore, we have
named the DDN with K = 2 as Taiji-DDN.

images to appear blurred. A potential improvement could be learning from VQ-GAN Esser
et al. (2021) and incorporating adversarial loss Creswell et al. (2018) to enhance the mod-
eling of high-frequency signals.

• Computational burden of zero-shot conditional generation: ZSCG requires L×K for-
ward passes through the guided model, where L is the number of layers and K is the
number of possible outputs per layer. When the guided model itself is computationally ex-
pensive, this results in significant computational overhead and prolonged generation time.
However, since the discrimination process is parallelizable across the K-dimensional out-
put space, batching techniques can be employed to mitigate latency. In addition, it is not
necessary for every layer to be guided by the condition signal, further research will be
conducted to reduce the number of guided model calls during the ZSCG process.
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Figure 19: Hierarchical Generation Visualization of DDN with L = 4. We trained a DDN with
output level L = 4 and output nodes K = 8 per level on MNIST dataset, its latent hierarchical struc-
ture is visualized as recursive grids. Each sample with a colored border represents an intermediate
generation product. The samples within the surrounding grid of each colored-bordered sample are
refined versions generated conditionally based on it (enclosed by the same color frontier). The small
samples without colored borders are the final generated images. The larger the image, the earlier it
is in the generation process, implying a coarse version. The large image in the middle is the average
of all the generated images. The samples with blue borders represent the 8 outputs of the first level,
while those with green borders represent the 82 = 64 outputs of the second level. It can be observed
that images within the same grid display higher similarity, due to their shared “ancestors”. Best view
in color and zoom in.
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(a) Initial, K=5
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(b) Split, K=5→6
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(c) Prune, K=6→5
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(d) Final, K=5
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(e) Initial, K=15
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(f) Final, K=15

Figure 20: Illustration of the principle behind the Split-and-Prune operation. For example in
(a), the light blue bell-shaped curve represents a one-dimensional target distribution. The 5 “↑”
under the x-axis are the initial values from a uniform distribution of 5 output nodes, which divide
the entire space into 5 parts using midpoints between adjacent nodes as boundaries (i.e., vertical
gray dashed lines). Each part corresponds to the range represented by this output node on the
continuous space x. Below each node are three values: P stands for the relative frequency of the
ground truth falling within this node’s range during training; Q refers to the probability mass of this
sample (node) in the discrete distribution output by the model during the generation phase, which is
generally equal for each sample, i.e., 1/K. The bottom-most value denotes the difference between
P and Q. Colorful horizontal line segments represent the average probability density of P , Q within
corresponding intervals. In (b), the Split operation selects the node with the highest P (circled in
red). In (c), the Prune operation selects the node with the smallest P (circled in red). In (d), through
the combined effects of loss and Split-and-Prune operations, the distribution of output nodes moves
towards final optimization. From the observed results, the KL divergence (KL(P ||Q)) consistently
decreases as the operation progresses, and the yellow line increasingly approximates the light blue
target distribution. Finally, we show the distributions of the initial and final stages when the number
of output nodes K = 15 in (e) and (f). Due to the increased representational space, the generated
probability distribution Q, represented by the yellow line segment in (f), is closer to the light blue
target distribution than in the case of K = 5.
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