
Under review as a conference paper at ICLR 2021

A PROOF OF THEOREM 1

Proof: Denote the set of all n-dimensional probability vectors by Σn, the set of sparse probability
vectors by S, and the set of non-sparse (dense) probability vectors by D = Σn \ S. Denote B =
[b1, · · · , bn], then the optimization problem can be written as

min

n∑
i=1

pi‖bi‖2

s.t.


Bp = 0

pT1n = 1

pi ≥ 0, i = 1, 2, · · · , n
Note that the feasible region is always non-empty (take p to be a uniform distribution) and is also
closed and bounded, hence this linear programming is always solvable. Denote the set of all mini-
mizers byM. Note thatM depends on b1, · · · , bn and is in this sense random.

The Lagrange function is

L(p,λ, µ,ω) = pTs− λTBp− µ(pT1n)− ωTp
where s = [‖b1‖2, ‖b2‖2, · · · , ‖bn‖2]T and λ, µ,ω are dual variables. The optimality condition
reads as

∂L

∂p
= s−BTλ− µ1n − ω = 0

Dual feasibilty and complementary slackness require
ωi ≤ 0, i = 1, 2, · · · , n
ωTp = 0

Consider the probability of the event {a dense probability vector can solve the above minimization
problem}, i.e., P(M∩D 6= ∅). It is upper bounded by

P(M∩D 6= ∅) ≤ P(p ∈ D and p solves KKT condition)

Since p ∈ D, complementary slackness implies that at least d+ 2 entries in ω are zero. Denote the
indices of these entries by J . For every j ∈ J , by optimality condition, we have sj−λT bj−µ = 0,
i.e.,

‖bj‖2 − λT bj − µ = 0

Take the first d + 1 indices in J , and note a geometric fact that d + 1 points in a d-dimensional
space must be on the surface of a hypersphere of at most d − 1 dimension, which we denote by
S = Sq−1 + x for some vector x and integer q ≤ d. Because bi’s distribution is absolutely
continuous, we have

P(p ∈ D and p solves KKT condition)

≤P(p ∈ D and bj ∈ S, ∀j ∈ J )

≤P(bj ∈ S,∀j ∈ J )

=P(bjk ∈ S, k = d+ 2, · · · , |J |)

=

|J |∏
k=d+2

P(bjk ∈ S) (independence)

=0 (absolute continuous)
Hence P(M∩D 6= ∅) = 0 and

1 = P(M 6= ∅)
= P((M∩S) ∪ (M∩D) 6= ∅)
≤ P(M∩S 6= ∅) + P(M∩D 6= ∅)
= P(M∩S 6= ∅)

Therefore we have
P(M∩S 6= ∅) = 1
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B PROOF OF THEOREM 2

Proof: The transition kernel of EM discretization with full gradient can be explicitly written as

PEM (θk+1, rk+1|θk, rk)

=δ(θk+1 − (θk + rkh))

×Φ

(
rk+1 − rk + hγrk + h∇V (θk)

σ
√
h

)
1

σ
√
h

where δ(·) is the Dirac delta function and Φ(·) is the probability density of d-dimensional standard
normal distribution.

Denote the unnormalized probability measure of index Ik by

p̃i = exp

{
−
‖x+

∑n
j=1 aj‖2

2
+
‖x+ nai‖2

2

}

and the normalization constant by

Ẑ =

n∑
i=1

∫
p̃idrk+1.

Then the transition kernel of EWSG can be written as

P̃EM (θk+1, rk+1|θk, rk)

=δ(θk+1 − (θk + rkh))

n∑
i=1

piΦ

(
rk+1 − rk + hγrk + hn∇Vi(θk)

σ
√
h

)
1

σ
√
h

=δ(θk+1 − (θk + rkh))

n∑
i=1

p̃i

Ẑ
Φ

(
rk+1 − rk + hγrk + hn∇Vi(θk)

σ
√
h

)
1

σ
√
h

=
1

Ẑ
δ(θk+1 − (θk + rkh))

n∑
i=1

exp

{
−
‖x+

∑n
j=1 aj‖2

2
+
‖x+ nai‖2

2

}
1√

(2π)d
exp

{
−‖x+ nai‖2

2

}
1

σ
√
h

=
n

Ẑ
√

(2π)d
δ(θk+1 − (θk + rkh)) exp

{
−
‖x+

∑n
j=1 aj‖2

2

}
1

σ
√
h

Recall the transition kernel of EM integrator with full gradient is

PEM (θk+1, rk+1|θk, rk) =δ(θk+1 − (θk + rkh))Φ

(
rk+1 − rk + hγrk + h∇V (θk)

σ
√
h

)
1

σ
√
h

=δ(θk+1 − (θk + rkh))
1√

(2π)d
exp

{
−
‖x+

∑n
j=1 aj‖2

2

}
1

σ
√
h

As both transition kernels are proportional to

δ(θk+1 − (θk + rkh)) exp

{
−
‖x+

∑n
j=1 aj‖2

2

}

We therefore conclude that

PEM (θk+1, rk+1|θk, rk) = P̃EM (θk+1, rk+1|θk, rk)
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C PROOF OF THEOREM 3

Proof: Let bi = n∇Vi and assume ‖bi‖2 ≤ R for some constant R. Denote B = [b1, b2, · · · , bn].
For any probability distribution p over {1, · · · , n}, we have

covI∼p[bI |b1, · · · , bn]

=

n∑
i=1

pibib
T
i −

(
n∑
i=1

pibi

)(
n∑
i=1

pibi

)T

=

n∑
i=1

pibib
T
i

n∑
i=1

pi −

(
n∑
i=1

pibi

)(
n∑
i=1

pibi

)T
=
∑
i<j

(bi − bj)(bi − bj)T pipj

Therefore we let

f(B) := Tr

∑
i<j

(bi − bj)(bi − bj)T pipj −
∑
i<j

(bi − bj)(bi − bj)T
1

n2


=
∑
i<j

‖bi − bj‖2pipj −
∑
i<j

‖bi − bj‖2
1

n2
(Tr[AB] = Tr[BA])

and use it to compare the trace of covariance matrix of uniform- and nonuniform- subsamplings.

First of all,

E[f(B)]

=E[‖bi − bj‖2]
∑
i<j

(
pipj −

1

n2

)

=E[‖bi − bj‖2]

∑
i<j

pipj −
n− 1

2n


=E[‖bi − bj‖2]

(
1−

∑n
i=1 p

2
i

2
− n− 1

2n

)
≤E[‖bi − bj‖2]

(
1− 1

n

2
− n− 1

2n

)
=0

where the inequality is due to Cauchy-Schwarz and it is a strict inequality unless all pi’s are equal,
which means uniform subsampling on average has larger variablity than a non-uniform scheme
measured by the trace of covariance matrix.

Moreover, concentration inequality can help show f(B) is negative with high probability if h is
small. To this end, plug x = O(

√
h) in and rewrite

pi =
1

Z
exp

{
Fh

[‖y + 1
n

∑n
i=1 bi‖2

2
− ‖y + bi‖2

2

]}
where y = σ√

h
x = O(1), F = − 1

σ2 and Z is the normalization constant. Denote the unnormalized
probability by

p̃i = exp

{
Fh

[‖y + 1
n

∑n
i=1 bi‖2

2
− ‖y + bi‖2

2

]}
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and we have

f(B) =
1

2

n∑
i=1

n∑
j=1

‖bi − bj‖2
(
pipj −

1

n2

)

=
1

2

n∑
i=1

n∑
j=1

‖bi − bj‖2
p̃ip̃j

[
∑n
k=1 p̃k]2

− 1

2

n∑
i=1

n∑
j=1

‖bi − bj‖2
1

n2

To prove concentration results, it is useful to estimate

Ci = sup
b1,··· ,bn∈B(0,R)

b̂i∈B(0,R)

|f(b1, · · · , bi, · · · , bn)

−f(b1, · · · , b̂i, · · · , bn)|
where B(0, R) is a ball centered at origin with radius R in Rd.

Due to the mean value theorem, we have Ci ≤ 2R sup | ∂f∂bi |. By symmetry, it suffices to compute
sup | ∂f∂b1 | to upper bound C1. Note that

∂p̃j
∂b1

= 2p̃jFh[
1

n
(y +

1

n

n∑
i=1

bi)− (y + bj)δ1j ] = O(h)p̃j

where δ1j is the Kronecker delta function. Thus

∂f

∂b1
=
∑
j=1

(b1 − bj)
p̃1p̃j

[
∑n
k=1 p̃k]2

−
n∑
j=1

(b1 − bj)
1

n2
+

n∑
i,j=1

‖b1 − bj‖2
O(h)p̃ip̃j

[
∑n
k=1 p̃k]2

− 2

n∑
i,j=1

‖b1 − bj‖2
p̃ip̃j

[
∑n
k=1 p̃k]

3

n∑
k=1

p̃kO(h)

= p̃1

n∑
j=1

(b1 − bj)
p̃j

[
∑n
k=1 p̃k]2

−
n∑
j=1

(b1 − bj)
1

n2
+
O(n2)O(h)

O(n2)
+
O(n2)

O(n3)
O(n)O(h)

= O(
h

n
) +O(h) +O(h)

= O(h)

where O(hn ) in the 2nd last equation comes from the difference of the first two terms in the 3rd last
equation. This estimation shows that Ci ≤ 2RO(h) = O(h).

Therefore, by McDiarmid’s inequality, we conclude for any ε > 0,

P(|f − E[f ]| > ε) ≤ 2 exp

(
−2ε2∑n
i=1 C

2
i

)
= 2 exp

(
−2ε2

nO(h2)

)
.

Any choice of h(n) = o(n−1/2) will render this probability asymptotically vanishing as n grows,
which means that f will be negative with high probability, which is equivalent to reduced variance
per step.

D PROOF OF THEOREM 4

Proof: We rewrite the generator of underdamped Langevin with full gradient as

Lf(X) = F (X)T
[
∇θf(X)
∇rf(X)

]
+

1

2
A : ∇∇f(X)

where

F (X) =

[
r

−γr −∇V (θ)

]
, A = GGT and G =

[
Od×d Od×d
Od×d

√
2γId×d

]
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Rewrite the discretized underdamped Langevin with stochastic gradient in variableX

XE
k+1 −X

E
k = hF k(XE

k ) +
√
hGkηk+1

where

F k(X) =

[
r

−γr − n∇VIk(θ)

]
, Gk = G =

[
Od×d Od×d
Od×d

√
2γId×d

]
and ηk+1 is a 2d dimensional standard Gaussian random vector. Note that this representation include
both SGHMC and EWSG, for SGHMC Ik follows uniform distribution and for EWSG, Ik follows
the MCMC-approximated exponentially weighted distribution.

Denote the generator associated with stochastic gradient underdamped Langevin at the k-th iteration
by

Lkf(X) = F k(X)T
[
∇θf(X)
∇rf(X)

]
+

1

2
A : ∇∇f(X)

and the difference of the generators of full gradient and stochastic gradient underdamped Langevin
at k-th interation is denoted by

∆Lkf(X) = (Lk−L)f(X) = (F k(X)−F (X))T
[
∇θf(X)
∇rf(X)

]
= 〈∇V (θ)−n∇VIk(θ),∇rf(X)〉

For brevity, we write φk = φ(XE
k ), FEk = F k(XE

k ), ψk = ψ(XE
k ) and Dlφk = (Dlψ)(XE

k )
where (Dlψ)(z) is the l-th order derivative. We write (Dlψ)[s1, s2, · · · , sl] for derivative evaluated
in the direction sj , j = 1, 2, · · · , l. Define

δk = XE
k+1 −X

E
k = hFEk +

√
hGkηk+1

Under the assumptions of Theorem 4, we show that the vector field FEk also has bounded momentum
up to p-th order.

Lemma 5 Under the assumption of Theorem 4, there exists a constantM such that up to p
2 -th order

moments of random vector field FEk are bounded

E‖FEk ‖
j
2 ≤M, ∀j = 0, 1, 2, · · · , p

2
, ∀k = 0, 1, 2 · · · ,

Proof: It suffices to bound the highest moment, as all other lower order moments are bounded by
the highest one by Holder’s inequality.

First notice that

‖FEk ‖2 =

∥∥∥∥[ rEk
−γrEk −∇VIk(θEk )

]∥∥∥∥
2

≤
√

1 + γ2‖rEk ‖2 + ‖∇VIk(θEk )‖2

Hence

E‖FEk ‖
p
2
2 ≤E

(√
1 + γ2‖rEk ‖2 + ‖∇VIk(θEk )‖2

) p
2

=E


p
2∑
i=0

(p
2

i

)
‖rEk ‖i2‖∇VIk(θEk )‖

p
2−i
2


=

p
2∑
i=0

(p
2

i

)
E
[
‖∇VIk(θEk )‖

p
2−i
2 ‖rEk ‖i2

]

≤

p
2∑
i=0

(p
2

i

)√
E
[
‖∇VIk(θEk )‖p−2i2

]√
E
[
‖rEk ‖2i2

]
(Cauchy-Schwarz inequality)

By assumption, we know each E
[
‖∇VIk(θEk )‖l2

]
,E‖rEk ‖l2, l = 0, 1, · · · , p is bounded, so we con-

clude there exists a constant M > 0 that bounds the p
2 -th order moment of FEk ,∀k = 0, 1, · · · ,
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Using Taylor’s expansion for ψ, we have

ψk+1 = ψk +Dψk[δk] +
1

2
D2ψk[δk, δk] +

1

6
D3ψk[δk, δk, δk] +Rk+1

where

Rk+1 =

(
1

6

∫ 1

0

s3D4ψ(sXE
k + (1− s)XE

k+1)ds

)
[δk, δk, δk, δk]

is the remainder term. Therefore, we have

ψk+1 =ψk + hLkψk + h
1
2Dψk[Gkηk+1] + h

3
2D2ψk[FEk , Gkηk+1] (7)

+
1

2
h2D2ψk[FEk ,F

E
k ] +

1

6
D3ψk[δk, δk, δk] + rk+1 +Rk+1

where

rk+1 =
h

2

(
D2ψk[Gkηk+1, Gkηk+1]−A : ∇∇ψk

)
Summing Equation (7) ove the first K terms, dividing by Kh and use Poisson equation, we have

1

Kh
(ψK − ψ0) =

1

K

K−1∑
k=0

(φk − φ̄) +
1

K

K−1∑
k=0

∆Lkψk +
1

Kh

3∑
i=1

(Mi,K + Si,K), (8)

where

M1,K =

K−1∑
k=0

rk+1, M2,K = h
1
2

K−1∑
k=0

Dψk[Gkηk+1], M3,K = h
3
2

K−1∑
k=0

D2ψk[FEk , Gkηk+1],

S1,K =
h2

2

K−1∑
k=0

D2ψk[FEk ,F
E
k ], S2,K =

K−1∑
k=0

Rk+1, S3,K =
1

6

K−1∑
k=0

D3ψk[δk, δk, δk]

Furthermore, it will be convenient to decompose

S3,K = M0,K + S0,K

where

S0,K =h2
K−1∑
k=0

(
hD3ψk[FEk ,F

E
k ,F

E
k ] + 3D3ψk[FEk , Gkηk+1, Gkηk+1]

)
M0,K =h

3
2

K−1∑
k=0

(
D3ψk[Gkηk+1, Gkηk+1, Gkηk+1] + 3hD3ψk[FEk ,F

E
k , Gkηk+1]

)
Rearrange terms in Equation (7), square on both sides, use Cauchy-Schwarz inequality and take
expectation, we have

E
(
φ̂K − φ̄

)2 ≤C1

E (ψK − ψ0)2

(Kh)2
+

1

K2
E

(
K−1∑
k=0

(∆Lkψk)

)2

+
1

(Kh)2

2∑
i=0

ES2
i,K +

1

(Kh)2

3∑
i=0

EM2
i,K


=C1

E (ψK − ψ0)2

T 2
+

1

K2
E

(
K−1∑
k=0

(∆Lkψk)

)2

+
1

T 2

2∑
i=0

ES2
i,K +

1

T 2

3∑
i=0

EM2
i,K


(9)

where T = kh, the corresponding time of the underlying continuous dynamics.

We now show how each term is bounded. By boundedness of ψ, we have

E
(ψK − ψ0)2

T 2
≤ 4‖ψ‖2∞

T 2
= O(

1

T 2
)
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The second term 1
K2E

(∑K−1
k=0 (∆Lkψk)

)2
is critical in showing the advantage of EWSG, and we

will show how to derive its bound in detail later.

The technique we use to bound 1
T 2ES2

i,K , i = 0, 1, 2 are all similar, we will first show an upper
bound for |Si,K | in terms of powers of ‖FEk ‖, then take square and expectation, and finally expand
squares and use Lemma 5 extensively to derive bounds. As a concrete example, we will show how
to bound 1

T 2ES2
0,K . Other bounds follow in a similar fashion and details are omitted.

To bound the term containing S0,K , we first note that

|S0,K | ≤h2
K−1∑
k=0

(
h|D3ψk[FEk ,F

E
k ,F

E
k ]|+ 3|D3ψk[FEk , Gkηk+1, Gkηk+1]|

)
≤h2‖D3ψ‖∞

K−1∑
k=0

(
h‖FEk ‖32 + 3‖FEk ‖2‖Gkηk+1‖22

)
Square both sides of the above inequality and take expectation, we obtain

1

T 2
E|S0,K |2 (10)

≤ h
4

T 2
‖D3ψ‖2∞E

(K−1∑
k=0

h‖FEk ‖32 + 3‖FEk ‖2‖Gkηk+1‖22
)2

≤ h
4

T 2
‖D3ψ‖2∞K

K−1∑
k=0

E(h‖FEk ‖32 + 3‖FEk ‖2‖Gkηk+1‖22)2 (Cauchy-Schwarz inequality)

=
h4

T 2
‖D3ψ‖2∞K

K−1∑
k=0

E[h2‖FEk ‖62 + 6‖FEk ‖42‖Gkηk+1‖22 + 9‖FEk ‖22‖Gkηk+1‖24]

=
h4

T 2
‖D3ψ‖2∞K

K−1∑
k=0

h2E‖FEk ‖62 + 6E‖FEk ‖42E‖Gkηk+1‖22 + 9E‖FEk ‖22E‖Gkηk+1‖24

=
1

T 2
O(K2h4)

=O(h2)

To bound the term containing S1,K and S2,K , we have

|S1,K | ≤
h2

2

K−1∑
k=0

‖D2ψ‖∞‖FEk ‖22

|S2,K | ≤
1

24
‖D4ψ‖∞

K−1∑
k=0

‖δk‖42 ≤
1

24
h2‖D4ψ‖∞

K−1∑
k=0

‖
√
hFEk +Gkηk+1‖42

Then we can obtain the following bound in a similar fashion as in Equation (10)

1

T 2
ES2

1,K =O(h2)

1

T 2
ES2

2,K =O(h2)

Now we will use martingale argument to bound 1
T 2EM2

i,K , i = 0, 1, 2, 3. There are two injected
randomness at k-th iteration, the Gaussian noise ηk+1 and the stochastic gradient term determined
by the stochastic index Ik. Denote the sigma algebra at k-th iteration by Fk. For both SGHMC and
EWSG we have

ηk+1 ⊥ Fk and Ik ⊥ ηk+1
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hence

E[ηk+1|Fk] =0

E[D3ψk[Gkηk+1, Gkηk+1, Gkηk+1]|Fk] =0

E[D2ψk[FEk , Gkηk+1]|Fk] =0

E[D3ψk[FEk ,F
E
k , Gkηk+1]|Fk] =0

Therefore, it is clear that Mi,K , i = 0, 1, 2, 3 are all martingales. Due to martingale properties, we
have

1

T 2
EM2

0,K =
h3

T 2

K−1∑
k=0

E
(
D3ψk[Gkηk+1, Gkηk+1, Gkηk+1]+3hD3ψk[FEk ,F

E
k , Gkηk+1]

)2
=

1

T 2
O(h3K) = O(

h2

T
)

1

T 2
EM2

1,K =
1

T 2

K−1∑
k=0

Er2k+1 =
1

T 2
O(h2K) = O(

h

T
)

1

T 2
EM2

2,K =
h

T 2

K−1∑
k=0

E(Dψk[Gkηk+1])2 =
1

T 2
O(hK) = O(

1

T
)

1

T 2
EM2

3,K =
1

T 2
h3

K−1∑
k=0

E(D2ψk[FEk , Gkηk+1])2 =
1

T 2
O(h3K) = O(

h2

T
)

We now collect all bounds derived so far and obtain

E
(
φ̂K − φ̄

)2 ≤C1

O(
1

T 2
) +

1

K2
E

(
K−1∑
k=0

(∆Lkψk)

)2

+O(h2) +O(
h

T
) +O(

1

T
) +O(

h2

T
)


≤C1

O(
1

T
) +

1

K2
E

(
K−1∑
k=0

(∆Lkψk)

)2

+O(h2)


≤C2

 1

T
+

1

K2
E

(
K−1∑
k=0

(∆Lkψk)

)2

+ h2

 (11)

where C2 > 0 is a constant. In the above inequality, we use 1
T 2 < 1

T and h
T ≤

1
T ,

h2

T ≤
1
T as

typically we assume T � 1 and h� 1 in non-asymptotic analysis.

Now we focus on the remaining term 1
K2E

(∑K−1
k=0 ∆Lkψk

)2
. For SGHMC, we have that

E[∆Lkψk|Fk] = 0, hence
∑K−1
k=0 ∆Lkψk is a martingale. By martingale property, we have

1

K2
E

(
K−1∑
k=0

∆Lkψk

)2

=
1

K2

K−1∑
k=0

E(∆Lkψk)2

For EWSG,
∑K−1
k=0 ∆Lkψk is no longer a martingale, but we still have the following

1

K2
E

(
K−1∑
k=0

∆Lkψk

)2

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

E(∆Liψi)(∆Ljψj)

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

E[(∆Liψi)E[∆Ljψj |Fj ]] (12)

For the term E[∆Ljψj |Fj ], we have

E[∆Ljψj |Fj ] = E[〈∇V (θEj )−n∇VIj (θEj ),∇rψj〉|Fj ] = 〈E[∇V (θEj )−n∇VIj (θEj )|Fj ],∇rψj〉
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as ψj ∈ Fj . Then by Cauchy-Schwarz inequality, boundedness of ψ and the fact ‖∇V (θEj ) −
E[n∇VIj (θEj )|Fj ]‖2 = O(h) as shown in the proof of Theorem 3, we conclude E[∆Ljψj |Fj ] =
O(h).

Now plug the above result in Equation (12), we have

1

K2
E

(
K−1∑
k=0

∆Lkψk

)2

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

E[(∆Liψi)E[∆Ljψj |Fj ]]

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

E[∆Liψi]O(h)

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

O(h2)

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

O(h2)

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +O(h2)

Combine both cases of SGHMC and EWSG, we obtain

1

K2
E

(
K−1∑
k=0

∆Lkψk

)2

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +O(h2)

Note that O(h2) term will later be combined with other error terms with the same order.

The final piece is to bound 1
K2

∑K−1
k=0 E(∆Lkψk)2, and we have

1

K2

K−1∑
k=0

E(∆Lkψk)2 =
1

K2

K−1∑
k=0

E〈∇V (θEk )− n∇VIk(θEk ),∇rψk〉2

≤ 1

K2

K−1∑
k=0

E[‖∇V (θEk )− n∇VIk(θEk )‖22 · ‖∇rψk‖22] (Cauchy-Schwarz inequality)

≤ M2
3

K2

K−1∑
k=0

E[‖∇V (θEk )− n∇VIk(θEk )‖22]

=
M2

3

K2

K−1∑
k=0

E[E[‖∇V (θEk )− n∇VIk(θEk )‖22 | Fk]]

≤ 2M2
3

K2

K−1∑
k=0

E[E[ ‖∇V (θEk )− E[n∇VIk(θEk ) | Fk]‖2 | Fk]︸ ︷︷ ︸
Q1

]

+ E[ ‖E[n∇VIk(θEk ) | Fk]− n∇VIk(θEk )‖22 | Fk]︸ ︷︷ ︸
Q2

]

The term Q1 captures the bias of stochastic gradient. For SGHMC, uniform gradient subsamping
leads to an unbiased gradient estimator, so Q1 = 0 for SGHMC. For EWSG, same as in the proof
of Theorem 2, we have that

E
[
‖∇V (θEk )− E[n∇VIk(θEk ) | Fk]‖2 | Fk

]
= O(h2)

Combining two cases, we have
Q1 = O(h2)

20



Under review as a conference paper at ICLR 2021

For a random vector v with mean E[v] = 0, we have

E[‖v‖2] = E
[
Tr[vvT ]

]
= Tr

[
E[vvT ]

]
= Tr [cov(v)]

where cov(v) is the covariance matrix of random vector v. Therefore, we have that

Q2 = Tr [cov(n∇VIk |Fk)] ,

i.e., Q2 is the trace of the covariance matrix of stochastic gradient estimate conditioned on current
filtration Fk.

Combining Q1 and Q2, we have that

1

K2
E

(
K−1∑
k=0

∆Lkψk

)2

≤2M2
3

K2

K−1∑
k=0

[
E[Tr[cov(n∇VIk |Fk)]] +O(h2)

]
=

2M2
3h

T

∑K−1
k=0 E[Tr[cov(n∇VIk |Fk)]]

K
+O(

h3

T
)

Now plug this bound into Equation (11) and we obtain

E
(
φ̂K − φ̄

)2 ≤ C [ 1

T
+
h

T

∑K−1
k=0 E [Tr[cov(n∇VIk |Fk)]]

K
+ h2

]
for some constant C > 0.

E MINI BATCH VERSION OF EWSG

When mini batch size b > 1, for each mini batch {i1, i2, · · · , ib}, we use n
b

∑b
j=1∇Vij to ap-

proximate full gradient ∇V , and assign the mini batch {i1, i2, · · · , ib} probability pi1i2,··· ,ib . We
can easily extend the transition probability of b = 1 to general b, simply by replacing n∇Vi with
n
b

∑b
j=1∇Vij and end up with

P̃ (θk+1, rk+1|θk, rk) = δ(θk+1 = θk + rkh)×∑
i1,i2,··· ,ib

pi1i2···ibΦ (x+ nai1i2···ib)
1

σ
√
h

where

x =
rk+1 − rk + hγrk

σ
√
h

, ai1i2···ib =

√
h

σ

1

b

b∑
j=1

∇Vij (θk)

Therefore, to match the transition probability of underdamped Langevin dynamics with stochastic
gradient and full gradient, we let pi1i2···ib =

1

Z
exp

1

2

‖x+ nai1i2···ib‖
2 − ‖x+

∑
i1i2···ib

ai1i2···ib‖
2


where Z is a normalization constant.

To sample multidimensional random data indices I1, · · · , Ib from pi1i2···ib , we again use a Metropo-
lis chain, whose acceptance probability only depends on ai1i2···ib and aj1j2···jb but not the full gra-
dient.

F EWSG VERSION FOR OVERDAMPED LANGEVIN

Overdamped Langevin equation is the following SDE

dθt = −∇V (θt)dt+
√

2dBt
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where V (θ) =
∑n
i=1 Vi(θ) and Bt is a d-dimensional Brownian motion. The Euler-Maruyama

discretization is
θk+1 = θk − h∇V (θk) +

√
2hξk+1

where ξk+1 is a d-dimensional random Gaussian vector. When stochastic gradient is used, the above
numerical schedme turns to

θk+1 = θk − h∇VIk(θk) +
√

2hξk+1

where Ik is the datum index used in k-th iteration to estimate the full gradient.

Denote x = θk+1−θk√
2h

and ai =
√
h∇Vi(θk)√

2
. If we set

pi = P(Ik = i) ∝ exp
{
−
‖x+

∑n
j=1 aj‖2

2
+
‖x+ nai‖2

2

}
and follow the same steps in the proof of Theorem 2, we will see the transition kernel of full gradient
and the transition kernel of stochastic gradient are matched up.

G VARIANCE REDUCTION (VR)

We have seen that when step size h is large, EWSG still introduces extra variance. To further
mitigate this inaccuracy, we provide in this section a complementary variance reduction technique.

Locally (i.e., conditioned on the state of the system at the current step), we have increased variance

cov[rk+1|rk] = E[cov[rk+1|I]] + cov[E[rk+1|I]]

= h(Σ2
k+1 + h cov[n∇VI(θk)]) (13)

where Σ2
k+1 = 1

hE[cov[rk+1|I]]. The extra randomness due to the randomness of the index I enters
the parameter space through the coupling of θ and r and eventually deviates the stationary distribu-
tion from that of the original dynamics. Adopting the perspective of modified equation (Borkar &
Mitter, 1999; Mandt et al., 2017; Li et al., 2017), we model this as an enlarged diffusion coefficient.
To correct for this enlargement and still sample from the correct distribution, we can either, in each
step, shrink the size of intrinsic noise to Σk ∈ Rd×d such that σ2I = Σ2

k + hcov[n∇VI(θk−1)],
or alternatively increase the dissipation. More precisely, due to the matrix version fluctuation dis-
sipation theorem Σ2 = 2ΓT , one could instead increase the friction coefficient Γ ∈ Rd×d rather
than shrinking the intrinsic noise. The second approach is computationally more efficient because
it no longer requires square-rooting / Cholesky decomposition of (possibly large-scale) matrices.
Therefore, in each step, we set

Γk =
1

2T
(σ2I + hcov[n∇VI(θk−1)]).

Accurately computing cov[n∇VI(θk−1)] is expensive as it requires running I through 1, · · · , n,
which defeats the purpose of introducing a stochastic gradient. To downscale the computation cost
fromO(n) toO(1), we use an SVRG type estimation of the this variance instead. More specifically,
we periodically compute cov[n∇VI(θk−1)] only every L data passes, in an outer loop. In every
iteration of an inner loop, which integrates the Langevin, an estimate of cov[n∇VI(θk−1)] is updated
in an SVRG fashion.

See Algorithm 2 for detailed description. We refer variance reduced variant of EWSG as EWSG-VR.

To demonstrate the performance of EWSG-VR, we reuse the setup of simple Gaussian example in
subsection 5.1. As shown in Algorithm 2, the only hyper-parameter of EWSG-VR additional to
EWSG is the period of variance calibration, for which we set L = 1. All other hyper-parameters
(e.g. step size h, friction coefficient γ) are set the same as EWSG. We also run underdamped
Langevin dynamics with full gradient (FG) using the same hyper-parameters of EWSG. We plot the
KL divergence in Figure 4. We see that EWSG-VR further reduces variance and achieves better
statistical accuracy measured in KL divergence. Although EWSG-VR periodically use full data set
to calibrate variance estimation, it is still significantly faster than the full gradient version. Note that
KL divergence of SGLD, pSGLD and SGHMC are too large so that we can not even see them in
Figure 4
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Algorithm 2 EWSG-VR

1: Input: {number of data terms n, gradient functions ∇Vi(·), step size h, number of data passes
K, period of variance calibration L, index chain length M , friction and noise coefficients γ and
σ}

2: initialize θ0, r0, γ0 = γ
3: initialize inner loop index k = 0
4: for l = 1, 2, · · · ,K do
5: if (l − 1) mod L = 0 then
6: computem1 ← EI [n∇VI(θk)], m2 ← EI [n2∇VI(θk)∇VI(θk)T ]
7: ω ← θk
8: else
9: for t = 1, 2, · · · , d n

M+1e do
10: i← uniformly sampled from 1, · · · , n, compute and store n∇Vi(θk)
11: for m = 1, 2, · · · ,M do
12: j ← uniformly sampled from 1, · · · , n, compute and store n∇Vj(θk)
13: i← j with probability in Equation 5
14: end for
15: update (θk+1, rk+1) ← (θk, rk) according to Equation 3, using n∇Vi(θk) as gradient

and Γk as friction
16: m1 ←m1 +∇Vi(θk)−∇Vi(ω)
17: m2 ←m2 + n∇Vi(θk)∇Vi(θk)T − n∇Vi(ω)∇Vi(ω)T

18: covar←m2 −m1m
T
1

19: Γk+1 ← 1
2T (σ2I + h covar)

20: k ← k + 1
21: end for
22: end if
23: end for
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Figure 4: KL divergence

We also consider applying EWSG-VR to Bayesian logistic regression problems. We run experiments
on two standard classification data sets parkinsons 7, pima8 from UCI repository (Lichman
et al., 2013).

From Figure 5, we see stochastic gradient methods (SGHMC, EWSG and EWSG-VR) only take
tens of data passes to converge while full gradient version (FG) requires hundreds of data passes
to converge. Compared with SGHMC, EWSG produces closer results to FG for which we treat
as ground truth, in terms of statistical accuracy. With variance reduction, EWSG-VR is able to
achieve even better performance, significantly improving the accuracy of the prediction of mean and
standard deviation of log likelihood. It, however, converges slower than EWSG without VR.

One downside of EWSG-VR is that it periodically use whole data set to calibrate variance estima-
tion, so it may not be suitable for very large data sets (e.g. Covertype data set used in subsection
5.2) for which stochastic gradient methods could converge within one data pass.

7https://archive.ics.uci.edu/ml/datasets/parkinsons
8https://archive.ics.uci.edu/ml/datasets/diabetes
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Figure 5: Posterior prediction of mean (left) and standard deviation (right) of log likelihood on
test data set generated by SGHMC, EWSG and EWSG-VR on two Bayesian logistic regression
tasks. Statistics are computed based on 1000 independent simulations. Minibatch size b = 1 for all
methods except FG. M = 1 for EWSG and EWSG-VR.

H ADDITIONAL EXPERIMENTS

H.1 A MISSPECIFIED GAUSSIAN CASE

In this subsection, we follow the same setup as in (Bardenet et al., 2017) and study a misspecified
Gaussian model where one fits a one-dimensional normal distribution p(θ) = N (θ|µ0, σ

2
0) to 105

i.i.d points drawn according to Xi ∼ logN (0, 1), and flat prior is assigned p(µ0, log σ0) ∝ 1.
It was shown in (Bardenet et al., 2017) that FlyMC algorithm behaves erratically in this case, as
“bright” data points with large values are rarely updated and they drive samples away from the
target distribution. Consequently the chain mixes very slowly. One important commonality FlyMC
shares with EWSG is that in each iteration, both algorithms select a subset of data in a non-uniform
fashion. Therefore, it is interesting to investigate the performance of EWSG in this misspecified
model.

For FlyMC9, a tight lower bound based on Taylor’s expansion is used to minimize “bright” data
points used per iteration. At each iteration, 10% data points are resampled and turned “on/off” ac-
cordingly and the step size is adaptively adjusted. FlyMC algorithm is run for 10000 iterations.
Figure 6a shows the histogram of number of data points used in each iteration for FlyMC algorithm.
On average, FlyMC consumes 10.9% of all data points per iteration. For fair comparison, the mini-
batch size of EWSG is hence set 105 × 10.9% = 10900 and we run EWSG for 1090 data passes.
We set step size h = 1 × 10−4 and friction coefficient γ = 300 for EWSG. An isotropic random
walk Metropolis Hasting (MH) is also run for sufficiently long and serves as the ground truth.

Figure 6b shows the autocorrelation of three algorithms. The autocorrelation of FlyMC decays very
slowly, samples that are even 500 iterations away still show strong correlation. The autocorrelation
of EWSG, on the other hand, decays much faster, suggesting EWSG explores parameter space effi-
ciently than FlyMC does. Figure 6c and 6d show the samples (the first 1000 samples are discarded
as burn-in) generated by EWSG and FlyMC respectively. The samples of EWSG center around the
mode of the target distribution while the samples of FlyMC are still far away from the true poste-
rior. The experiment shows EWGS works quite well even in misspecified models, and hence is an
effective candidate in combining importance sampling with scalable Bayesian inference.

H.2 ADDITIONAL RESULTS OF BNN EXPERIMENT

We report the test error of various SG-MCMC methods after 200 epochs in Table 2. For both
MLP and CNN architecture, EWSG outperforms its uniform counterpart SGHMC as well as other
benchmarks SGLD, pSGLD and CP-SGHMC. The results clearly demonstrate the effectiveness of
the proposed EWSG on deep models.

H.3 ADDITIONAL EXPERIMENT ON BNN: TUNING M

In each iteration of EWSG, we run an index Markov chain of length M and select a “good” mini-
batch to estimate gradient, therefore EWSG essentially uses b × (M + 1) data points per iteration

9https://github.com/rbardenet/2017JMLR-MCMCForTallData

24



Under review as a conference paper at ICLR 2021

10000 12000 14000 16000 18000

Number of Data Used per Iteration

0

500

1000

1500

2000

2500

3000

3500

C
ou

nt

(a) Histogram

0 100 200 300 400 500

Lag

0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

ti
on

FlyMC

EWSG

(b) Autocorrelation

1.63 1.64 1.65 1.66 1.67 1.68

2.150

2.155

2.160

2.165

2.170

2.175

2.180

2.185

EWSG

Ground Truth

(c) Samples of EWSG

1.62 1.63 1.64 1.65 1.66 1.67 1.68

2.15

2.16

2.17

2.18

2.19
FlyMC

Ground Truth

(d) Samples of FlyMC

Figure 6: (a) Histogram of data used in each iteration for FlyMC algorithm. (b) Autocorrelation plot
of FlyMC, EWSG and MH. (c) Samples of EWSG. (d) Samples of FlyMC.

Table 2: Test error (mean ± standard deviation) after 200 epoches.

Method Test Error(%), MLP Test Error(%), CNN
SGLD 1.976 ± 0.055 0.848 ± 0.060

pSGLD 1.821 ± 0.061 0.860 ± 0.052
SGHMC 1.833 ± 0.073 0.778 ± 0.040

CP-SGHMC 1.835 ± 0.047 0.772 ± 0.055
EWSG 1.793 ± 0.100 0.753 ± 0.035

where b is minibatch size. How does EWSG compare with its uniform gradient subsampling coun-
terpart with a larger minibatch size (b× (M + 1))?

We empirically answer this question in the context of BNN with MLP architecture. We use the same
step size for SGHMC and EWSG and experiment a large range of values of minibatch size b and
index chain length M . Each algorithm is run for 200 data passes and 10 independent samples are
drawn to estimate test error. The results are shown in Table 3. We find that EWSG beats SGHMC
with larger minibatch in 8 out of 9 comparison groups, which suggests in general EWSG could be
a better way to consuming data compared to increasing minibatch size and may shed light on other
areas where stochastic gradient methods are used (e.g. optimization).

b M + 1 = 2 M + 1 = 5 M + 1 = 10

100
1.86%
1.94%

1.83%
1.92%

1.80%
1.97%

200
1.90%
1.87%

1.87%
1.97%

1.80%
2.07%

500
1.79%
1.97%

2.01%
2.17%

2.36%
2.37%

Table 3: Test errors of EWSG (top of each cell) and SGHMC (bottom of each cell) after 200 epoches.
b is minibatch size for EWSG, and minibatch size of SGHMC is set as b × (M + 1) to ensure the
same number of data used per parameter update for both algorithms. Step size is set h = 10

b(M+1) as
suggested in (Chen et al., 2014), different from that used to produce Table 2. Results with smaller
test error is highlighted in boldface.

I EWSG DOES NOT NECESSARILY CHANGE THE SPEED OF CONVERGENCE
SIGNIFICANTLY

Changing the weights of stochastic gradient from uniform to non-uniform, as we saw, can increase
the statistical accuracy of the sampling; however, it does not necessarily increase or decrease the
speed of convergence to the (altered) limiting distribution. Numerical examples already demon-
strated this fact, but on the theoretical side, we note the non-asymptotic bound provided by Theorem
4 may not provide a tight enough quantification of speed of convergence due to its generality. There-
fore, here we quantify the convergence speed on a simple quadratic example:
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Consider Vi(θ) = 1
n (θ − µi)2/2 where µi’s are constant scalars. Assume without loss of generality

that
∑
i µi = 0, and thus V (θ) =

∑n
i=1 Vi(θ) = θ2/2 + some constant. We will show the con-

vergence speed of Eθ is comparable for uniform and a class of non-uniform SG-MCMC (including
EWSG) applied to second-order Langevin equation (overdamped Langevin will be easier and thus
omitted):

Theorem 6 Consider, for 0 < γ < 2, respectively SGHMC and EWSG,{
θ′k+1 = θ′k + hr′k
r′k+1 = r′k − hγr′k − h(θ′k − µI′k) +

√
hσξ′k+1

and
{
θk+1 = θk + hrk
rk+1 = rk − hγrk − h(θk − µIk) +

√
hσξk+1

,

where I ′k are i.i.d. uniform random variable on [n], Ik are [θ, r] dependent random variable on [n]
satisfying P(Ik = i) = 1/n+O(hp), and ξk+1, ξ

′
k+1 are standard i.i.d. Gaussian random variables.

Denote by θ̄′k = Eθ′k, r̄′k = Er′k, θ̄k = Eθk, r̄k = Erk, x′k = [θ̄′k, r̄′k]T , and xk = [θ̄k, r̄k]T , then

x′k = (I +Ah)kx′0, where A =

[
0 1
−1 −γ

]
, (14)

for small enough h, ‖x′k‖ converges to 0 exponentially with k →∞, and xk converges at a compa-
rable speed in the sense that ‖xk − x′k‖ = O(hp) if x0 = x′0.

Proof: Taking the expectation of the [θ′, r′] iteration and using the fact that
∑
i µi = 0 and hence

EµI′k = 0, one easily obtains (14). The geometric convergence of x′k thus follows from the fact that
eigenvalues of I +Ah have less than 1 modulus for small enough h.

Let ek = [0,EµIk ]T and then

ek = [0,

n∑
i=1

P(Ik = i)µi]
T = [0,O(hp)]T

Now we take the expectation of both sides of the [θ, r] iteration and obtain xk+1 = (I+Ah)xk+hek.
Therefore

xk = (I+Ah)kx0+(I+Ah)k−1he0+· · ·+(I+Ah)hek−2+hek−1 = x′k+h
(
(I+Ah)k−1e0+· · ·+(I+Ah)ek−2+ek−1

)
To bound the difference, note I +Ah is diagonalizable with complex eigenvalues λ1,2 satisfying

|λ1| = |λ2| =
√

1− hγ + h2 = 1− γh/2 +O(h2).

Projecting ej to the corresponding eigenspaces via ej = v1,j + v2,j , we can get

h‖(I +Ah)k−1e0 + · · ·+ ek−1‖ ≤ h
(
‖(I +Ah)k−1e0‖+ · · ·+ ‖ek−1‖

)
= h

(
|λ1|k−1‖v1,0‖+ |λ2|k−1‖v2,0‖+ · · ·+ ‖v1,k−1‖+ ‖v2,k−1‖

)
≤ hChp(|λ1|k−1 + · · ·+ 1) = hChp

1− |λ1|k

1− |λ1|
≤ hChp 1

1− |λ1|
≤ Ĉhp

for some constant C and Ĉ.

Important to note is, although this is already a nonlinear example for EWSG (as nonlinearity enters
through the µIk term), it is a linear example for SGHMC. We do not have a tight quantification for
the fully nonlinear cases, for which whether EWSG converges faster or comparably like suggested
by the experiments remains to be an open theoretical challenge.
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