
Table 6: Learning representation of entities, dynamics of those entities and interaction between
entities: Different ways in which the previous work has learned representation of different entities as
a set of slots, dynamics of those entities (i.e., whether different entities follow the same dynamics,
different dynamics or in a dynamic way i.e context dependent manner) and how these entities interact
with each other. We note that the proposed model is agnostic as to how one learn the representation
of different entities, as well as how these entities behave (i.e., dynamics of those entities).

Relevant Work Entity Encoder Entity Dynamics Entity Interactions
RIMs (Goyal et al., 2019) Interactive Enc. Different Dynamic
MONET (Burgess et al., 2019) Sequential Enc. NA NA
IODINE (Greff et al., 2019) Iterative Reconstructive Enc. NA NA
C-SWM (Kipf et al., 2019) Bottom-Up Enc. NA GNN
OP3 (Veerapaneni et al., 2020) Iterative Reconstructive Enc. Same GNN
SA (Locatello et al., 2020a) Iterative Interactive Enc. NA NA
SCOFF (Goyal et al., 2020) Interactive Enc. Dynamic Dynamic

Appendix

Algorithm 1 Sequential Neural Production System model

Input: Input sequence {x1, . . . ,xt, . . . ,xT }, set of embeddings describing the rules ~Ri, and set of MLPs
(MLPi) corresponding to each rule R1...N . Hyper-parameters specific to NPS are the number of stages K,
the number of slots M , and the number of rules N . W k, W q , W̃ k, and W̃ q are learnable weights.

for each input element xt with t← 1 to T do

Step 1: Update or infer the entity state in each slot j, V t,0
j , from the previous state, V t−1,K

j and the current
input xt.

for each stage h← 0 to K − 1 do
Step 2: Select {rule, primary slot} pair
• ki = ~RiW

k ∀i ∈ {1, . . . , N}
• qj = V t,h

j W q ∀j ∈ {1, . . . ,M}
• r, p = argmaxi,j (qjki + γ)

where γ ∼ Gumbel(0, 1)

Step 3: Select contextual slot
• qr,p = V t,h

p W̃ q

• kj = V t,h
j W̃ k ∀j ∈ {1, . . . ,M}

• c = argmaxj (qr,pkj + γ)
where γ ∼ Gumbel(0, 1)

Step 4: Apply selected rule to primary slot conditioned on contextual slot
• R̃ = MLPr(Concatenate([V

t,h
p ,V t,h

c]))

• V t,h+1
p = V t,h

p + R̃
end

end

A Related Work

McMillan et al. (1991) have studied a neural net model, called RuleNet, that learns simple string-
to-string mapping rules. RuleNet consists of two components: a feature extractor and a set of
simple condition-action rules – implemented in a neural net – that operate on the extracted features.
Based on a training set of input-output examples, RuleNet performs better than a standard neural net
architecture in which the processing is completely unconstrained.

Key-Value Attention. Key-value attention (Bahdanau et al., 2014) defines the backbone of updates
to the slots in the proposed model. This form of attention is widely used in Transformer models
(Vaswani et al., 2017). Key-value attention selects an input value based on the match of a query

16

Algorithm 2 Parallel Neural Production System model

Input: Input sequence {x1, . . . ,xt, . . . ,xT }, set of embeddings describing the applicable rules ~Ri, set of
MLPs (MLPi) corresponding to each rule R1...N ,and an embedding vector corresponding to the Null Rule
~RNull. Hyper-parameters specific to NPS are the number of stages K, the number of slots M , and the
number of rules N . W q , Ŵ k, WRa , W k, W̃ k, and W̃ q are learnable weights.

for each input element xt with t← 1 to T do

Step 1: Update or infer the entity state in each slot j, V t,0
j , from the previous state, V t−1,K

j and the current
input xt.

Step 2: Select the set of primary slots P
• Ra = Concatenate([~Ri ∀i ∈ {1, . . . , N}])WRa

• kj = V t
j Ŵ

k ∀j ∈ {1, . . . ,M}
• P = {j if Rakj + γ > RNullkj + γ, where j ∈ {1, . . .M} and γ ∼ Gumbel(0, 1)}

Step 3: Select a rule for each primary slot in P

• ki = ~RiW
k ∀i ∈ {1, . . . , N}

• qp = V t
pW

q ∀p ∈ P
• rp = argmaxi(qpki + γ) ∀i ∈ {1, . . . , N} ∀p ∈ P , where γ ∼ Gumbel(0, 1)

Step 4: Select a contextual slot for each primary slot
• qp = V t

p W̃
q ∀p ∈ P

• kj = V t
j W̃

k ∀j ∈ {1, . . . ,M}
• cp = argmaxj(qpkj + γ) ∀j ∈ {1, . . . ,M} ∀p ∈ P , γ ∼ Gumbel(0, 1)

Step 5: Apply selected rule to each primary slot conditioned on the contextual slot
• R̃p = MLPrp(Concatenate([V

t
p ,V

t
cp])) ∀p ∈ P

• V t+1
p = V t

p + R̃p ∀p ∈ P
end

vector to a key vector associated with each value. To allow easier learnability, selection is soft and
computes a convex combination of all the values. Rather than only computing the attention once, the
multi-head dot product attention mechanism (MHDPA) runs through the scaled dot-product attention
multiple times in parallel. There is an important difference with NPS: in MHDPA, one can treat
different heads as different rule applications. Each head (or rule) considers all the other entities as
relevant arguments as compared to the sparse selection of arguments in NPS.

Sparse and Dense Interactions. GNNs model pairwise interactions between all the slots hence they
can be seen as capturing dense interactions (Scarselli et al., 2008; Bronstein et al., 2017; Watters
et al., 2017; Van Steenkiste et al., 2018; Kipf et al., 2018; Battaglia et al., 2018; Tacchetti et al., 2018).
Instead, verbalizable interactions in the real world are sparse (Bengio, 2017): the immediate effect
of an action is only on a small subset of entities. In NPS, a selected rule only updates the state of a
subset of the slots hence the interactions in NPSare sparse.

Modularity and Neural Networks. A network can be composed of several modules, each meant
to perform a distinct function, and hence can be seen as a combination of experts (Jacobs et al.,
1991; Bottou & Gallinari, 1991; Ronco et al., 1997; Reed & De Freitas, 2015; Andreas et al., 2016;
Rosenbaum et al., 2017; Fernando et al., 2017; Shazeer et al., 2017; Kirsch et al., 2018; Rosenbaum
et al., 2019; Lamb et al., 2020) routing information through a gated activation of modules. The
framework can be stated as having a meta-controller c which from a particular state s, selects a
particular expert or rule a = c(s) as to how to transform the state s. These works generally assume
that only a single expert (i.e., winner take all) is active at a particular time step. Such approaches
factorize knowledge as a set of experts (i.e a particular expert is chosen by the controller). Whereas
in the proposed work, there’s a factorization of knowledge both in terms of entities as well as rules
(i.e., experts) which act on these entities.

Graph Neural Networks. GNNs model pairwise interactions between all the entities hence they
can be termed as capturing dense interactions (Scarselli et al., 2008; Bronstein et al., 2017; Watters
et al., 2017; Van Steenkiste et al., 2018; Kipf et al., 2018; Battaglia et al., 2018; Tacchetti et al., 2018).

17

Type Size Activation

Linear 128 ReLU

Linear Slot Dim. i.e size of V
Table 7: Architecture of the rule-specific MLP (MLPr) in algorithm 1.

Interactions in the real world are sparse. Any action affects only a subset of entities as compared to
all entities. For instance, consider a set of bouncing balls, in this case a collision between 2 balls a
and b only affects a and b while other balls follow their default dynamics. Therefore, in this case it
may be useful to model only the interaction between the 2 balls that collided (sparse) rather than
modelling the interactions between all the balls (dense). This is the primary motivation behind NPS.

In the NPS, one can view the resultant computational graph as a result of sequential application
of rules as a GNN, where the states of the entities represent the different nodes, and different rules
dynamically instantiate an edge between a set of entities, again chosen in a dynamic way. Its important
to emphasize that the topology of the graph induced in the NPS is dynamic, while in most GNNs the
topology is fixed. Through thorough set of experiments, we show that learning sparse and dynamic
interactions using NPS indeed works better than learning dense interactions using GNNs. We show
that NPS outperforms state-of-the-art GNN-based architectures such as C-SWM Kipf et al. (2019)
and OP3 Veerapaneni et al. (2019) while learning world-models.

Neural Programme Induction. Neural networks have been studied as a way to address the problems
of learning procedural behavior and program induction (Graves et al., 2014; Reed & De Freitas, 2015;
Neelakantan et al., 2015; Cai et al., 2017; Xu et al., 2018; Trask et al., 2018; Bunel et al., 2018; Li
et al., 2020). The neural network parameterizes a policy distribution p(a|s), which induces such
a controller, which issues an instruction a = f(s) which has some pre-determined semantics over
how it transforms s. Such approaches also factorize knowledge as a set of experts. Whereas in the
proposed work, there’s a factorization of knowledge both in terms of entities as well as rules (i.e.,
experts) which act on these entities. Evans et al. (2019) impose a bias in the form of rules which is
used to to define the state transition function, but we believe both the rules and the representations of
the entities can be learned from the data with sufficiently strong inductive bias.

RIMs, SCOFF and NPS. Goyal et al. (2019, 2020) are a key inspiration for our work. RIMs consist
of ensemble of modules sparingly interacting with each other via a bottleneck of attention. Each RIM
module is specialized for a particular computation and hence different modules operate according to
different dynamics. RIM modules are thus not interchangeable. Goyal et al. (2020) builds upon the
framework of RIMs to make the slots interchangeable, and allowing different slots to follow similar
dynamics. In SCOFF, the interaction different entities is via direct entity to entity interactions via
attention, whereas in the NPS the interactions between the entities are mediated by sparse rules i.e.,
rules which have consequences for only a subset of the entities.

B NPS Specific Parameters

We use query and key size of 32 for the attention mechanism used in the selection process in steps 2
and 3 in algorithm 1. We use a gumbel temperature of 1.0 whenever using gumbel softmax. Unless
otherwise specified, the architecture of the rule specific MLP is shown in table 7.

C MNIST Transformation Task

The two entities are first encoded in two slots M = 2: the first entity (the image) is encoded with a
convolutional encoder to a d-dimensional vector; the second entity (the one-hot operation vector) is
mapped to a d-dimensional vector using a learned weight matrix. Note that this step is different than
Step 1 of Algorithm 1 since we don’t have multiple timesteps here and we use the transformation
embedding as one of the slots which is not done for any of the other experiments. We feed these
two slots to the NPS module. Step 2 in algorithm 1 will match the transformation embedding to the
corresponding rule. Step 3 in algorithm 1 can be used to select the correct slot for rule application
(i.e. the image (X) representation). Step 4 can then apply the MLP of the selected rule to the selected

18

Type Channel Activation Stride

Encoder

Conv2D [4× 4] 16 ELU 2
Conv2D [4× 4] 32 ELU 2
Conv2D [4× 4] 64 ELU 2

Linear 100 ELU -

Decoder

Linear 4096 ReLU -
Interpolate (scale factor = 2) - - -

Conv2D [4× 4] 32 ReLU 1
Interpolate scale factor = 2 - - -

Conv2D [4× 4] 16 ReLU 1
Interpolate scale factor = 2 - - -

Conv2D [3× 3] 1 ReLU 1
Table 8: The architecture of the convolutional encoder and decoder for the MNIST Transformation
task.

.

slot from step 3 and output the result, which is passed through a common decoder to generate the
transformed image. We train the model using binary cross entropy loss.

As highlighted before, NPS has 3 components: (1) Rule selection, (2) Entity selection, and (3)
Dynamic edge instantiation. The main motivation behind using mnist transformation task is to study
the rule selection aspect of NPS. Therefore, we have only 1 entity and study whether NPS can learn 4
different rules to represent the 4 operations and learn to used them correctly. We observe that NPS is
indeed able to do so.

In this task, we use images of size 64× 64. There are 4 possible transformations that can be applied
on an image: [Translate Up, Translate Down, Rotate Left, and Rotate Right]. During training, we
present an image and the corresponding operation vector and train the model to output the transformed
image. We use binary cross entropy loss as our training objective. As mentioned before, we observe
that NPS learns to assign a separate rule to each transformation. We can use the learned model to
perform and compose novel transformations on MNIST digits. For example, if we want to perform
the Rotate Right operation on a particular digit, we input the one-hot vector specifying the Rotate
Right operation alongwith the digit to the learned model. The model than outputs the resultant digit
after performing the operation. A demonstration of this process is presented in Figure 7. Figure 7
shows the actual outputs from the model.

Setup. We first encode the image using the convolutional encoder presented in table 8. We present
the one-hot transformation vector and the encoded image representation as slots to NPS (algorithm 1).
NPS applies the rule MLP corresponding to the given transformation to the encoded representation of
the image which is then decoded to give the transformed image using the decoder in table 8. We use
a batch size of 50 for training. We run the model for 100 epochs. This experiment takes 2 hours on a
single v100.

D Coordinate Arithmetic Task

This task is mainly designed to test whether NPS can learn all the operations in the environment
correctly when the operation to be performed is not provided as input and whether it can select the
correct entity to apply the operation to. The task is structured as follows: We first sample a pair
random coordinates X = [(xi, yi), (xj , yj)]. The expected output Y = [(x̂i, ŷi), (x̂j , ŷj)] is obtained
by performing a randomly selected operation on a randomly selected coordinate (hereafter referred to
as "primary coordinate") from the input. Therefore, one of the coordinates from the expected output Y
has the same value as the corresponding coordinate in the inputX while the other coordinate (primary
coordinate) will have a different value. Since each defined operation takes 2 arguments, we also need
to select another coordinate (hereafter referred to as "contextual coordinate"), to perform the operation
on the primary coordinate. This contextual coordinate is selected randomly from the input X . For
example, if the index of the primary coordinate is j, the index of the contextual coordinate is i, and
the selected transformation is Y Subtraction, then the expected output Y = [(xi, yi), (xj , yj − yi)]).

19

Rotate Right Translate Up Rotate Left Translate Down Rotate Right Rotate Left

1 2 3 4 21 3 4 2 31 4 1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4 2 31 4

Rotate Right Translate Up Rotate Left Translate Down1 2 3 4

N Rule N

1 2 3 4

Translate Down Rotate Left Translate Up Rotate Right Translate Up Rotate Right

2 31 4 21 3 4 1 2 3 4 21 3 4 1 2 3 4

Rotate Left Rotate Right Translate Up Translate Down Rotate Left

2 31 4 1 2 3 4 21 3 4

21 3 4 1 2 3 4 21 3 4

Rotate Right

1 2 3 4 2 31 4

Translate Up Translate Down Rotate Left Rotate Right Translate Up Rotate Right

2 31 4 1 2 3 4

Figure 7: MNIST Transformation Task. Demonstration of NPS on the MNIST transformations
task. The proposed model can be used to compose any novel combination of transformations on
any digit by hand-picking the rule vector that was assigned to each corresponding operation during
training.

We use an NPS model with 4 rules. Each coordinate is a 2-dimensional vector. The slots that are
input to algorithm 1 consist of a set of 4 coordinates (2 input coordinates and their corresponding
output coordinates): X = [(xi, yi), (xj , yj)] and Y = [(x̂i, ŷi), (x̂j , ŷj)]. We concatenate the
input coordinates with the corresponding output coordinates to form 4-dimensional vectors: X =
[(xi, yi, x̂i, ŷi), (xj , yj , x̂j , ŷj)]. These make up the 2 slots that are input algorithm 1. Note that the
slots are hand designed and not obtained using any convolution encoder. This is the main difference
between this implementation and algorithm 1. The remaining steps of algorithm 1 are followed as is.
These 2 slots are used in step 2 and step 3 of algorithm 1 to select the {primary slot, rule} pair and
the contextual slot. While applying the rule MLP (i.e. step 4 of algorithm 1), we only use the input
coordinates and discard the output coordinates: X = [(xi, yi), (xj , yj)]. We use a rule embedding
dimension of 12. We use 16 as the intermediate dimension of the Rule MLP. We also use dropout
with p = 0.35 on the selection scores in subpart 3 of step 2 in algorithm 1.

For the baseline, we use similar rule MLPs as in NPS and replace the primary slot, contextual slot,
rule selection procedure by a routing MLP similar to Fedus et al. (2021). The routing MLP consists
of a 4-layered MLP with intermediate dimension of 32 interleaved with Relu activations. The input to
this MLP is an 8-dimension vector consisting of both the slots mentioned in the previous paragraph.
The output of this MLP is passed to 3 different linear layers: one for selecting the primary slot, one
for selecting the contextual slots, and one for selecting the rule. We then apply the rule MLP of the
selected rules to the corresponding slots. Here again, while applying the rule MLP we discard the
outputs and only use the inputs.

We evaluate the model on 2 criterion: (1) Whether it can correctly recover all available operations
from the data and learn to use a separate rule to represent each operation. (2) The mean-square error
between the actual output and expected output.

Setup. We generate a training dataset of 10000 examples and a test dataset of 2000 examples. We
train the model for 300 epochs using a batch size of 64. We use adam optimizer for training with a
learning rate of 0.0001. Training takes 15 minutes of a single GPU.

20

PNPS SNPS
Model

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Er
ro

r

Test Performance

PNPS SNPS
Model

0

2

4

6

8

10
Transfer Performance

Num.
Rules

1
2
4
6

Figure 8: Here we analyse the effect of Number of Rules on both PNPS and SNPS in the shapes stack
environment. We observe that there is an optimal number of rules in both cases which is 2 for PNPS
and 4 for SNPS.

E Parallel vs Sequential Rule Application

E.1 Shapes Stack

Effect of Number of Rules. We also study the effect of number of rules on both PNPS and SNPS in
the test and transfer settings. Figure 8 shows the results of our analysis. We can see that there is an
optimal number of rules N = k for both PNPS and SNPS and the performance drops for N < k
and N > k. We can see that k = 2 for PNPS and k = 4 for SNPS. The drop in performance for
N < k can be attributed to lack of capacity (i.e. number of rules being less than the required number
of rules for the environment). Consequently, the drop in performance for N > k can be attributed to
the availability of more than the required number of rules. The extra rules may serve as noise during
the training process.

Training Details. We train the model for 1000000 iterations using a batch size of 20. The training
takes 24 hours for PNPS and 48 hours for SNPS. We use a single v100 gpu for each run. We set the
rule embedding dimension to 64.

E.2 Bouncing Balls

Model Name Test Transfer

OP3 0.32±0.04 0.14±0.1

SNPS 0.51±0.07 0.34±0.08

Table 9: This table shows the com-
parison of the proposed SNPS mod-
els against the OP3 baseline in terms
of ARI scores (higher is better) on the
bouncing balls task. SNPS replaces the
GNN used in OP3 by rules.

Setup. We consider a bouncing-balls environment in which
multiple balls move with billiard-ball dynamics. We val-
idate our model on a colored version of this dataset. This
task is setup as a next step prediction task where the model
is supposed to predict the motion of a set of balls that
follow billiard ball dynamics. The output of each of our
models consists of a seperate binary mask for each object
in a frame along with an rgb image corresponding to each
mask which contains the rgb values for the pixels speci-
fied by that mask. During training each of the balls can
have one of the four possible colors, and during testing we
increase the number of balls from 4 to 6-8.

We use the following baselines for this task:

21

Rule Application Step 1 Rule Application Step 2 Rule Application Step 3

Figure 9: In the figure, we use an NPS model with 3 rules and 3 rule application steps. We analyze the
entity and rule selection by NPS per time step. A rule application on a slot is shown by highlighting
that slot with blue color. The index of the applied rule is also mentioned in the slot. We can see that
whenever a rule is applied on the slot representing the background, rule 0 is used. On the other hand,
whenever it is applied on the slots representing one of the balls, rule 1 or rule 2 are used. We can also
see that rules are mainly only being applied to the two balls in the middle that are touching or close
to touching while no rules are being applied to the ball on the top since it stays constant throughout
this episode. The ball at the bottom is also mostly constant and receives only 1 rule application when
its close to colliding with the wall.

• SCOFF Goyal et al. (2020): This factorizes knowledge in terms of object files that represent
entities and schemas that represent dynamical knowledge. The object files compete to
represent the input using a top-down input attention mechanism. Then, each object file
updates its state using a particular schema which it selects using an attention mechanism.

• SCOFF++: Here we use SCOFF with 1 schema. We replace the input attention mechanism
in SCOFF with an iterative attention mechanism as proposed in slot attention Locatello et al.
(2020b). We note that slot attention proposes to use iterative attention by building on the
idea of top-down attention as proposed in (Goyal et al., 2019). We note that slot attention
was only evaluated on the static images. Here, the query is a function of the hidden state
of the different object files in SCOFF from the previous timestep, which allows temporal
consistency in slots across the video sequence.

For our instantiation of NPS, we replace pairwise communication attention in SCOFF++ with PNPS
or SNPS. From the discussion in Section 4.2 we find that SNPS outperforms the SCOFF-based model
and PNPS.

We further test the proposed SNPS model against another strong object-centric baseline called OP3
(Veerapaneni et al. (2019)). We follow the exact same setup as Weis et al. (2020). For the proposed
model we replace the GNN in OP3 with SNPS. We present the results of this comparison in Table 9.
We can see that SNPS comfortably outperforms OP3.

An intuitive visualization of the rule and entity selection for the bouncing balls environment is
presented in Figure 9.

Training Details. We run each model for 20 epochs with batch size 8 which amounts to 24 hours on
a single v100 gpu. For the OP3 experiment, we use 5 rules and 3 rule application steps. We use a rule
embedding dimension of 32 for our experiments.

22

E.3 Discussion of parallel vs sequential NPS

We have introduced two forms of NPS - Parallel and Sequential. Parallel NPS offers lower application
sparsity as compared Sequential NPS while both have the same contextual sparsity. The same
contextual sparsity indicates that the interactions or rules learned by both SNPS and PNPS are of
same capacity since the rules in both take 2 arguments (primary slot and contextual slot). SNPS has
the favourable property of being able to compose multiple rules by virtue of multiple rule application
steps. We find that PNPS works better in environments where the nature of interactions are inherently
dense and frequent which is expected due to the lower application sparsity of PNPS while SNPS
works better in environments where interactions are much more rare. One caveat of this approach is
that we need to know the structure of the environment beforehand to make an informed decision on
whether to use SNPS or PNPS. Ideally, we would want an algorithm that can learn to use PNPS or
SNPS depending on the environment. We leave this exploration for future work.

F Benefits of Sparse Interactions Offered by NPS

F.1 Sprites-MOT: Learning Rules for Physical Reasoning

Setup. We use the OP3 model Veerapaneni et al. (2019) as our baseline for this task. We follow
the exact same setup as Weis et al. (2020). To test the proposed model, we replace the GNN-based
transition model in OP3 with the proposed NPS. The output of the model consists of a seperate binary
mask for each object in a frame along with an rgb image corresponding to each mask which contains
the rgb values for the pixels specified by the mask.

Evaluation protocol. We use the same evaluation protocol as followed by Weis et al. (2020) which
is based on the MOT (Multi-object tracking) challenge Milan et al. (2016). To compute these metrics,
we have to match the objects in the predicted masks with the objects in the ground truth mask. We
consider a match if the intersection over union (IoU) between the predicted object mask and ground
truth object mask is greater than 0.5. The results on these metrics can be found in Table 10. We
consider the following metrics:

• Matches (Higher is better): This indicates the fraction of predicted object masks that are
mapped to the ground truth object masks (i.e. IoU > 0.5).

• Misses (Lower is better): This indicates the fraction of ground truth object masks that are
not mapped to any predicted object masks.

• False Positives (Lower is better): This indicates the fraction of predicted object masks that
are not mapped to any ground truth masks.

• Id Switches (Lower is better): This metric is designed to penalize switches. When a
predicted mask starts modelling a different object than the one it was previously modelling,
it is termed a an id switch. This metric indicates the fraction of objects that undergo and id
switch.

• Mostly Tracked (Higher is better): This is the ratio of ground truth objects that have not
undergone and id switch and have been tracked for at least 80% of their lifespan.

• Mostly Detected (Higher is Better): This the ratio of ground truth objects that have been
correctly tracked for at least 80% of their lifespan without penalizing id switches.

• MOT Accuracy (MOTA) (Higher is better): This measures the fraction of all failure cases
i.e. false positives, misses, and id switches as compared to the number of objects present in
all frames. Concretely, MOTA is indicated by the following formula:

MOTA = 1−
∑T

t=1Mt + FPt + IDSt∑T
t=1Ot

(1)

where, Mt, FPt, and IDSt indicates the misses, false positives, id switches at timestep t
and Ot indicates the number of objects at timestep t.

• MOT Precision (MOTP) (Higher is better): This metric measures the accuracy between
the predicted object mask and the ground truth object mask relative to the total number of

23

GT

Predicted

Mask 0

Mask 1

Mask 2

Mask 3

Figure 10: This figure shows the predictions of the OP3 model using the proposed NPS as a transition
model. We can see that the proposed model succeeds in segregating each entity into separate slots
and predicting the motion of each individual entity.

matches. Here, accuracy is measured in IoU between the predicted masks and ground truth
mask. Concretely, MOTP is indicated using the following formula:

MOTP =

∑T
t=1

∑I
i=1 d

i
t∑T

t=1 ct
(2)

where, dit measures the accuracy for the ith matched object between the predicted and the
ground truth mask measured in IoU. ct indicates the number of matches in timestep t.

Model MOTA ↑ MOTP ↑ Mostly Detected ↑ Mostly Tracked ↑ Match ↑ Miss ↓ ID Switches ↓ False Positives ↓

OP3 89.1±5.1 78.4±2.4 92.4±4.0 91.8±3.8 95.9±2.2 3.7±2.2 0.4±0.0 6.8±2.9

NPS 90.72±5.15 79.91±0.1 94.66±0.29 93.18±0.84 96.93±0.16 2.48±0.07 0.58±0.02 6.2±3.5

Table 10: Sprites-MOT. Comparison between the proposed NPS and the baseline OP3 for various
MOT (multi-object tracking) metrics on the sprites-MOT dataset (↑: higher is better, ↓: lower is
better). Average over 3 random seeds.

Model output. We show the predictions of the proposed model in figure 10. We use 10 rules and
3 rule application steps for our experiments. We use a rule embedding dimension of 64 for our
experiments. Each rule is parameterized by a neural network as described in Tab. 7.

F.2 Physics Environment

Increasing weight

Underlying Causal Graph

Even if the model hasn't seen this
shape and/or color, it should still be
able to insert it in the graph correctly

Where should this new object be
placed in the causal graph?

Underlying Causal Graph

The model hasn't seen this shape but has
seen red color before. Should still be able to
insert the object in the above causal graph

Increasing weight

The model hasn't seen this color before. So
shouldn't be able to insert the object in the

above causal graph without performing
some interventions

Figure 11: Demonstration of the physics environ-
ment.

A demonstration of this environment can be
found in Figure 11. Each color in the environ-
ment is associated with a unique weight. The
model does not have access to this information.
For the model to accurately predict the outcome
of an action, it needs to infer the weights from
demonstrations. Inferring the correct weights
will allow the model to construct the correct
causal graph for each example as shown in Fig-
ure 11 which will allow it predict the correct
outcome of each action in the environment. We
can see that as long as the model has the correct mapping from the colors to the weights, it will be
able to deal with an object of any shape irrespective of whether it has seen the shape before or not as
long as it has observed the color before. Therefore, to perform well in this environment the model
must infer the correct mapping from colors to weights . Learning any form of spurious correlation
between the shape and the weight will penalize its performance.

The agent performs stochastic interventions (actions) in the environment to infer the weights of the
blocks. Each intervention makes a block move in any of the 4 available directions (left, right, up,
and down). When an intervened block A with weight WA comes into contact with another block
B with weight WB , the block B may get pushed if WB < WA else B will remain still. Hence,
any interaction in this environment involves only 2 blocks (i.e., 2 entities) and the other blocks are
not affected. Therefore, modelling the interactions between all blocks for every intervention, as is
generally done using GNNs, may be wasteful. NPS is particularly well suited for this task as any

24

rule application takes into account only a subset of entities, hence considering interactions between
those blocks only. Note that the interactions in this environment are not symmetrical and NPS can
handle such relations. For example, consider a set of 3 blocks: {A0, A1, A2}. If an intervention
leads to A1 pushing A0, then NPS would apply the rule to the slot representing entity A0. Since the
movement of A0 would depend on whether A0 is heavier or lighter than A1, NPS would also select
the slot representing entity A1 as a contextual slot and take it into account while applying the rule to
A0. Therefore, NPS can represent sparse and directed rules, which as we show, is more useful in this
environment then learning dense and undirected relationships (or commutative operations).

Data collection. For the data, the agent performs random interventions or actions in the environment
and collects the corresponding episodes. We collect 1000 episodes of length 100 for training and
10000 episodes of length 10 for evaluation.

Metrics. For this task, we evaluate the predictions of the models in the latent space. We use the
following metrics described in (Kipf et al., 2019) for evaluation: Hits at Rank 1 (H@1): This
score is 1 for a particular example if the predicted state representation is nearest to the encoded true
observation and 0 otherwise. Thus, it measures whether the rank of the predicted representation is
equal to 1 or not, where ranking is done over all reference state representations by distance to the
true state representation. We report the average of this score over the test set. Note that, higher H@1
indicates better model performance. Mean Reciprocal Rank (MRR): This is defined as the average
inverse rank, i.e, MRR = 1

N

∑N
n=1

1
rankn

where rankn is the rank of the nth sample of the test set
where ranking is done over all reference state representations. Here also, higher MRR indicates better
performance.

Setup. Here, we follow the experimental setup in Ke et al. (2021). We use images of size 50×50. We
first encode the current frame xt using a convolutional encoder and pass this encoded representation
using top-down attention as proposed in (Goyal et al., 2019, 2020) to extract the separate entities in the
frame as slots. We use a 4-layered convolutional encoder which preserves the spatial dimensions of
the image and encodes each pixel into 64 channels. We pass this encoded representation to the object
encoder which extracts the entities in the frame as M 64-sized slots (V t

1...M). We then concatenate
each slot with the action (at) taken in the current frame and pass this representation to NPS which
selects a rule to apply to one of the slots using algorithm 1. The following equations describe our
model in detail. We use M = 5 since there are 5 objects in each frame. We use a rule embedding
dimension of 64 for our experiments.

• x̂t = Encoder(xt)
• V t

1...M = Slot Attention(x̂t)
• V t

i = Concatenate(V t
i ,a

t) ∀i ∈ {1, . . . ,M}
• V t+1

1...M = NPS(V t
1...M)

Here, NPS acts as a transition model. For the baseline, we use GNN as the transition model similar to
Kipf et al. (2019).

Training Details. The objective of the model is to make accurate predictions in the latent space.
Mathematically, given the current frame xt and a set of actions at,at+1,at+2, . . . ,ak, the model
performs these actions in the latent space as described in the above equations and predicts the
latent state after applying these actions, i.e., V t+k

1...M . Both the metrics, H@1 and MRR measure
the closeness between the predicted latent state and V t+k

1...M and the ground truth latent state V̄ t+k
1...M

which is obtained by passing frame xt+k through the convolutional encoder and slot attention module.
During training we use the contrastive loss which optimizes the distance between the predicted and
the ground truth representations. We train the model for 100 epochs (1 hour on a single v100 gpu).
Mathematically, the training objective can be formulated as follows:

25

1 5 10
Steps

0

20

40

60

80

M
RR

Rule Application Steps
NPS
GNN

(a) Performance on MRR

1 5 10
Steps

0

20

40

60

80

Pe
rfo

rm
an

ce

H@1

1 5 10
Steps

MRR

 Rule
Application
 Steps

1
3
5
7

(b) Effect of Rule Application Steps on H@1 and MRR

Figure 12: Physics Environment. (a) Here we compare the performance of NPS and GNN on the
MRR metric for various forward-prediction steps.(We use 1 rule and 1 rule application step) (b) Here
we analyse the effect of the rule application steps on the H@1 and MRR metric for NPS. We can see
that, in general, the performance increases as we increase the number of rule application steps.

Contrastive Training : arg min
Encoder, Transition

H + max(0, γ − H̃)

H = MSE(V̂ t+1
1...M ,V

t+1
1...M)

H̃ = MSE(Ṽ t+1
1...M ,V

t+1
1...M)

Ṽ t+1 : Negative latent state obtained from random shuffling of batch

V̂ t+1 : Ground truth latent state for frame xt+1

Results on MRR. We show the results on the MRR metric for the physics environment in Figure
12(a). From the figure, we can see that NPS outperforms GNN on the MRR metric while predicting
future steps.

Effect of Rule Application Steps. We show the effect of varying rule application steps on the
physics environment in Figure 12(b). We can see that the performance increases with increasing
rule application steps. Increasing the number of rule application steps seems to help since at each
rule application step only sparse changes occur. We would also like to note that increasing the rule
application steps comes with the cost of increased compute time due to their sequential nature.

26

1 Step 5 Step 10 Step

Model, H@1 MRR H@1 MRR H@1 MRR

NPS 44.09 +/- 8.30 60.577 +/- 7.919 22.25 +/- 7.567 38.731 +/- 9.005 15.615 +/- 5.748 30.154 +/- 7.538

GNN 30.442 +/- 11.178 48.788 +/- 10.428 11.596 +/- 6.109 25.481 +/- 8.331 7.25 +/- 4.057 18.942 +/- 6.156

Table 11: Here we compare the performance of NPS and GNN on the pong environment in atari. We
can see that NPS convincingly outperforms GNN. Results across 50 seeds.

1 Step 5 Step 10 Step

Model, H@1 MRR H@1 MRR H@1 MRR

NPS 61.269 +/- 11.576 74.558 +/- 9.425 32.827 +/- 9.179 52.981 +/- 9.073 21.385 +/- 7.118 39.173 +/- 8.505

GNN 68.75 +/- 8.44 79.942 +/- 5.662 21.673 +/- 6.81 39.635 +/- 7.395 14.712 +/- 4.932 31.0 +/- 6.26

Table 12: Here we compare the performance of NPS and GNN on the space invaders environment in
atari. We can see that NPS outperforms GNN in the multiple step setting (5 and 10 step). Results
across 50 seeds.

F.3 Atari

This task is also setup as a next step prediction task in the latent space. We follow the same setup as
the physics environment for this task. We use the same H@1 and MRR metric for evaluation. We test
the proposed approach on 5 games: Pong, Space Invaders, Freeway, Breakout, and QBert.

Data collection. Similar to the physics environment, here also the agent performs random interven-
tions or actions in the environment and collects the corresponding episodes. We collect 1000 episodes
for training and 100 episodes for evaluation.

Performance on MRR. We present the results on the MRR metric in figure 13. We can see that NPS
outperforms on GNN for steps. We use a rule embedding dimension of 32 for our experiments.

1 5 10
Steps

0

10

20

30

40

50

M
RR

Model
NPS
GNN

Figure 13: Atari. Here we compare the performance of NPS and GNN on the MRR metric for
various forward-prediction steps. The results shown in the plot are averaged across 5 games.

27

	Related Work
	NPS Specific Parameters
	MNIST Transformation Task
	Coordinate Arithmetic Task
	Parallel vs Sequential Rule Application
	Shapes Stack
	Bouncing Balls
	Discussion of parallel vs sequential NPS

	Benefits of Sparse Interactions Offered by NPS
	Sprites-MOT: Learning Rules for Physical Reasoning
	Physics Environment
	Atari

